
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

I S A K F Ä R N L Y C K E

 Functional testing through log file analysis of test cases
developed from use cases

 An approach to automating mobile
application testing on

Symbian Smartphones

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

An approach to automating mobile
application testing on Symbian
Smartphones: Functional testing
through log file analysis of test
cases developed from use cases

Isak Färnlycke
Master Thesis Report

isakfa@kth.se

2013-01-27

Thesis project performed at OptiCall Software AB in Älvsjö, Sweden.

Examiner: Professor Gerald Q. Maguire Jr.

Supervisor: Jörgen Steijer, OptiCall Software AB

School of Information and Communication Technology,
Kungliga Tekniska Högskolan, Stockholm, Sweden

mailto:isakfa@kth.se

i

Abstract

Many developers today have difficulties testing their applications on mobile

devices. This is due to a number of factors, such as the fact that the mobile phone

market has become even more fragmented with the introduction of touch screen

technology. Existing software that was designed for traditional mobile handhelds

is not necessarily compatible with the newest models and vice versa. For

developers this incompatibility increases the difficulty when creating software.

Lack of resources for testing the application may lead to the application

being limited to either just a specific model or in some cases to only one specific

version of the operating system software. Without providing support for a large

number of models the product may have difficulty attracting customers, and

hence fail to gain the desired market share.

The challenge is to find a way to make testing simple, effective, and

automated on a large number of mobile devices. To achieve this test automation

applications are needed and a test strategy must be devised. Additionally, testing

is often described as never-ending since testing generally reveals errors rather

than demonstrating when errors are absent. Because of this some limitations of

testing are justified.

In order to limit the scope of this thesis I have selected some of the most

appropriate methods for testing, and will only examine these specific methods.

The focus for the testing is not specifically to find errors, but rather to confirm

that the product offers the specified functionality.

This thesis describes an approach to functional testing of an application for

Symbian mobile devices based upon log analysis. Unfortunately, testing

applications on mobile devices is still not straightforward, and this thesis does not

shed any light upon how to lessen this complexity. However, I believe that both

testing and development will be more and more built around use cases in the

future. Unfortunately, automation of testing based upon these use cases will be

further complicated by the increasing use of touch screens and physical input

(such as gestures).

ii

Sammanfattning

Idag har många utvecklare problem med att testa sina applikationer på

mobila enheter.Detta har många orsaker, exempelvis att den globala mobila

marknaden har blivit än mer fragmenterad i och med introduktionen av

pekskärmstekniken och de snabba förändringar som sker idag. På grund av de

många telefoner som idag finns så finns det ett behov för en automatiserad

testprocess då det tar för lång tid att göra manuellt. OptiCall Solutions AB har

utvecklat en applikation för Symbian S60 som behöver kunna köra på många

olika telefoner.

Denna masteruppsats har målet att hitta ett sätt att automatisera testning av

mobilapplikationer på olika enheter, mer specifikt enheter som kör Symbian S60.

OptiCaller är målet för testerna. Testmetodologier och verktyg har analyserats

och kraven har samlats in på den önskade lösningen.

Lösningen består av ett program som kör testskripten direkt på telefonen,

mjukvara som analyserar testresultaten och presenterar dem i ett GUI, ett

teststrategidokument, samt ett felrapporteringssystem. Med hjälp av dess kan

testaren skapa sina egna skript för att automatisera och sedan samla in resultaten

för analys. Detta eliminerar behovet för manuell testning och gör testningen

effektivare, speciellt när man kör många tester. Analysmjukvaran är även

integrerad med Felrapporteringssystemet för att underlätta felrapportering.

iii

Table of Contents
Abstract ... i

Sammanfattning ... ii

Table of Figures .. v

Table of Tables ... v

List of Acronyms and Abbreviations .. vi

1 Introduction ... 1

1.1 Problem Statement ... 1

1.2 Background .. 1

1.3 Overview .. 2

2 Technology ... 3

2.1 Symbian .. 3

2.2 OptiCaller ... 3

3 Testing .. 5

3.1 Test Strategies .. 5

3.2 Test Cases ... 5

3.2.1 Software Testing ... 6

3.2.2 Black Box Testing .. 7

3.2.3 White Box Testing .. 8

3.2.4 Function Testing ... 8

3.2.5 Fuzz Testing .. 8

3.2.6 Regression Testing .. 9

3.2.7 Boundary Testing .. 9

3.2.8 Stress and Load Testing .. 9

3.2.9 Smoke Testing .. 10

3.3 Log file analysis ... 10

3.4 Test automation .. 11

3.5 Testing OptiCaller .. 11

4 Test tools ... 12

4.1 Emulators ... 12

4.2 Automation Tools ... 12

4.2.1 TestQuest Countdown ... 13

4.2.2 UserEmulator .. 14

iv

4.2.3 Digia UsabilityExpo ... 15

4.3 Remote Device Solutions ... 15

4.3.1 Digia Remote Phone Management ... 16

4.3.2 DeviceAnywhere .. 16

4.3.3 Perfecto Mobile ... 17

4.4 Symbian Signed Test Criteria .. 17

5 Related work ... 18

6 Discussion ... 19

6.1 Scope .. 19

6.2 Method ... 19

7 Method .. 21

7.1 Logging .. 21

7.2 Test Scripts ... 23

7.3 Test Analysis .. 24

7.4 Bug tracking software .. 26

8 Test specification .. 27

9 Analysis .. 28

9.1 Solution evaluation ... 28

9.2 Requirement evaluation ... 29

9.3 Notes .. 30

9.4 Test results ... 30

9.5 Proposed solution ... 32

9.6 Acceptance ... 32

10 Conclusions ... 33

10.1 Conclusion .. 33

10.2 Future work .. 33

10.3 Reflections .. 34

Appendix A: Test Strategy ... 37

A.1 Test Strategy Document ... 37

A.2 Functional Testing ... 37

A.3 Build (Regression) Testing .. 43

v

Table of Figures
Figure 1: An illustration of the Digia RPM network topology.

Two clients are connected; one is using the

developer UI and the other the Web UI for

reservation of remote devices. ... 16

Figure 2: The Call Method dialogue as shown in OptiCaller 23

Figure 3: The interface of UserEmulator as shown on a Nokia

E66 .. 23

Figure 4: Here a test log can be uploaded from a local storage

or a connected device .. 24

Figure 5: In another view it is possible to compare the two

files and edit them ... 25

Figure 6: Comparison logs can be uploaded for reference 25

Figure 7: The comparison view. Here the tester can see the

success factor as well as the actual logs. 12g

denotes the type of test. As can be seen, this

particular run had one error initially when setting

up the first call. .. 26

Figure 8: Test results presented as a bar chart. .. 31

Table of Tables
Table 1: Call states of OptiCaller .. 21

Table 2: Program states of OptiCaller ... 21

Table 3: A part of the Test specification listing the first

couple of test cases. ... 27

Table 4: Test results ... 31

vi

List of Acronyms and Abbreviations
AB Swedish: Aktiebolag (Joint stock company)

ANSI American National Standards Association

DoS Denial of Service

DTMF Dual-tone multi-frequency signaling

GPL GNU Public License

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

LSK Left Soft Key

MEX Mobile Exchange

NTS Nokia Test Suite

OS Operating System

PBX Private Branch Exchange

PC Personal Computer

PHP PHP: Hypertext Preprocessor

Plc. Public Limited Company

PSTN Public Switched Telephone Network

Q2 Second Quarter of a calendar year

RDA Remote Device Access

RPM Remote Phone Management

SIP Session Initiation Protocol

SMS Short Message Service

STIF System Integration and Test Framework

USB Universal Serial Bus

WLAN Wireless Local Area Network

XML Extensive Markup Language

1 Introduction

This chapter introduces the problem and the challenges in finding a solution to this

problem. Also, the scope of the thesis will be presented, along with the requirements on

the solution.

1.1 Problem Statement

With the growth of the cell phone market and the introduction of touch screen

technology the demand for mobile applications has increased enormously. The result of

this demand has been a tremendous increase in the number of mobile applications. As a

result mobile software testing has become even more important, especially for

entrepreneurs and companies that want to profit from applications specifically developed

for the mobile market. Unfortunately, the increased fragmentation, i.e. multiple operating

systems and versions of mobile phones and operator branded or manufacturer modified

systems, means that this testing needs to cover more different devices and systems [1].

With all the manual work going into testing of mobile applications on all these different

devices and versions, the problem is to find a way to find an automated way to perform

this testing.

1.2 Background

With the growth of the smart phone market many application developers are

developing software for mobile devices. Currently the major mobile software platform

vendors (e.g. Google, Apple, Microsoft, RIM, and Nokia) are fighting to get developers

to write programs for their platforms by making simple and user friendly tools to

facilitate application development for their specific platform. However, problems often

arise when developers need to ensure that their applications actually work on the devices

that run these platforms. Also, backward compatibility with older versions of the

platforms is an issue that is frequently raised as the market becomes increasingly

fragmented.

One solution is to buy all the different models of smart phones needed and test each

software release against every device. A more common approach is to develop for a

single model using the standard libraries for the platform. When released, if this software

version works satisfactorily on the particular smart phone model that you have tested

your software on, then it probably works on some other models that are running the same

version of the operating system (OS). Of course customers and end-users may not be

happy about this approach to testing, since the application might not work at all on their

smart phone or even worse, might destroy settings or other valuable information on their

devices.

These compatibility problems occur because the handsets are running different

versions of the software, they have different display sizes, there is a difference in the

software due to operator branding, or some other factor that is different in the software

or hardware configuration of the devices. What developers need is an easy and cost-

effective way to test their application on multiple devices. As of December 2012 there

were approximately 90 different models of smart phones on the market running the

newer versions of Symbian S60 (specifically the third

and fifth editions).

2

It is not feasible to test an application on each and every one of these phones

manually as testing a specific application on each different cell phone takes from one

day to a week. The objective of testing the OptiCaller mobile application for this thesis

project was to find a way to test the company’s software releases in order to ensure that

each release of the product is stable and functions on as many different smart phone

models as possible. To accomplish this, a testing strategy is needed which is as effective

and automated as possible. For example, remote devices, emulators, or key generators

could be used for the testing.

1.3 Overview

This thesis project tries to provide automated testing of applications on Symbian

devices. Initially the focus of this testing was to confirm that the client works on

different phone models and after that the testing will primarily be regression testing (to

ensure that changes in this software continue to function on these different phone

models). Unfortunately, testing on mobile devices today is often a manual task; hence

automating this testing could be very useful, as this could minimize the need for manual

procedures or perhaps even eliminate the need for manually manipulating the physical

devices during testing. However, with complex applications and different software

platforms manual testing cannot be fully eliminated.

This master’s thesis project was originally specified as follows:

1) Evaluate possible testing methods and tools,

2) Write test specifications and test scripts,

3) Execute and evaluate these tests scripts on different phones, and

4) Implement a bug reporting system.

The first step was to examine different methods of testing on mobile handheld

devices and to evaluate the usefulness of each of these methods. Also test methodology

was to be researched. The results of this first step can be found in chapters 4, 6, and 7.

The second step was to write test specifications for the proposed testing. In particular it

was desirable to have a template when designing tests for an application. Some research

was needed to decide upon the properties of this testing and the test template.

Additionally, scripting is very commonly used for testing, so the use of test scripts was

also examined. The results from this step are reported in sections 4.2 and 7.2. These

results complete our discussion of step 2.

The third step was to test the application according to the test plan. The results of

this testing were evaluated to measure how well the method and the tools work, as well

as to suggest improvements in testing. The evaluation’s primary focus is on the question

of whether the test strategy covers the essential functions of the software that need to be

tested and if the test procedure finds the most critical faults and issues that might occur

when the application is used by a customer. This step is documented in sections 3.5 and

6.2. Finally, bugs found during testing need to be systematically reported to the

developers (as noted in step 4). Therefore a bug tracking system was proposed to

facilitate the achievement of development and release mile-stones; this bug tracking

system is described in section 7.4. Finally the thesis ends with some conclusions and

suggestions for future work (see chapter 10).

3

2 Technology

This chapter briefly introduces the Symbian operating system. Following this

OptiCall Solutions’ OptiCaller mobile application is introduced along with a description

of the technology behind this application and the functionality to be tested is clearly

stated.

2.1 Symbian

Symbian is an operating system designed for mobile devices and smartphones. This

operating system was previously known as EPOC. The operating system was developed

by Symbian Ltd. In 2008 Symbian Ltd. was acquired by Nokia and the Symbian

Foundation was established. The goal of the Symbian Foundation was to make Symbian

open source – as is the case for the latest Symbian OS release, Symbian^1.

This release is licensed under the Eclipse Public License (EPL) [2]. While this

operating system is no longer actively being developed there are a very large number of

existing devices that utilize this operating system, it is these devices that are the target

platform for the Symbian version of the OptiCaller mobile application. The application

will be described in the next section.

2.2 OptiCaller

This thesis focuses on testing the OptiCaller software developed and sold by

OptiCall Software AB. OptiCaller was originally developed for Symbian Series 60 3
rd

edition smartphones. Additional development has been done and today the program runs

on Symbian^1 (also known as Symbian S60 5
th

 edition) smartphones. The OptiCaller

client utilizes a large number of technologies, including Advanced Two-Step Dialing
(call-through), data and SMS Call Back, and offers presence reporting and mobile

extension.

In Advanced Two-Step Dialing (Call-through) the user calls a Private Branch

Exchange (PBX) which forwards the call to the desired party. When a connection to the

PBX is established, the client automatically transmits dual-tone multi frequency (DTMF)

signals to indicate the desired callee’s phone number. The PBX recognizes the dialed

digits and setups a call to the callee. If the PBX has lower cost for making calls than the

caller, then this approach can be less expensive than for the caller to directly call to the

callee. This is often the case since the PBX is connected to a landline, while the caller

frequently uses a cell phone with an expensive pricing plan; this is especially true for

mobile-to-mobile calls when the caller is calling a callee who is a subscriber to another

operator.

Call-back can be used when calling from networks with a high cost for calling

abroad, e.g. when you are using a mobile while roaming in a foreign country. In this

approach the server/PBX setups the call between caller and callee by calling both parties.

As a result the outgoing call is changed into an incoming call to the caller – which is in

turn bridged by the server/PBX to another call to the actual callee.

4

To initiate the call the caller sends either an HTTP(S)-request or an SMS to the

PBX/server containing the caller and callee phone numbers, and their own login

information. The PBX authenticates the user; if authentication is successful then the

PBX first places a call to the caller and after the caller answers then the PBX places a

call to the callee. The PBX then bridges the two calls together enabling the caller and

callee to communicate. Further details of both call-through and call back can be found in

the master’s thesis of Tao Sun [3].

The OptiCaller presence solution enables the user to report their presence (i.e.,

status), such as “In a meeting until 2 pm”, to the system by DTMF signaling. Normally

this service is only available within a PBX, but the OptiCaller software makes this

service available for mobile users. To further enhance the user’s mobility the user can

use OptiCaller Mobile Extension (MEX); this connects the user’s mobile number with a

landline number to facilitate business relations. (For further details of the MEX service

see Tao Sun’s master’s thesis [3].)

5

3 Testing

This chapter introduces the concept of a test strategy, test cases, and various types

of testing. Also, an introduction to the testing of the OptiCaller application is given.

3.1 Test Strategies

One of the first steps in testing is to develop a test strategy. A test strategy describes

the testing procedure in detail and is important in order to systemize your testing.

According to Shiva Kumar’s handbook of testing [4] , the purpose of a test strategy is to:

 Provide a framework and a focus for improvement efforts, and to

 Provide a means for assessing progress.

All the requirements, system design, and acceptance criteria are merged into the

testing strategy document. Additionally, a description of the testing is needed along with

notations of objectives, scope, and other aspects. According to Software Testing Times

[5], a testing strategy document should also cover:

 Project Scope

Description of what is to be tested and how, how thorough the testing

should be, and how much testing is needed.

 Test Objectives

o Listed in order of importance and weighed by risk.

o Requirements and acceptance criteria must be mapped to specific test

plans to measure and validate results.

 Features and functions to be tested

Exceptions must be listed with reasons for exclusion.

 Testing approach

Describes the levels and types of testing to be conducted

 Testing process

A detailed description of the steps in testing

 Testing tools

A list of the tools that are used in the testing

The test strategy document that I developed is attached as Appendix A: Test

Strategy.

3.2 Test Cases

A test case is a set of test inputs, execution conditions, and expected results. Each

test case is developed for a particular objective, such as to exercise a particular program

path or to verify compliance with a specific requirement [6].

6

Test cases are an important part of testing because they describe the testing

procedures and goals. Sometimes more than one test case is needed to determine that an

application functions as intended. Each requirement needs at least one test case, and

sometimes it is useful to create two test cases per function or requirement to test the

functionality thoroughly. This is especially important when conducting unit testing, in

which you divide the application into so called “units” and each unit is tested

individually [7]. A unit can be a method, a class, or a service. Each test case has a basic

structure with several essential parts [8]:

 Purpose of the test

 Software and Hardware requirements

 Configuration requirements

 Test description

 Acceptance criteria or expected results

A popular technique is to utilize use cases as test cases. Use cases are possible

scenarios that a user might perform while navigating through an application [9]. In the

case of OptiCaller a use case is to set up a call using Data Call Back or retrieve new

settings from the provisioning system. However, employing use cases directly as test

cases is only applicable to some types of testing and has some distinct disadvantages

[10].

Some of the problems with using use cases as test cases include the fact that these

test cases might be incomplete, not detailed enough, too few, not updated, inaccurate, or

ambiguous. However, use cases are useful for functional testing, manual black box

testing, and automated regression testing. Details of these types of tests are given in

section 3.2. To conclude, use cases are most useful in so-called positive testing; i.e.,

testing that is not focused on finding bugs, but rather to confirm that the application

works as it should.

3.2.1 Software Testing

Most people think that testing is simply a procedure to find faults in a product.

While in some cases this might be true, today testing is more than just debugging.

Testing is not only used to locate defects so that they can be corrected; but can also be

used for validation, verification, and reliability measurements [11].

Validation and verification is the process that is used when evaluating whether the

application behaves as specified. Reliability on the other hand often involves both

hardware and software, but is related to validation and verification since it also

measures, or tests, how well a system conforms to its specifications.

There are many strategies for verification and functional testing, both of which can

be called positive testing. However, some testing is done to find faults or problems; this

type of testing is sometimes called negative testing.

7

Chandran & Pai have stated, “When testing in an emulator [...] some issues which

are hit by the speed at which input was given cannot be reproduced easily” [12]. Timing

errors can indeed be very hard to reproduce and demand a lot of time for debugging,

especially when using an emulator as not only do emulator’s differ from the physical

devices, but newer mobile phone models can be much faster (2-3 times) than the

previous generation leading to the same type of timing problems as when using an

emulator. Timing problems can also arise within threaded programs, as the behavior of

the software may also depend heavily upon the order of execution of the threads.

Faults that arise due to timing problems are hard to fix, or even identify, without

deep knowledge of the code structure and the hardware and software architecture. In

practice timing problems can usually be fixed by reordering the program execution,

adding delays, using semaphores, or introducing other control mechanisms to control the

execution of threads. This leads to the question (from a testing point of view): Should the

tester have deep knowledge of the code, or just know the requirements of the final

product? The two answers to this question lead to the major the difference between

White Box and Black Box Testing. These approaches to testing will each be described in

the following subsections.

3.2.2 Black Box Testing

Black box testing, also known as Opaque Testing or Functional/Behavioral Testing,

is a testing strategy in which the tester does not need knowledge of the internal design of

the product. Some testing authorities say that the tester should not have access to the

source code as the program should be considered a black box into which you input

information. For example, Laurie Williams defines black box testing as: “Black box is

testing that ignores the internal mechanism of a system or component and focuses solely

on the outputs generated in response to selected inputs and execution conditions.”[13]

In order to get useful results when performing black box testing the tester needs to

turn the requirement specifications into a set of test specifications that state how the

system should respond to a particular input when in a given state. A test is successful if

the responses to the specified inputs correspond to the expected output. The expected

output is defined in the test specification. This approach to testing is frequently used as a

part of the acceptance testing for a product (i.e., to ensure that a given product meets the

stated criteria for this product). Black box testing is most often used to validate that a

product meets a specific requirement.

Advantages of black box testing include the fact that tests are done from the user’s

point of view (i.e., they verify that given certain input the expected output is produced)

and the black box tester can work independently of the application programmer. It is

important to note that test failures that occur when following the test plan may be due to

inconsistencies in the specifications, rather than the software. This occurs because the

tests are derived from the specifications and not the source code.

Disadvantages of black box testing include the fact that not all possible inputs can

be tested due to limited time, test cases are hard to design for bad specifications, and all

of the paths through the code might not be tested.

8

3.2.3 White Box Testing

White box testing (also called structural testing and glass box testing) is testing that

takes into account the internal mechanism of a system or component [13]. Most often the

white box tester is the developer of the code, but could also be a tester who has access to

the source code written by the development team. The tester is supposed to know the

code inside-out, thus they can generate specific inputs in order to test the product.

For example, inputs can be systematically generated to ensure that all execution

paths in a program are traversed. The negative side of this is the tester may also be blind

to weak spots in the architecture, hence they might choose the easiest and not necessarily

the best way to test something. Because of this transparent way of testing, test results

will most often be the expected results, but this may actually be the results someone else

would expect. However, if the tests were conducted in a different order, with slightly

changed inputs, or with some change in the state of the system the results might not be

what is expected.

3.2.4 Function Testing

Function testing can be described as “black box unit testing” where the approach is

to test each and every function one at a time. Some tasks performed in function testing

are:

 Identify the program’s features or commands.

 Identify variables used by the functions and test the behavior of the functions at its

boundaries.

 Identify environmental variables that may constrain the function under test.

 Use each function, i.e. using positive testing, and then expand the range of inputs

used for testing to cover the range of inputs as much as possible.



3.2.5 Fuzz Testing

Fuzz testing can be seen as a type of negative testing. The fuzzer generates invalid,

random, or unexpected input to a program in order to test for vulnerabilities (i.e. that the

program does not exhibit undesirable behavior due to these inputs). This method is

useful for testing error handling, exception handling, and memory safety. The

disadvantage is that fuzzing only tests a random sample of the program’s possible inputs

and therefore successfully passing fuzz testing cannot be considered an assurance of

quality, but rather fuzz testing is primarily a bug finding tool. In addition, faults found by

fuzzing are, most of the time, quite simple [14].

9

3.2.6 Regression Testing

The IEEE Standard Glossary of Software defines regression testing as:

“Regression testing is selective retesting of a system or component to verify that
modifications have not caused unintended effects and that the system or component
still complies with its specified requirements.”[15]

Throughout the testing process and product development, regression tests are run to

ensure consistency of the implementation with the product’s specifications. These

regression tests are, as noted above, tests that are rerun to verify the product’s

functionality after changes have been made. Regression tests are often a subset of the

original test cases that cover important functions. After any significant changes to the

code base are made (e.g. faults are corrected or new features are added) then the

regression tests are run.

The purpose of regression test is to ensure that the new code works properly and

that no earlier functionality has been damaged by these changes. Faults that surface after

a new revision are called regression bugs. According to Laurie Williams, some of the

guidelines for regression testing are [13]:

 Choose a representative sample of tests that exercise all the existing software’s

functions

 Choose tests that focus on the software components/functions that have been

changed.

 Choose additional test cases that focus on the software functions that are most likely

to be affected by the change

3.2.7 Boundary Testing

Boundary testing is also known as boundary value analysis [16]. As the name

implies, boundary testing utilizes test cases that are generated from extreme input

parameter values. Extreme values are maximum, minimum, and values just outside the

boundaries of expected input. Boundary testing can be used to test the input validation

within a system. Therefore inputs outside the range at which the program is to operate

should be rejected by the application and the user notified that the input is outside the

accepted range for this input parameter.

3.2.8 Stress and Load Testing

Stress testing is testing conducted to evaluate a system or component at or beyond

the limits of its specification or requirement [15]. Stress testing is also used to determine

the stability of the system at (or near) an expected breaking point. For software this

might correspond to avoiding a system crash due to a denial-of-service (DoS) attack or

providing an orderly response when there is insufficient free memory or storage space on

the device. Stress testing is very useful for testing websites that are production-critical.

Types of stress testing include DoS attacks, running many resource-demanding

applications simultaneously, and making countless accesses to one specific resource,

such as a webserver, in a short time period [17].

10

In the OptiCaller case, stress testing might be used to test how the application

handles multiple calls at the same time or how many calls within a short time can be

correctly handled by the program. In our case these test cases are not primarily

concerned with applying stress to the OptiCaller application itself, but rather to stress

test the Symbian S60 OS. The reason for this focus is that the OptiCaller application is

mainly used by persons to perform user driven communication. The rate at which the

user gives input to the system is relatively slow in comparison to the rate at which an

application can put demands on the OS.

Load testing is similar to stress testing, but differs in some aspects. The main goal

of load testing is to minimize the response time under heavy load; whereas stress testing

aims to crash the system by performing multiple transactions. Load testing is primarily

done on servers, thus it is less relevant for the OptiCaller client. The main requirement of

the client is that is needs to support all the tasks that might occur simultaneously. The

ability of the client to execute all of the required tasks is primarily limited by the

available memory. Symbian has built-in controls to avoid memory leaks, making

extensive load testing less important than for servers.

3.2.9 Smoke Testing

A smoke test is often described as a group of test cases that confirm that the system

is stable and that all major functionality is present and works under normal conditions.

Most often smoke tests are automated and are run before deciding whether to run further

tests; if the system is unstable, then there is no reason to further test it before fixing the

already obvious errors. The purpose of smoke tests is not to find bugs, but to

demonstrate stability. Sometimes smoke tests are a subset of the regression tests.

3.3 Log file analysis

Log files are output from the program. They can be used when testing in order to

find defects in the system. Log file analysis uses a log file analyzer that processes the log

file and gives feedback to the tester. The log file logs operations, especially the critical

actions of the program, i.e. when there are requirements for the program to enter a new

state. An example in the case of OptiCaller would be that the user has to initiate a new

call before the status of the caller can be connected. Advantages of log file analysis

include the fact that it is applicable to all programming languages capable of generating

output to a file, it does not disturb other testing, and it can be used for many different

types of testing and debugging.

A major limitation is that log file analysis does not verify the functionality or

correctness of the program as a whole, but only confirms or denies if the specific test

runs made of the program reveal faults in the software. Also, not all properties of the

program can be tested and confirmed. J.H. Andrews [18] suggests that log file analysis

be used when a higher reliability in testing is desired since it adds to the current testing

practices. If the current software already logs its outputs and inputs then log file analysis

will add an extra layer of testing that can be used to validate the program.

11

3.4 Test automation

Testing can often be a very manual process and demand a lot of resources. Because

of this, many companies strive to automate as much of their testing as possible.

However, automation is not always better than manual testing due to a number of

factors. First there is the issue of maintaining the test suites and test scripts; as the cost of

keeping the test suites updated with the product’s requirements may render test

automation useless. The resources that previously were used for testing are now utilized

for test maintenance. According to SmartBear Software [19], automated software testing

is the best way to increase the effectiveness, efficiency, and coverage of software testing.

Test automation can lead to a substantial improvement in the development process and

also simplify software support and maintenance. Automation is especially powerful

when tests are made frequently, such as for regression tests, or when a test needs to be

repeated many times, for example for stability or reliability testing.

Yike Liu states in his master’s thesis “WCDMA Test Automation Workflow

Analysis and Implementation” [20] that automated regression testing could improve test

coverage by at least 40 percent for a specific WCDMA software release. Within his

project, Yike managed to automate 40 percent of all functional regression tests. He states

some reasons why automated testing should be implemented. These reasons not only

include the fact that automation saves time, effort, and reduces costs, but also that the

saved time can be spent running a wider set of test cases. In his work, he used the Test

Management Approach (TMAP) software test process when designing an automated

testing tool. TMAP is an approach that defines all the activities in testing, such as

planning, preparation, and execution. TMAP is organized as a life cycle that is not fixed

at any time. Yike based his testing of radio base stations on an internal test environment

platform at Ericsson that provided functions to control basic operations of the radio base

station.

3.5 Testing OptiCaller

OptiCaller has some quite complex functions, this leads to complex test cases. The

key functionality such as Call Back and Call Through need to be tested thoroughly (i.e.,

tested multiple times with multiple configurations) in order to confirm stability. Since

these functions include making calls there is a need for some type of scripted calling and

call receiving. The major goal is to confirm that calls are actually set up by the client

when the user calls using one of these methods. Some automation is needed for this to

avoid having to make hundreds of calls manually. Other tests include installation,

configuration, and testing of basic functionality such as application stability and

language localization.

Some of these tests can be performed at installation time and would demand too

many resources to automate, but in some cases these tests might need to be repeated to

establish that the software functions as expected. Testing of actions that occur only once

or twice is a question of efficiency and economics. Depending upon the impact of these

operation such tests might not be economic to automate, although some tasks such as

installation of the software on a given platform might only occur once - it is critical that

the software install properly, otherwise users will not be able to use the software and

there will be a high cost due to either product support or returns.

12

4 Test tools

This chapter introduces the tools available to assist when automating testing.

Furthermore, emulators and remote solutions are presented.

4.1 Emulators

Emulators are often useful for testing. An example of when an emulator is useful is

when you have limited resources and want to test if your software will run on a device

that you do not have access to. Unfortunately, since the emulator does not run on the

same hardware as the software will eventually run on - the results may not be exactly the

same as if you had tested on the actual device. However, for general testing of interfaces,

menus, and configuration using an emulator is a low cost and fairly effective

development and testing method.

A Brazilian study of usability testing on mobile devices showed that “many

important usability problems can be found in simpler laboratories approaches.

However, the validity of the usability problems identified in the emulator setup may

depend on the similarity between the emulator and [the actual] mobile phone’s

interfaces.”[21] Thus, emulators are good for finding usability problems, but it is not

certain that all of these problems will exist on the actual device. Similarly, problems may

occur with the actual device that do not occur when using the emulator.

In short, emulators are good for initial testing and development, but may not

appropriate for product testing since they might give incorrect information. Also there is

a major disadvantage in the case of OptiCaller since the emulator does not have the

ability to make calls.

4.2 Automation Tools

Automating tests is often important when you plan to repeat a test many times.

There is software that can help with this automation by providing a framework. Some of

these solutions include a graphical user interface (GUI) and can help when testing almost

any part of the product. These automation tools can in some cases automatically capture

screen images and compare them to the desired output. In other cases they simply run a

script or replay the input.

Liu and Wu report that according to a survey of 250 organizations, only 35 percent

of the testers who had adopted automated testing tools were still using them after a year

(see page 8 of [22]). The reason stated was the inadequacy of the tool. Moreover, they

declare that the developers, if not involved in the testing, must at least be familiar with

the testing tool. Developers or testers who do not have sufficient knowledge of the tool

and its functionality may reduce their enthusiasm for using the tool.

This in turn may lead to new test scripts no longer being created or existing scripts

updated, thus the tool will lose its value for the testers. The advantage of many of these

tools is that you can easily write scripts using a predefined syntax, using action words, or

test verbs. There are of course limitations of these different tools.

13

Antti Kervinen, et al. write about automated GUI testing: “Among the test

automation community, however, GUI testing tools are not considered an optimal

solution. This is largely due to bad experiences in using so-called capture/replay tools

that capture key presses, as well as mouse movement, and replay those in regression

tests.” [23]

Antti Kervinen, et al. [23] state that the bad experiences are mostly due to high

maintenance costs for these tools, since the GUI is frequently a very volatile part of the

system. For example, a minor change in the GUI might generate false negative test

results and the testing system might therefore need maintenance every time the GUI

changes. Despite this testing, testing the application on the actual device is essential to

confirm the functionality of the application. For complex applications and systems,

automation of testing is a good means to improve stability and lower total costs.

4.2.1 TestQuest Countdown

TestQuest Countdown [24] is a package of tools developed by Bsquare for testing

mobile devices. With Countdown you can easily construct test cases using their

TestDesigner, the graphical test design and development part of CountDown. You can

also automate these test cases using TestRunner, which utilizes servers connected to

mobile devices to offer distributed test execution with logging. Countdown is a complete

solution that works for many different platforms and is effective for testing applications

if you do not have any in-house testing software. Unfortunately, as with many other

advanced solutions, the software is proprietary.

Bsquare has a second product called TestQuest Pro. This software is for test

automation and uses the same techniques as Countdown, but lacks test management

functionality. In TestQuest Pro you can write your test scripts in ANSI C or using a

Script Recorder that uses Test Verbs. An example of TestQuest Test Verb Technology

based scripting is the following script [25]:

TEST_CASE_START("Default System");

SET_POWER(ON);

NAVIGATE_TO("ADDRESS_BOOK");

ADD_CONTACT("Joe Smith");

//Verify entry is present

VERIFY_CONTACT("Joe Smith");

DELETE_CONTACT("Joe Smith");

//Verify entry is deleted

NAVIGATE_TO("ADDRESS_BOOK");

TEXT_MUST_NOT_BE("Joe Smith");

TEST_CASE_END();

14

4.2.2 UserEmulator

UserEmulator [26] is an on-device emulator for Symbian developed by Orange. It

currently runs on most Symbian S60 3
rd

 Edition and Symbian^1 handsets [26] . With

UserEmulator you can simulate user activity by generating key presses and perform

random stress tests. The scripting language is related to test verbs and very

straightforward. In many ways UserEmulator is similar to TestQuest. UserEmulator can

be a useful tool when the tester needs to automate functional, stress, or regression tests

[26]. UserEmulator uses XML encoded test scripts to describe events, and can also use

XML encoded files containing recorded user input.

Using UserEmulator the tester can easily write or record the tests that she/he wants

to perform live on the device. There is also an option to run a random stress test on an

application using a built-in class. UserEmulator will automatically take screenshots of

panics and log crash events and other system details when running these random tests.

Using UserEmulator on touch screen devices is difficult since you cannot generate a

specific key press, since there are no keys, but only pointer events at different locations

on the display. This leads to the problem that you cannot use the same test script for

multiple phone models; thus you basically have to create a script for each touch model -

unless they are very similar.

Despite this drawback, be it major or not, UserEmulator should be a very useful tool

for automating tests. One advantage is that you do not need a connection to a PC to run

the tests; this is due to the fact that UserEmulator runs directly on the device.

UserEmulator is installed on the device and then scripts can be imported and run

instantly. Below is a short fragment of a UserEmulator XML script:

<action>

 <name>Orientation</name>

 <type>orientation</type>

 <params>portrait</params>

</action>

<action>

 <name>Pause</name>

 <type>wait</type>

 <params>1004711</params>

</action>

<action>

 <name>key</name>

 <type>keypress</type>

 <params>0</params>

 <keys>LSK</keys>

</action>

15

This script fragment sets the screen orientation to portrait and then waits for

1004711 milliseconds after which it presses the left soft key (LSK), that is, the left key

underneath the display in most cases. There are other tools available from the Symbian

foundation, but none offer test automation. One of the official Symbian tools is the STIF

Test Framework, a toolkit for test case implementation and test case execution [27].

4.2.3 Digia UsabilityExpo

The Finnish software company Digia Plc. previously had a testing suite called

QualityKit that included the test automation program AppTest. Digia QualityKit was

cancelled in 2007; instead the company has developed a separate application for each

part of testing. Their UsabilityExpo is a tool for doing usability tests on mobile phones.

Unfortunately, UsabilityExpo does not offer test automation, but simply provides a user

interface and recording of tests. Other features of UsabilityExpo include [28]:

 Logging events and key presses in Microsoft Excel spreadsheet files

 Displaying a real-time image of the phone’s display on your PC

 You can use you own keyboard and mouse to control the phone device

 You can record video clips (with an audio track and comments) and take screen

shots

 You can connect to the mobile phone device using USB, WLAN, or Bluetooth

interfaces (if available)

UsabilityExpo does not quite meet the requirements for the testing software that

OptiCall needs, hence it is not a candidate for our testing. UsabilityExpo mainly offers a

way to use a cellular phone through a GUI on the PC, but does not offer any real test

automation functionality which is the main feature that is required for regression testing.

It should be noted that with this connection testers could feed the device with scripts

from the PC. However, UsabilityExpo does not offer the scripting functionality that is

desired for this thesis project. UsabilityExpo could possibly be used as a tool when

performing testing using different software in the future.

4.3 Remote Device Solutions

There are a growing number of remote device access (RDA) solutions on the

market. Some of these solutions will be described in the following paragraphs. These

services can be free of charge for developers, but mostly they are provided as

international subscription services. What the services does is to give you access to

mobile devices through a graphical interface via the internet. The devices can then be

controlled over the link via a browser window.

Different services offer varying amounts of functionality, but in all services you can

install your applications by uploading the executable and then test the application on the

devices as you wish. In many cases the services include both an administrative page for

reserving timeslots on the devices and a web interface that allows access to the physical

device. The web interface is connected to a device server which in turn is connected to

one or more of the devices through proxies.

16

4.3.1 Digia Remote Phone Management

Digia Plc. has developed a solution called Remote Phone Management (RPM) that

enables you to test your applications remotely. [29] Both Nokia and Samsung are

currently using this solution; under the name Nokia Remote Device Access (RDA) and

Samsung Lab. Both are free of charge if you are a developer registered in the respective

community. The limitations on the services are speed and the lack of call-out

functionality, which makes this uninteresting for testing the part of OptiCaller which

demand access to GSM networks.

Figure 1: An illustration of the Digia RPM network topology. Two clients are connected;

one is using the developer UI and the other the Web UI for reservation of remote devices.

4.3.2 DeviceAnywhere

DeviceAnywhere is a major player in the remote device business and offers their

services to Nokia and Symbian developers at a discount. Their solution is a premium

service with a monthly fee that includes a fixed number of testing hours on a variety of

devices. Unlike Digia RPM, who gives the user access to only some of the device’s

functionality, DeviceAnywhere’s Test Center provides comprehensive support for all

hardware functions of the device.

This enables the tester to do anything that they could do with a physical device,

including touch screen, multi-tap, pinching, swiping, accelerometer, mute, power on/off,

open/close cover, backlights, vibration, volume increase, hardware compass, camera,

battery, etc. The drawback is that the device locations are outside Scandinavia, in fact

most are in the U.S. and UK [30]. This is a major disadvantage as the testing becomes

very expensive if the application is to setup calls to the PBX testbed located in

Stockholm. Furthermore, we cannot use their service to test the application with a

Swedish operator, which is the company’s primary target.

17

At this stage it is not feasible to conduct tests using testbeds in other countries due

to distance and cost. OptiCall Solutions AB does not have the resources to set up

testbeds in UK locations, hence the distance issue. The location issue is not insignificant;

if testing on a device located in the UK, the response time of the device will not be

sufficient for effective testing. From experience, it is not anywhere near what we would

expect from a device in our own labs. Simply locating a PBX abroad is not sufficient as

testing currently also requires an additional mobile phone with a SIM card to fully test

the application. Both of these cellphones could of course be located in a remote test lab,

however they would need to call each other through a PBX located in Sweden, thus the

costs would be very high for each test run.

4.3.3 Perfecto Mobile

Similar to DeviceAnywhere, Perfecto Mobile offers a subscription service with

additional per hour fees. Using their service you can utilize all the functionality of the

devices including call setup, which is important for testing OptiCaller. Perfecto Mobile

has their labs in France, the US, Canada, and other countries, but does not have a lab in

Sweden. Similar disadvantages as with DeviceAnywhere apply when using the solution

that Perfecto Mobile offers.

4.4 Symbian Signed Test Criteria

According to Nokia: “Symbian Signed is a program run by Symbian for and on behalf of
the wireless community to digitally sign applications which meet certain industry agreed
criteria. The 'for Symbian OS' logo is awarded to applications that are Symbian Signed.”
[31]

If an application is Symbian Signed, thus means that the application behaves

properly on a specified phone running Symbian. To become signed the application has to

meet a number of criteria, called the Symbian Signed Test Criteria. The compliance

testing is done by a test house approved by Symbian, such as Sogeti. It should be noted

that signing is not a guarantee that the application will always work, nor is it any type of

quality assurance. Signing simply confirms that the application responds correctly to

some specific events. Thus, Symbian Signed does not guarantee that the application is

bug-free or even useful to the customer. The tests that an application must pass in order

to become Symbian signed include verification of correct IDs, installation, start and stop

behavior, auto start, and assuring that the application does not disrupt calls, text

messages, or key applications on the device.

 The Symbian Signed Criteria are important for Symbian developers and these

criteria should be considered when developing an application. Thus as part of our testing

we should ensure that suitable tests are included in order to check that the application

does not violate the criteria, as this would probably disqualify the product from being

signed. For OptiCaller it is desirable to become signed, as this removes the requirement

for International Mobile Equipment Identity (IMEI) registration. Unsigned client

software cannot be installed on any Symbian device unless it is self-signed with the

IMEI number belonging to each device that the software will be installed on. This

procedure is very time-consuming and greatly complicates distribution of the software.

18

5 Related work

In 2005, Jutta Jokela performed an investigating study of testing software for

Symbian [32]. Her findings were interesting, even if the software she tested and

researched is now deprecated. Jokela tested Digia’s AppTest, Mobile Innovation’s TRY,

and the Nokia Test Suite (NTS) among others. Unfortunately, all of these are now

obsolete and unavailable. NTS was initially created for the predecessor to Symbian

Signed (called “Nokia OK”) and was compatible with the earliest Symbian S60 handsets.

According to Jokela’s report, TRY had a lot of problems with errors caused by

difficulties in separating which program is foreground and which is background.

Jokela concluded her report with: “There are several testing tools available for the

Symbian market but according to our research it seems that there is no fully covering

product available in the market.” As most of the tools developed for early Symbian

versions are obsolete, today there are new solutions such as TestQuest, as well as many

test programs from the Symbian Foundation that serve different testing purposes.

Antti Kervinen, et al.[23] performed GUI testing on Symbian using Intuwave m-

Test. Intuwave does not exist anymore and the product is no longer available. Kervinen

et al.’s report is about model-driven testing; hence it does not address the type of

specifications that I will use. They used several tools available at the time, along with a

label transitioning system to test every possible execution path in a system. Their method

is interesting, but for the case of OptiCaller it is not relevant. OptiCaller has a few

critical functions and it was concluded that my testing efforts should be focused on these

functions.

19

6 Discussion

The goal of this thesis project is to create a template for testing the OptiCaller

application, perform the tests, and evaluate the results. The testing should be as

automated and straightforward as possible. The test strategy is mostly focused on

functional testing, with some smoke/regression testing. Also a bug tracker must be set up

to handle the test results and to provide some new features. The testing will cover the

most important functions of the application and assess whether this functionality is

reliable.

6.1 Scope

The thesis project is largely based on the requirements of the company. At a

meeting in Gothenburg with the company management and the developers of OptiCaller

it was decided that functional testing was the most pressing issue. The reason for this is

that the client application is believed to be very stable and a version 2 will soon be

released. Hence my first focus is on functional testing; i.e. to see that the product does

what the product specification says and consequently to minimize the number of

dissatisfied customers. The idea is that functional and regression tests will be conducted

according to a test plan that includes specified acceptance criteria for each and every test.

Before this step some initial validation tests were needed to validate the program’s

input controls. The test steps will be performed on a device under test using a key press

emulator, such as UserEmulator [26] (available from Symbian Foundation). Despite the

drawbacks of GUI testing, discussed in section 4.2, I believed that it was possible to

utilize the GUI in automatic testing.

In addition, since all users will be using the GUI to invoke the functions of the

application this means that providing inputs to the application matches what the user

might do and thus does not require modifying the program’s flow of control. However,

as we have not focused on coverage testing, these tests do not represent every possible

input that a user might give; hence there will be gaps in the test coverage which users

might encounter.

6.2 Method

The most straightforward way of testing (which was also recommended by experts

at Cell Telecom Ltd. [33]) would be to use an automated GUI testing application in

combination with some type of log file analysis. This way immediately after the tests the

tester can examine the testing results without having to observe the process closely in

real time. One approach is to create an automated script that simulates key-presses

together with a logging process in the OptiCaller client software. The backend of this

solution would be a program that analyzes the log file and gives feedback to the tester.

This feedback should be easy to interpret and clearly present the most important issues.

The functional testing should be as automated as possible, if possible, and the same

should be true for regression tests. The regression tests will be a subset of the functional

tests. After performing the tests, the results of testing will be evaluated and

improvements to the testing process will be proposed.

20

An additional task is to deploy some kind of system for reporting bugs that are

found during testing. This bug tracking system should be integrated with the testing

process and result analysis.

The only problem with this solution is that it is not feasible to apply key-presses for

testing with touch screen devices which have unique inputs and no physical buttons.

Despite this, it is actually possible to perform some tests, but the inputs must be given in

terms of positions on the screen instead of actions on physical buttons. These soft

keyboard events can be recorded and then replayed if the test is to be run multiple times.

21

7 Method

This chapter will introduce the testing method along with the different tools that

were used. Also, the application specifics and interface will be presented.

7.1 Logging

The client software reaches some different states that occur when controlling the

flow of the program. These states can be useful during logging since they not only are

used in the control mechanism but also the transition between states can be used to

describe the control flow in the program. These states can be divided into two groups:

Call states (see Table 1) and Program states (see Table 2).

Table 1: Call states of OptiCaller

State name Description

StatusIdle Call-status when no calls are active

StatusDialling Call-status for when a call is being made

StatusConnected Call-status for when a call is connected

StatusHangingup {not used}

StatusRinging Call-status when the phone is ringing

Table 2: Program states of OptiCaller

State name Description

Idle When the client is running but not active

CallIntercepted When an outgoing call is aborted so the client can

set up it anew

HandlingIntercept Status for when the intercepting is being done

DialingDtmf The software is dialing a call-through call

ConnectedDtmf When connected to the PBX

DialingDC When a direct call is made

ConnectedDC When a direct call is setup

WaitingCB When the software is waiting for a call back

ConnectingCB When a Call back is waiting to be set up

ConnectedCB When a Call back is set up

It would be possible to log when the program enters/exits each state producing a

very exhaustive live log of the program’s flow. However, if you just want to confirm that

a call is set up correctly, the only states that are important are Intercept, Dialing, and

Connected. That is, we can ignore the StatusIdle, Waiting, StatusRinging, and

Connecting states.

22

Different types of calls go through different flows in the code and thus have a

different sequence of states. This sequence is matched in the analysis web application so

the analysis software can distinguish between the different call types. If the sequence is

incomplete or broken we can conclude that the test run was unsuccessful. The output of

the test, the log, may look something like the following in the case of a Call back call:

CallIntercepted

Idle

CB

HTTP

+4670123456

Answering

Connected

Idle

First the software intercepts the call setup, and then a call back request is sent

through HTTP to the PBX. The number we want to call is +4670123456. When the call

is received we also output that we are answering and finally report that the call is set up.

Another example is call through call setup that uses a slightly different flow:

CallIntercepted

Idle

AA

CT

Calling

0811223344

Connected

DialingDTMF

0811414

The call is initially intercepted by the software and then the software is idle until the

call method dialogue pops up. This dialogue will then prompt the user to select a call

method. This is when AA is logged (Always Ask, see Figure 2).

23

The test script then continues with a selection of Call through and the call is made.

We can see which number is called (081123344) and also we can see whether a

connection was successfully set up with the PBX. When a connection is set up, the

software transmits the DTMF signals indicating the callee/recipient and the PBX sets up

this call. No more output is generated since after this step the call setup success does not

depend on OptiCaller but rather the success of the call set up process of the PBX.

7.2 Test Scripts

The GUI testing scripts will be executed with UserEmulator by Orange, see Figure

3. Since the format of these scripts is XML, it is relatively easy to create new scripts and

to modify existing scripts. While a script may work perfectly on one phone model if we

switch to testing of another model that uses a different set of buttons, then the test team

might need to slightly adjust the test script. Furthermore, it is possible to combine a set

of different test cases into one that covers more functionality.

Figure 2: The Call Method dialogue

as shown in OptiCaller

Figure 3: The interface of

UserEmulator as shown on a Nokia E66

24

7.3 Test Analysis

The backend of the system will be a web page that analyses the output, i.e. the log

file, and displays the results visually. The requirements for the complete system are:

I. Easy to select test case. Minimum work should be required to start a test run.

II. Easy to extract and submit test data. The extraction of the test data should be easy

to perform and not include too many steps. Furthermore, the method of

submitting test data to the web application for analysis should be straightforward.

III. Easy to select test data in the web application. The GUI should be easy to

manage.

IV. Detailed and clear information about the test outcome

V. Local storage of results

VI. Possibility to transfer results to issue-tracking software installed on one of the

machines. This software is also part of the solution, however will not be

mentioned other than in passing as is not a very major contribution.

The prototype solution that was built was coded in PHP making it very lightweight

and able to run on a wide variety of platforms.

Requirements III, IV, V, and VI were all fulfilled.

The web interface makes it easy to upload test logs from a local drive as well as

naming them and storing the information from the test just run (see Figure 4). For

comparison, another log file is necessary. This second log must always have the

expected result and must be updated if the process changes. Using the interface shown in

Figure 5 we can generate listings of both file types and the additional information

available per file.

Figure 4: Here a test log can be uploaded from a local storage or a connected device

25

Using the resulting output (shown in Figure 5) it is possible to select the log files to

compare. Therefore, if the tester wants to evaluate a recent test she or he selects the file

that corresponds to this test and the comparison file that will be used to show how the

test was expected to work. This comparison can be from the unit testing phase or from

some other device that already passed the test. An example of the comparison results are

shown in. There is also a link to the bug report file, or rather; the test can be reported

directly through an HTTP call to the TRAC Bug tracker. Clicking on the report bug

button will open a window with some data pre-populated to easily submit defects in the

software that were found when testing.

Figure 5: In another view it is possible to compare the two files and edit them

Figure 6: Comparison logs can be uploaded for reference

26

7.4 Bug tracking software

As mentioned earlier, TRAC bug tracker was chosen for the purpose of tracking

bugs and results. This was mostly because TRAC is very configurable and has many

options. Also, it was easy to set up and to create projects within. TRAC bug tracker also

had a plug-in that allowed bugs to be added through HTTP GET from another webpage.

This functionality allowed ease of work when registering issues and analyzing results.

Figure 7: The comparison view. Here the tester can see the success factor as

well as the actual logs. 12g denotes the type of test. As can be seen, this

particular run had one error initially when setting up the first call.

27

8 Test specification

One of the most important steps in this master thesis project was to write the test

specification. This specification is each time a test is run to verify the functionality of the

device. Part of the test specification is shown in Table 3 below, while the whole test

specification is given in Appendix A: Test Strategy.

Table 3: A part of the Test specification listing the first couple of test cases.

Test Table v1 Name of tester Phone model

Date / 20__

Nr Case

Description

and Goal

Initialization Time

(h)

Expected

Results/

Acceptance

Criteria

PASS/FAIL Issues

and

faults

1a Install

OptiCaller

Install OptiCaller from

USB or Bluetooth.

 OptiCaller icon

in applications

folder, install

success

1b Run OptiCaller Start OptiCaller using

the icon in

Applications.

 OptiCaller starts

2a Get license Insert provision

settings and click “Get

License”.

 Product gets

licensed.

2b Change a setting Change a setting entry

anywhere, e.g. “Call

Back 2”

 Settings

changed

2c Revert Settings Click the button

Options > Setup >

Restore Settings to

revert

 Settings reverted

to original…

3a Turn on

Transparent

mode and exit

In Options > Setup >

Operational Settings.

Select Transparent

Mode: ”On”. (default)

and exit with the Exit

button.

 AA icon

displayed and

OptiCaller in the

background.

3b Turn off

Transparent

mode and exit

In Options > Setup >

Operational Settings.

Select Transparent

Mode: ”Off”. (default)

and exit by clicking

Options > End

Program.

 OptiCaller

doesn’t run in

background

anymore.

28

9 Analysis
This chapter will introduce the analysis of the solution in terms of fulfillment of

requirements and test results. Also, the proposed solution is presented.

9.1 Solution evaluation

To evaluate the test solution some testing is needed in order to see to what degree

the solution satisfies the requirements. It was required that the solution fulfills the

requirements given in section 7.3. Below we consider each of these requirements and

comment on whether the solution satisfies this requirement:

I. Easy to select test case

It was easy to select the test case script in the on-device application, and this test is

automatically run until it finishes. However, it would be better if the selection of test

case could be done remotely and the test results uploaded directly to the analysis server

(see the next numbered requirement).

II. Easy to extract and submit test data

With the chosen approach, it is necessary to extract the test file from the device.

After that the file needs to be uploaded to the analysis server where it will be processed.

A script could easily be created to perform this upload, but was not created which

cripples the solution slightly and adds additional workload for the human tester. Adding

this script should be done as part of future work.

III. Easy to select test data in the web application

The web application is friendly in the sense that all inputs are clear, as long as the

user knows the distinction between a comparison log (earlier referred to as a comparison

file) and a test log. The selection of data is easy, but the operation of the web application

depends on the user’s input. The design of this interface could probably be more user-

friendly, and it is a bit too easy to delete test runs. Also, the database design could be

improved.

IV. Detailed and clear information about the test outcome

The test outcome is described in great detail with multiple measurements and

mappings to the test types. Also this data is easily transferred to an issue tracking system

with a single click.

V. Local storage of results

All files are stored in a database and accessible through the web application. Also,

results can be easily stored in the TRAC issue tracker.

VI. Possibility to transfer results to issue-tracking software installed on one of the

machines.

As been mentioned above with respect to requirements in IV and V, the results can

easily be transferred to the bug tracking system. However, the output must first be

analyzed in the web application.

29

9.2 Requirement evaluation

In addition to the requirements on the solution, the following requirements

concerning the overall test flow were satisfied:

1. Bugs in the actual technical mechanisms that could be encountered by the

customer are found.

Indeed, the log file analysis solution will in most cases find the errors that are

directly connected to the mechanisms of call setup and interrupts in the system. For other

operating system issues it is not as easy to detect the issues, as there is no automation to

compare the visual appearance and other less critical parts with the expected visual

appearance. Overall, most issues are dependent upon the specific operating system on

which the application runs, if this OS is unstable, then there will be errors in the

application’s execution.

2. The tests can be automated.

The solution that was used benefitted from automated tests that do not need any

human interaction at all.

3. The number of automated tests to perform can be set.

With this solution it is possible to list the test sets that need to be run, and also to set

the exact number of tests in each set that are to be run. Unfortunately this has to be

specified in the XML file, but in the future a tool should be written to make this easier.

4. Bugs can be reported easily using the analysis application.

Once the test results have been uploaded and imported into the analysis tool, it is

easy to report these results through a direct link with an issue tracking tool developed

specifically for this purpose. The bug description and test result are sent though HTTP

GET request to the TRAC server where the report can be reviewed and stored.

However, one requirement was not met:

5. The application can be run directly on the device, but be started and monitored

from a laptop.

This requirement was not fulfilled, as no way was found of achieving this with the

chosen approach. Additionally, no solution to this could be found within the project’s

time period. The application can be run directly on the device, but starting and

monitoring the testing process remotely was not realized.

30

9.3 Notes

All tests were run on Nokia E66 or alternatively Nokia E72 that comes with a

QWERTY keyboard. Also, a touchscreen device was tested, Nokia N97 mini, but

extensive testing with this device was ruled out due to the difficulties of creating test

cases and the inconsistent test results that I observed. It was realized early in the project

that touch screen devices cannot be tested in the same way as other devices. The selected

method of testing was not suitable for testing touch screen devices.

9.4 Test results

Based on the testing performed, we can draw some conclusions from the results.

When a bug was found it was most often at the start of the testing, when setting up a call.

This is shown in the column of Table 4 for AACT, which sometimes encountered a

problem when opening the menu dialogue to choose the calling method. Out of 880 tests

run, 9 tests failed; which means a success rate of 0.99, i.e., 99% of the tests where

successful.

A summary of these test results are also shown in Table 4. Not all functions were

actually tested, just enough of them to prove that the test method was working for this

application. Based on these results I claim that this method is suitable for automated

testing of functions that are otherwise very time consuming to test.

For comparison, to run one of these tests manually and analyze the result of the test

can take between one and five minutes. Automating the same test might take up to

fifteen minutes, but the manual work is eliminated for all subsequent tests of the same

functionality. Actually running the automated test including analysis takes about half the

total amount of time as for running the manual test. Thus the time to automate the test is

rapidly amortized it the test is run more than a small number of times. As it is very

desirable to perform regression testing after making changes to the software, it is clear

that automated testing has a high payoff.

31

Figure 8: Test results presented as a bar chart.

The results are shown in Table 4 and plotted in Figure 8. The plot has confidence

interval 0.978 at confidence level 0.95. The variance is expected to be less than 0.01.

The testing includes the sum of all testing of both Nokia models E66 and E72.

Table 4: Test results

Test case Successful Failed Number of tests

9D - Call back 84 1 85

7A - Call through 394 1 395

12G AA Call through 393 7 400

Total 871 9 880

Rate 0.99 0.01 1

97%

98%

98%

99%

99%

100%

100%

9D - Call back 7A - Call through 12G - AA Call through

Failed

Successful

32

9.5 Proposed solution

It can be argued whether it is really feasible to automate mobile application testing,

as this testing is often based on use cases. However, the results have shown that a good

framework for testing includes tracking status and results. Test automation is also

necessary when load and stress testing the application.

9.6 Acceptance

The original goals of this master’s thesis project were to evaluate testing methods,

write specifications, and finally execute and evaluate the testing method on different

phones. It was also necessary to implement an infrastructure for handling the test reports

and to facilitate dealing with any issues reported.

As for the first goal, the testing methods were evaluated and a suitable method was

chosen that could deliver the desired solution according to the project’s requirements.

After this test specifications and templates were written that covered the necessary

testing and automation of steps. These tests were then executed with success and the

result was indeed positive; the automation was not as difficult as expected and running

the tests was easy.

Overall, most of the tests were successful (as shown Table 4) and manual handling

of the device under test was not necessary when testing the application. Furthermore,

automation of testing reduced the time spent testing by the developers. Finally, an issue

tracking system was implemented to receive reports from the analysis system

implemented as part of the solution. The chosen software was easy to integrate with the

analysis tool, and could also facilitate other parts of the development cycle, such as

keeping track of mile-stones, application versions, and general defect tracking.

33

10 Conclusions
This chapter will summarize the conclusions of this master thesis project as a whole,

and also suggest some future work and improvements that could be made. The chapter

concludes with some reflections on the project.

10.1 Conclusion

I am quite satisfied with the project as such and I feel that the project’s goals were

met. Despite the results described earlier, testing applications on mobile devices is not

straightforward, and I cannot claim to have shed any light upon how to lessen this

complexity. As the technological revolution continues and the devices and software

become more and more complicated, testers will struggle to keep up. It is my belief that

both testing and development will be more and more built around use cases in the future,

thus test cases will evolve together with the development of the application. However,

automation of these test cases will not be easy with the increasing use of touch screens

and physical input (such as gestures).

To others who venture into the testing arena and especially those considering

automated testing, I think the path to success is to find a niche for themselves. Because

the set of all possible devices is so large, it is important to find a subset of devices that

are most relevant. I would also recommend that testing be conducted through a computer

to lessen the manual interaction and workload.

If I were to do a similar project again, I would have demanded a clear set of

requirements to start with, and then used these requirements to identify software that I

could build upon. Possibly I would have avoided logging and looked at more direct

methods of retrieving test output to analyze. A clear reason to avoid logging is that it

requires that the logging functionality be built into the code. This adds to the code’s

complexity and also introduces a risk that there is a change in the behavior when the

logging is turned off.

10.2 Future work

Since there are lots of tests it is useful if the other side of the call is a SIP soft phone

connected to a local SIP server. A SIP server already exists in the testbed PBX and could

make testing much more efficient. Also, it is possible to minimize the costs of calling

from the PBX with the current setup, as the costs for calls from the trunk/PBX are quite

large each month and this cost should be minimized.

As described in section 9.1 there are many parts of the testing process that could be

further automated, these steps should be automated as part of future work. Symbian is a

finished chapter for Nokia; however, there are similar applications for Android,

Windows Phone, and Apple’s iOS that could benefit from similar investigative studies

and testing. Also, the logging process could be extended to make it clearer when looking

for the cause of error. Timestamps should definitely be introduced in the logs for this

purpose. The analysis tool could also be adapted to take delays and other test

environment issues into account.

34

10.3 Reflections

This thesis project provides guidance and advice to mobile application developers

and testers when planning and executing automatic tests on mobile devices. The

proposed solution points out the possibilities for testing, especially outside of large

corporations. The benefits of these solutions and conclusions can be meaningful to both

small scale developers and other who venture into the mobile market in terms of the

potential economic benefits.

As the market demand rises, corporations and entrepreneurs will benefit from

automation of testing when striving to deliver the best service to the end user without

needing any feedback, or doubtfully ethical anonymous information, originating from

the user’s device. During the work with this project, only internal phone numbers have

been logged and the application is very restrictive when collecting user data.

When introducing logging into an application it is important to remember the issues

associated with maintaining the privacy, since if a malicious attacker were to enable

logging they could collect considerable private information. OptiCall Solutions’ aim is to

achieve the Symbian Signed criteria for the application, both as a sign of user friendly

design, but also to protect the privacy of the end user. Much work is left to be done

within this area; the most important next step is to integrate this mobile application with

SIP systems.

It is my clear opinion that OptiCall Software greatly benefitted from the project

outcome and learnt many things in the process. A test strategy was introduced, and the

test cases were formalized. Also, the analysis tool made it easy to automate testing and

validation of results. Finally, the issue tracking software installed will continue to benefit

the company as they now can get a better overview of defects and results.

35

References

1. TechCrunch. [Online] 2012. http://techcrunch.com/2012/05/11/this-is-what-

developing-for-android-looks-like/.

2. Press Releases. Symbian.org. [Online] 02 04, 2010. http://www.symbian.org/news-

and-media/2010/02/04/symbian-completes-biggest-open-source-migration-project-

ever.

3. Sun, Tao. Developing a Mobile Extension Application: OptiCaller Application and

Provisioning System. Kista : KTH ICT, October 2009. TRITA-ICT-EX-2009:177.

4. Kumar, Shiva. An Effective Handbook for Implementing Test Strategies. Think

Business Networks. [Online] July 2001. pg.5. http://5676430411356704223-a-

onestopsoftwaretesting-com-s-

sites.googlegroups.com/a/onestopsoftwaretesting.com/home/public-osst-

files/AnEffectiveHandbookforImplementingTestStrategies.pdf.

5. Defining a Test Strategy. Software Testing Times. [Online] April 2010.

http://www.softwaretestingtimes.com/2010/04/defining-test-strategy.html.

6. IEEE. IEEE Standard Glossary of Software Engineering Terminology. s.l. : IEEE,

1990. p. 74.

7. Software Testing. Wikipedia. [Online] 2010.

http://en.wikipedia.org/wiki/Software_testing.

8. Test Cases. Testing Excellence. [Online] December 7, 2008.

http://www.testingexcellence.com/test-cases/.

9. Berger, Bernie. The Dangers of Use Cases Employed as Test Cases. Test Assured

Inc. [Online] 2001. http://www.testassured.com/docs/Dangers.htm.

10. TestAssured Inc. Dangers of using use cases as test cases. [Online] 2003.

http://www.testassured.com/docs/Dangers.htm.

11. Pan, Jiantao. Software Testing. Carnegie Mellon University. [Online] Spring 1999.

http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/.

12. Chandran, B and Pai, I. Testing Techniques for Mobile Applications -

MangoSpring Technology Pvt Ltd. IndicThreads.com Conference on Software,

Pune, India. [Online] 2010. http://www.slideshare.net/indicthreads/indic-

threadsqualityconference2010-testingtechniquesformobileapplicationsfinal.

13. Williams, Laurie. Testing Overview and Black-Box Testing Techniques. [Online]

2006. http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf.

14. Wikipedia. [Online] http://en.wikipedia.org/wiki/Fuzz_testing.

15. IEEE. IEEE Standard 610.12 IEEE Standard Glossary of Software. 1990.

16. Wikipedia. [Online] http://en.wikipedia.org/wiki/Boundary_testing.

17. Parekh, Nilesh. Software Testing - Stress Testing. www.buzzle.com. [Online] 2000.

http://www.buzzle.com/articles/software-testing-stress-testing.html.

18. Andrews, James H. Testing using Log File Analysis: Tools, Methods and Issues.

Honolulu, USA : IEEE Computer Society, 1998. Proceedings of the 13th IEEE

Conference on Automated Software Engineering. pp. 157-166. ISBN: 0-8186-8750-

9.

36

19. SmartBear Software. Why automated testing? [Online] 2012.

http://support.smartbear.com/articles/testcomplete/manager-overview/.

20. Liu, Yike. WCDMA Test Automation Workflow Analysis and Implementation. Kista :

KTH ICT, 2009. TRITA-ICT-EX-2009:6.

21. Holtz Betiol, Adriana and de Abreu Cybis, Walter. Usability Testing of Mobile

Devices: A Comparison of Three Approaches. [ed.] M.F. Costabile and F.Paternó.

Brazil : Springer, 2005. In Proceeding of INTERACT 2005. Vol. Lecture Notes in

Computer Science 3585, pp. 470-481.

22. Li, Kanglin and Wu, Mengqi. Effective GUI Testing Automation: Developing an

Automated GUI Testing Tool. s.l. : Sybex, 2004. ISBN: 0-7821-4351-2.

23. Kervinen, Antti, et al. Model-Based Testing Through a GUI. Formal Approaches to

Software Testing. Berlin : Springer, 2006, Vol. 3997, pp. 16-31.

24. Bsquare. Countdown. Products: Countdown. [Online] 2010. [Cited: November 7,

2010.] http://www.bsquare.com/countdown.aspx.

25. TestVerb Technology (TVT) datasheet. TestQuest . [Online] 2010.

http://www.testquest.com/download.cfm?oid=4325&product=3487.

26. UserEmulator. Symbian developer wiki. [Online] 2010.

http://developer.symbian.org/wiki/index.php/UserEmulator.

27. STIF Test Framework. Symbian Developer wiki. [Online] 2010.

http://developer.symbian.org/wiki/index.php/STIF.

28. Digia Plc. UsabilityExpo. Digia. [Online] 2010.

http://www.digia.com/C2256FEF0043E9C1/0/405001348.

29. Remote Phone Management User Guide. Nokia RDA. [Online] Digia Plc., April 8,

2010. http://apu.ndhub.net/userguide/ch01.html#d4e12.

30. Mobile Application Testing. DeviceAnywhere. [Online] 2010.

http://www.deviceanywhere.com/mobile-application-testing.html.

31. Symbian Signed End User Statement. Symbian Signed. [Online] 2010.

https://www.symbiansigned.com/app/page/EndUserStatement.

32. Jokela, Jutta. Evaluation of Testing Software for Symbian OS/C++ and Series60.

Helsinki : EVTEK Polytechnic, 2005.

33. Cell Telecom. Cell Telecom home page. [Online] 2010. www.cell-telecom.com.

34. Zhang, Yingjun and Andrews, James H. General Test Result Checking with Log

File Analysis. 7, s.l. : IEEE Computer Society, July 2003, IEEE Transactions on

Software Engineering, Vol. 29, pp. 634-648. ISSN 0098-5589.

37

Appendix A: Test Strategy

A.1 Test Strategy Document

This document is a tool for testing the OptiCaller client on mobile phones running

Symbian. The document describes the steps in the process with prerequisites, objectives,

the process of testing and the tools used.

Objectives: To test the OptiCaller client program and make sure it is stable. The

approach used is manual functional and acceptance testing.

The only accepted outcome is 100% for each model with the latest OptiCaller client and

firmware.

Preconditions: Symbian 9.1+ phone, UserEmulator, OptiCaller client with special

logging activated, usb/datacable or Bluetooth connection.

Requirements for automatic testing: Number to be called is latest in call log. Settings

correct and correct call method chosen.

Testing environment: Install both programs and insert the settings used in testing (CT,

CB etc.). Test scripts located in {phonemem}/TestScripts

Tools: UserEmulator and the auto-test website

A.2 Functional Testing

Test Table v1 Name of tester Phone model Date /

20__

Nr Case

Description

and Goal

Initialization Time

(h)

Expected Results/

Acceptance Criteria

PASS/

FAIL

Issues

and

faults

1a Install

OptiCaller

Install OptiCaller

from USB or

Bluetooth.

 OptiCaller icon in

applications folder,

install success

1b Run

OptiCaller

Start OptiCaller

using the icon in

Applications.

 OptiCaller starts

2a Get license Insert provision

settings and click

“Get License”.

 Product gets licensed.

38

2b Change a

setting

Change a setting

entry anywhere,

e.g. “Call Back

2”

 Settings changed

2c Revert

Settings

Click the button

Options > Setup

> Restore

Settings to revert

 Settings reverted to

original…

3a Turn on

Transparent

mode and exit

In Options >

Setup >

Operational

Settings. Select

Transparent

Mode: ”On”.

(default) and exit

with the Exit

button.

 AA icon displayed

and OptiCaller in the

background.

3b Turn off

Transparent

mode and exit

In Options >

Setup >

Operational

Settings. Select

Transparent

Mode: ”Off”.

(default) and exit

by clicking

Options > End

Program.

 OptiCaller doesn’t

run in background

anymore.

4a Screen

orientation

check

Rotate the phone

90 degrees with

OptiCaller open.

 OptiCaller looks the

same but wide.

4b Icon

orientation

check.

Exit the program

by choosing Exit

in the (right)

menu. Still 90

degrees rotated.

 Icon moves to lower

part of horizontal

view.

5a Localization

check

Change the

phone language.

Restart phone.

(for WiMo

change language

in Options >

Setup >

Language)

 Language of

OptiCaller changed.

5b Auto Start test Options > Setup

> Operational

Settings, Set

Auto Start to On.

Restart phone.

(Symbian only)

 OptiCaller starts

automatically and the

menu comes up.

39

6a Direct Call,

select in menu

In Options >

Setup >

Operational

Settings. Select

call mode:

“Direct Call”.

 AA icon changes to

DC

6b Direct call

functionality

Perform an

outgoing call.

Answer on both

ends (to make

sure the call was

set up.)

 Call is setup and you

can talk to each other.

6c

*

Direct Call

and

OptiCaller.

Perform an

outgoing call

without

answering on the

target phone.

 Call signal goes

through.

6d Making sure

you can abort

a call in DC

Perform an

outgoing call and

hang up

immediately.

 Call hung up.

7a CT, select in

menu

In Options >

Setup >

Operational

Settings. Select

call mode: “Call

Through”.

 AA icon changes to

CT

7b Make sure CT

is working on

both ends

Perform an

outgoing call

(and make sure it

is interrupted by

the software.

Answer on the

receiver side.)

 Call through, dial

tone heard and call

setup. Showing

correct phone nr.

7c

*

Make sure CT

works.

Perform an

outgoing call

(and make sure it

is interrupted by

the software.)

Hang up after

dial tone is heard.

 Call interrupted by

server, dial tone

heard after <30s.

8a Attempt to

abort CT

during

initiation.

Try to abort the

call with red

button during call

initialization.

 Call hung up.

8b Attempt to

make second

call while CT

is initializing.

Try to setup a

second call while

CT is initializing

call.

 Nothing happens.

8c Attempt to

abort CT

during DTMF.

Try to abort the

call with red

button during

DTMF signaling.

 Call hung up.

40

8d Attempt to

make second

call during

DTMF

sequence.

Try to make a

second call

during DTMF

signaling.

 Nothing happens.

9a Select Call

Back

In Options >

Setup >

Operational

Settings. Select

call mode:”Call

Back”.

 AA icon changes to

CB

9b Select HTTP In Options >

Setup > Call

Back Settings.

Select Call Back

Method:

HTTP(S).

 HTTP chosen and

used when

performing CB.

9c Test Call

Back (HTTP)

call

functionality

Perform an

outgoing call,

answer on both

sides

 Call is interrupted by

software, received by

PBX within 60 s

9d

*

Test Call

Back (HTTP)

Call setup

Perform an

outgoing call,

hang up after dial

tone is heard.

 Call setup ok,

functioning without

errors.

9e Test Call

Back (HTTP)

call setup

control

Perform an

outgoing call,

don’t answer

when called

back.

 The PBX doesn’t call

the receiver.

10a Select SMS In Options >

Setup > Call

Back Settings.

Select Call Back

Method: SMS.

 SMS chosen and used

when performing CB.

10b Test Call

Back (SMS)

Call

functionality

Perform an

outgoing call,

answer on both

sides

 Call is interrupted by

software, received by

PBX within 60 s

10c Test Call

Back (SMS)

call setup

Perform an

outgoing call;

hang up after dial

tone is heard.

 Call setup ok,

functioning without

errors.

10d Test Call

Back (SMS)

call setup

control

Perform an

outgoing call,

don’t answer

when called

back.

 The PBX doesn’t call

the receiver.

11a Select HTTP

again

In Options >

Setup > Call

Back Settings.

Select Call Back

Method: HTTP.

 HTTP standard.

41

11b Attempt to

abort CB

during init.

Try to abort the

call with red

button during call

initialization.

 Call hung up

successfully.

11c Attempt to

make second

Call while CB

is initializing.

Try to setup a

second call while

CB is initializing

call.

 Second call created.

11d Attempt to

abort CB

during

incoming call.

Abort the call

with red button

on incoming call

from PBX.

 Call dismissed.

(normal behavior)

11e Attempt to

make second

call during

incoming call.

Try to make a

second call while

getting an

incoming call.

 Second call created.

11d Attempt to

abort CB

during call.

Try to abort the

call with red

button when

performing

outgoing call

setup after you

have answered.

 Call dismissed.

11e Attempt to

make second

call during

outgoing call

setup.

Try to make a

second call after

you have

answered.

 Nothing happens.

11f Generate

generic error

msg.

Attempt to make

a Call back to a

number that

doesn’t exist.

 You receive a generic

error message from

server.

12a Select Always

Ask

In Options >

Setup >

Operational

Settings. Select

call

method:”Always

Ask”.

 The Call Method icon

changes to AA

12b Check that

Always Ask

works.

Perform an

outgoing call.

 The Always Ask

dialogue is displayed.

Nothing else.

12c Call

cancellation

before AA

dialogue.

Abort the call

with red button

just before the

AA dialogue is

displayed.

 Call dismissed.

12d Attempt to

make second

call during

AA dialogue.

Try to make a

second call when

AA dialogue is

shown.

 Nothing happens.

42

12e

*

AA and DC

Make a call and

choose DC. Hang

up after callee

starts ringing.

 Direct Call

performed. SIM nr

displayed on callee

side.

12f

*

AA and CB

Make a call and

choose CB.

Answer and hang

up after callee

starts ringing.

 CB performed. PBX

number displayed on

both sides.

12g

*

AA and CT

Make a call and

choose DC. Hang

up after callee

starts ringing.

 CT performed. PBX

nr displayed on callee

side.

13a Edit White

List

Edit the White

List and add a

number XX.

 Number added

13b Select CT In Options >

Setup >

Operational

Settings. Select

call mode: “Call

Through”.

 CT Selected

13c Test White

List function.

Perform an

outgoing call to

the defined

number XX

 A direct call is made.

14a Menu while in

Call

Make a call and

open up

OptiCaller while

in a call.

CB/CT/DC

doesn’t matter in

the testing

scenario.

 Call Services “menu”

is displayed.

14b Test Call

Services

Use one of the

Call Services.

Hang up.

 Correct tones are

sent.

15a MEX number Select the correct

MEX access

number.

 Number changed.

15b Edit MEX Go to MEX

Settings, add an

entry such as

Lunch

*23*3/*T*/#

 Entry added with

correct properties.

15c Use MEX Choose (click on)

an entry in the

MEX List. Enter

a substitution for

/*T*/ (such as

800)

 Correct DTMF tones

sent.

(*) preferably automated when stress testing.

43

A.3 Build (Regression) Testing

Objectives: Tests to make sure that no errors have resurfaced due to changes introduced

in the latest build.

Tests 7c, 9d, 12f, 12g, and 12e, 6c are preferably run after each new version is released.

All these tests are automated and are the main functions of the program.

www.kth.se

TRITA-ICT-EX-2013:13

