
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

V I L I U S V I S O C K A S

 Comparing Expected and Real-Time
Spotify Service Topology

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

MASTER OFSCIENCE THESIS

Comparing Expected and Real–Time
Spotify Service Topology

Vilius V ISOCKAS

vilius.visockas@gmail.com

May 29, 2012

Comparing Expected and Real–Time
Spotify Service Topology

Final version (2012-05-30)

V ILIUS V ISOCKAS (vilius.visockas@gmail.com)

Master’s Programme in Security and Mobile Computing

NordSecMob (KTH + NTNU track)

KTH Royal Institute of Technology

School of Information and Communication Technology

Stockholm, Sweden

academic supervisor Prof. Gerald Q. Maguire Jr.(maguire@kth.se)

NTNU Norwegian University of Science and Technology

Department of telematics

Trondheim, Norway

academic supervisor Prof. Yuming Jiang(jiang@item.ntnu.no)

Spotify AB

Stockholm, Sweden

industrial supervisor Mattias Jansson(mattias.jansson@spotify.com)

Abstract

Spotify is a music streaming service that allows users to listen to their

favourite music. Due to the rapid growth in the number of users, the amount

of processing that must be provided by the company’s data centers is also

growing. This growth in the data centers is necessary, despite the fact that

much of the music content is actually sourced by other users based on a

peer-to-peer model.

Spotify’s backend (the infrastructure that Spotify operates to provide their

music streaming service) consists of a number of different services, such as

track search, storage, and others. As this infrastructure grows, some service

may behave not as expected. Therefore it is important not only for Spotify’s

operations1 team, but also for developers, to understand exactly how the

various services are actually communicating.

The problem is challenging because of the scale of the backend network

and its rate of growth. In addition, the company aims to grow and expects to

expand both the number of users and the amount of content that is available.

A steadily increasing feature-set and support of additional platforms adds to

the complexity. Another major challenge is to create tools which are useful

to the operations team by providing information in a readily comprehensible

way and hopefully integrating these tools into their daily routine. The

ultimate goal is to design, develop, implement, and evaluate a tool which

would help the operations team (and developers) to understand the behavior
1Also known as the Service Reliability Engineers Team (SRE).

i

of the services that are deployed on Spotify’s backend network.

The most critical information is to alert the operations staff when services

are not operating as expected. Because different services are deployed on

different servers the communication between these services is reflected in

the network communication between these servers. In order to understand

how the services are behaving when there are potentially many thousands of

servers we will look for the patterns in the topology of this communication,

rather than looking at the individual servers. This thesis describes the tools

that successfully extract these patterns in the topology and compares them

to the expected behavior.

ii

Sammanfattning

Spotify är en v̈axande musikströmningstj̈anst som m̈ojliggör för dess anv̈andare att lyssna

på sin favoritmusik. Med ett snabbt växande anv̈andartal, f̈oljer en tillväxt i kapacitet som

måste tillhandah̊allas genom deras datacenter. Denna växande kapaciteẗar n̈odvändig trots

det faktum att mycket av deras innehåll hämtas fr̊an andra anv̈andare via en peer-to-peer

modell.

Spotifys backend (den infrastruktur som kör Spotifys tj̈anster) består av ett antal distinkta

typer som tillhandah̊aller bl.a. s̈okning och lagring. I takt med att deras backend växer,

ökar risken att tj̈anster missk̈oter sig. D̈arför är det inte bara viktigt f̈or Spotifys driftgrupp,

utanäven f̈or deras utvecklare, att först̊a hur dessa kommunicerar.

Detta problemär en utmaning p.g.a. deras storskaliga infrastruktur, ochblir större i

takt med att den v̈axer. F̈oretaget str̈avar efter tillv̈axt och f̈orväntar detta i b̊ade antalet

anv̈andare och tillg̈angligt inneh̊all. Stadigt ökande funktioner och antalet distinkta

plattformar bidrar till komplexitet. Ytterligare en utmaning är att bidra med verktyg

som kan anv̈andas av driftgrupp för att tillhandah̊alla information i ett tillg̈angligt och

översk̊adligt format, och att f̈orhoppningsvis integrera dessa i en daglig arbetsrutin.

Det slutgiltiga m̊alet är att designa, utveckla, implementera och utvärdera ett verktyg

som l̊ater deras driftgrupp (och utvecklare) först̊a beteenden i olika tjänster som finns

i Spotifys infrastruktur. D̊a dessa tj̈ansterär utplacerade p̊a olika servrar, reflekteras

kommunikationen mellan dem i deras nätverketskommunikation. F̈or att först̊a tjänsternas

beteende n̈ar det potentiellt kan finnas tusentals servrar bör vi leta efter m̈onster i topologin,

istället för beteenden p̊a individuella servrar.

iii

Acknowledgements

I want to thank my supervisor Mattias Jansson, who provided me with a good working

environment at Spotify and was my first point of contact for everything involving this

thesis project. In addition, it was an exciting experience to be involved in the operations

and infrastructure automation teams and to come to understand what day-to-day network

monitoring and operations feels like.

I would like to thank my main academic supervisor prof. Gerald Q. Maguire from KTH

for his guidance during this thesis project. He deserves themost credits for helping me

to improve my report and focusing my attention on important details. I am also grateful

Yuming Jiang for being be my academic supervisor at NTNU.

Big thanks for my colleagues John-John Tedro and Martin Parm,who gave me presentation

technique tips and the usage of various development tools. They were great table football

partners during lunch time as well.

iv

Contents

Abstract i

Abstract (swedish) iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of acronyms xi

List of definitions xii

1 Introduction 1

1.1 Problem and Goals. 1

1.2 Limitations of Investigation. 2

1.3 Evaluation of Results. 3

1.4 Structure of the thesis. 3

2 Background 5

2.1 About Spotify . 5

2.2 Spotify’s Architecture. 6

v

CONTENTS CONTENTS

2.3 Example of service dependencies. 7

2.4 Relevant work. 8

3 Method 10

3.1 Recognizing services. 10

3.2 Monitoring network traffic . 11

3.2.1 Auditd tool . 12

3.2.2 Iptables. 13

3.2.3 Netstat tool. 15

3.2.4 Collecting NetFlow information from network equipment 15

3.2.5 Exporting NetFlow using fprobe. 16

3.2.6 Exporting NetFlow using a custom tool. 16

3.3 NetFlow . 18

3.3.1 NetFlow protocol. 18

3.3.2 NetFlow based tools. 19

3.3.3 SiLK suite for NetFlow. 21

3.3.4 SiLK Deployment scenarios. 21

3.3.5 Deployment of SiLK. 24

3.3.6 Configuring exporters. 24

3.4 Creating analysis tools. 25

3.4.1 SiLK as an analysis suite. 25

3.4.2 Motivation for a specialized analysis tool. 26

3.4.3 NetFlow analysis and plotting language. 27

3.4.4 Extendibility of the language. 29

3.4.5 Examples of scripts. 30

vi

CONTENTS CONTENTS

3.4.6 Implementation of analysis framework. 31

3.4.7 Implementing custom groupers. 32

3.4.8 Connecting analysis tool to SiLK. 34

4 Data Analysis 36

4.1 Analysis of sample Spotify service. 37

4.1.1 DNS based service classification. 37

4.1.2 Configuration class based service classification. 38

4.1.3 Overtime classification. 42

4.2 Service Dependency Graph. 44

4.3 Expected vs. real service behaviour. 45

4.4 Comparing classification methods. 45

4.5 Comparing data collection methods. 47

5 Conclusions and Future work 49

5.1 Conclusions. 49

5.2 Discussions. 51

5.3 Future Work. 51

Bibliography 53

A Configuring routers 57

B Measurements 60

C Language constructs 61

D Language built-in functions 62

vii

List of Tables

3.1 Netflow record format. 19

4.1 Comparison of service classification methods. 46

4.2 Server performance measurement during capture. 48

B.1 Server performance measurement during capture. 60

viii

List of Figures

2.1 Real life example of service dependencies. 8

3.1 TCP ports for services. 11

3.2 Auditd log file format. 13

3.3 TCP state transition diagram. 14

3.4 SiLK single machine scenario (1). 22

3.5 SiLK local collection and remote storage scenario (2). 22

3.6 SiLK remote collection and remote storage scenario (3). 23

3.7 Example of analysis script (1). 30

3.8 Example of analysis script (2). 30

3.9 Example of analysis script (3). 31

3.10 The architecture of analysis framework. 32

4.1 Script for DNS based classification. 38

4.2 Example of DNS based classification. 38

4.3 Script for host-class based classification. 39

4.4 Example of host-class based classification. 39

ix

LIST OF FIGURES LIST OF FIGURES

4.5 Script for advanced flow filtering. 40

4.6 Example of advanced flow filtering. 41

4.7 Example of destination network classification. 42

4.8 Script for service classification in time. 42

4.9 Dynamics of service communication. 43

4.10 Example of service dependency graph. 44

x

LIST OF FIGURES LIST OF FIGURES

List of Acronyms

The following is the list of acronyms which are used in this thesis.

AP Access Point for Spotify clients

BNF Backus Naur Form

BPF Berkeley Packet Filter

DDoS Distributed Denial of Service attack

DNS Domain Name System

IP Internet Protocol

JSON JavaScript Object Notation (data serialization format)

NetFlow A network protocol for collecting IP traffic information

PCAP Packet capture library

RFC Request for Comments

SILK System for Internet-Level Knowledge

SRE Service Reliability Engineering team

SRV DNS server record type

TCP Transmission Control Protocol

TOS Type of Service

xi

LIST OF FIGURES LIST OF FIGURES

List of Definitions

The following list of definitions briefly explains frequently used concepts in this thesis. It

is important to read this section carefully, as doing so willhelp the reader to understand the

rest of the thesis.

Operations Spotify team responsible for ensuring all services work (also

known as SRE).

Service Dependency Two intercommunicating services are dependent upon each other,

as in aTCPconnection, with packets flowing in both directions.

The termsservice topologyandservice correlationare used as

synonyms in this thesis. Generally, a service dependency can

be explained as a graph, in which services are represented as

nodes and there exists an edge between two services when there

is network communication between them. The weight of the

edge reflects the volume of this communication.

Service In the scope of this thesis project, servers having similar functions

which handle and respond to clients’ requestsprovide a service.

Services usually have a specific business value which often

could benefit Spotify customers or other services. Programs

running Spotify services are usually designed and implemented

by Spotify engineers. An example of a service is aSearch service

which allows customers to locate tracks. In contrast, theSQL

database is conceptually also a service, but it is not considered

a Spotify service in this thesis. Nevertheless, the definition of

a service is flexible and can be adapted to suite the specific

contexts.

Site In Spotify’s context, a site is a geographically distinct data center

which has a common point of presence on the Internet.

xii

LIST OF FIGURES LIST OF FIGURES

Spotify Music streaming service. The data captured from the Spotify

infrastructure network will be used for analysis.

xiii

Chapter 1

Introduction

This chapter defines the area of research, sets boundaries for the thesis project and delimits

our investigation. The chapter ends with a description of the structure of the remainder of

the thesis.

1.1 Problem and Goals

Spotify deploys a service based model on their backend. Thisbackend consists of a

internal network of potentially thousands of servers. Various services interact with clients

and between each other. However, due to constant growth, theactual communication

patterns may deviate from the planned communication patterns. Understanding these

communication patterns is key to providing good service to the users and using as input

to plan for the scaling of the various services in the backend. This scaling process includes

deciding how many instances of each type of server and service is needed, as well as

determining the internal and external network requirements.

This thesis project began with trying to understand the various services and how they

interact with each other. The project’s goal is to design, implement, and evaluate tools

which would help the operations team by presenting to them a picture of the current service

1

1.2. LIMITATIONS OF INVESTIGATION Chapter 1. Introduction

topology (i.e., the actual pattern of communications between services) and to highlight how

this differs from the expected topology. Additionally, geographicalsite information can be

associated with a service and presented along with the topology information.

This depiction could be augmented to suit several use cases that would compare how

the expected network flows differ from the actual flows. Examining cases when services

interact between different sites may lead to manually suggested optimizations. Automating

this detection process is left for future work.

The tools we want to create should provide theSREteam with information about runtime

backend service network dependencies. The designed dependencies will be compared with

the actual dependencies. The actual dependencies will be determined by network analysis

and possibly supplemented with data from the servers themselves. This information can

be used when trying to understand the effects of these dependencies during incidents

when the systems are not providing the expected services or not providing them with

the expected service quality. Therefore a dependency graphis valuable both for impact

analysis (what other services could be affected when a service malfunctions) and cause

analysis (to understand why service malfunctions by investigating dependent services).

From an operations point of view it is desirable to highlightdeviations of the actual services

behaviors from the designed behaviours.

1.2 Limitations of Investigation

This investigation will focus on the transport layer as opposed to application layer

protocols. The focus of this analysis is on TCP transport protocol, as all services that

we are concerned with in this thesis project use TCP as their transport protocol. This

thesis will describe the methodology that could be applied to achieve the goal of this thesis,

however the description of detailed results will be limitedor obfuscated as these details are

proprietary to the company.

The discussion of the specific logical relations between services (semantics) is not included

in this report. Report simply describes the actual communication patterns between services.

2

1.3. EVALUATION OF RESULTS Chapter 1. Introduction

The reader of this report should be familiar with basic computer networking concepts, have

a basic understanding ofDNSbehaviour, as well as transport and network layers as defined

in the OSI model; therefore these topics are not covered in the background section. The

reader may want to use the results of this report to perform a similar analysis on another

organizations’ networks.

1.3 Evaluation of Results

This thesis will introduce several possible data collection methods, but only a few of them

are feasible and suitable for this thesis project. Two of thepossible collection methods will

be selected and compared with respect to their impact to server performance.

In addition, two service classification methods will be compared using criteria such as

accuracy of the results and execution time.

1.4 Structure of the thesis

Chapter 1 provided an introduction to this thesis. Chapter2 will cover necessary

background information. It will overview the Spotify’s product, explain the architecture

of Spotify’s services and the structure of the backend network.

Chapter 3 contains an analysis of the problem. First, section3.1 discusses the definition

of a service in the Spotify’s context. Section3.2 gives an overview of possible methods

to observe network flows. The chapter continues by describing how to determine service

behaviour from network flow information. Section3.3will provide a deeper analysis of the

selected network observation approaches using NetFlow data. It discusses available tools,

possible deployment scenarios, and problematic areas of the implementation. Section3.4

focuses on the analysis of data provided from the tools described in previous section. It

identifies the problem of a lack of a convenient framework forplotting customized visual

plots from NetFlow data and the limitations of the availablecommand line tools. This

3

1.4. STRUCTURE OF THE THESIS Chapter 1. Introduction

chapter then describes the details of the design and implementation of such a framework.

Chapter 4 uses a combination of data collection and our own analysis tools to understand

the actual backend service behaviour.

Chapter5 summarizes our analysis. It also contains a discussion, conclusions and suggests

potential future work.

4

Chapter 2

Background

The aim of this chapter is to give the necessary background information about the Spotify

organization, its product, and the architecture supporting the delivery of this service.

2.1 About Spotify

Spotify is a music streaming service. The service is offeredin three versions: a free version

with advertisements, unlimited, and a premium (pay-per-month) version. As of January

2012, Spotify had 10,000,000 registered users, 20% of whichsubscribed to the premium

service [1].

Spotify (here refers to the company and companies1) is a rapidly growing organization.

During this thesis project the main goal was to support this growth, thus the backend must

support more customers and it must do so efficiently. Achieving this goal demands that

the infrastructure work properly, while supporting increasing loads and being constantly

upgraded. At the time of writing this thesis, Spotify deployed over 1000 servers running

various services. These servers are located in severalsitesin Europe and the United States

1Spotify Sweden AB, Spotify Limited, Spotify France SAS, Spotify Spain S.L, Spotify Norway AS,
Spotify Netherlands B.V., Spotify USA Inc., Spotify Finland Oy, and Spotify Denmark ApS currently form
the overall business concern, but organization is constantly growing.

5

2.2. SPOTIFY’S ARCHITECTURE Chapter 2. Background

of America.

2.2 Spotify’s Architecture

Spotify is a music streaming service offering low-latency access to a library of over 15

million music tracks. Streaming is performed by a combination of client-server access and

a peer-to-peer protocol between clients.

Spotify is based on various services, mostly of which are written in Python. The core

element of the system is the Access Point (AP) which is the first point of contact for

each client. There are two major versions of the client: a mobile and a desktop version.

The whole Spotify infrastructure heavily relies on Domain Name System (DNS) queries

to locate servers that provides some specific service. Although this approach has both

advantages and disadvantages, it is generally agreed that it is both fast and efficient. Details

of DNS can be found in the Internet Engineering Task Force (IETF) standardRFC 10352

[2]. In particular, Spotify’s DNS is configured to return a list of SRV records for a particular

service query, as described inRFC 2782 [3]. Each SRV record, among other attributes,

returns a port and host name. The host name can be resolved separately to an IP address.

This tuple uniquely describes the destination of the service provider. If a service is moved

to another machine, then the DNS records must be updated accordingly. The DNS servers

use relatively small time-to-live values for these entriesin order to avoid potential problems

associated with DNS caching.

Services usually utilize TCP as their transport protocol anddifferent services utilize specific

TCP port numbers. Above the transport protocol, i.e., at the application level, the protocol

that is used is HTTP, but other protocols are used as well in some cases. It is assumed that

communication between services facilitates exactly one TCPconnection, because special

cases as FTP connection (which utilizes two parallel connections) do not exist in Spotify’s

context. However, each working instance of connection to the service (for example, when

connecting to database) may have a seperate connection.

2There are more RFCs covering the behaviour of DNS, but here werefer only to the basic of DNS that
are covered in the RFC 1035.

6

2.3. EXAMPLE OF SERVICE DEPENDENCIES Chapter 2. Background

2.3 Example of service dependencies

Let us describe a realistic scenario of a service oriented architecture. Let us assume

that a new company is creating a webmail service whose operation is sponsored by

advertisements (ads).

The company plans to operate several servers, each dedicated for a different purpose (i.e.,

a service). TheWebserver handles users’ requests and manages customers’ accounts.

The Adsserver picks the most suitable ad to show based on the user’s information in a

database. TheDatabaseserver stores each user’s account information. TheMail server

sends, receives, and stores email messages. TheSpamdetection server analyses text in

email, and filters out messages which are identified as spam.

These servers communicate with each other, thus creating service dependencies (as shown

in figure 2.1). For example, theWebserver andAdsserver fetch data from theDatabase

server (in this example MySQL). In addition, theWebserver uses theMail server to obtain

email messages and show them via a web interface. TheMail server uses responses from

theSpamdetection server to filter out spam. Most of the servers resolves hostnames to the

IP addresses using the localDNSserver. Finally, theMail server uses a regularly updated

external blacklist service to eliminate e-mail to and from sites listed in blacklist.

It is important to note that usually two communicating services can be classified as aclient

and server. The client service initiates the request to theserverservice and expects a

response in order to continue its operation. Therefore while the edges between services in

the topology graph indicate communication in both directions, we have used an arrow on

only one end of the edge to illustrate a client-server relationship (the arrow head points to

theserver).

7

2.4. RELEVANT WORK Chapter 2. Background

Web server

DNS server

MySQL server

Ads server Mail server

Spam detect ion Blacklist server

Figure 2.1: Real life example of service dependencies

A dependency graph such as this one helps us to understand theoperation of the system.

For example, if bothWebserver andAdsserver start to fail to serve users’ requests, it is

highly likely that theDatabaseserver is malfunctioning, because it is used by both services.

This example suggests that services can be eitherinternal(i.e., those which are in control of

organization, such asMail service), orexternal(such as theBlacklistservice). In addition,

services can be eitherstandard(widely used, such MySQL server), or custom (such as

theAdsservice). Our focus in this thesis project is finding dependencies betweeninternal

customSpotify services.

2.4 Relevant work

Attempts at understanding of live, automated backend network service dependencies was

never done previously at Spotify. However, the general problem of service dependency is

not new.

Ensel and Keller [4] suggest an approach for automated generation of service dependency

models. The main idea is that measuring and correlating certain metrics (CPU load or

bandwidth usage) on different hosts can infer a service dependency. In related work,

these authors suggest managing service dependencies usingXML and resource description

8

2.4. RELEVANT WORK Chapter 2. Background

framework [5]. The goal of such model is to understand impactof service failure.

A. Keller and G. Kam describe an architecture and its implementation for retrieving

and handling dependency information from various managed resources in a web-based

environment [6]. Their work relies on extracting information from system configuration

repositories combined with results obtained from perturbing some components of a

distributed system under a typical workload.

Basu, Fabio and Florian proposed a solution for the automaticidentification of traces of

dependent messages, based on the correlation of messages exchanged among services [7,

8]. Their key principle is inference of a causal dependency within message pairs in the

log, where the first message is received at the service node from which the second message

originates using a probabilistic model.

To summarize, there are several approaches for understanding and modelling service

dependencies. The most straightforward method is explicitly defining dependencies for

each service. However, when using this approach the information needs to be manually

revised and updated. Another approach is intercepting the communication between

parties. Finally, artificial intelligence techniques can be applied in order to find service

dependencies.

Spotify’s approach to services is based on domain names, which creates a new context

for our research. The problem is that Spotify services do notdescribe the services on

which they rely in a configuration file, currently this is purely implicit in the system

owners’ knowledge (i.e., in the implemented software and potentially in its documentation).

However, given that all services run in the network are ownedby one organization,

full observation of all the traffic between them makes it possible to find these implicit

dependencies.

9

Chapter 3

Method

This section gives an overview of possible methods for understanding service dependencies.

Section3.1of this chapter addresses the problem of defining a service inSpotify’s backend

network. Assuming that hosts for the different services andthe network links can be

observed, then the observation of network traffic seems to bea promising way to learn about

service dependencies. Therefore section3.2 discusses possible methods for observing

network traffic. Section3.3 further investigates one of these alternatives, specifically

collecting NetFlow information from the network equipment. Finally, section3.4 gives

a motivation and description of additional tools needed forthe analysis.

3.1 Recognizing services

Whatever method of network flow monitoring is chosen, there should be way to associate

an IP address, protocol, and port number tuple of a flow with a specific Spotify service.

In the original design, each Spotify service was expected toutilize specific non-overlapping

ranges of TCP ports. Therefore it is tempting to classify services based upon these

predefined static port number ranges.

However, after inspection of this information in currentlyoperating network’s DNS, it

10

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

appears that there exist different services running on different machines, but using the

same TCP port. One such an example is shown in the Table3.1 1. A special script was

written to analyze DNS records in order to find theseport clusters. To conclude, both the

destination IP address and destination port number are required to map network flow to the

corresponding service based on DNS SRV entries.

Service Min port Max Port
spotify-service1.http.spotify.net. 8081 8087
spotify-service2.http.spotify.net. 8081 8087
spotify-service3.http.spotify.net. 8082 8085
spotify-service4.http.spotify.net. 8082 8097

Figure 3.1: Example of overlapping use of TCP port numbers by different services

As each host providing some specific service is usually tagged with a configuration

management class, an alternative approach of associating anetwork flow with a service

is based upon this class name. It is important to note that only the destination IP address is

necessary for such a classification. In addition, the assumption that each host serves only

one service must be valid.

3.2 Monitoring network traffic

One of the biggest implementation decisions to be made is howto monitor traffic. As

we are interested in statistics at the transport layer, rather than at the application level,

we simply need to collect information about traffic flows within backend network. Two

basic approaches to finding traffic flows are logging information at each server machine or

sniffing packets flowing through the network.

The advantage of sniffing traffic is that it is potentially more efficient and avoids use

of resources on the individual server machines. However, the amount of traffic passing

1Note that the specific service names have been replaced by service(n) to protect proprietary details of the
company’s backend configuration. The details of which service is what is not important for our tools - only
that there are dependencies, but because there is a many to one mapping between services and port numbers
the DNS information is not sufficient to compute a unique inverse from port number to service.

11

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

through the routers of the internal network is on the order ofterabytes per day, therefore

some form of random sampling could be used to reduce the amount of traffic that has to be

processed, but this occurs at the cost of introducing some bias into the results.

Tracking network flows on each of the server machines could offer greater flexibility.

Moreover, this logging might be limited to only a short period of the day, in order to reduce

the negative effects on each server’s performance. Of course performing the logging in the

servers themselves will also potentially introduce bias, which could range in magnitude

from small to very large depending upon the other demands upon the individual server.

In the following sections we will examine several potentialmethods for tracking network

flows. We have assumed that each of the servers are running a Debian based Linux

operating system, as this was true at the time of writing thisthesis.

3.2.1 Auditd tool

Auditd (Audit daemon) is a user space component for linux system auditing [9, 10]. It

writes logs for system calls to disk. It is controlled by several tools, initctl for changing

rules andausearchandaureportfor manipulating the logs.

This tool can track operations at the level of system calls. Discussion in [11] explains how

to add rules to listen for system calls. We experimented withadding rules for one kind

of system call: socket calls. The authors of [12] and [13] gives guidelines for analysing

auditd logs. However, the information which is logged is difficult to parse as the format

depends on the kernel version and is encoded in low level codes (figure 3.2 shows an

example of part of anauditd log). In addition, while it is possible to understand when a

socket is created, this does not provide information about the actual packets being sent over

socket.

12

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

type=UNKNOWN[1325] msg=audit(1330001823.261:26): table=mangle family=2 entries=6
type=SYSCALL msg=audit(1330001823.261:26): arch=40000003 syscall=102 success=yes exit=0 a0=ea1=bffe35d0 a2=b7824ff4 a3=8143f20items=0 ppid=1370 pid=1458
auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm=”iptables”exe=”/sbin/iptables-multi” key=(null)
type=UNKNOWN[1325] msg=audit(1330001823.265:27): table=filter family=2 entries=6
type=SYSCALL msg=audit(1330001823.265:27): arch=40000003 syscall=102 success=yes exit=0 a0=ea1=bfa8be10 a2=b7786ff4 a3=94db0f0items=0 ppid=1370 pid=1463
auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm=”iptables”exe=”/sbin/iptables-multi” key=(null)
type=UNKNOWN[1325] msg=audit(1330001823.269:28): table=filter family=2 entries=7 type=SYSCALL msg=audit(1330001823.269:28): arch=40000003 syscall=102
success=yes exit=0 a0=ea1=bfd44780 a2=b7873ff4 a3=86a6270items=0 ppid=1370 pid=1464 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0
tty=(none) ses=4294967295 comm=”iptables” exe=”/sbin/iptables-multi” key=(null)

Figure 3.2: Sample part of an auditd log file. Paramsa1, a2 ...correspond to arguments passed to
the system calls

3.2.2 Iptables

Another option for tracking TCP connections is using iptables [14, 15]. Iptables are already

utilized within the Spotify network, and each machine has its own set of firewall rules

(configured using iptables).

Iptables have additional module for checking the state of a TCP connection. This module is

called conntrack [16]. There are only four states available: NEW, ESTABLISHED, RELATED,

and INVALID . Unfortunately, these states do not correspond to TCP states, as shown in

figure3.3. These states instead relate to the internal state of conntrack and do not accurately

provide information about the TCP connection’s state.

The conntrack stateNEW simply means the packet is the first packet in aconntracktracked

connections (most probably, that will be aTCP SYN packet). TheESTABLISHED state

means thatconntrackhas seen traffic in both directions. TheRELATED state connections

are the ones which are connected to anotherESTABLISHED connection. Finally,INVALID

connections do not belong to any category and should generally be dropped.

In the TCP three-way-handshake context there are three messages before a TCP connection

is set up: SYN, SYN + ACK, and ACK. This is where a slight, but important difference

between theconntrackstates and the TCP socket’s states is.

13

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK

FIN +
ACK/ACK

FIN/ACK

ACK

Close/FIN

ACK

Figure 3.3: TCP state transitions

Therefore one way of tracking connections is logging a packet when the TCP connection

is in theNEW state (first packet has been seen). To identify the end of the connection we

can wait for aFIN from the server. However, both of these approaches are only estimations.

As theNEW state only means that there has been a packet seen on one side,but it is not

yet agreed to initiate a TCP connection. As for a closing connection, theFIN packet simply

indicates that the server wants to close the TCP connection. If it did not receive aFIN from

the client, it should wait for thisFIN, and even after that there is still some time (on the

order of minutes) before the socket is actually closed.

To estimate the traffic bandwidth for each connection, one could enableSEQ number

logging in the iptables. Having the sequence number for the last packet and the first packet,

it is possible to estimate the total number of bytes sent. Theiptables manual [17] explains

these additional logging options, including how to log sequence numbers.

14

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

We have experimented with these ideas, setting up the required iptablesrules and testing

whether it works in practice. However, despite the mechanism working, the biggest issue

is its efficiency. In particular how much the performance of the server decreases after

introducing these changes in the iptables. In addition, thelogs will quickly become very

large and this solution does not scale to collect data from large number of machines.

3.2.3 Netstat tool

Another solution is using system toolss(or netstat) to list all opened sockets. Fortunately,

this is not a process blocking operation, therefore it is efficient and causes minimal

interference with the operation of the server. However, this approach needs polling to

capture connection start and end events. As a result this approach is most useful when only

a snapshot of connections is needed. Finally, this approachdoes not enable us to collect

information about the number of packets or bytes transferred, but rather simply the number

of connections.

3.2.4 Collecting NetFlow information from network equipment

A more passive monitoring approach is to collect the flow dataexported by routers or

other network equipment using the NetFlow protocol [18]. Fortunately, information about

flows is sufficient for this master thesis project’s goals. Asa positive side-effect, this flow

information can be used for other purposes within organization - for example, for analysis

of Denial of Service (DoS) attacks. However, these additional uses of this data lie outside

the scope of this thesis. As this approach seems the most efficient and suitable approach of

collecting data, it will be more thoroughly discussed laterin this thesis.

15

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

3.2.5 Exporting NetFlow using fprobe

Sometimes NetFlow data emission from the network equipmentis not feasible or desired.

An alternative solution is to use a NetFlow collection infrastructure which offers the

advantage of good scaling, but this process is based upon emitting NetFlow data from

the hosts rather than from the network equipment.Fprobe, apcapbased Unix tool, works

in exactly this way.

3.2.6 Exporting NetFlow using a custom tool

NetFlow data can be emitted using thefprobetool. Unfortunately, thefprobetool is based

on thepcap library and its operation is costly as it must actively listen on interface in

promiscuous mode.

However, it is possible to exploit the fact that Spotify usesiptableson hosts to create a more

efficient network information collection tool using thelibnetfilter conntracklibrary [19].

This is a user-space library providing an application programming interface (API) to the

in-kernel connection tracking state table. Reusing auxiliary data about connection events

from the iptablesconntrackmodule is potentially more efficient than active listening on an

interface.

To experiment with this idea, we created aPythonscript which registers listeners forNEW

andDESTROYconnection events to the library. We used Pythonctypesmodule in order to

use the functions from the dynamically loaded library (DLL)of libnetfilter conntrack. Each

event contains information about the network flow, in particular, source and destination IP

addresses and port numbers, protocols of transport and network layers, and a conntrack

connection ID. This Connection ID can be used to identify starting and ending events

associated with the same connection. After receiving the connectionDESTROY event, a

NetFlow record for this connection is created. Several NetFlow records are then packed

together2 into one NetFlow protocol version 5 packet and transmitted via the UDP protocol

towards an active NetFlow collector. We used the Python packet creation and parsing

2The NetFlow protocol allows up to 30 records in one packet.

16

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

library python-dpkt3[20] for creating NetFlow packets4. Regular Unix sockets were used

for transmitting these packets. This script must be configured to work as a daemon process.

The drawback of this tool is that it may require installing additional packages (such as

libnetfilter conntrackandpython-dpktdependencies) and a restart of the machines.

3There are alternative packet craft tools, such as Scapy.
4The latest release needs a patch due to the existing bug in NetFlow packet length calculation.

17

3.3. NETFLOW Chapter 3. Method

3.3 NetFlow

The previous section gave an overview of possible traffic monitoring approaches. The

option of emitting NetFlow data from network equipment has an advantage of low impact

on the server’s performance. This is the reason why this section analyses the use of the

NetFlow protocol to collect information about network traffic flows5. We will use this

information for backend service topology analysis.

First, theNetFlowprotocol will be introduced. After this an overview of various NetFlow

based monitoring and analysis suites will be given. We will motivate our choice of the

SiLK suite and describe how it can be deployed on a large network, specifically one that

interconnects several data centers. Such a network of multiple data centers, each with many

machines, is typical of a backend network, such as one used bySpotify.

3.3.1 NetFlow protocol

NetFlow is a network protocol originally developed byCisco. It has been become a

standard and is available on other platforms, such asJuniper OSandLinux. The protocol

provides aggregate information for each network flow and canbe emitted by the routers

and other network equipment. Flow collection is based on an aging counter: a received

packet which corresponds to already monitored traffic flow resets this counter for the flow.

The close of aTCP connection forces the device to export the flow related information

immediately. Among other fields, aNetFlow record contains information about source

and destination IP adresses, port numbers, protocol used, and number of complete bytes

sent. Table3.1shows the complete format of all the fields contained in aNetFlowrecord.

NetFlow packets are usually sent via the UDP protocol, because flow data is not critical

and it may create a big traffic load.

Version v9 ofNetFlowwas extended to support IPv6, MPLS, and other new features [18].

5Note that NetFlow data emission and collection are two distinct processes. NetFlow data collection can
be done using SiLK suite, while NetFlow data is emitted either from network equipment, or hosts (by using
fprobe or fcollector tools)

18

3.3. NETFLOW Chapter 3. Method

Table 3.1: NetFlow v5 record format [21]

Bytes Field Description
0-3 srcaddr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in the flow
20-23 dOctets Total number of Layer 3 bytes in the packets of the flow
24-27 first SysUptime at start of flow
28-31 last SysUptime at the time the last packet of the flow was received
32-33 srcport TCP/UDP source port number or equivalent
34-35 dstport TCP/UDP destination port number or equivalent

36 pad1 Unused (zero) bytes
37 tcp flags Cumulative OR of TCP flags
38 prot IP protocol type (for example, TCP = 6; UDP = 17)
39 tos IP type of service (ToS)

40-41 src as Autonomous system number of the source, either origin or peer
42-43 dst as Autonomous system number of the destination, either originor peer

44 src mask Source address prefix mask bits
45 dst mask Destination address prefix mask bits

46-47 pad2 Unused (zero) bytes

However, the prevailing version of the NetFlow protocol is version 5, therefore this version

was chosen for my imlementations. Another variant of NetFlow is Sampled Netflow

(sflow [22]). In sflow random sampling is introduced in order to make data collection

more efficient. In this case only a subset of packets are monitored, therefore flow records

contain estimations, rather than real traffic information.Such sampling may induce errors

in analysis, as discussed in [23].

3.3.2 NetFlow based tools

There are several free NetFlow based tool suites available.This section gives an overview

of the most widely used tools.

Flowd [24] is small, fast, and secureNetFlow collector. This tool focuses on storing

19

3.3. NETFLOW Chapter 3. Method

NetFlow data on a disk. As an advantage of this tool is that it offers Pythonand Perl

interfaces for raw data access. However, the lack of analysis tools is a drawback.

Fprobe [25] is a probe that collects network traffic data and emits it as NetFlow flows to a

specified collector. Although it is difficult to use as a monitoring tool alone, it is a vital tool

for testing, as will be described in the following sections.IP traffic from a local machine

can be transformed intoNetFlowdata, enabling testing even before routers are configured

to exportNetFlowdata.

Nfdump [26] collects and processes data according to a command line interface. Nfdump

is a part of theNfsenproject. Although it has scalable data collecting features, it lacks

analysis tools. In contrast,Nfsenis a related project which can be used to visualize the

NetFlow data via a web interface.

Flowtools [27] is library and a collection of programs used to collect, send, process, and

generate reports from NetFlow data. Flowtools was developed by Mark Fullmer. The

architecture of this suite and tools is similar to theSiLK suite, described in the following

paragraph. A practical disadvantage of the suite is that it is supported by only one developer

and lacks good installation and usage documentation.

System for Internet-Level Knowledge (SiLK)[28] is a NetFlow collection and analysis suite

for large networks. It is designed to scale up to support verylarge networks. It is possible to

merge data from different collectors and send incremental data files across the network. In

addition, SiLK has a powerful analysis suite which enables fast filtering, sorting, grouping,

and other analysis operations. Therefore,SiLK is a good candidate as a tool for Spotify’s

backend service correlation analysis. This suite has both sufficient collection and analysis

tools. The major reason why it is proposed as the most suitable suite is that it provides a

scalable and secure data collection solution. The following section will give further details

about SiLK.

20

3.3. NETFLOW Chapter 3. Method

3.3.3 SiLK suite for NetFlow

SiLK is a analysis and traffic collection suite developed andmaintained by the U.S. CERT

Network Situational Awareness Team to facilitate securityanalysis of large networks. It

enables effective collection, storage, and analysis of network data. It runs on most UNIX

style platforms. The SiLK suite is a collection of tools, which must be configured to work

together to achieve the desired effect. The most important tools are:

rwflowpack is a core tool which packs NetFlow data. It listens for the network devices which

produce NetFlow records, converts these records to SiLK format6, and then packs

and stores this data on disk for later processing or transmission to other network

nodes.

flowcap simply listens for NetFlow data and prepares it for transmission. It is usually used

when a collector must be near the NetFlow emitter, but when the packing of data may

be done on separate machine.

rwsendersends files to a receiver. It watches an incoming directory for new files and sends

them to a receiver when new files are observed.

rwreceiver creates a connection withrwsenderand fetches incoming files, which are stored to an

output directory. Other tools, such asrwflowpackor rwflowappendusually observe

this directory and automatically process files which are placed there.

rwflowappendreceives small batches of NetFlow records and stores them intree organized by hour.

3.3.4 SiLK Deployment scenarios

The best layout for a SiLK monitoring infrastructure depends on various factors, including

analysed network size, number of collectors, hosts’ computing power, and others factors.

Some of possible usage scenarios are depicted in the SiLK installation guide [29].

6Properiatary storage on disk format

21

3.3. NETFLOW Chapter 3. Method

In the simplest single machine scenario, a dedicated machine listens for NetFlow data and

stores this data on its disk. Analysis of this data is also done on the same machine. In this

case it is sufficient to run therwflowpacktool. This approach has the advantage of being a

very simple configuration (as shown in figure3.4).

Silk Data

rwflowpack Analysis suite

Router

writes reads

generates netflow

Figure 3.4: Single machine scenario. Flow packing, storage and analysis on the samemachine

In the second scenario (shown in figure3.5), data is collected locally and stored remotely.

In this scenario collectors also pack data by runningrwflowpackand usingrwsenderto

transmit data to the remote analysis machine. At the analysis machine this data is stored

and processed after being automatically fetched the byrwreceivertool.

rwflowpack

packer working packer destination

router rwsender
exports netflow

re
ad
s

re
ad
su

ses

writes

rwflowappend

append incoming silk root

rwreceiver analysis suite
w
rites re

ad
s

pr
oc
ess

es writes

(TCP
)

Figure 3.5: Local collection and remote storage scenario.

In the most complex scenario (shown in figure3.6), data is collected remotely by collectors,

then transmitted and packed on dedicated remote machines. Therefore these packing

22

3.3. NETFLOW Chapter 3. Method

machines neither collect, nor store flow information for analysis. They simply forward

the collected data. The difference between the scenario depicted in figure3.5and this more

complex scenario, is that it may utilize several analysis machines and the NetFlow data is

packed and analysed at different locations. This more complex scenario facilitates scaling

up the amount of NetFlow data that can be analyzed and enablesthis analysis to present

the analysis closer in time to when the data was collected.

router flowcap rwsender

flowcap destination

netflow data

writes re
ad
s

rwflowpack

packer incoming packer working packer destination

rwreceiver rwsender
w
rites re

ad
s

pr
oc
ess

es u
ses

writes

rwflowappend

append incoming silk root

rwreceiver analysis suite
w
rites re

ad
s

pr
oc
ess

es writes

(TCP
)

(TCP
)

Figure 3.6: Remote collection and remote storage scenario

The most suitable scenario to be deployed in the case of Spotify is to use the intermediate

scenario depicted in figure3.5with local collection and remote storage. Given that separate

powerful machines may be allocated for monitoring, it wouldnot be efficient to run only

collectors on the monitoring machines (as was shown in figure3.6). Instead collectors

can also pack data before transferring it to other machines for analysis. Therefore a single

central analysis machine could organise and append packed data coming from different

collectors. Scalability is also greater when main computations and data processing is

moved towards collectors (i.e., exploiting distributed data processing to reduce the amount

23

3.3. NETFLOW Chapter 3. Method

of data that has to be distributed and analyzed). The simplest scenario (as was shown in

figure3.4) may be not suitable due to big load on one processing machineand the fact that

collector can be too distant from NetFlow sources.

3.3.5 Deployment of SiLK

To facilitate deployment of the SiLK suite, we had to configure SiLK to work in the

production environment. We had to adjust the package to workwith the automated

configuration management software used in Spotify. This configuration was done in such

way that it would be easy to add extra NetFlow collectors. Theconnections between

collectors and analysis machine were secured by using TLS (abuilt-in feature of SILK

rwsenderandrwreceivertools).

3.3.6 Configuring exporters

Juniper Networks knowledge base [30] contains an example ofsetting up NetFlow data

export in JunOS. In order to export NetFlow data, a sampling firewall rule should be

defined. A sample configuration of such firewall rules is shownin appendixA.

24

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

3.4 Creating analysis tools

Information about network flows must be processed in order tofind and analyse the backend

service dependencies. Although SiLK provides some commandline tools for analysis, its

focus is primarily on information retrieval, rather than complex processing.

This section introduces the SiLK based analysis framework which is essential for our

NetFlow data analysis. First, an overview of the available SiLK analysis tools is given.

After pointing out the limitations of these tools with respect to the thesis project’s goal, the

motivation and specifications for a custom analysis tool aregiven. This is followed by a

description of the design an implementation of such tool. This tool will be used as a base

for the analysis of the NetFlow data presented in the next chapter.

3.4.1 SiLK as an analysis suite

SiLK contains various command line analysis tools. Some of these tools are:

rwfilter for filtering packets by time, IP addresses, or port numbers

rwcut for displaying fields of filtered packets

rwuniq for grouping packets based on the value in a specific field

Although for some specific set of analysis tasks these tools may be more than sufficient,

there are some important considerations which must be considered as we plan our data

analysis.

Command line tools In network monitoring it is important to understand data, hence

being able to display this data visually is advantageous. However, SiLK only

provides command line based analysis. Connecting these tools to well known

plotting suites such asGnuPLOTrequires manual scripting.

25

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

Limited filter and grouping tools is limited by the SiLK tools, for example, it is practically

impossible to use a combination of filters (such as the logical operatorsOR and

AND). Similarly, only one level of aggregation is allowed with agrouping tool.

Limited granularity Because SiLK data is stored on the disk and organized in hourly

buckets, in some situations the tools are limited to aggregating data only by the hour.

When investigating special cases, such as aDDoSattack which could occur in a short

time period, there is a need for greater granularity.

Incomprehensive usageIn order to master SiLK analysis tools, it is important to understand

the strict format for each command and its options. For example, when providing

a time bin interval in the grouping tools, the parameter is passed as a number of

seconds. This may be inconvenient when time bin is in order ofhours. Some tasks

also require using extraUnix command line tools, such asawk, sort, and others -

making it even more confusing for the user.

3.4.2 Motivation for a specialized analysis tool

In order to understand the dependencies between services, it would be useful to present

visual plots of the data. However, given the tools availablewith SiLK, it was clear that some

additional tool was necessary for converting SiLK data about netflows into meaningful

plots. One of the reasons for this is that the definition of a service in the Spotify’s context

can not easily be directly expressed in terms of netflows. Furthermore, grouping by service

is not possible using the built-in SiLK analysis tools.

As with all analysis tools, even when there exist predefined visual plots, great value is

added if the presentation of data is suitably adapted to the user’s need. For example, one

could be interested in the correlation of subsets of services, or services deployed only at

one Spotifysite.

The necessity of advanced data processing and plotting led to a solution which grew

into a small framework for analysis. A benefit of the proposedframework is that this

framework can be used for solving problems other than simplyfinding and monitoring

26

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

service dependencies.

3.4.3 NetFlow analysis and plotting language

In order to ease the process of NetFlow information analysis, we devised a small language.

This language is as simple as possible, allowing grouping, filtering, and importing custom

functions fromPythonmodules.

There have previously been attempts to create query languages for the NetFlow data in

order to improve the analysis process. In one of these attempts, V. Marinov defined a query

language in order to describe and identify the occurrence ofnetwork transform patterns in

a collection of flow records [31]. The main purpose of this language is to detect various

attacks. Several other tools use SQL based syntax. The final group are tools which use

Berkeley Packet Filter syntax (such as one used in tcpdump tool). However, as far as we

know, SiLK has the most advanced tools for analysis and grouping, although as we have

seen it is still incomplete with respect to goal we wish to achieve.

The grammar of the language that we propose can be described as follows in BNF:

<program> ::= <statement> ; <statement> ..

<statement> ::= filter <expression>

| gfilter <expression>

| group <expression> as <name>

| emit [<expression>, ..] (expression, ..)

| import <literal>

| option <literal> <literal>

<expression> ::= <expression> + <expression>

| <expression> * <expression>

| <expression> / <expression>

| <expression> or <expression>

| <expression> and <expression>

27

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

| (<expression>)

| <name>(<expression>,..)

| <literal>

In the following description of the proposed language, information about a NetFlow record

is referred to simply as anode. This is the smallest data unit for data processing. A set of

nodes form acontext.

Statements are executed sequentially in their order of presence in the script. With each

statement the interpreter goes deeper in its recursion level until it reaches anemitstatement.

The grouping statementgroupuses a function to transform acontextinto potentially several

contexts. The grouping function accepts a NetFlownodeas an argument and returns a key.

The meaning of the key depends on the grouping function. For example, it can be the

configuration class of the host identified by the destinationIP address, or a timebin index

identified by a starting time.Nodeswhich evaluate to the same key are grouped together

and form distinct contexts. The following statement will beexecuted iteratively in each of

the newly created contexts.

The filter statementfilter uses a function to filter a set ofnodesfrom acontext. The filter

function accepts anodeas an argument and returns a positive integer value if thisnode

passes the test. The filter is iteratively applied to all nodes in a context. Nodes which are

accepted by filter form a new context, which is passed to the following statement.

The emit statementemit is used to output some data which can be plotted. As an optional

argument (specified in brackets) it accepts a list of expressions, which define a key. If a

key is not specified, then all keys from the previously executedgroupstatements are used

as a key. A required argument is a list ofexpressions, which define the emitted values.

Therefore anemitstatement emits a tuple of keys and values (for example, a keycould be

weekday, and value could be number of connections).

An expression evaluates to an integer value. Logical (Boolean) values are simulated as

integers, with positive values meaning the boolean valueTrue. Expressions may contain

28

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

regular arithmetic operators (such as addition and multiplication), logic operators (such

asand & or), parenthesis, and function calls. Either built-in, or custom functions can be

called. The latter functions are imported using theimport statement. Among the most

important built-in functions arecountandsum. Thecountfunction returns the number of

nodes in a context. Since a and as node is a NetFlow item, the value of count literally

means the number of connections7 for the current context. Similarly, thesumfunctions

iterates through all nodes in a context, fetching the attribute specified as the parameter for

thesumfunction, converts the value of this attribute to an integerand calculates a total sum.

For example,sum(’bytes’)would count total number of bytes for all NetFlow nodes in a

context.

Section3.4.5 gives examples to demonstrate language features, syntax constructs, and

potential uses. AppendixC gives a more detail specification of available language

constructs. AppendixD gives an overview of available built-in functions.

3.4.4 Extendibility of the language

There is also animport statement which allows the programmer to import customPython

groupers or filters to extend the framework. This flexibilityis essential for our thesis

project’s goal, as we can define grouping of NetFlow information by service for the

Spotify’s context.

The importing module of the interpreter recognizes groupers by classname. Custom

groupers should extend the classBaseGrouper. All functions in the custom module are

classified as filters. We chose to implement groupers as classes, as they iterate through

many nodes and may need initialization or precalculation tospeed up a grouping process.

Our interpreter is case insensitive and does it best to identify the function if it is not fully

qualified.

7Since usually exactly one NetFlow record is generated for each connection, these terms are used
interchangeably. Flow is exported as soon as the session is closed, which is identified by TCP-FIN (finish) or
TCP-RST (reset) packets.

29

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

3.4.5 Examples of scripts

This section gives several examples of how the proposed language can be used.

The script shown in figure3.7will help us to understand whether there was an increase in

the number of different source IP addresses sending IMCP pings during a suspectedDDoS

attack. The first line filters out the ICMP records. The second line divides the data into time

bins of one minute duration. Finally,diff in the third line calculates number of different

source IP addresses (”sip”) in each timebin.

f i l t e r p r o t o c o l (” icmp ”) ;
group t ime (b in =”1 minute ”) ;

emi t d i f f (’ s ip ’)

Figure 3.7: Looking for ICMP pings during a DDoS attack

Increasing number of different source IP addresses may indicate having a DDoS attack.

The program shown in figure3.8 can be used to further investigate the country of origin

causing an overload. The first line groups a defined time rangeinto timebins (with each

timebin’s duration defaulting to a one minute period). The second line divides the data in

each timebin into context source country, which is determined by the source IP address.

Lastly, sumin the third line calculates the sum of bytes for each context, defined by the

nested grouping.

group t ime (from =” y e s t e r d a y ” , t o =”now ”) ;
group c o u n t r y (” s i p ”) ;

emi t sum (” b y t e s ”)

Figure 3.8: Which country’s requests generated the most traffic in the last 24 hours

The last example shown in figure3.9 produces the service dependency graph as a stacked

bar chart. In this casedip indicates the destination IP address, whilesip indicates the source

IP address, hence the correlation of services with a given value of sip and given value of

dip is a dependency.

30

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

group s e r v i c e g r o u p e r (’ s ip ’) as s e r v i c e 1 ;
group s e r v i c e g r o u p e r (’ d ip ’) as s e r v i c e 2 :

emi t [s e r v i c e 1 , s e r v i c e 2] sum (” b y t e s ”)

Figure 3.9: Correlation of flows from various services

3.4.6 Implementation of analysis framework

The helper framework is written in thePythonprogramming language and is based on a

top-down parser. This parser uses thePythonlexer to convert a program’s source code into

lexems and a custom tokenizer to convert these lexems into tokens8.

A third party Pythonlibrary is used for the actual plotting. Among the several candidate

plotting libraries, we chose to useMatPlotLib[32], because it is stable, well supported, and

has a very good gallery of examples.

Our framework consists of the following components:

Lexer Decorates Python lexer to split script source into lexems

Tokenizer Uses top-down approach parsing to create a syntax tree of tokens

Runner Runs statements from syntax tree

Grouper Runs grouping logic

Importer Run-time python module loader

Builtin Contains some built-in functions such as geolocation groupers; functions

sum, diff, andcount

Context Data structure for NetFlow data storage. A context consistsof nodes

(NetFlow records)

Flusher Flushes program output to plotter

8It was also possible to use an open source based parsing libraries to build token tree, but the custom
parser is easy to extend and was suitable for this thesis project.

31

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

Plotter Makes the best effort to render given output data as a plot

Figure3.10depicts the overall design of the system.

Script

Python Lexer

Tokenizer

In terpre ter

Grouping Filtering Importing Flusher

Standard modules

Service Geographic

Json Flusher Topology Flusher Chart Flusher

Painter

DNS mapper Class mapper

Figure 3.10: The design of the analysis framework

Some attributes of a NetFlow node can be derived from other existing attributes, for

example a source country code can be derived from the source IP address. These derived

attributes are static and do not change during runtime. In addition, they might even be

not needed in calculations. Therefore these derived attributes support a lazy loading and

caching mechanism, thus they are only evaluated when they are actually used and this is

done at most once. Lazy loading is done transparently to other classes.

3.4.7 Implementing custom groupers

Geo grouping. Grouping by geographic location (according to the source or destination IP

address) can be useful for various purposes. For example, itcan be used to examine where

32

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

the customers of a specific Spotify access point are based.

Grouping by the geographic location was added to our framework by using thePython

GeoIP library [33]. This library provides functions to fetch a country code or the full

name of the country given an IP address. Our geographic grouper takes one argument as

an additional parameter to indicate what IP address should be used for this translation (i.e.,

the source or destination IP address) and utilizes functions from theGeoIPlibrary in order

to return a country code as a string.

Our geographic filters exploit the same library to filter NetFlow nodes matching certain

geographic criteria. Logic operatorsAND or OR should be used to support more complex

filtering scenarios, such as filtering nodes for a group of countries.

Grouping by service.Despite rapid changes in network infrastructure, there arecurrently

a limited number of ways to determine what is the destinationservice according to the

NetFlow node. The most important attributes of a NetFlow record (i.e., node) are the

destination IP address and destination port number.

As described earlier in section3.1, one of the approaches is to use DNS information to

recognize the service. The DNS is a binding glue in the backend system and is widely used

to locate other services. The problem is that the complete picture of IP address to service

mapping is necessary for analysis and grouping purposes. Asit would be too expensive

to query the DNS server for each service, instead we chose to parse DNS records instead.

We used thePython DNSlibrary[34] to transfer all DNS zone files. This Python library

supports DNS security, which is needed to pass a secret key together with a query (as a

complete zone transfer requires authorization). Following the transfers, we extracted all

SRV and A type records. As DNS records may be changing rapidlyin the DNS servers,

there exists a potential problem of DNS records being already invalid during the analysis

process. This is further discussed in the Future work section. However, in the case of real

time analysis there is only a small chance that the DNS records will be altered between the

time of lookup by the client and the time of the lookup by the analysis tool. This is futher

discussed in section5.2.

The SRV records map service name and protocol tuple into listof host names and port

33

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

numbers which define service providers. The host names can beresolved to IP addresses.

Using this information we created a reverse entry for each SRV record, this way generating

the required mapping that will be used later to identify the flows. It is guaranteed that each

host and port number pair will have an unique SRV record associated with it9. However,

this mapping must be updated regularly (for example, several times per day), because DNS

records are altered regularly.

Another approach is grouping NetFlow records by configuration management classes

associated with a destination host (further referred to simply asclasses). However, these

classes do not always correspond to services. In addition, some hosts may be tagged with

several classes. In the current implementation, when thereare several classes associated

with a host, then the first one in alphabetical order is picked. However, such a situation is

not usual. An alternative approach in such cases would be to use another type of ordering,

for example by priority associated with each class. Such a priority list must be managed

and that is a major disadvantage of a class based approach. Finally, some classes may be

irrelevant for the analysis of services. Despite these disadvantages and need the for manual

supervision, grouping by host class can be a potentially successful way to identify a service.

Caching. The information aboutDNS records and configuration management classes

corresponding to the hosts may change rapidly. Therefore itis desirable to apply caching

mechanisms. Our framework supports caching of data of an arbitrary time interval (which

defaults to one hour), so that processing consecutive queries takes less time. Cached data

is stored inJSON10 format files on the disk. Service mapping information is fetched from

these files, unless the file modification date has expired. In such case the cache is updated

to reflect the recent situation of DNS and host classes.

3.4.8 Connecting analysis tool to SiLK

Our analysis supports two methods of inputting NetFlow data: JSON and standard input.

9Generally such a mapping might not be unique, however its uniqueness is ensured by the Spotify’s
architecture.

10Object serialization format

34

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

The JSON input method reads NetFlow data from a JSON object which has a strictly

defined structure. This approach is useful if suites other than SiLK are used for NetFlow

collection and storage. In addition, it enables offline processing and data migration.

The default input method is reading from standard input. Therwfilter andrwcut tools of

theSiLK package are used to print network flows to standard output. The resulting standard

output is then redirected to the analysis framework by usingUnix pipes.

35

Chapter 4

Data Analysis

The goal of this section is to analyze backend service correlations using information about

netflows. These correlations are best depicted using the tool we developed for this purpose.

Section4.1 provides an analysis of one of Spotify’s services using our framework. It

describes what is the expected behavior of this service and compares it with the results

obtained from network data. Section4.2 describes how a full Spotify service topology

tree can be obtained by using these tools. Two possible approaches of classifying network

flow as services are compared in4.4. Section4.5 compares the efficiency of two possible

methods of collecting network data from the hosts.

36

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

4.1 Analysis of sample Spotify service

This chapter provides an analysis of one of Spotify’s backend services - browse (further

referenced to simply asbrowse) using the collected NetFlow information and the analysis

tools built for this purpose. TheBrowseservice looks up metadata data and acts as a

mediator which combines data into browsable results. It returns XML or JSON based upon

a request from other services.

According to services documentation, this service should forward requests to the following

services:

Search All search requests pass through browse. The requests are forwarded to search

which responds with lists of IDs.

Toplist Works similarly to thesearchservice, but returns a truncated list of matches.

The communication between these services and the servicebrowsehave an expected

behaviour. It is important to note that communications patterns not necessarily correlate to

actual Spotify users’ behaviour. Sample data was collectedfor a one hour interval from one

of the production machines which runs thebrowseservice. The analysis in the following

sections is based on this data. Scripts which perform an analysis and generate plots were

written in our new special purpose language (this language was described in section3.4).

4.1.1 DNS based service classification

One of the possible ways to classify outgoing connections isbased on DNS SRV records

as described earlier in section3.1. As each service in Spotify has SRV records pointing to

a specific location, defined as a hostname (translatable to anIP address) and port number

tuple, it is possible to match each flow to a service based uponits destination IP address and

destination port. Destinations that do not match any service are classified asOther(mostly

this is communication with access points). The script shownin figure4.1performs a DNS

based classification of destination IP addresses.

37

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

impo r t ’ s e r v i c e s ’ ;
group s e r v i c e g r o u p e r (’ d ip ’) ;

emi t (coun t () means ’ number o f c o n n e c t i o n s ’)

Figure 4.1: Script for classifying outgoing connections using DNS

This script produces a DNS based outgoing service classification chart. An example of such

chart is shown in figure4.2. It can be seen that the servicebrowseactually communicates to

servicessearchandtoplist, as was expected. In addition, this chart reveals communication

to other services:dist, search suggest, webservice, andinfo.

info
play

list

sea
rch-

sug
ges

t
top

list
sea

rch
top

list
id

0

10

20

30

40

50

60

70

80

Pe
rc
en

ta
ge

 o
f t
ot
al
 c
on

ne
ct
io
ns

Services accessed service browse grouped by DNS
 connections

Figure 4.2: DNS based classification of outgoing connections into services

4.1.2 Configuration class based service classification

As each server machine usually is dedicated to one specific service, all of them are tagged

with a specific configuration class name. This approach helpsto scale new services and

eases the migration process. Machines which run different Spotify backend services are

tagged with different class names. Therefore fetching the class names associated with a

host is also a good approach to classify services. The scriptshown in figure4.3performs a

38

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

service classification based on configuration management classes.

impor t ’ s e r v i c e s ’ ;
group c l a s s g r o u p e r () ;

emi t (coun t () means ’ number o f c o n n e c t i o n s ’)

Figure 4.3: Script for classifying outgoing connections using host classes

This script produces a configuration management class basedservice classification chart,

such as shown in figure4.4. In addition, connections were also grouped by geographic

site. Because IP addresses do not reflect the geographic location of machines in Spotify’s

case, site classification is instead based the destination IP address. The chart proves that

(aside from a small insignificant exception) thebrowseservice communicates other services

running on machines within the samesiteand therefore no inefficiencies were discovered.

me
ssa

ging
bac

kup
s

cert
s

loga
rchi

ve

con
figu

rati
on

sea
rchs

ugg
est

spo
tify

 siteplay
list

mo
nito

ring sea
rch ope

n
top

list

acc
ess

poin
t0

10

20

30

40

50

60

Pe
rc
en

ta
ge

 o
f t
ot
al
 c
on

ne
ct
io
ns

Services accessed from browse grouped by class
sto connections lon connections

Figure 4.4: Host-class based classification of outgoing connections into services.

Let us introduce a few modifications to the chart4.4. First of all, we indicate to sum the

number of bytes transferred instead of the number of connections. In addition, we do not

show access points, as we think that they should not be regarded as service. Finally, we

skip services which are insignificant (comparing average bytes per second to a threshold).

39

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

The desired effect can be obtained by using the script shown in figure4.5

group c l a s s g r o u p e r (’ d ip ’) as g1 ;
g f i l t e r no t va r (’ g1 ’ , ’ a c c e s s p o i n t ’) ;

g f i l t e r bps () > 100;
emi t [g1] (b y t e s () means ’ by tes ’)

Figure 4.5: Script for advanced network flow filtering

This script creates a chart, such as shown in figure4.6. Note how the volumes for each

service differ when number of bytes are measured in contrastto number of connections as

it was shown in figure4.4.

40

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

ba
cku

ps

log
arc
hiv
e

co
nfi
gu
rat
ion

top
list op

en

se
arc
hs
ug
ge
st

se
arc
h

0

10

20

30

40

50

60

Pe
rc
en

ta
ge

 o
f t
ot
al
 b
yt
es

Services accessed from browse grouped by class
 bytes

Figure 4.6: Number of bytes transferred to various services based on host class based classification.

Finally, figure 4.7 shows a classification by class additionally grouped by the network to

which a destination IP address belongs. It can be seen that with exception of access points

(which have public IP network addresses), all services communicate on interfaces within

internal service network.

41

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

mes
sa
gin

g

ba
cku

ps
ce

rts

log
arc

hiv
e

co
nfi

gu
rat

ion

se
arc

hs
ug

ge
st

sp
oti

fy
sit

e

pla
yli
st

mon
ito

rin
g

se
arc

h
op

en
top

list

ac
ce

ssp
oin

t0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f t
ot

al
 c

on
ne

ct
io

ns

Services accessed from browse grouped by class
78.31.X.Y/23 connections
192.165.X.Y/27 connections
194.71.X.Y/22 connections
192.165.X.Y/27 connections

192.165.X.Y/27 connections
192.165.X.Y/27 connections
192.165.X.Y/27 connections

Figure 4.7: Outgoing connections to various services (based on host-class classification) grouped
by the destination network

4.1.3 Overtime classification

It is also valuable to understand the dynamics of service dependency, i.e. how communication

patterns and traffic volumes change within time. The script shown in figure4.8 groups a

one hour inspection interval into one hundred smaller timebins and gives a more detail view

of services which are communicated in each of these smaller time intervals.

impor t ’ s e r v i c e s ’ ;
group c l a s s g r o u p e r () as g2 ;

group t ime (b i n s = ’100 ’) as g1 ;
emi t [g1 , g2] (coun t ())

Figure 4.8: Script showing service communication dynamics

The result of this script is shown in figure4.9. This shows that communication frombrowse

to most of services is smooth and not spiky with an exception of communication to an

accesspoint. In this concrete example, communication to access point had around 5 minute

duration repeating patterns.

42

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Analysis

15
:00
:00

15
:10
:00

15
:20
:00

15
:30
:00

15
:40
:00

15
:50
:00

Nu
m
be

r o
f c

on
ne

ct
io
ns

Services accessed from browse grouped by class
spotify site connections
messaging connections
search connections
accesspoint connections
certs connections
searchsuggest connections
configuration connections

toplist connections
logarchive connections
playlist connections
open connections
monitoring connections
backups connections

Figure 4.9: Dynamics of the number of connections to other services (host-class based
classification)

43

4.2. SERVICE DEPENDENCY GRAPH Chapter 4. Data Analysis

4.2 Service Dependency Graph

Once network flows are classified into services, it is possible to construct a graph, depicting

service dependencies. The detail semantic analysis1 is not in scope of this thesis. The width

(thickness) of the graph edge is determined using a logarithmic rule taking the number of

connections as a parameter. The graph structure is then expressed inDOT language [35]

andGraphviztool [36] is used to create a visualization. An example of such graphic is

shown in figure4.102.

The graph structure is created by a special module in our framework. The framework has a

special flusher3 calledGraphFlusherwhich instead of rendering a chart, updates edges of

the file storing the graphal structure. After creating a raw graph structure, postprocessing

takes place. During this postprocessing the most insignificant edges (i.e., those not

exceeding a configurable threshold) are deleted and the edgeline width is calculated.

US

SCSL

HI

US2

AP

ST

NT

KY TR

PM

CP

TL

AD TC

US

PCPL BR

PU

PL4 PL3

PLC

Figure 4.10: Service Dependency Graph. Bubbles represent distinct Spotify service and edges
dependencies between them.

1For example, node’s link to itself may indicate existing distributed service.
2The actual service names are hidden to avoid revealing company proprietary information.
3Section 3.4 describes flusher concept.

44

4.3. EXPECTED VS. REAL SERVICE BEHAVIOUR Chapter 4. Data Analysis

4.3 Expected vs. real service behaviour

The real-time data indicated a necessary update to an existing service topology graph which

was obtained by interviewing system owners. However, the details of this process cannot

be revealed due to the high sensitivity of this specific data.It is possible to automatically

construct a graph which shows the differences between the real and expected topology

graphs. However this is left for future work.

4.4 Comparing classification methods

We examined two way of classifying services. The first methodis based on DNS and the

second is based on configuration management classes. In thissection we propose several

performance evaluation criteria and use them to compare both methods. We defineresults’

accuracy, setup time, andexecution timeas the three most important performance factors.

We defineaccuracyas the ability to classify networks flows toservicesas defined in this

project as correctly as possible. The reference evaluationis based on expert knowledge.

The setuptime is defined as the time needed to perform precalculationswhen the cache

is expired. Theclassificationtime is defined as time needed to classify network traffic

information from a one hour period, given the cache (containing precalculated auxiliary

data) is already available.

DNS based classification produced betteraccuracy. Although class based classification

identified more network flows, it had an undesirable effect ofincluding supporting services

such as monitoring. Approximately 30% of classes does not directly relate to services.

Fortunately, these classes usually constitute a small fraction of total network traffic volume

and can be removed by postprocessing as was described in section 4.2.

The class based classification had a slightly smaller setup time, as fetching class information

from database was on average slower then executing several DNS zone transfers (32.2s

compared to 18.2s). Therefore initialization of the DNS based classification is faster.

45

4.4. COMPARING CLASSIFICATION METHODS Chapter 4. Data Analysis

Despite quite significant performance differences for precalculation step, the calculation

of the DNS and class information caches is strongly dependent on the implementation and

its performance could be optimized.

When auxiliary data was available, the actual classificationtime was similar for both

methods (DNS based grouper is about 5% slower in classifyingthe same amount of flows).

In principle, it is possible to mix DNS and class based approaches into a hybrid classifier.

However, combining information from two distinct sources in a meaningful way is not

trivial operation.

Table4.1summarizes the above observations from these comparisons.

Table 4.1: The comparison of classification methods

Feature DNS based Configuration Class based
Accuracy Higher Lower

Setup Faster Slower
Classification Similar Similar

46

4.5. COMPARING DATA COLLECTION METHODS Chapter 4. Data Analysis

4.5 Comparing data collection methods

This sections compares two possible data collection methods. At the time of writing this

thesis probably the most efficient method, NetFlow emissionby the network equipment

was still technical impossible4. Therefore as an transitional solution, we decided to collect

network information from the hosts.

This was achieved by gaining access to a set of production machines for each key (critical

for Spotify’s backend and customers) service. We ran two different tools which aggregated

traffic passing over the local interfaces, converted this data into NetFlow format packets,

and transmitted these packets to a remoteSiLK collector.

The first tool we have tested is thepcapbased toolfprobe(described in section3.2.5). This

tool actively listens to the interfaces in promiscuous mode. Unfortunately, as all packets

must pass through the central processing unit, this is potentially a costly process. Therefore

we created an alternative data collection tool which exported connections from the iptables

conntrackmodule (as described in section3.2.6).

In order to compare these two data collection methods, we ranboth tools seperately in

two consecutive hours and measured their CPU usage and impacton the overall server

performance. Table4.2 shows measurements of the performance impact on these set of

sample machines during the test5. The percentage of CPU resources used was obtained

by dividing the CPU usage of the collector process by the totalCPU usage6. The column

connectionsshows the relative traffic volume among measured services interms of the

number of connections. The extended version of the resources of these measurements is

available in appendixB.

4It seems that switches need a firmware upgrade before NetFlowcan be enabled.
5The actual service names are obfuscated.
6Total CPU percentage was computed by running the Unixps command and usingawk to sum

percentages. Note that total CPU may exceed 100% when machine has multiple cores.

47

4.5. COMPARING DATA COLLECTION METHODS Chapter 4. Data Analysis

Table 4.2: CPU for data collection compared to total CPU

Service CPU for fprobe CPU for fcollector Connections
AP 3.7% 0.8% 12.1%
SC 4.7% 0.0% 26.2%
US 4.5% 2.4% 12.0%
PM 5.7% 1.0% 5.0%
PM4 7.7% 0.1% 1.3%
KY 4.1% 1.4% 1.3%
TR 3.4% 0.2% 30.5%
NT 3.1% 2.6% 11.8%

It can be seen that running the data collection service on production servers using thefprobe

tool required from 3.1% to 7.7% of the total CPU time. In contrast, data collection using the

custom toolrequired from 0.0% to 2.6% of the CPU time. The CPU usage differsbecause

of various external factors, such as the difference betweenthe servers’ technical potential

(i.e., due to differences in the CPU and processor board architecture), intensity of traffic

volume for the service, and others. Despite this, the table suggests that the custom tool

(based on conntrack connections table) is a more efficient approach to collect data from the

hosts.

However, data collection from network equipment is identified as preferred data collection

method.

48

Chapter 5

Conclusions and Future work

The goal of this chapter is to summarize the results that wereachieved. First, some

conclusions will be drawn. Following this is discussion of the problems that were

encountered. Finally, the future work section suggests what other related problems can

be solved using the techniques described in this thesis.

5.1 Conclusions

Our work demonstrated that it is possible to identify service dependencies by simply

observing network behaviour and processing communicationpatterns.

In this thesis project, we exploited the fact that Spotify’sbackend services could be

identified in two basic ways. The main approach is usingDNS. This is a natural approach

due to fact that services useDNS themselves to locate other services and DNS is used to

facilitate scaling and mobility. We also applied another approach - determining the service

based upon the configuration management class of the host. However, this introduces some

bias, because some classes do not belong to a service definition as it is defined in this thesis.

Using the collected NetFlow data we created a service topology graph, which depicts the

communication relationships between different services.We compared this with a similar

49

5.1. CONCLUSIONS Chapter 5. Conclusions and Future work

graph obtained by interviewing the various system owners. This helped them to notice and

correct inaccuracies in the service topology graph from system owners. In addition, our

topology graph has weighted edges, thus it is easy to see which edges have the most traffic

volume.

We used the NetFlow infrastructure and network data collection of host technique to obtain

the data for analysis. However, a lot of effort was put to investigate the more natural and

efficient alternative - NetFlow data collection from network equipment. We learned the

lesson that it is important consider the risk of not being able to implement a solution due to

the external limits (such as organization’s policies).

Besides the main goal of this thesis (comparing expected and real time service behaviour),

we achieved several other results.

NetFlow infrastructure We proposed and set up an infrastructure for collecting the

NetFlow information. The suggested approach uses the SiLK

suite and a deployment scenario with several collectors anda

central storage and analysis machine.

Collection on hosts We compared two methods of collecting network data on hosts.

Our custom tool based onconntrackconnection table appeared

to be more efficient than usingfprobetool.

Analysis language We designed and implemented a prototype of the language aimed

at NetFlow data analysis. While it was a natural step to ease

our own analysis, this language interpreter can be used for other

important network traffic analysis tasks, such as the analysis of

denial of service(DDoS)attacks.

Utilities for Spotify Some tools necessary for analysis were found to be missing

during the thesis project, for example an automated tool to list

networks which belong to a specific Spotifysiteand a tool which

could map an IP address and port number tuple to the Spotify

service using DNS. These tools were implemented and can be

now used bySREteam to ease their daily operations.

50

5.2. DISCUSSIONS Chapter 5. Conclusions and Future work

5.2 Discussions

It is clear that the definition of the service depends on the organization. Therefore, we

chose to create a more flexible solution and created a separate analysis language, which

allows the user to integrate other method of identifying a service. Therefore the approach

could be applied in other organizations.

Due to the dynamic nature of DNS and the dynamics of the backend network infrastructure,

it is practically impossible to have consistent data over a long period of time. For example,

DNS entries may point to different IP addresses on consecutive days. Additional effort

could be made to enable long term service related queries. These tools would have to take

the information from DNS as a function of time and store this information into a database

for later analysis. Alternatively, instead of triggering DNS information cache update by

the analysis script, an update event may occur when a change in DNS server response to a

specific query is observed by sniffing. However, a new DNS record addition and temporary

removal is a more often operation than altering record to point to the different destination.

The removal of DNS record does not cause problems for analysis, because services simply

stop using the removed destination address. Therefore, although it is important to consider

the dynamics of DNS, it is not a problem in practise.

5.3 Future Work

It would be also interesting to combine information from theconfiguration files with the

information gathered by observing network flows. Such an approach could introduce an

alternative perspective to the results.

For the purpose of analysis, we collected data from one production machine per service.

Results would better reflect the actual situation if more machines would be sampled.

However, it is a trade-off between accuracy and efficiency.

Section4.2 described how a real-time service topology graph can be obtained. Provided

51

5.3. FUTURE WORK Chapter 5. Conclusions and Future work

that Spotify architects maintained a similar graph for expected dependencies, it would be

possible to generate a graph showing differences between these graphs. This solution would

require a strict service naming convention (i.e., rules), addition of a utility for defining such

dependencies, and a consistent contribution of this information from the system owners.

It would useful to have automatic alerts, when large changesoccur in communication

between services located in differentsites.

Information gathered from netflows combined with our derived language could be used for

other purposes, for example examining potential DDoS attacks.

52

Bibliography

[1] Spotify. Background information Press Spotify.http://www.spotify.com/

about-us/press/background-info/, 2012.

[2] P.V. Mockapetris. Domain names - implementation and specification. Internet

Request for Comments, RFC 1035 (Standard), November 1987. Updated by RFCs

1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,

2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966.

[3] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of

services (DNS SRV).Internet Request for Comments, RFC 2782 (Proposed

Standard), February 2000. Updated by RFC 6335.

[4] A. Keller and G. Kar. Automated Generation of DependencyModels for Service

Management. InIn Workshop of the OpenView University Association (OVUA’99),

1999.

[5] C. Ensel and A. Keller. Managing application service dependencies with XML and

the resource description framework. InIntegrated Network Management

Proceedings, 2001 IEEE/IFIP International Symposium on, pages 661 –674, 2001.

[6] A. Keller and G. Kar. Determining service dependencies in distributed systems. In

Communications, 2001. ICC 2001. IEEE International Conference on, volume 7,

pages 2084 –2088 vol.7, 2001.

[7] Web Service Dependency Discovery Tool for SOA Management Web Service

Dependency Discovery Tool for SOA Management, 2007.

53

http://www.spotify.com/about-us/press/background-info/
http://www.spotify.com/about-us/press/background-info/

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Sujoy Basu, Fabio Casati, and Florian Daniel. Toward Web Service Dependency

Discovery for SOA Management. InProceedings of the 2008 IEEE International

Conference on Services Computing (SCC 2008), 8-11 July 2008, Honolulu, Hawaii,

USA, pages 422–429. IEEE Computer Society, 2008.

[9] Linux Man. Auditd linux manual.http://linux.die.net/man/7/audit.rules,

2012.

[10] OpenSUSE documentation. The Linux auditd framework.http://doc.opensuse.

org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html,

2012.

[11] Stackoverflow. Finding short lived TCP connections owner process.http://

serverfault.com/questions/352259/finding-short-lived-tcp-

connections-owner-process, 2012.

[12] Bousquf. Example of extracting IP addresses from auditdlogs. http://wiki.

nokernel.net/linux-auditd, 2012.

[13] Devloop. Parsing different kind of socket calls from auditd logs.http://my.

opera.com/devloop/blog/show.dml/2036593, 2012.

[14] Iptables. Iptables tutorial.http://www.frozentux.net/iptables-tutorial/

iptables-tutorial.html#IPFILTERING, 2012.

[15] B. Hubert. Linux Advanced Routing and Traffic Control HOWTO.http://www.

lartc.org/lartc.pdf, 2012.

[16] IPTables tutorial. The conntrack entries.http://www.faqs.org/docs/iptables/

theconntrackentries.html, 2012.

[17] Iptables. Iptables log options.http://www.linuxtopia.org/Linux_Firewall_

iptables/x4238.html, 2012.

[18] B. Claise. Cisco Systems NetFlow Services Export Version 9. Internet Request for

Comments, RFC 3954 (Informational), October 2004.

[19] Netfilter/iptables project. Libnetfilterconntrack description.http://netfilter.

org/projects/libnetfilter_conntrack/index.html, 2012.

54

http://linux.die.net/man/7/audit.rules
http://doc.opensuse.org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html
http://doc.opensuse.org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://wiki.nokernel.net/linux-auditd
http://wiki.nokernel.net/linux-auditd
http://my.opera.com/devloop/blog/show.dml/2036593
http://my.opera.com/devloop/blog/show.dml/2036593
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#IPFILTERING
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#IPFILTERING
http://www.lartc.org/lartc.pdf
http://www.lartc.org/lartc.pdf
http://www.faqs.org/docs/iptables/theconntrackentries.html
http://www.faqs.org/docs/iptables/theconntrackentries.html
http://www.linuxtopia.org/Linux_Firewall_iptables/x4238.html
http://www.linuxtopia.org/Linux_Firewall_iptables/x4238.html
http://netfilter.org/projects/libnetfilter_conntrack/index.html
http://netfilter.org/projects/libnetfilter_conntrack/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Dpkt. Dpkt python packet creation/parsing library.http://code.google.com/p/

dpkt/, 2012.

[21] Cisco. NetFlow header and message format.http://www.cisco.com/en/US/

docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.

html, 2012.

[22] P. Phaal, S. Panchen, and N. McKee. InMon Corporation’s sFlow: A Method for

Monitoring Traffic in Switched and Routed Networks.Internet Request for

Comments, RFC 3176 (Informational), September 2001.

[23] Baek-Young Choi and Supratik Bhattacharyya. Observations on Cisco sampled

NetFlow. SIGMETRICS Perform. Eval. Rev., 33(3):18–23, December 2005.

[24] Flowd. Flowd collector website.http://www.mindrot.org/projects/flowd,

2012.

[25] Fprobe. Fprobe on SourceForge.http://sourceforge.net/projects/fprobe/

files/, 2012.

[26] Nfdump. Nfdump on SourceForge.http://nfdump.sourceforge.net, 2012.

[27] FlowTools. Flowd collector website.http://www.splintered.net/sw/flow-

tools/, 2012.

[28] CERT SA team. SiLK Documentation.http://tools.netsa.cert.org/silk/

index.html, 2012.

[29] CERT SA team. SiLK Installation Guide.http://tools.netsa.cert.org/silk/

install-handbook.pdf, 2012.

[30] Juniper Networks. Setting up J-Flow on a J-Series router. http://kb.juniper.

net/InfoCenter/index?page=content&id=KB12512&actp=RSS&

smlogin=true, 2012.

[31] Vladislav Marinov and J̈urgen Scḧonwälder. Design of an IP Flow Record Query

Language. InProceedings of the 2nd international conference on Autonomous

Infrastructure, Management and Security: Resilient Networks and Services, AIMS

’08, pages 205–210, Berlin, Heidelberg, 2008. Springer-Verlag.

55

http://code.google.com/p/dpkt/
http://code.google.com/p/dpkt/
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.mindrot.org/projects/flowd
http://sourceforge.net/projects/fprobe/files/
http://sourceforge.net/projects/fprobe/files/
http://nfdump.sourceforge.net
http://www.splintered.net/sw/flow-tools/
http://www.splintered.net/sw/flow-tools/
http://tools.netsa.cert.org/silk/index.html
http://tools.netsa.cert.org/silk/index.html
http://tools.netsa.cert.org/silk/install-handbook.pdf
http://tools.netsa.cert.org/silk/install-handbook.pdf
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Sourceforge. MatPlotLib: Python plotting documentation. http://matplotlib.

sourceforge.net, 2012.

[33] MaxMind. GeoIP Python API.http://www.maxmind.com/app/python, 2012.

[34] PythonDns. DnsPython home page.http://www.dnspython.org, 2012.

[35] E. Koutsofios and S. North. DOT language tutorial.http://www.phi.uu.nl/~js/

graphviz/dotguide.pdf, 2012.

[36] Graphviz. Graph visualisation software.http://http://www.graphviz.org/,

2012.

56

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://www.maxmind.com/app/python
http://www.dnspython.org
http://www.phi.uu.nl/~js/graphviz/dotguide.pdf
http://www.phi.uu.nl/~js/graphviz/dotguide.pdf
http://http://www.graphviz.org/

Appendix A

Configuring routers

This appendix describes major steps for enabling netflow data on Juniper family routers.

First of all, an accepting firewall rule should be added.

firewall {

family inet {

filter sample-in {

term default {

then {

sample;

accept;

}

}

}

}

}

Later, we add a filter.

57

Chapter A. Configuring routers

interfaces {

XX {

unit YY {

description "Netflow export filter";

family inet {

filter {

input sample-in;

}

address Z.Z.Z.Z/Z;

}

}

}

}

Finally, we enable packet sampling after the record has passed the filter.

forwarding-options {

sampling {

input {

family inet {

rate 100;

run-length 1;

max-packets-per-second 1000;

}

}

output {

cflowd x.x.x.x { // Ip address of collector

port xxxx; // Upd port of collector

version 5;

no-local-dump;

58

Chapter A. Configuring routers

autonomous-system-type peer;

}

}

}

}

max-packets-per-seconddefines limit for netflow packets (defaults to 1000), therate is

the denomitator of sampling rate andrun-lengthsets the number of samples following the

initial triggering event. In the output chain, we define the collectors’ IP address andport,

versionindicates which netflow version we are using, and theno-local-dumpflag indicates

that we should switch off debugging.

59

Appendix B

Measurements

This appendix gives full details of measurements of two datacollection methods.

Table B.1: Measurement of impact on server performance caused by data collection

fprobe custom tool
Service tool CPU total CPU fraction tool CPU total CPU fraction

A 11.0% 294.0% 3.7% 2.3% 284.0% 0.8%
B 8.5% 180.0% 4.7% 5.0% 176.7% 0.0%
C 3.4% 75.7% 4.5% 1.8% 74.4% 2.4%
D 18.7% 327.0% 5.7% 3.2% 330.0% 1.0%
E 14.2% 185.5% 7.7% 0.2% 175.8% 0.1%
F 1.1% 26.7% 4.1% 0.1% 26.0% 0.4%
G 8.1% 238.4% 3.4% 0.4% 228.2% 0.2%
H 2.1% 67.1% 3.1% 0.4% 65.4% 0.6%

60

Appendix C

Language constructs

The following table gives a summary of available language constructs.

Statement Description Example usage

import import custom Python module. The interpreter looks

for file with ’py’ extension in current directory.

import ’geo’;

filter filters nodes that match certaing criteria from the

context.

filter geo(’LT’) or geo(’LV’);

group groups each node in the context using the specified

grouper.

group servicegrouper(’dip’) as g1;

gfilter filters groups themselves. gfilter bps()>mb(5);

emit emits values calculated for the current context. emit (sum(“bytes”));

option set one of the optional parameters for plot:title

(string), xlabel (string), ylabel (string), obfuscate

(int), angle(int)

option title ’the chart’;

61

Appendix D

Language built-in functions

The following table documents all currently available functions in our NetFlow data

analysis framework.

Function Description Example usage Module

count() get number of nodes (connection) in context gfilter count()>100; standard

sum(attr) converts attributeattr to int for each node in context

and get sum

gfilter sum(’bytes’)<10; standard

packets() shorthand for callsum(’packets’) gfilter packets()<100; standard

bytes() shorthand for callsum(’bytes’) gfilter bytes()>0; standard

bps() get average number bytes per second for context, i.e.

shorthand forsum(’bytes’) / seconds

gfilter bps()>10; standard

kb(c) get bytes from kB, an equivalent ofc * 1024 gfilter bytes()>kb(10); standard

mb(c) gets bytes from mB, an equivalent ofc * 1024 * 1024 gfilter bytes()>mb(1); standard

diff(attr) gets number of different values of given attribute

among the context nodes

emit (diff(’sip’)); standard

log(c) gets logarithm (base e) on argumentc. It is useful

when plotting logarithmic plots.

emit (log(count())); standard

attribute(attr) groups flows by node attributeattr; group attribute(’sip’); standard

62

Chapter D. Language built-in functions

time(bin, start, ..) groups flows into timebins, wherebin is one time bin

size (default five minutes),start and end (default is

currentime) are timestamps for interval in interest,

duration (default one hour) is interval length, and

bins is number of bins (default is 20). Enough

parameters should passed to command in order to

correctly identify interval of interest.

group time(bins=100) standard

geo(by, mode) groups nodes by geographical location. Parameterby

defines the attribute that will be used for grouping:

’sip’ (default) or ’dip’. Parametermodedefines what

grouping mode should be used: either fetching full

country name (value ’name’, default) or two letter

code (’code’).

group geo(’dip’); geo

fscc() filters nodes by the source country code filter fscc(’LT’); geo

fdcc() filters nodes by the destination country code filter fdcc(’LT’); geo

classgrouper(attr) groups nodes by configuration management class

name. Parameterattr is attribute to use: ’dip’ (default)

or ’sip’

group classgrouper(’sip’); services

servicegrouper(attr) groups nodes based on DNS information. Parameter

attr is attribute to use: ’dip’ (default) or ’sip’

group servicegrouper(’dip’) as g1; services

63

www.kth.se

TRITA-ICT-EX-2012:63

	Abstract
	Abstract (swedish)
	Acknowledgements
	List of Tables
	List of Figures
	List of acronyms
	List of definitions
	Introduction
	Problem and Goals
	Limitations of Investigation
	Evaluation of Results
	Structure of the thesis

	Background
	About Spotify
	Spotify's Architecture
	Example of service dependencies
	Relevant work

	Method
	Recognizing services
	Monitoring network traffic
	Auditd tool
	Iptables
	Netstat tool
	Collecting NetFlow information from network equipment
	Exporting NetFlow using fprobe
	Exporting NetFlow using a custom tool

	NetFlow
	NetFlow protocol
	NetFlow based tools
	SiLK suite for NetFlow
	SiLK Deployment scenarios
	Deployment of SiLK
	Configuring exporters

	Creating analysis tools
	SiLK as an analysis suite
	Motivation for a specialized analysis tool
	NetFlow analysis and plotting language
	Extendibility of the language
	Examples of scripts
	Implementation of analysis framework
	Implementing custom groupers
	Connecting analysis tool to SiLK

	Data Analysis
	Analysis of sample Spotify service
	DNS based service classification
	Configuration class based service classification
	Overtime classification

	Service Dependency Graph
	Expected vs. real service behaviour
	Comparing classification methods
	Comparing data collection methods

	Conclusions and Future work
	Conclusions
	Discussions
	Future Work

	Bibliography
	Configuring routers
	Measurements
	Language constructs
	Language built-in functions

