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Abstract

With the deployment of Long Term Evolution (LTE) networks, mobile networks
will become an important infrastructure component in the cloud ecosystem.
However, in the cloud computing era, traditional routing and switching platforms
do not meet the requirements of this new trend, especially in a mobile network
environment. With the recent advances in software switches and efficient
virtualization using commodity servers, Software Defined Networking (SDN) has
emerged as a powerful technology to meet the new requirements for supporting a
new generation of cloud service.

This thesis describers an experimental investigation of cloud computing, SDN,
and a mobile network’s packet core. The design of a mobile network exploiting
the evolution of SDN is also presented. The actual implementation consists
of a GTP enabled Open vSwitch together with the transparent mode of mobile
network SDN evolution. Open vSwitch is a SDN product designed for computer
networks. The implementation extends Open vSwitch with an implementation
of the GTP protocol. This extension enables Open vSwitch to be an excellent
SDN component for mobile networks. In transparent mode, a cloud data center
is deployed without making any modification to the existing mobile networks.
In the practical evaluation of the GTP-U tunnel protocol implementation, the
measured metrics are UDP and TCP throughput, end-to-end latency and jitter.
Two experiments have been conducted and described in the evaluation chapter.

Cloud computing has become one of the hottest Internet topics. It is attractive
for the mobile network to adopt cloud computing technology in order to enjoy
the benefits of cloud computing. For example, to reduce network construction
cost, make the network deployment more flexible, etc. This thesis presents an
potential direction for mobile network cloud computing. Since this thesis relies
on open source projects, readers may use the results to explore a feasible direction
for mobile network cloud computing evolution.
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Sammanfattning

Med utbyggnaden av långa (LTE) Term Evolution nätverk, mobila nätverk
kommer blivit en viktig infrastruktur komponent i molnet ekosystemet. Men i
cloud computing eran, uppfyller traditionella routing och switching plattformar
inte kraven i denna nya trend, särskilt i ett mobilnät miljö. Med de senaste
framstegen i programvara växlar och effektiv virtualisering påråvaror servrar,
programvarustyrd Nätverk (SDN) har utvecklats till en kraftfull teknik för att möta
de nya kraven för att stödja en ny generation av molntjänst.

Denna avhandling beskrivarna en försöksverksamhet inriktad undersökning
av cloud computing, SDN och ett mobilnät är Packet Core. Utformningen av ett
mobilnät utnyttja SDN utveckling presenteras också. Det faktiska genomförandet
består av en GTP aktiverad Open Vswitch tillsammans med transparent läge
av mobilnätet SDN evolution. Öppna Vswitch är en SDN-produkt avsedd för
datornätverk. Genomförandet utökar Open Vswitch med en implementering av
GTP-protokollet. Denna uppgradering gör Open Vswitch vara som en utmärkt
SDN komponent för mobila nätverk. I transparent läge är ett moln datacenter
utplacerade utan göra eventuella ändringar till befintliga mobilnät. I den praktiska
utvärderingen av GTP-U tunnel protokollimplementering, de uppmätta mått är
UDP och TCP genomströmning, end-to-end-latens, jitter och paketförluster.
Tvåexperiment har utförts i utvärderingen kapitlet.

Cloud computing har blivit en av de hetaste av Internet. Således kan framtiden
för det mobila nätet ocksåanta teknik cloud computing och dra nytta av cloud
computing. Till exempel minska kostnaderna nätbyggnad, gör nätverket distribuera
mer flexibla, etc. .. Denna avhandling presenterar en möjlig inriktning för mobilnät
cloud computing. Eftersom denna avhandling bygger påopen source-projekt,
läsarna använda resultatet av den att utforska möjliga riktning mobilnät cloud
computing utveckling.
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Chapter 1

Introduction

1.1 Motivation
Cloud computing has had a large effect on the entire Internet. Nowadays, there
exist services including data storage, audio and video entertainment, and even
programming platforms, which are provided in the cloud. Subscribers access these
services from a heterogeneous set of devices and networks. However, with respect
to the mobile network itself, the cloud evolution seems to move forward only very
slowly. The latest mobile network concepts, such as packet core evolution, System
Architecture Evolution (SAE), and Evolved Packet Core (EPC), mainly focus on
integrating the various access networks[1]. The evolution of cloud computing is
not within the scope of 3GPP’s discussions. With the large-scale deployment of
Long Term Evolution (LTE)[2] networks, more and more services, such as voice
over IP and video streaming, are available via mobile networks. Mobile phones
have became one of the most popular devices for accessing the Internet. Due to
the advantages of cloud computing[3], the mobile network should itself adopt the
cloud computing paradigm. For instance, we can deploy computational nodes in
the cloud, rather than placing them within the operator’s core network. In fact
the Mobility Management Entity (MME), Serving Gateway (SGW), and Packet
Data Network Gateway (PGW), ..., and mobile network control entities, can be
virtualized and migrated to the cloud. This transitions would make the mobile
network more flexible, while reducing the cost of evolving the mobile network
and accelerating innovation of mobile networks. Migrating most of these services
and network entities into the cloud can make the mobile network more reliable,
scalable, and efficient.

We need to address some significant challenges to move increasingly large
parts of the mobile network into the cloud. Software Defined Networking (SDN),
also called a programmable networks, is a promising and powerful technology.

1



1.2. RELATED WORK 2

Today this technology is revolutionizing the cloud networking industry. SDN
decouples the control plane from the packet forwarding plane using new software
that can be run external to the packet forwarding hardware. This software-driven
control platform can automatically create entries in the forwarding table and hence
can control network services. SDN reduces network complexity and costs, while
enabling virtualization in order to meet cloud computing requirements and in this
process accelerating network innovation. All of these advantages position SDN as
the technology to enable moving the mobile packet core into the cloud. Another
issue that needs to be considered is tunneling in mobile network. Tunneling of
IP packets plays an important role in a mobile networks, as mobility is dependent
on tunneling between mobile networks entities. It is essential to investigate an
appropriate tunneling mechanism in order to introduce cloud computing concepts
into mobile networks.

1.2 Related Work
The combination of cloud computing and mobile communication is discussed in
several papers. However, most of the work focuses on migrating mobile terminal
and radio base station to cloud. Giurgiu, et al.[4] and Chun, et al.[5] provide
some practical ideas about implementing cloud computing in mobile terminals.
Zhu, et al.[6] proposes a concept “wireless network cloud” which considers all the
radio base stations as cloud. The cloud base stations are connected to a “Virtual
Base Station Pool” for traffic processing. Spyridon Vassilaras and Gregory S.
Yovanof provides four views of wireless communication cloud in [7] and proposes
a novel idea called “Wireless Networking Functionality as a Service”. The
recent master’s thesis “Telecommunication Services’ Migration to the Cloud”[8]
by Isaac Albarrán and Manuel Parras implements a telecommunication service
with cloud computing resource and evaluates the service performance based on
an Ericsson prototype mobile switching center server. This thesis provides a good
evaluation of pros and cons of migrating telecommunication service to cloud.

1.3 Contributions
The project has resulted in two main contributions. First, GPRS Tunneling
Protocol-User Plane (GTP-U)[9] has been implemented in the data center’s
gateway. This implementation is based upon a virtual switch. Implementing
GPRS tunneling protocol (GTP)[10] removes the main barrier to moving the
mobile packet core network into the cloud as the eNodeB, MME, SGW, and PGW
in a LTE network communicate with each other via GTP. The GTP protocol can
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be divided into a tunneling protocol for control plane traffic: GPRS Tunneling
Protocol-User Plane(GTP-C)[11] and a tunneling protocol for user plane traffic:
GTP-U. In the implementation of transparent mode, where only user plane
traffic is processed within the cloud, GTP-U is required. In the experimental
portion of this project, enabling GTP-U in an existing SDN product (called
Open vSwitch) was done in order to introduce SDN technology into a mobile
network. In the evaluation chapter, the performance of this GTP-U tunnel protocol
implementation was investigated in details.

The second contribution is the design of a new SDN oriented mobile network
evolution framework. Due to the complexity of mobile networks, it requires a
major effort to manage a mobile network cloud if we simply move the mobile
network’s packet core to the cloud. SDN offers us an appropriate technology for
cloud management, hence we introduce a SDN solution for the cloud in order
to support mobile networks. A rational and incremental mobile network SDN
evolution scheme can blow the “cloud” from the Internet to the mobile network.
This evolutionary scheme is based on the existing mobile network architecture,
but ultimately leads to a mobile cloud computing ecosystem. The experimental
implementation is the first step in this mobile network SDN evolution toward
introducing a cloud in transparent mode.

1.4 Structure of this thesis
Chapter 2 introduces the required background knowledge. The relevant knowledge
areas include cloud computing, SDN, the evolved packet core, Open VSwitch, and
the Linux network subsystem.

In chapter 3, a design for a mobile network SDN evolution framework is
presented. The primary idea is to begin by transparently introducing a data
center into the mobile network. After this we can incrementally move the mobile
network control entities to the data center.

In chapter 4, the implementation of this transparent mode is introduced
in detail. This initial implementation was realized in a demonstration. This
demonstration includes an implementation of GTP-U in Open vSwitch and
utilizes an OpenFlow controller to realize a transparent cloud service in a
mobile network. The evaluation results for the performance of GTP-U protocol
implementation are given in Chapter 5. Chapter 6 presents the conclusions and
suggests some future work.



Chapter 2

Background

This chapter introduces the essential background knowledge for understanding
this thesis. This chapter is divided into five sections. The first section is
about cloud computing. The basic concept and benefits of cloud computing are
introduced. Then, the topics of this thesis, SDN and mobile network architecture-
EPC are depicted in the second and third sections, respectively. In the fourth
section, the basic concept underlying Open vSwitch and the reason why Open
vSwitch was selected as the implementation platform are presented. In the last
section, the Netlink technique for communication between userspace and kernel
space is introduced.

2.1 Cloud computing
“A lot of people are jumping on the cloud bandwagon, but I have not heard two
people say the same thing about it. There are multiple definitions out there of the
cloud. ”

—Andy Isherwood, HP’s vice president for software services in Europe, quoted
in ZDnet News, December 11, 2008[12].

Everyone has his or her own definition(s) of cloud computing. As the
technology evolves, new definitions emerge for it. However, generally speaking,
cloud computing is an Internet-based distributed computing model[13]. In a
data center tens of thousands of servers are connected together to form a cloud.
Subscribers access this data center via PCs, mobile phones, or tablet computers to
utilize computational, storage, and networking resources based on their needs.

Cloud computing utilizes a (generally remote) data center, rather than the local
servers. This allows computing resources to be allocated based on the needs of
applications, thus companies no longer need to make large capital investments

4
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in both hardware and human resources to support these applications. Cloud
computing has introduced a revolution in how companies approach computing.
Consider the case of a man who used to cook himself his own dinner, but who now
can have dinner in a restaurant. This person does not need to buy the raw materials
and waste time and energy to cook dinner. Furthermore, the restaurant provides
all the food he wants and exactly what he wants, all that he needs to do is pay
the bill. With cloud computing, computing becomes a commodity. As someone
else is providing the resources for the cloud, companies do not risk over-investing
or under-investing in hardware. Nor do these companies need to worry about
wasting costly computing resources for a service with an unpredictable future. As
the company’s demands evolve, they simply rent the resources that they need.

2.1.1 Service Models of Cloud Computing
Normally, cloud computing can be divided into three major service models. They
are as follows:

Software as a Service (SaaS) is a new way of accessing software services. It
does not require the users to install the software on their own computers or servers,
but satisfies their requirements via appropriate cloud service provider[3]. SaaS is
a major trend in the development of the software industry. SaaS has attracted
the participation of many software giant likes leading to offerings such as Google
Apps, Salesforce.com, and Zoho Office[14].

Platform as a Service (PaaS) combines computer platforms, application
design, application development, application testing, and application hosting as
a service to provide to customers [3]. In this service model, customers do not
need to purchase hardware and software. Instead they create, test, and deploy
applications and services with the help of PaaS. Two typical examples of the PaaS
model are Google App Engine, and Salesforce.com’s Force.com platform[14].

Infrastructure as a Service (IaaS) enables subscribers to use cloud computing
technology to remotely access computing resources, including computing, networking,
and storage[3]. End-users, SaaS providers, and PaaS providers can obtain
computing resource via IaaS. Amazon, IBM, and Google are three major players
in the IaaS market[14].

A cloud as IaaS can be used to move a mobile packet network’s core network
into the cloud. This is possible because the mobile network’s packet core network
is simply a large computing infrastructure. However, migrating this core network
into the cloud makes the mobile network’s core infrastructure more flexible and
reduces the costs of mobile network evolution while accelerating innovation of
the mobile network. These benefits will be described in the following subsection.
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2.1.2 Benefits of Cloud Computing
According to Zhang, et al. the major benefits of cloud computing are[15]:

Reduced cost: Cost reduction is a obvious benefit of cloud computing. Cloud
users reduce their capital investment in infrastructure. They do not need to
invest in expensive hardware and software, but can instead share the costs of
infrastructure installation and system management with other cloud users. They
just need to pay for the resources that they use.

Flexibility: Cloud computing provides greater flexibility for enterprises. Enterprises
can determine their needs for additional resources. They can start with something
small, with a minimum of investment to meet their requirements. Enterprises
can selectively increase computing resources, according to their own business
model. Additionally, a cloud computing system is (logically) centralized, in this
architecture upgrades and patches can be applied easily[3]. Mobile networks
can really benefit from this feature, because there is always a need to evolve the
services of the mobile network.

Reliability: Cloud computing’s ability for load balancing and failover makes
it very reliable[3]. Because of the (logcially) centralized architecture, a cloud
service provider can provide most professional solutions to ensure data security.
Since, a user needs to access to the data center remotely, the data also needs to be
secured while it is being transferred between the cloud and the user.

Sustainability: Some of the existing devices (computers, power supplies, routers,
etc.) have poor efficiency, which is environmentally and economically undesirable.
Through allocating the resources more reasonably and utilizing more efficient
equipment, cloud computing can reduce energy consumption, compared with a
traditional server-based architecture[15].

These benefits explain why companies cannot wait to move into the cloud
computing world. Shifting the mobile network core network to the cloud
paradigm is an obvious means to improve the core network of today’s mobile
networks in the aspect of cost reduction and network management. It should not
be surprising that there have already been efforts to do this, such as reported in the
recent master’s thesis by Isaac Albarrán and Manuel Parras[8].
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2.2 Software Defined Networking
Software Defined Networking (SDN), also called a programmable network,
makes the network control plane a independent software platform[16]. SDN is
a network solution for the network connection within the data center network.
Traditionally, the network consists of switches and routers. This network
equipment is developed by manufacturers who developed both the hardware and
the software. Because the firmware (and other software) is developed by each
vendor for their own hardware, innovation of traditional network equipment has
progressed slowly. SDN decouples the control plane and data plane, which
can accelerate innovation. With this architecture, software can be developed
independently of the hardware. SDN can reduce network complexity, hence it
is suitable for sophisticated environments such as a mobile network. SDN is a
revolution in comparison with the traditional Internet architecture.

In an ideal SDN environment, the distributed control units can be centralized
one. In this approach, the central control node pushes out switching or routing
information to the data plane. The switching and routing nodes of the data plane
update their forwarding tables based on the received control information.

2.2.1 Why Do We Need SDN?
SDN can efficiently separate the control logic from packet forwarding. This
allows users to utilize very complex forwarding rules. According to Goth, SDN
provides the following benefits[17]:

• Simplistic, central control can be achieved. It can simplify very complex
protocol processing.

• Rapid deployment and maintenance.

• Flexible expansion, SDN can be applied for both small network and large
networks.

• Easy upgrade. The user can upgrade their SDN network based on their
requirements at any time.

SDN has the potential to accelerate network innovation. The control plane
of SDN is centralized and sends the control information to the data plane. This
architecture provides a view of the entire network enabling the user to optimize
the entire network.
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2.2.2 OpenFlow
OpenFlow is the first standard designed for SDN[16]. The OpenFlow concept was
first proposed in the March 2008 in the paper “OpenFlow:enabling innovation
in campus networks” published by Nick McKeown, a professor at Stanford
University[18]. OpenFlow was initially designed for innovative development for
a campus network. In a traditional campus network, introducing innovative ideas
or new designs for the network is very hard to do, because researchers can not
modify the underlying network hardware. For this reason, OpenFlow separates the
control plane from forwarding plane, hence it extracts the control logic from the
network equipment. This innovation enables researchers to perform experiments
via a programmable interface to the underlying network hardware. This makes
it possible to verify new network protocols or topologies without modifying the
underlying network equipment. OpenFlow architecture is shown in Figure 2.1.

Figure 2.1: OpenFlow architecture, adapted from [18]

Each piece of network equipment maintains a flow table. All the traffic
received by the equipments is forwarded based on this flow table. The flow table’s
configuration is fully controlled by an OpenFlow controller. The flow table is not
only concerned with IP, but also utilizes other information (for example for higher
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layer protocols or for non-IP network protocols). The OpenFlow 1.0 specification
defines twelve key fields including ingress port number, VLAN, Layer 2, Layer 3,
and Layer 4 information and each field can be wildcard[19]. Network operators
can create forwarding rules based on any field. For instance, operators only
needing routing based on the destination IP address, can configure the controller
to only validating utilize the destination IP field.

In the OpenFlow architecture, Layer 2 features such as MAC address learning,
VLAN, and Spanning Tree Protocol (STP) or Layer 3 routing protocols such
as Interior Gateway Protocol (IGP) and Exterior Gateway Protocol (EGP) are
implemented remotely in the controller, rather than locally in the switch. The
controller generates the flow table for each switch based on these protocols
and distributes them. Based on Pettit, et al.[19], this control information can
be distributed in an active or passive mode. In an active mode, the controller
distributes all the flow tables it knows to all equipment. Subsequently the network
equipment will forward traffic according to the flow table it has received. In
passive mode, the controller does not initially distribute the flow table, but rather
when the network equipment receives a packet that does not match any flow in
its flow tables, the network equipment forwards the packet to the controller. The
controller will forward the packet based on its global knowledge of all flow tables
and the controller will then distribute the flow table relevant to this packet to the
network equipment that had forwarded to this packet. As a result subsequent
packets of the same type are forwarded by network equipment itself. The passive
mode’s benefit is that network equipment does not need to maintain the entire flow
table, but only updates its local flow table when an actual flow arrives. Each flow
entry in the flow table is associated with a timer. When this timer expires, the flow
entry is flushed from the flow table. This design can greatly reduce the memory
required in the network equipment. From a traditional telecommunications point
of view, the controller is a logical switch and each item of network equipment is
simply a line card.

2.3 Evolved Packet Core
The design of this project is based on an EPC network. Thus, this section
introduces the necessary background knowledge about EPC and the tunneling
protocol which enables mobility in LTE network, i.e., GTP.

2.3.1 Network architecture
This project is concerned with the core network used in the LTE network
architecture. An LTE network is supported by three main EPC entities (see Figure
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2.2): the Mobility Management Entity (MME), the Serving Gateway (SGW), and
the Packet Data Network Gateway (PGW)[1]. However, the EPC is designed
not only to support LTE. In order to handle access to the EPC via any legacy
3GPP radio access network, the EPC also support signalling between the Serving
GPRS Support Node (SGSN) and the MME. The Home Subscriber Server (HSS)
stores the subscription data and security related parameters relevant also for the
SGSN accessed. The SGSN also connects to the SGW. The PGW is the gateway
between the EPC and external Packet Data Networks. For security reasons an
evolved Packet Data Gateway (ePDG) is sometimes needed for certain types of
non-3GPP IP access. The Policy and Charging Rules Function (PCRF) node is
required for IP Multimedia Subsystem (IMS) controlled Quality of Service (QoS)
and charging mechanisms.

Figure 2.2: Architecture

2.3.1.1 Mobility Management Entity (MME)

The MME is the key control entity. The MME is responsible for User Equipment
(UE) registration, security, and bearer management[1]. When a UE initializes a
connection, the MME needs to select an appropriate SGW for this UE.

2.3.1.2 Serving Gateway (SGW)

The SGW is responsible for handovers with neighboring eNodeBs. Data transfer
of all the user’s data packets occurs via the user data plane. The SGW acts as a
mobility interface or anchors to other 3GPP systems. The SGW also maintains
the UE’s context information and generates paging requests for the UE[1].
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2.3.1.3 Packet Data Network Gateway (PGW)

The PGW is the gateway between the EPC and external Packet Data Networks
(PDNs). It provides connectivity to external packet data networks and serves
as the main mobility anchor point. The UE may connect via multiple PGWs,
hence UE IP address allocation is performed by each PGW that is being utilized.
The PDN GW is also an anchor for mobility between 3GPP and non-3GPP
technologies[1].

2.3.2 GPRS Tunneling Protocol (GTP)
GTP is a very central protocol in the EPC. It is used by many different interfaces
and for many different purposes. Unfortunately, GTP is also the main difficulty
preventing the use of some Internet equipments in the mobile network’s core
network. Figure 2.3 illustrates the protocol stack relating to GTP in EPC network.
GTP is the central protocol used for communication between the major nodes,
for instance, SGW, MME, and PGW. In Figure 2.3, the protocol used between
eNodeB and MME is called S1 Application Protocol (S1AP). S1AP is used for
communication between radio access network and packet core network.

Figure 2.3: GTP overview in EPC[9][11]

GTP has three main functions [10]: tunnel management, mobility management,
and user data transfer.
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Tunnel management takes care of the establishment, modification, and release of
default and dedicated bearers. The signalling parameters exchanged, for a given
bearer, mostly relate to QoS and node addressing. A GTP tunnel needs to be
established for each bearer.

The mobility management of GTP takes care of a large number of possible
mobility scenarios, for UEs in both idle mode and connected mode.
The above functions concern the GTP signaling or control plane, hence they
belong to the GTP-C protocol. For more details see GTP-C version 2, introduced
in the 3GPP specifications for release R8 [11]. For interworking purposes a given
EPC node may have to fallback to the older GTP-C version 1, introduced in release
R99 [10]. Because this thesis focuses on GTP-U implementation, the GTP-U
protocol stack with header and extension header are shown in Figure 2.4.

Figure 2.4: GTP-U header and protocol stack[10]

The user data transfer function serves the user plane (GTP-U). The primary
function of GTP-U is the encapsulation and tunneling of the user’s IP packets.
EPC uses the R99 [10] GTP-U version 1 protocol for this purpose.

A GTP tunnel is uniquely identified within a given node by the combination
of IP address, UDP port number, and the allocated Tunnel Endpoint ID (TEID). In
GTPv2 signaling messages, the node’s IP address and the selected TEID are sent
as a single parameter called the Fully Qualified TEID (F-TEID).

Since a tunnel is bi-directional it will be associated with two F-TEIDs, one in
each tunnel end point. When a tunnel is to be established, the initiating GTP node
selects the F-TEID for its end of the tunnel and sends it to the other GTP node. In
the same manner, the other GTP node selects an F- TEID for its end of the tunnel
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and sends it to the initiating node in a response message. It is always the receiving
end point of a GTP tunnel that assigns the F-TEID value which the transmitting
side has to use.

In the user plane there is a one-to-one relationship between a tunnel and a
bearer. Thus, there may be multiple user plane tunnels between two GTP nodes
associated with a given UE. In the control plane there is only one tunnel per PDN
connection associated with a given UE between two GTP nodes.

2.4 Open vSwitch
Open vSwitch is an advanced edge switch designed under Apache 2.0 license and
it has the following features: port bonding, GRE and IPsec tunneling, and per-
virtual machine traffic policing, etc[20]. Open vSwitch has been part of the Linux
kernel, since Linux kernel version 3.3[21].

2.4.1 How does Open vSwitch work?
The Open vSwitch implementation can be divided into userspace and kernel
space. In kernel space, the data forwarding is called a datapath. The most
important feature of Open vSwitch is that it separates the control plane from
data plane. This is the same approach to separation of these two places as used
in OpenFlow. The network device (netdev) layer is used for configuring Open
vSwitch. The implementation has a user interface via both a unix socket and via
secure sockets layer. The datapath interface (dpif) is a interface for the datapath
to communicate with the control layer. The top layer is the OpenFlow controller,
it realizes the control layer for a whole Open vSwitch. The relation between
the modules used to realize Open vSwitch are shown in Figure 2.5 and will be
described in detail in sections 4.1.1.1 and 4.1.1.2.

Figure 2.5: Open vSwitch protocol stack
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Most of the packets are only processed in kernel space. When Open vSwitch
receives a packet from one of its virtual ports, the Open vSwitch kernel module
first delivers the packet to the “datapath”. The datapath generates a “flow key”.
According to Horman this flow key could contain[22]:

“Tunnel ID, IPv6 target, IPv4 or IPv6 source address, IPv4 or IPv6 destination
address, input port ethernet frame type, VLAN ID, TCP/UDP source port,
TCP/UDP destination port, ethernet source address ethernet destination address,
IP Protocol or lower 8 bits of ARP opcode, IP ToS, ARP source hardware address,
ARP destination hardware address.”

The “datapath” performs a lookup in the kernel’s flow table. The flow table
associates every flow key with actions. These actions may include forwarding
the packet to a specific port or ports, encapsulating and forwarding the packet
to controller, dropping the packet, etc. The packet is processed according to the
actions retrieved from the flow table. If the flow key does not exist in the kernel
table, then the Open vSwitch kernel module passes this packet to user space via
Netlink (Netlink will be introduced in next section). If the user space has already
configured the OpenFlow protocol, then the packet is delivered to the OpenFlow
controller. The OpenFlow controller performs a lookup in its flow table and
processes the packet in user space. Additionally, the entry for this packet is also
delivered to the kernel’s flow table. Subsequently, all the packets with this same
flow key are processed in the kernel space. If there is no OpenFlow controller, then
the packet is delivered to the netdev module in the userspace. This netdev layer is
configured by the Open vSwitch database. Netdev follows the same procedure to
process the packets as the OpenFlow layer.

For tunnel functions, the control mechanism is slightly different from the
above. All tunnel functions are implemented in the kernel space. Open
vSwitch has already implemented four kinds of tunnel protocols, Generic Routing
Encapsulation (GRE), IPSec, GRE over IPSec, and Control And Provisioning of
Wireless Access Points (CAPWAP)[23]. When a tunnel packet arrives the kernel
module performs a lookup in the tunnel virtual port table to find the destination
virtual port based on IP address, tunnel type, etc. After that it is processed by a
virtual port in the kernel space.

2.4.2 Why Open vSwitch?
Linux has a built-in layer 2 switch (the bridge code), which is fast and reliable.
However, we selected Open vSwitch as our implementation platform because
Open vSwitch is target at enabling the OpenFlow protocol and a cloud computing
implementation. Open vSwitch is maintained by a startup called Nicira, established
by Nick McKeown.

Because Open vSwitch is OpenFlow based, it inherits several characteristics
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which are perfect for the project’s design. Open vSwitch can respond to network
changes dynamically. Open vSwitch supports remote monitoring via Secure
Sockets Layer (SSL), thus, we can utilize sFlow to monitor the network’s
status[24]. As noted earlier, Open vSwitch has already implemented GRE, IPSec,
GRE over IPSec, and CAPWAP tunnel protocol, thus, it might be possible to
exploit these features to implement GTP for our project.

2.5 User Space to Kernel Space
Open vSwitch utilizes existing Linux network subsystems whenever possible in
order to keep the kernel size small. The implementation in this project focused
primarily on Open vSwitch kernel module development, thus, it is necessary
to introduce the reader how processes running in user space communicate with
kernel space in the Linux network subsystem.

According to Benvenut there exist several mechanisms to communicate with
the kernel[25]:

The procfs (/proc filesystem) and sysfs (/sys filesystem) mechanisms are
virtual filesystems that allows the kernel to export internal information to user
space as if this information were stored in a file.

The sysctl (/proc/sys directory) mechanism is used to read and modify the
value of kernel variables.

The system call mechanism is the most well-known interface for user space
and kernel space communication. This interface can be used to send a command
to the kernel or to read configuration information stored in the kernel.

However, this project uses none of the mechanisms above, because currently
the preferred interface for kernel network subsystem programming is Netlink.
The structure of the Netlink header is shown in Figure 2.6. Netlink link messages
use the same Netlink header[26]. The content of each field needs to be filled in
before using Netlink to communicate. The user space and kernel space need to
negotiate the parameters of the Netlink header.

Figure 2.6: Netlink header, adapt from [26]
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Netlink offers a datagram oriented system and enables applicaitons in user
space to exchange information with kernel with the socket API (for further
details see Stevens, et al. [27]). In the kernel of linux 2.4 or later, many
applications utilize Netlink to communicate between user space and kernel[25].
For instance, the “iproute2”[28] network management tool performs all of its
interactions with the kernel space by utilizing Netlink. The kernel packet filtering
tool “Netfilter”[29] also utilizes Netlink for kernel-user space communication.
Netlink is also the interface used by Open vSwitch.

A Netlink socket is a special inter-process communication mechanism used
for transferring information between kernel and user space processes. It provides
standard full-duplex socket communication[30]. Users can programme with a
Netlink socket just as with any other socket family. According to Kevin Kaichuan
He, there are several reasons why software developers utilize Netlink rather than
a system call for Linux network subsystem programming[30]:

• To use Netlink, programmers only need to create a new type of Netlink
definition and include it into netlink.h. For instance, we can define
NETLINK_DEFINITION 1, then the kernel and user space applications
can immediately exchange data between kernel space and user space via this
type of Netlink. However, for a system call or ioctl, the programmer needs
to instantiate a new device or file, which makes the code more complex. For
the /proc file system, we need to add a new file or directory in /proc, this
will make /proc more confusing.

• Netlink is an asynchronous communication mechanism. Messages between
kernel space and user space are enqueued in a buffer. In contrast,
system calls and ioctl are synchronous communication mechanisms. If the
exchange of data is too long, the scheduling granularity may be damaged.

• The kernel part of Netlink can be implemented as a kernel module. The user
space and kernel space parts of Netlink do not have direct a dependency
when compiling. In contrast a system call needs to be linked into the kernel
statically and it can not be implemented as a kernel module.

• Netlink supports multicast. As result a kernel module or user space
applications can multicast messages to a netlink multicast group. As long
as the application belongs to this group, it will receive the messages.

• Netlink running in the kernel can initiate a session, but a system call can
only be invoked by users actively.

• Netlink uses the standard socket API, so it is easy to use.



Chapter 3

Design

This chapter presents the design of a mobile network and how I expect this
network architecture to evolve in the face of the cloud revolution. The mobile
network’s architecture and functional entities are described in details in the
following sections.

3.1 Design Considerations
To design mobile networks in the face of the cloud revolution, we first need to
consider the services that could be deployed in the cloud. Figure 3.1 illustrates
the services can we envision could be deployed. This figure shows a logical
representation of a mobile network’s cloud ecosystem, rather than the physical
network architecture.

Figure 3.1: The envisioned mobile network’s cloud ecosystem
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As shown in the figure, in future mobile networks the subscribers will benefit
from services in distributed cloud; service providers will benefit from the flexible
and low risk of introducing new services; and network operators will benefit from
the operator’s management and low cost of such a network. To optimize service
to the subscribers, the cloud ecosystems could be deployed close to the service
area. The cloud ecosystem can be operated as the distributed server in Content
Distributed Network (CDN). According to Johnson, et al.[31], a CDN network
can reduce the delay dramatically. Admittedly, the distributed cloud ecosystem
is different from the servers utilized in a CDN network. However, the success of
CDN indicates that deploying cloud ecosystems in the close vicinity of a service
area is a promising solution to reduce the delay between a user and a server.
This is especially attractive for delay-sensitive services. Since, subscribers are
attracted by the cloud ecosystem’s low-delay performance, service providers or
application developers should be willing to deploy their delay-sensitive services,
such as video streaming, live streaming, and internet games in such an ecosystem.
As described in section 2.1, cloud computing reduces the risk of deploying new
applications which maybe not as popular as the developer predicts. Whenever
services are unprofitable, service providers can remove the services from cloud.
A mobile network operator does not need to be bothered by the rapid evolution of
their mobile network. In the cloud ecosystem, the control plane and data plane are
decoupled. For a mobile network’s packet core evolution, deploying new services
in the cloud means replacing the old network control entities with new ones.
Because all the control entities are (logically) centralized in a cloud ecosystem
network management is easy to perform. The error-prone network configuration
problem is solved by cloud style network management based upon measurements
and software that computes a new configuration.

The network entities and services must be deployed according to the existing
EPC architecture. The design should facilitate a smooth evolution which
transforms the EPC achitecture according to the cloud paradigm. Few operators
want to deploy a completely new network infrastructure, especially one with an
unpredictable future. In order to avoid a forklift system upgrade a progressive
evolution is a better choice.

3.2 Design Approach
The mobile network’s cloud evolution is mainly designed based upon the following
two fundamental philosophies: (1) the network is a service. (2) the control and
data planes should be decoupled.
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3.2.1 Network as a service
Due to the recent trend of cloud evolution, it is expected that the all kinds
of computing components can be deployed in the cloud[32]. Thus, a mobile
network’s cloud evolution should consider how the mobile network’s packet core
could be realized as a service provided by the cloud. This approach would be
similar to utilizing the cloud for other services and should result in a postive
feedback cycle as shown in Figure 3.2. The players in the figure are described
as below,

Network Provider The entity provides mobile cloud computing network. (Network
Provider can be also a mobile operator)

Mobile Operator The entity provides mobile communication services with mobile
cloud computing network.

Application Developer The entity provides application based on mobile cloud
computing.

Figure 3.2: Cloud ecosystem positive feedback cycle

The network provider make profits by offering their network infrastructure to
deliver application services to clients. The mobile operator provides application
users for the application developer. Application developer makes their profit from
application users and pays for using the network provider’s network infrastructure.
If there is an on-going need to improve the network’s performance, then the
mobile operator can re-invest some of their profits into the network infrastructure
to improve the network’s performance. The mobile operator can improve the
loyalty of the application developer with by providing a better network, then the
resulting value-chain forms a positive feedback cycle. The major idea behind it
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is that if the mobile operator serves all the applications users, it will also attract
the application developer by acting as network owner (Note: mobile operator and
network provider cloud be the same enterprise). However, this approach could
violate telecommunication regulation. Thus, it deserves further study in the future.

Today’s operators confront a crisis caused by flat rate mobile broadband
subscriptions[33]. This problem occurs because data-consuming services are
delivered via the mobile network, but most of the income belongs to service
providers. However, cloud computing could change this trend. If the mobile
operators also act as a cloud platform provider, rather than only acting as a
network provider, then they could charge the service providers for using their
cloud computing infrastructure. The reason behind is that the service provider
could get lower delay from this mobile cloud as introduced in section 3.1. If they
want to deploy some delay sensitive services for mobile users, the mobile cloud
infrastructure would be the best choice. This is just a proposal for resolve the
revenue gap, there could be more conditions need to be considered.

3.2.2 Control Plane and Data Plane Decoupling
To simplify cloud management, the network control architecture should also
evolve. Since SDN is a promising direction for cloud management, the decoupling
of the control plane and data plan needs to be considered. Unlike computer
networks, mobile networks’ control entities are more complicated, because of
their support for mobility. Fortunately, an isolated and centralized control
plane is easier to manage than distributed control entities. The reduced risk of
configuration error can be a driver for this decoupling. The decoupling of the
control plane and data plane eases network management. Since the control entities
are isolated, it is easily to replace them with new network control technology.

3.3 Network Architecture
Due to needs of delay sensitive content services, the cloud ecosystem should be
deployed close to the eNodeBs in order to deploy a CDN like network which can
reduce the delay as described in section 3.1. By deploying the OpenFlow protocol
and with a careful design, the original EPC network protocol stack can be modified
at a very low level. This design facilitates the mobile network’s cloud evolution
and demonstrates the platform characteristics of a cloud ecosystem. Generally,
the mobile network’s cloud evolution design can be divided to two phases. The
first phase is a transparent phase based upon deploying a data center between
the eNodeB and SGW. In this phase, no EPC control entities are involved, rather
the data center contains only content servers. In the decoupling phase, the EPC
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control plane and data plane are decoupled, hence all the EPC control entities are
moved to the cloud. The result is that the mobile network is a service which is
provided by a mobile cloud ecosystem.

3.3.1 Transparent Phase
The functional reference model of the proposed transparent phase is shown is
Figure 3.3. The Mobile Network Gateway duplicates all GTP-U packets and
delivers them to the cloud ecosystem for processing and the original packets are
forwarding as normal. In this way, if we switch the service to the cloud in the
middle of the service, the switch process is transparent. If the data center decides
to provide the service to the subscribers in a specific tunnel, then the two gateways
create a new tunnel and substitute themselves for the original tunnel in the mobile
network. However, in transparent phase, the traffic may need to be blocked from
the from the external network via the PDG to SGW (For more details about this
behavior, please refer to section 4.2). It violates the telecommunication regulation
in Europe and north America. Thus, this design also needs the collaboration with
telecommunication regulator. It requires the modification of current regulation.

Figure 3.3: Transparent phase network architecture

The primary consideration is that the cloud ecosystem should be deployed
transparently in this phase. However, the GTP network is simply providing a
set of tunnels, so all of these tunnels could pass via the cloud and the different
servers could be migrated into the cloud. While this increases the complexity of
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the mobile network’s packet core this approach avoids the need for the data center
to be directly deployed within the EPC. The cloud ecosystem needs some control
entities, but in a transparent mode implementation we do not involve any control
entities (such as the PGW-C). Since the PGW-C allocates the UE’s IP address, as
described in section 2.3, the data center must reuse the same IP allocation. The
control mechanism is some what more complex in the proposed cloud ecosystem.
As the OpenFlow protocol is proposed for cloud management, we can implement
these complex control mechanisms in the OpenFlow controller. As mentioned in
section 2.2.2, the OpenFlow protocol is very flexible and is not based on any
routing protocol, rather the entire network is simply a switched network. An
OpenFlow node can be programmed to match any specific type of packet in order
to process them as desired. The OpenFlow controller is the main controller in the
mobile cloud ecosystem.

In this design, two gateways are set up, one for the mobile network and another
one for data center. This configuration separates the data center from switch that
is connected to the eNodeB or SGW. The mobile gateway focuses on forwarding
packets, hence it works as a normal switch. The data center gateway should be
a OpenFlow switch which can also process GTP-U packets. In the data plane,
the GTP-U encapsulation is the only difference between a mobile network. A
computer network with respect to the packet data format. A database server
is used to store existing tunnel attributes, a content catalog is used for storage
and retrieval of the content information for data stored in the data center. The
resource scheduler is an entity which enhances the utility of the cloud’s resources.
In section 3.4, the functions of each of these entities are described in detail.

3.3.2 Decoupling Phase
Figure 3.4 shows the functional model of the decoupling phase. Obviously, the
basic idea for this phase is that the entire EPC network and configuration of all
the control functions of EPC are inputs to the OpenFlow controller. The eNodeB
is simply a means to access the mobile network’s cloud service. In the mobile
network’s cloud evolution, the main modification is the addition and evolution of
the OpenFlow controller. This controller becomes more and more powerful as the
cloud ecosystem evolves. Because the data center and Mobile Network Gateway
simply deal with the data plane, they do not require any modifications with respect
the configuration of the rest of the system. Note that the data center gateway
and mobile network gateway must be controlled by the OpenFlow controller and
support a tunnel between them.
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Figure 3.4: Decouple phase network architecture

3.4 Functional Entities
The mobile network cloud evolution initially reuses the mobile network’s functional
entities, but separates the control plane and data plane. Additionally, there are
some new entities that are used to extend the mobile network for the cloud
ecosystem. These nodes are logical entities, they can be grouped into a physical
node. These entities will be introduced in this section.

3.4.1 Mobile Network Gateway
The Mobile Network Gateway is responsible for forwarding packets among data
center, eNodeB, OpenFlow controller, and the network outside the cloud. Here the
Mobile Network Gateway is an OpenFlow based switch, thus it has only a data
plane; therefore, it does not actually switch any packets to/from the OpenFlow
controller! It is controlled by an OpenFlow controller via the OpenFlow protocol.

3.4.2 Data Center Gateway
Data Center Gateway is a gateway with a GTP-U extension. It can decapsulate
and encapsulate packets according to the GTP-U protocol stack. The Data Center
Gateway is also an OpenFlow based switch.
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3.4.3 OpenFlow Controller
The OpenFlow Controller is the brain of the mobile network’s cloud ecosystem.
It realizes the middle layer between the control plane and data plane. It processes
control plane packets with the support of other mobile network control entities,
then distributes the resulting flow table information to the Data Center Gateway
and Mobile Network Gateway.

3.4.4 Resource Scheduler
The resource scheduler OpenFlow controller is the scheduler for cloud resources.
There are many research results related to on this topic, see for example: [35]
and [36]. The function of the resource scheduler is to enhance the utility of cloud
computing resources.

3.4.5 Network Database
The network database only exists in the transparent phase and it is used to record
the tunnel information. Because the mobile network’s cloud ecosystem cannot
control tunnel establishment and release, we need to store the exsiting tunnel
information in a database in order to provide this data at the appropriate time(s).

3.4.6 Data Center Content Catalog
The Data Center Content Catalog only appears in the transparent phase. Because
of the transparency requirement, we do not know that whether we have the content
or not. This catalog is a very complex functional entity. It stores imformation
about the content stored by the data center, this information is necessary so that
the OpenFlow can decide whether to switch the tunnel to the data center.



Chapter 4

Implementation

In the previous chapter, an overview of the design of an SDN framework for the
evolution for a mobile network into the cloud was presented. In this chapter,
the details of this design and the experimental implementation of such a SDN is
given. In section 4.1, the full details of the different parts of the implementation
concerning the implement of GTP are given. Following this in section 4.2, the full
details of the transparent mode implementation are given.

4.1 GPRS Tunneling Protocol
As described earlier the GPRS tunneling protocol (GTP) is a very central protocol
for carrying subscriber’s IP packets through the mobile network’s core network.
For more details of this protocol, please refer to section 2.3.2. It is essential to
implement GTP in the SDN switch that we will use, specifically in the Open
vSwitch which has been adopted in this project. We will described the details of
this implementation before introducing any of the SDN concepts into the proposed
mobile network.

4.1.1 The User Space Control Daemon
In this section, an overview of of an implementation of an Open vSwitch control
daemon is described. This userspace daemon is implemented in C. An overview
of the different modules is shown in Figure 4.1. In this figure netdev represents a
network device and dpif represents a datapath interface.

The modules depicted in the figure are described in detail in the following
subsection. For now we note that the user space control daemon is the bridge
between the user interface and the kernel module. Once Open vSwitch is installed,
it extracts the network device framework from a schema file. The framework

25
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only creates a database for the network device as the Open vSwitch will not
communicate with any other functional entities. The virtual switch and virtual port
should be configured via the user interface. The GTP protocol implementation
must ensure that it can be configured via this user space control daemon.

Figure 4.1: User space control daemon

4.1.1.1 Network Device (netdev)

As GTP is a new protocol for Open vSwitch, we must register this protocol in the
netdev database. In order to do this, the existing port data structure is reused.
We create a new port type called “gtp”. This port contains all the GTP tunnel’s
attributes, i.e., port name, TEID_IN, TEID_OUT, remote IP address, local IP
address, and ARP reply sproofing. The port name, remote IP address, and local
IP address are three attributes of any tunnel port type. The remaining attributes
are newly added for use with a GTP tunnel. As, all the outcomes of this thesis
work are Ericsson intellectual property, the source code has not been merged into
the open source Open vSwitch code. These new attributes have to be added to the
source code of Open vSwitch. An example for configuring a GTP port is:
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ovs-vsctl add-port br1 gtp0 -- set interface gtp0 type=gtp
options:remote_ip=192.168.1.1, local_ip=192.168.1.2,
teid_in=1, teid_out=2, arp_reply=true.

Listing 1: GTP-U port configuration

The netdev refreshes itself after a very short interval. Whenever netdev detects
a modification in the database, it will trigger the datapath interface to generate a
Netlink message in order to configure the datapath protocol handler and setup the
processor to correctly forward packets.

4.1.1.2 Datapath Interface (dpif)

The datapath interface is the middleware between the user space control daemon
and the datapath. It utilizes Netlink to deliver a message from user space to kernel
space and vice versa. The dpif module (which implements DPIF) provides APIs
for configuring the datapath as shown in Figure 4.2. The configration steps are as
described below.

Figure 4.2: The netdev utilizes dpif to configure a GTP datapath in kernel space

First, netdev sends the datapath name gtp and datapath type gtp to dpif. The
dpif module creates a empty datapath and returns the execution to user space. The
API to create a datapath using the dpif module is:
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int dpif_create(const char *name, const char *type,
struct dpif **dpifp)

Listing 2: dpif_create

Second, netdev sends a netdev configuration which contains GTP port properties
to dpif. The datapath assigns a port number to the port and adds the port
information to the datapath. To do this the following function is called:

int dpif_port_add(struct dpif *dpif, struct netdev *netdev,
uint16_t *port_nop)

Listing 3: dpif_port_add

Finally, if the port information is modified, the function dpif_flow_put is called
to modify the datapathÕs configuration. The prototype for this functions is:

int dpif_flow_put(struct dpif *dpif,
enum dpif_flow_put_flags flags,
const struct nlattr *key, size_t key_len,
const struct nlattr *actions,
size_t actions_len,
struct dpif_flow_stats *stats)

Listing 4: dpif_flow_put

A failure may occur because a datapath already exists or because of resource
exhaustion.

4.1.2 The Kernel Module
In this section, we describe the implementation of the components making up
the Linux kernel module as depicted in Figure 4.3. The GTP module is one part
of the Open vSwitch kernel module. The kernel module is the only component
responsible for processing tunnelled packets. It contains three main functions:
protocol registration, GTP protocol encapsulation and decapsulation, and ARP
reply sproofing. For GTP protocol encapsulation and decapsulation, I will mainly
focus on the the case of an ethernet header, as this is most likely to be the physical
interface to which tunnelled packets are sent and received.



4.1. GPRS TUNNELING PROTOCOL 29

Figure 4.3: The implementation of the GTP kernel module is made up of three
parts.

4.1.2.1 Netlink Communication

As described previously in section 2.5.2, Netlink sockets are used to transmit
messages between user space and the Linux kernel module. In the following
paragraphs, the technical details of the netlink sockets’ implementation in the
kernel module is discussed. For the GTP module, the netlink messages only
deliver error messages and packet statistics to user space. The message group for
sending a flow key to user space is not necessary for tunnel packets. In order to
keeping the code neat, there are two portions of the code that we need to focus on.
One portion of the code concerns only unicast communication, another portion
of the code asynchronously receives messages from user space. We have left
out multicast and synchronous communication netlink communication because
they can introducing subtle thread related bugs. Theoretically, Netlink messages
should be sent and received asynchronously. Additionally, the OpenvSwitch
kernel module process messages in an asynchronous way. The code of GTP-
U module also follows the programming recommendations for Netlink in the
“generic_netlink_howto " at[38].
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4.1.2.2 Protocol Registration

The approach to register the GTP protocol is different from the normal Internet
domain protocol registration. This difference occurs because the Linux kernel
does not assign a protocol number to the GTP protocol and because GTP
encapsulation is UDP based. These two differences result in the GTP protocol
registration procedure not being very straightforward. There does not exist an
API to perform this registration, but rather the registration is based on the kernel
UDP socket binding procedure. The UDP socket struct in the Linux kernel is:

struct udp_sock {
/* inet_sock has to be the first member */
struct inet_sock inet;

#define udp_port_hash inet.sk.__sk_common.skc_u16hashes[0]
#define udp_portaddr_hash inet.sk.__sk_common.skc_u16hashes[1]
#define udp_portaddr_node inet.sk.__sk_common.skc_portaddr_node

int pending; /* Any pending frames ? */
unsigned int corkflag; /* Cork is required */
__u16 encap_type; /* Is this an Encapsulation socket? */

/*
* Following member retains the information to

* create a UDP header when the socket is uncorked.

*/
__u16 len; /* total length of pending frames */
/*

* Fields specific to UDP-Lite.

*/
__u16 pcslen;
__u16 pcrlen;

/* indicator bits used by pcflag: */
#define UDPLITE_BIT 0x1 /* set by udplite proto init function */
#define UDPLITE_SEND_CC 0x2 /* set via udplite setsockopt*/
#define UDPLITE_RECV_CC 0x4 /* set via udplite setsocktopt*/

__u8 pcflag; /* marks socket as UDP-Lite if > 0*/
__u8 unused[3];
/*

* For encapsulation sockets.

*/
int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);

};

Listing 5: UDP socket struct
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We can find two members relating to encapusulation: encap_type is the
registration number for the tunneling protocol (this number can be a random
number, but it should not conflict with any other UDP based tunneling protocol).
If Open vSwitch attempts to run two UDP based tunneling protocols with
conflicting type numbers, it will cause a kernel panic.

The registration procedure is shown in Figure 4.4. The first part of the GTP
registration is the same as the UDP socket binding procedure. Since UDP port
2152 has been assigned by the Internet Assigned Numbers Authority for GTP-
U protocol, thus, we register the GTP_DST_PORT as 2152. The error handing
processes for sock_create and kernel_bind are different. If the socket create
process fails, the kernel only needs to print a warning to the syslog. However,
if the kernel bind fails, then the code has to release the socket first (as shown in
listing 6).

Figure 4.4: Open a UDP socket and register the GTP protocol
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int err;
struct sockaddr_in sin;
err = sock_create(AF_INET, SOCK_DGRAM, 0, &gtp_rcv_socket);
if (err)

goto error;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(GTP_DST_PORT);
err = kernel_bind(gtp_rcv_socket, (struct sockaddr *)&sin,

sizeof(struct sockaddr_in));
if (err)

goto error_sock;

Listing 6: UDP socket kernel bind

As the protocol number field in the IP header is limited to a maximum
of 255, while the encap_type field is a 16 bit unsigned number, we define
UDP_ENCAP_GTP as 65535 for encap_type. Setting these values in the socket
is shown in the code listing below. For the details of gtp_rcv, please continuing
to read next section. At this point, the entire GTP registration process is finished.

udp_sk(gtp_rcv_socket->sk)->encap_type = UDP_ENCAP_GTP;
udp_sk(gtp_rcv_socket->sk)->encap_rcv = gtp_rcv;

Listing 7: Setting encapsulation type and receive fuction

4.1.2.3 Ethernet Header Processings

Before discussing the details of Ethernet header processing, it is necessary to
clarify the reason why this project needs this processing. Since we choose an
OpenFlow architecture for our implementation, an OpenFlow based switch is the
platform used for processing all the traffic. Since Open vSwitch is basically a
switch, the packets being switched need to have layer 2 headers, even thought the
system will ignore the layer 2 headers in its forwarding process.

As described in section 2.3.2, there is no ethernet header after the UDP
header in the GTP protocol stack. This means that if we simply deal with the
GTP protocol as another type of tunneling processing, after decapsulation,the
packet will not have any layer 2 information, hence in order to implement the
GTP protocol in Open vSwitch, we need to include layer 2 information. The
simplest means of doing this is to create a dummy ethernet header, but this is not
sufficient. The packet has to be forwarded based on layer 3 information, since
the actual layer 2 information does not exist. One option would be to simply
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route the packet. However, since Open vSwitch is OpenFlow based, we utilize the
OpenFlow protocol for layer 3 forwarding. The reason behind this that OpenFlow
is open for future development and in this way we can also implement all the
functionality in Open vSwitch.

With OpenFlow, we can also have two different configurations for processing
packets. The first configuration only specifies the input port and output port in
Open vSwitch with the OpenFlow Protocol, but enables the promiscuous mode
of the virtual machine’s Network Interface Card (NIC). Another configuration
is to enable layer 3 mapping and Ethernet header modification as we will do
in the following section. Based on experiment 2 in evaluation chapter, the
first configuration’s performance is slightly better than the second configuration.
However, if we enable promiscuous mode, this will add an extra burden for
processing all the packets in the network. It is not worth enabling the promiscuous
mode simply to improve the performance slightly (as this increases the total load
on the CPU which will have to process all packets received by the interface). For
this reason, we choose the second OpenFlow configuration as our solution.

Figure 4.5 illustrates how Open vSwitch processes arriving GTP packets. As
described in the previous section, gtp_rcv() listens on UDP port 2152. First,
gtp_rcv() decapsulates the packet that was encapsulated by GTP. The resulting
packet is simply a IP packet. It does not have an ethernet header. To insert
such a header gtp_rcv() creates a dummy ethernet header with special source and
destination MAC addresses. The destination MAC address is 00:00:00:00:00:00
and the source MAC address is 11:11:11:11:11:11. The purpose of these special
MAC addresses is to enable the OpenFlow controller to identify the GTP packet
easily and to avoid disturbing other forwarding behaviors. After this, the task of
delivering the packet to the correct virtual machine is handled by the OpenFlow
controller.
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Figure 4.5: Ethernet header processing when receiving a packet

The sending process is shown in Figure 4.6. When sending, the process
is reversed from receiving part. However, we need a new ARP reply spoofing
mechanism to deal with the ARP request packets from the the computer network.
This ARP reply spoofing mechanism will be described in next section. When a
virtual machine receives the spoofed ARP reply, it will believe the destination
MAC address is 11:11:11:11:11:11 for any IP destination address. When the
Openflow controller finds packets with this special destination MAC address, it
delivers them to a suitable port based on the OpenFlow rules. For kernel space
operation, sending is simpler than reception. Open vSwitch simply needs to
remove the ethernet header and encapsulate the packet by adding a GTP header.
The resulting packet will be forwarded through the GTP tunnel.
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Figure 4.6: Ethernet header processing when sending a packet in a GTP tunnel

4.1.2.4 ARP reply spoofing

In a local area network, there is an address resolution protocol (ARP) that is used
to learn what MAC address is associated with a destination IP (or other layer 3
protocol) address. This MAC address is used by a layer 2 switch to properly
forward the packet. When a host wants to send the packet to a destination IP
address, it utilizes ARP to learn the MAC address to which it should forward this
packet. However, there does not exist ethernet information for the GTP tunnel. In
order to use Open vSwitch we have to create a ARP spoofing mechanism to cause
the host to forward the packet to Open vSwitch. Then, OpenFlow controller tells
the Open vSwitch to ignore the layer 2 address and to forward the packet based
on its IP address. This process is shown in Figure 4.7.
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Figure 4.7: ARP reply spoofing mechanism

As mentioned in section 4.1.1.1, there is a field called arp_reply=true in the
the GTP port configuration. This attribute enables the ARP reply spoofing for the
GTP port. When the GTP port receives an ARP request packet, it will reply with a
fake ARP reply to inform the virtual machine that the destination MAC address is
11:11:11:11:11:11 (as described in the previous section). Since, an ARP cache is
not implemented for the GTP port, it is better to only enable ARP reply spoofing
for one GTP port. Otherwise, more than one ARP reply packets will be sent to the
virtual machine. Although, it does not disturb the normal processing, processing
these additional reply packets would waste resources. After the virtual machine
receives the ARP reply, it sends the data packet with a dummy MAC destination
address. Now, the OpenFlow controller delivers the packet to the correct port
based on OpenFlow rules.

4.2 Transparent Mode
In the following, I present the implementation details of transparent mode as
described in section 3.1. In the transparent case, the data center’s deployment
does not disturb the normal packet forwarding in a mobile network. However,
this processing can not be accomplished by traditional network entities such as
switches and routers. In the implementation, I utilize SDN technique-OpenFlow
to achieve the complex packet forwarding required in mobile networks.
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4.2.1 Transparent Mode Overview
The transparent mode is implemented by adding a switch as the data center
gateway. This switch is located at the data center. The switch consists of an
Open vSwitch, a MySQL database server, and a OpenFlow controller (in the case
of this project we have used Floodlight version 0.85[39]). The data center uses
the Open vSwitch as a gateway and the data storage function is implemented in
a virtual machine (in the case of this project we have used VirtualBox 4.2.4 for
Linux Hosts[40]). An overview of the configuration of the demonstration network
is shown in Figure 4.8.

As stated above the Open vSwitch is a gateway for the data center. The
gateway for the mobile network is an Open vSwitch with our GTP extension so
that it can handle GTP-U packets. However, the Open vSwitch that acts as the
gateway for the data center can be a standard version of the Open vSwitch as it
does not need to have any GTP functions. The virtual machine was implemented
with VirtualBox 4.2.4.

Figure 4.8: The overview of transparent mode

Open vSwitch acts as a gateway to the mobile network. The pair of gateways
(the mobile network gateway and the data center gateway) are deployed between
all of the elements in the mobile network, such as the eNodeB and SGW. This
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Open vSwitch provides the data plane for the entire logical mobile network.
For our demonstration we have configured the Open vSwitch with four network
interfaces. Two interfaces to connect to the single eNodeB and SGW that are
used in the demonstration network. One interface is the control channel for the
OpenFlow controller and another interface connects the switch to the rest of the
data center. The OpenFlow controller implements the control plane for the switch.
This controller implements three functions, collecting tunnel information, Open
vSwitch configuration, and tunnel flush. The OpenFlow controller makes use of
a database to record the tunnel and virtual machine information. This database
component is implemented by a MySQL database server.

4.2.2 GTP-U Packet Processing
The data packets between eNodeB and SGW are transported by the GTP-U
protocol. The GTP-U packet processing consists of three parts. The first step
is collecting the tunnel information from the packets. The second step is for
the switch function which delivers the packet to the cloud and if necessary to
create a new tunnel. The third step is to remove the tunnel, if the tunnel has been
not in used for a while. In the paragraphs below we will examine each of these
components of the GTP-U packet processing.

4.2.2.1 Collecting Tunnel Information

Collecting tunnel information should not interrupt or slow down the normal
forwarding processes of packets between the eNodeB and SGW. Naturally, the
solution for this is to simply duplicating the GTP-U packet and send a copy of it to
the Openflow controller for processing. As mentioned in section 4.2.1, a MySQL
database server stores the tunnel information. As illustrated in Figure 4.8 the
MySQL database maintains two tables. One table contains the tunnel information,
while the other tables contains the virtual machine information (virtual machine’s
IP address, MAC address, and the port number used to connect to the Open
vSwitch). Table 4.1 shows the tunnel attributes and table 4.2 shows the virtual
machine attributes.
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Table 4.1: Tunnel Information Table
Attribute Type Description
e_ip_src_addr varchar The tunnel start point IP address
e_ip_dst_addr varchar The tunnel end point IP address
i_ip_src_addr varchar The internal source IP address
i_ip_dst_addr varchar The internal destination IP address
teid_enode varchar The tunnel endpoint ID for eNodeB
teid_sgw varchar The tunnel endpoint ID for SGW

Table 4.2: Virtual machine information table
Attribute Type Description
ip_addr varchar The virtual machine IP address
mac_addr varchar The virtual machine MAC address
port varchar The Open vSwitch port that virtual machine connect to

The tunnel information table stores six attributes. These attributes identify a
given tunnel. For details, see section 2.3.2. The first five attributes were extracted
from the packets sent from the eNodeB to the SGW. The sixth attribute is extracted
from the packet sent from the SGW to the eNodeB.

The table of virtual machine information (whose attributes were shown in
Table 4.2) contains the server content catalog that was described in section 3.1. We
assume that if the virtual machine’s IP address is the same as the packet’s inner
IP destination address, then the switch unit should create a new tunnel through
which to forward the packet to this virtual machine in the cloud for processing.

Figure 4.9 illustrates the detailed signaling process for collecting tunnel
information. Before we explain the details of the signaling process between
the five nodes in the figure, we note that there are two tunnels in transparent
mode. These two tunnels have the same tunnel attributes, however, the tunnel
between eNode and SGW is the original actual tunnel, while the tunnel between
the eNodeB and data center will be substituted for the original tunnel. Because of
the way that we instantiate the new tunnel, the tunnel’s substitution is transparent
to the eNodeB. From the eNodeB’s point of view, the two tunnels are the same
(i.e., there is no change in IP addresses or tunnel endpoint IDs). However, it is
only applicable for UDP traffic. For TCP traffic, the content server and original
server may generate different sequence numbers in TCP handshake stage. Thus,
when the tunnel is switched, the TCP connection would be restablished. Then, it
may affect end-user’s service. Therefore, we need some processing mechanism
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to deal with this issue. However, due to the time limitation, this issue will be
considered as further work.

Figure 4.9: Openflow controller collects tunnel information from the packets - the
upper half of the figure shows the packets being sent by the eNodeB, while the
lower half of the figure shows the packets being sent by the SGW

The signaling procedure is not very complex. Initially, the eNodeB sends a
packet to the SGW. This packet is switched by the Open vSwitch that is acting
as the gateway for the mobile network. This Open vSwitch duplicates the packet
and sends a copy of this packet to the OpenFlow Controller. The controller will
extract the first five tunnel attributes shown in table 4.1. Given this information
the Openflow controller will search in the database to check if these five tunnel
attributes uniquely identify a tunnel. If so, then it will insert an entry for this tunnel
into the database. If it is not unique, then it will process the next packet without
modifying the database. When a packet is sent from the SGW to the eNodeB, the
same basic procedure will be followed. The only difference is when searching
in the database, the OpenFlow controller only uses the first four attributes. If an
entry is found, then the controller will simply insert the TEID for the eNodeB into
the entry. If the entry is not found, then the next packet will be processed without
modifying the database .

4.2.2.2 Switching to the Cloud

Above, we presented the procedure to collect tunnel information. This section
illustrates how the OpenFlow controller configures the mobile network gateway
and data center gateway to switch the tunnel to the cloud in order to transparently
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replace the original GTP-U tunnel. In this way, virtual machines only receive the
service request for the users that they can serve. The rest of the service requests are
sent to the Internet. Thus, the tunnel switching process is completely transparent
for users. The signaling process to realize this is complex. Figure 4.10 shows the
entire procedure. The solid line arrows indicate that the tunnel switching switch
procedure is in process and the actual communication is still between the eNodeB
and the SGW. The dotted line arrows indicate the packet flow when the process of
setting up the new tunnel is over and the eNodeB directly communicates with the
process running in the virtual machine.

Figure 4.10: Switch signaling procedure

Before we introduce the tunnel switching signaling procedure, it is necessary
to explain how the OpenFlow controller differentiates packets from different
nodes. We pre-configure the port number for each network node in the mobile
gateway. In the demonstration implementation, ports 1 and 2 are for the eNodeB
and the SGW, respectively. The data center is connected via port 3. Port 4 is used
for a control channel to/from the OpenFlow controller. In the code below, the
packet from port1 invokes the function processRBSPacket() , while the function
processGWPacket() is used to process a packet from SGW.
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public Command receive(IOFSwitch sw, OFMessage msg,
FloodlightContext cntx) {

OFPacketIn packetInMessage=(OFPacketIn) msg;
byte[] payload=packetInMessage.getPacketData();

switch (packetInMessage.getInPort()) {
case 1:

return this.processRBSPacket(sw,
packetInMessage, cntx, payload);

case 2:
return this.processGWPacket(sw,

packetInMessage, cntx, payload);
default:

return Command.CONTINUE;
}

}

Listing 8: Main Function for processing GTP-U packet

In Figure 4.10, the Openflow controller configured the Open vSwitch2(the
data center gateway) by sending it CONF1, after processing the packet received
from the eNodeB. CONF1’s content is:

ovs-vsctl add-port br0 gtp "teid_enode" -- set interface gtp
"teid_enode" type=gtp options:remote_ip="e_ip_dst_addr"

ovs-vsctl -- set interface gtp "X" type=gtp
options:in_key="teid_enode"

ovs-vsctl -- set interface gtp "teid_enode" type=gtp
options:arp_reply=true

ovs-ofctl add-flow br0 "in_port=’teid_enode’
actions=mod_dl_dst:’mac_addr’, output:’port’"

Listing 9: Tunnel Switch CONF1

The primary task of the controller is to configure the GTP port in Open
vSwitch2 according to the tunnel information in the database. The tunnel ID
should be “teid_node” in order to make the tunnel ID unique. If this is the first
GTP port in the gateway, then the arp_reply spoofing option is also enabled.
After this, an OpenFlow rule needs to be configured to ensure the delivery of
packets from Open vSwitch2 to the correct virtual machine. However, we have
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not yet configured a rule for a packet being sent from the virtual machine to Open
vSwitch2. This is also the reason why the packet from the virtual machine is
blocked at Open vSwitch2 (as was shown in Figure 4.10).

In order to make the tunnel switching process completely transparent, we
must ensure that the virtual machine and original server receive exactly the same
packets. Thus, the Openflow controller also needs to send the same packets to
virtual machine. This is done by the source code shown below. As we mentioned
above, the port number for the data center is 3. However, in the Floodlight API,
if you intend to send a the packet, the buffer ID should set as -1. Otherwise, the
packet is never sent.

short egressPort=3;
OFPacketOut packetOutMessage = (OFPacketOut)floodlightProvider
.getOFMessageFactory().getMessage(OFType.PACKET_OUT);
// set initial length
short packetOutLength = (short)OFPacketOut.MINIMUM_LENGTH;
packetOutMessage.setBufferId(-1);
packetOutMessage.setInPort(pi.getInPort());
packetOutMessage.setActionsLength((short)OFActionOutput
.MINIMUM_LENGTH);
packetOutLength += OFActionOutput.MINIMUM_LENGTH;

Listing 10: Packet_out setting

After the OpenFlow controller receives a packet from the SGW, it should set
up the appropriate configurations in both Open vSwitch1 and Open vSwitch2.
This is done via CONF2 and CONF3. CONF2 is simple, it is simply:

ovs-vsctl -- set interface gtp "teid_enode" type=gtp
options:out_key="teid_sgw"
ovs-ofctl add-flow br0 "in_port=’port’,
action=output:’teid_enode’"

Listing 11: Tunnel Switch CONF2

Because the database already has the “teid_sgw”, the CONF2 need to
configure the out_key as “teid_sgw”. The Openflow rule for traffic going the
direction from the virtual machine to Open vSwitch2 also needs to be setup.

At this point, we already have a substitute tunnel. However, if we stop here,
all the packets need to be processed by the OpenFlow controller. This will be slow
and waste resources. Therefore, we configure the mobile gateway by sending it
CONF3 . CONF3 contains the following rules:
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ovs-ofctl add-flow br0 "priority=2 in_port=1
ip="e_ip_src_addr"
actions=mod_dl_dst:mac_addr_data_center,
mod_nw_dst:ip_addr_data_center,output:3

ovs-ofctl add-flow br0 "priority=2 in_port=3
actions=mod_dl_src:"mac_addr",
mod_nw_src:"i_ip_dst_addr",output:1

ovs-ofctl add-flow br0 "priority=2 in_port=2
ip="e_ip_src_addr" actions=drop

Listing 12: Tunnel Switch CONF3

The first rule will cause the mobile network gateway to deliver packets with
the IP source address e_ip_src_addr to the data center. Thus, these packets are
not longer sent to the OpenFlow controller. At this point we should mention the
issue of packet matching. The TEID in GTP header field should be matched
against the specific tunnel end point ID for the tunnel we are creating. However,
the OpenFlow protocol does not support GTP matching in the present version of
OpenFLow. Thus, GTP matching is left for future work. The Open vSwitch will
only check if the packet’s source address matches the source IP address that we
have configured in this demonstration.

The second rule establishes a path from the data center to the eNodeB. Because
the data center’s IP address and MAC address are different from the SGW’s IP
and MAC addresses, the Open Switch should modify the source MAC address
and source IP address. Finally, the packets being sent from the SGW in this same
tunnel should be blocked, since we can not control the tunnel release in transparent
mode.

4.2.2.3 Tunnel Flush

The eNodeB or SGW could release a GTP tunnel at any time. Therefore, our
system need a mechanism to flush the tunnel when it is released. However, if we
invoke any mobile networking signaling function, then the system is no longer
transparent. The solution is to utilize the Open vSwitch traffic statistics and
triggering the tunnel flush process from the Open vSwitch kernel module. If a
tunnel does not have any traffic on it for a while, for example 30 seconds, then the
tunnel can be flushed. However, implementation of this is left for future work.



Chapter 5

Evaluation

This chapter describes the network performance of the GTP-U tunnel. The GTP-
U tunnel is compared with two other tunneling techniques (GRE and CAPWAP)
with regard to four aspects: throughput, average latency, and jitter. Although
the main theme of this chapter is the evaluation of the GTP-U tunnel technology,
GTP-U has also been compared with different configurations of the OpenFlow
protocol. The reason is that there are two solutions to complete a GTP-U tunnel.
One solution uses the OpenFlow protocol for layer 3 switching. Another solution
simply enables the promiscuous mode of the virtual machine, so that the virtual
machine will ignore the ethernet header. Therefore, this chapter describes two
different experiments to evaluate these alternative solutions. For each experiment
we will give a detailed description of how the experiment was performed. The
analysis of these experiments’ results is also presented.

5.1 Experimental Set Ups
In this thesis project, two experiments were set up with two Linux machines.
Each Linux machine has a pre-installed Open vSwitch and a virtual machine.
The first experiment is a tunnel performance test in which three different tunnel
technologies, GRE, CAPWAP, and GTP-U, have been compared for a range of
different packet size, different loads, and different Maximum Segment Sizes.
The second experiment focuses on the performance of the OpenFlow protocol.
Two different OpenFlow configurations are compared. The metric of the second
experiment is same as the first experiment. In these experiments, we use five
criterion to evaluate the network’s performance, these are UDP throughput, TCP
throughput, latency, and UDP Jitter. For UDP and TCP throughput tests, sender
A offers different UDP or TCP packet loads to receiver B. The received data rate
is considered as the UDP or TCP throughput. The latency is measured with a
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ping program (since ping is the easy way to perform latency test). Latency is the
average round trip time of a ping test. Jitter are measured for UDP packets.

As illustrated in Figure 5.1, these experiments use two Linux machines
connected with a 1GB NIC. Two Linux machines are connected with a 1 Gbps
unshielded twisted pair Ethernet cable with a length of 5m. For each Linux
machine should has a pre-installed VirtualBox version 4.2.4, Open vSwitch, and
Iperf version 2.0.5 (Details of this software can be found at [41] and [42]).
The Iperf network traffic generator is used to generate UDP and TCP traffic.
One Linux machine runs the Iperf server and the other linux machine runs the
Iperf client. For Open vSwitch version 1.4.0 was used with the GTP-U tunnel
extension (as implemented in this project). The detailed hardware and software
configuration is presented in Appendix A.

Figure 5.1: Evaluation Testbed

As described above, the performance experiments were conducted using two
nodes. In each test, the client node sends UDP packets or TCP packets at a
constant rate to the server node. For both the TCP and UDP tests, the experiment
was repeated with various packet sizes, maximum segment sizes, and loads.

Before describing the evaluation results, two points need to be mentioned.
Firstly, in order to increase the accuracy, all the test processes were repeated 5
times to enhance accuracy and the average of these five tests is reported. Secondly,
in the throughtput test, we only present the received throughput.

5.2 Experiment 1: Performance of different tunnel
technologies as a function of packet length and
load

This experiment examines the different tunneling methods’ behaviours in terms
of throughput, latency, and jitter, when the GRE, CAPWAP, or GTP-U tunnel
technology is adopted. In experiment one, we utilized first OpenFlow solution
, i.e., we only specifying the input port and output port in Open vSwitch with
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OpenFlow Protocol, but enable the promiscuous mode for the virtual machine’s
NIC. Please refer to section 4.1.2.3 for the details of this OpenFlow solution to
accomplish GTP-U tunneling. The experimental results are shown in Figures 5.2
– Figure 5.10.

Figure 5.2: Throughput vs. Offered Load (UDP, Packet Size 64byte)-Various
tunnel types

Figure 5.3: Throughput vs. Offered Load (UDP, Packet Size 128byte)-Various
tunnel types
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Figure 5.4: Throughput vs. Offered Load (UDP, Packet Size 256byte)-Various
tunnel types

Figure 5.5: Throughput vs. Offered Load (UDP, Packet Size 512byte)-Various
tunnel types
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Figure 5.6: Throughput vs. Offered Load (UDP, Packet Size 1024byte)-Various
tunnel types

Figure 5.7: Throughput vs. Packet Size (UDP, Offered Load 1000Mbps)-Various
tunnel types
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Figure 5.8: Throughput vs. Maximum Segment Size (TCP, Window Size
16Kbyte)-Various tunnel types

Figure 5.9: Latency vs. Packet Size (ICMP)-Various tunnel types
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Figure 5.10: Jitter vs. Packet Size (UDP, Offered Load 1000Mbps)-Various tunnel
types

5.2.1 Analysis
For experiment 1, we have graphs for different loads and with different UDP
packet sizes and TCP maximum segment sizes for GRE, CAPWAP, and GTP-
U tunnel technologies. In Figures 5.2, 5.3, 5.4, 5.5, 5,6, 5.7, and 5.8, we can
see that the performance of the three tunnel technologies are same basically the
except for the GRE tunnel when the packet size is smaller than 256K bytes. In this
later case GRE has a somewhat better performance in terms of throughput. This
phenomenon occurs because GRE is an IP layer encapsulation and CAPWAP and
GTP-U are transport layer encapsulation. When CAPWAP and GTP-U process
small packets, the tunnel overhead is higher that for GRE. However, there exsits
a interesting phenomenon, the offered load not equal to the throughput in these
figures. The reason behind it is when packet size is small, the CPU could be
overload in this test bed. The TCP test results shown in Figure 5.8 shows a similar
result. Figure 5.9 and 5.10 illustrate latency and jitter, respectively, for these three
tunneling protocols. We can see that the performance of three tunnel technology
are similar. Overall, the implemention of GTP-U with the first openflow solution
was successful as the implementation shows a quite good performance (i.e., it is
comparable to the performance of CAPWAP and GRE).
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5.3 Experiment 2: Performance of GTP-U tunnel
with different OpenFlow configurations

This second experiment shows the different behaviour of the three tunneling
protocols in terms of throughput, latency, and jitter, when two different OpenFlow
configurations are selected. CONF1 only specifies the input port and output port
in Open vSwitch with the OpenFlow Protocol, but enables the promiscuous mode
of the virtual machine’s NIC. CONF2, enables layer 3 mapping and ethernet
header modification. In this later case the NIC works as normal. Please refer to
section 4.1.2.3 for the details of these OpenFlow solutions to accomplish GTP-U
tunneling. These results are shown in Figure 5.11 to 5.19.

Figure 5.11: Throughput vs. Offered Load (UDP, Packet Size 64byte) with two
OpenFlow configurations
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Figure 5.12: Throughput vs. Offered Load (UDP, Packet Size 128byte) with two
OpenFlow configurations

Figure 5.13: Throughput vs. Offered Load (UDP, Packet Size 256byte) with two
OpenFlow configurations
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Figure 5.14: Throughput vs. Offered Load (UDP, Packet Size 512byte) with two
OpenFlow configurations

Figure 5.15: Throughput vs. Offered Load (UDP, Packet Size 1024byte) with two
OpenFlow configurations
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Figure 5.16: Throughput vs. Packet Size (UDP, Offered Load 1000MB) with two
OpenFlow configurations

Figure 5.17: Throughput vs. Maximum Segment Size (TCP, Window Size
16Kbyte) with two OpenFlow configurations
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Figure 5.18: Latency vs. Packet Size (ICMP) with two OpenFlow configurations

Figure 5.19: Jitter vs. Packet Size (UDP, Offered Load 1000Mbps) with two
OpenFlow configurations

5.3.1 Analysis
The results of experiment 2 for different loads and with different UDP packet
sizes and TCP maximum segment size for different OpenFlow Solutions have
been shown above. In Figure 5.11, 5.12, 5.13, 5.14, and 5.15, we can see that the
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performance of the first solution is better than the second solution when the offered
load is greater than 500 Mbps. However, as shown in Figure 5.16, the throughput
difference decreases when the packet size increases. Figure 5.17 illustrates that the
TCP performances of the two solutions are mostly the same. The layer 3 mapping
and Ethernet header modification increase the overhead of the GTP-U tunnel
slightly. As for latency and jitter, the results are similar for these two solutions
as shown in Figure 5.18 and 5.19. The performance of the first solution is better.
However, there is one drawback we have to enable promiscuous mode for this
solution and this increases the resources used by the virtual machine to process
all of those packet which are not destined to it. The second solution decreases the
performance slightly, but retains the standard Internet five-layer model.



Chapter 6

Conclusions and Future work

In this section we will state our conclusions and insights gained as result of this
thesis project. Some future work is suggested. The chapter ends with some
reflections on the social, economic, ethical, and other aspects of this thesis project.

6.1 Conclusions
In this thesis we have described a potential evolutionary path for the mobile
network to a cloud ecosystem. Based upon some primary design principles for
SDN and mobile networks, the project designed an architecture for a mobile
network cloud and presented a set of cloud entities that could be utilized to
realize the proposed mobile network cloud architecture. Mobile network cloud
evolution can be viewed as a revolutionary approach in the packet core network
for future mobile networks. The experimental implementation of the transparent
phase of this evolution was also demonstrated and evaluated. By exploring the
implementation possibilities and the design alternatives, we gained knowledge of
SDN and the flexibility and power of the SDN based protocol OpenFlow. As a part
of the implementation process, the key enabler for mobile network cloud evolution
is the mobile network tunneling protocol-GTP. The user plane of the GTP protocol
was implemented in a SDN based switch-Open vSwitch. Exploiting the control
plan and data plane decoupling, only the GTP-U needed to be implemented. GTP-
C could be a part of any mobile network control entity, thus it can be easily
implemented as a control backend in the OpenFlow controller as described in
section 3.3.2. As shown in Chapter 5, the performance of our GTP-U tunnel
implementation was excellent, as its performance was comparable to the existing
GRE and CAPWAP tunneling protocols in Open vSwitch.

It is expected that the research for SDN and GTP tunneling mechanism
will be considered as building blocks for the overall design of future mobile
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network’s cloud evolution. A lot of works remains to be done from an engineering
perspective to realized the proposed architecture and control entities. However, as
stated above, cloud computing and SDN are significant in defining the direction
of the evolution of mobile networks.

6.2 Future Work
In this section, we suggest some future work with regards to our transparent mode
implementation and decoupling phases. We first describe which of the parts of
the existing implementation have to be improved in order to make the proposed
solution work in a practical environment. We then describe some issues regarding
the design of and decoupling phase.

6.2.1 Transparent Mode
The future work regarding the transparent mode can be split into the following
topics: Server Content Catalog, Tunnel Flush, OpenFlow GTP header matching,
and IPv6 support. The each of these areas is described in more detail below.

Server Content Catalog
The implementation for the entity is a table in the MySQL database was described
in Section 4.2.2.1. However, this implementation could be more complicated in
a practical environment. OpenFlow controller may need to analyze application
layer information. A good solution is to use the Publish and Subscribe Internet
Routing Paradigm[37]. This is a information centric communication model. The
main idea is the server publishes the content that it has, then the clients subscribe
to the desired content. Because clients would subscribe to the server in the data
center, it is easier for the OpenFlow controller to decide whether it can server
these clients.

Tunnel Flush
As discussed in section 4.2.2.3, the Open vSwitch statistics include all the packet
information that has been collected about the packets flowing through the switch.
We could use this information to trigger the tunnel flush process from the Open
vSwitch kernel module, whenever a tunnel has not been in use for a while.

TCP Sequence Number Process
As described in section 4.2.2.1, in order to be completely transparent, we need
to ensure the sequence numbers generate from content server and original server
in ACK of TCP handshake phase could be exactly the same. Otherwise, it may
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trigger the TCP connection re-establishment. Then, the transparent phase is not
transparent anymore.

OpenFlow GTP Header Match
In section 4.2.2.2, configuration CONF3 sets up a rule based on an IP address.
However, this is not a good choice. Even for the same tunnel end points, there
may exists several tunnels. The optimal solution is to match the TEID directly,
but the OpenFlow protocol does not yet support this matching. We should extend
this protocol to support this matching. The GTP header matching could be
implemented in the Open vSwitch or Floodlight OpenFlow controller. In our
scenario, all of the packets are processed by the Mobile Network Gateway. Thus,
implementing GTP header matching in Open vSwitch is preferable.

IPv6 support
For experimental purposes, the implementation described in this thesis was based
on IPv4. However, IPv6 is inevitable , especially in mobile networks. Naturally,
a future implementations should include support for IPv6.

Latency Evaluation
In the evaluation section, the latency evaluation is simply performed with ping
program. However, it may not be accurate enough. Another better solution is
using UTP synchronize clock with wireshark to do latency measurements.

Mobile Network Gateway
In the design section, the mobile network gateway is deployed between eNodeB
and SGW to achieve CDN like network architecture. However, it would make the
traffic processing more complex. If we deploy mobile network gateway between
SGW and PGW, then all the control mechanisms related to MME can be avoid.
This is a good idea that deserving further study.

6.2.2 Decoupling Phase Design
The design in chapter 3 only suggests the framework for Decoupling phases. To
realize this phase, additional issues need to be considered. Some of these issues
are listed below.

Dimensioning the Access Network
SDN is a centralized control mechanism. However, the access network should
be distributed because the mobile subscribers are scattered over the service area.
The issue of correctly dimensioning our cloud ecosystem is very important to
be considered. A high-density deployment may waste resources, because the
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subscribers in the service area may not be distributed with high density. However,
low-density deployment may also induce bad performance.

Consider of Heterogeneous Wireless Access Networks
The design is presented in this thesis was on a modern LTE network. However,
LTE is not the only option for a broadband wireless access network. It is expected
that future access network will consists of a variety of heterogeneous network
environments. These access networks may have different protocol stacks. How to
best communicate via these heterogeneous networks is an issue that needs to be
considered in future research.

6.3 Required Reflections
Our society is experiencing network evolution which has changed our life in many
aspects. Broadband networks, mobile communication, and cloud computing are
three significant parts of this evolution. It is expected that, in the next few years,
technological progresses in network area will bring new opportunities to society
for innovation, and thus change the world. Our communication will be more
convenient and efficient.

The combination of broadband, mobile communication, and cloud computing
is a promising way of evolution. This thesis notices this trend and provides a
experimental implementation for applying cloud computing to broadband mobile
networks (LTE). This project is conducted in the cloud computing department of
Ericsson. Due to the lack of LTE network equipment, we can only perform the
implementation in some linux hosts and introduce the LTE tunneling mechanism
(GTP-U). It may cause the results of this thesis are impractical in many aspects.
However, it is expected that the research for SDN and GTP tunneling mechanism
will be considered as building blocks for the overall design of future mobile
network’s cloud evolution. If this evolution becomes reality in the near future,
it will reduce mobile operators’ operating costs and provide better services for
subscribers.

In this thesis project, I deeply feel that I need to learn more knowledge of this
area, such as cloud computing’s resource allocation, as well as detailed knowledge
of mobile broadband. I hope that I can continue working in this field and make it
to be reality.
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Appendix A

Testbed Hardware and Software
Configuration

LInux Host 1
CPU: Intel - SLG9K - Intel 6Core E7450 2.4ghz-12mb
Memory: 4GB
Disk: 500GB
NIC: Intel A92165-004 PRO/1000 Mt 10/100/1000
Operating system: Ubuntu 12.04
Software installed: VirtualBox 4.2.6 for Linux hosts and Iperf 2.0.3 released

Linux Host 2
CPU: Intel - SLG9K - Intel 6Core E7450 2.4ghz-12mb
Memory: 4GB
Disk: 500GB
NIC1: Intel A92165-004 PRO/1000 Mt 10/100/1000
Operating system: Ubuntu 12.04
Software installed: VirtualBox 4.2.6 for Linux hosts and Iperf 2.0.3 released

VirtualBox Hardware Configuration
Memory: 2GB
Disk: 30GB
NIC: Intel PRO/1000 MT Desktop Adapter Network adapter

GRE tunnel Configuration
“X" can be adapt to your own network parameter.
ovs-vsctl add-port br0 gre0 – set interface gre0 type=gre options:remote_ip=X.X.X.X
ovs-vsctl – set interface gtp0 type=gtp options:in_key=X
ovs-vsctl – set interface gtp0 type=gtp options:out_key=X

67



68

CAPWAP tunnel Configuration
ovs-vsctl add-port br0 capwap0 – set interface capwap0 type=capwap
options:remote_ip=X.X.X.X
ovs-vsctl – set interface gtp0 type=gtp options:in_key=X
ovs-vsctl – set interface gtp0 type=gtp options:out_key=X

GTP-U tunnel Configuration
ovs-vsctl add-port br0 gtp0 – set interface gtp0 type=gtp options:remote_ip=X.X.X.X
ovs-vsctl – set interface gtp0 type=gtp options:in_key=X
ovs-vsctl – set interface gtp0 type=gtp options:out_key=X
ovs-vsctl – set interface gtp0 type=gtp options:arp_reply=true

Openflow Solution 1
Prerequisite: enabling promiscuous mode for VM’s NIC.
ovs-ofctl add-flow br0 "priority=65535 in_port=1 actions=output:2"
ovs-ofctl add-flow br0 "priority=65535 in_port=2 actions=output:1"

Openflow Solution 2
ovs-ofctl add-flow br0 "priority=65535 in_port=1 dl_dst=XX:XX:XX:XX:XX:XX
nw_dst=X.X.X.X,actions=output:2"
ovs-ofctl add-flow br0 "priority=65535 in_port=2 dl_dst=XX:XX:XX:XX:XX:XX
nw_dst=X.X.X.X,actions=mod_dl_dst:08:00:27:d8:05:1c,output:1"



Appendix B

Software Installation Tutorial

Open vSwitch
Please referring to official guide "How to Install Open vSwitch on Linux and
FreeBSD". http://openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;
a=blob_plain;f=INSTALL;hb=HEAD

Floodlight
Please referring to official guide "Get started". http://floodlight.openflowhub.
org/getting-started/

VirtualBox
sudo apt-get install virtualbox (Valid for Linux Ubuntu distribution)

MySQL
Please referring to official guide "Installing MySQL on Linux". http://dev.
mysql.com/doc/refman/5.1/en/linux-installation.html

Iperf
sudo apt-get install iperf (Valid for Linux Ubuntu distribution)
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