
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

M A Q S O O D A H M A D

 Anonymous Authentication Using
Secure Multi-Party Computations

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Anonymous Authentication Using Secure

Multi-Party Computations

Maqsood Ahmad

Academic Advisors:

Prof. Stig F. Mjølsnes

Norwegian University of Science and Technology, Norway

&

Prof. Gerald Q. Maguire Jr.

Royal Institute of Technology, Sweden

Supervisor:

Tord I. Reistad

July 8, 2011

Abstract

Typical authentication systems provide a method to allow registered users
access to protected resources after the user successfully authenticates. A user
successfully authenticates by proving his or her valid identity if he or she is a
registered user. During a typical authentication process, the authentication
server can directly or indirectly learn the actual identity of the user who
authenticates. However, the user might not want any one to know the
actual identity of the user, while still able to authenticate. This problem
of user’s anonymous authentication is the focus of this thesis project. This
thesis project provides a solution for user’s anonymous authentication using
Secure Multi-party Computation (SMPC). In SMPC, the user information is
distributed among the authentication servers, using a secret sharing scheme,
in such a way that none of the authentication servers individually possesses
all the information of a user. However, these authentication servers can
validate the user using some SMPC arithmetic operations. This thesis project
provides a model for anonymous authentication and couples this anonymous
authentication system with the Open Authentication Protocol (OAuth) to
allow the user access to protected resources on the server. The model is
explained using UML collaborations and SDL state transition diagrams. An
analysis of the model is provided to ensure the security of the proposed
system. A skeleton of the proposed model is provided which needs to be
completed with appropriate code to realize the functionalities. This thesis
project also provides an implementation of a simplified prototype which
represents the core of the proposed model for anonymous authentication.

i

Abstrakt

Typiska autentisering system ger en metod för att till̊ata registrerade
användare tillg̊ang till skyddade resurser efter användaren framg̊angsrikt
autentiserar. En användare autentiserar framg̊angsrikt genom att bevisa sin
giltigt identitetskort, om han eller hon är registrerad användare. Under en
typisk autentiseringsprocess kan autentiseringsservern direkt eller direkt lära
sig den verkliga identiteten p̊a den användare som autentiserar. Däremot kan
användaren vill inte n̊agon veta den verkliga identiteten p̊a användaren, men
änd̊a kunna autentisera. Detta problem av användarens anonym autentiser-
ing är fokus för detta examensarbete. Detta examensarbete ger en lösning
för användare är anonym autentisering med hjälp av Secure flerpartssamtalet
Beräkning (SMPC). I produktresumén är användaren information som
fördelas mellan verifieringsservrar, med hjälp av ett hemligt system för
gemensamt p̊a ett s̊adant sätt att ingen av autentiseringsservern besitter all
den information en användare. Dock kan dessa autentiseringsservrar verifiera
användaren med n̊agra produktresumén aritmetiska operationer. Detta
examensarbete inneh̊aller en modell för anonym autentisering och par denna
anonyma verifieringssystem med Open Authentication Protocol (OAuth) att
ge användaren tillg̊ang till skyddade resurser p̊a servern. Modellen förklaras
med UML samarbeten och SDL tillst̊andsdiagram överg̊ang. En analys
av modellen ges för att garantera säkerheten i det föreslagna systemet.
Ett skelett av den föreslagna modellen ges som måste kompletteras med
lämplig kod för att realisera funktioner. Detta examensarbete ger ocks̊a
ett genomförande av en förenklad prototyp som representerar kärnan i den
föreslagna modellen för anonym autentisering.

ii

Acknowledgment

Completing a NordSecMob masters thesis in a consistent and efficient manner
becomes quite a challenging task when working under the supervision of
professors from different universities, but I appreciate and acknowledge my
professors and supervisor both at NTNU and KTH for their valuable feedback
and support during my master thesis.

I would like to thank Prof. Gerald Q. Maguire and Prof. Stig Frode. Mjølsnes
(my academic advisors at KTH and NTNU respectively) for their timely,
specific, and detailed feedback and comments on my report. Their feedback
proved very fruitful for me in completing my masters thesis.

I would also like to acknowledge the support and directions I received from
my supervisor Tord I. Reistad throughout my masters thesis. His calm nature
and easy approach to difficult problems was a great inspiration for me during
my thesis.

At last, I would like to specially thank my parents, family members, and my
friends who have always been there for me throughout my life.

iii

Contents

1 Introduction 1
1.1 Context of the Problem . 1
1.2 Motivation for the solution . 2
1.3 Multi-Party Computation as a potential solution 3
1.4 Goal of the project . 4
1.5 Contributions . 4
1.6 Outline of the report . 5

2 Background and related work 6
2.1 Secure Multi-Party Computation 6

2.1.1 Trusted third party and SMPC 6
2.1.2 Secret Management . 7
2.1.3 Arithmetic on secret shared values 11
2.1.4 SMPC Work flow . 12
2.1.5 Related Work review 12

2.2 Virtual Ideal Functionality Framework 13
2.2.1 Background . 14
2.2.2 Current Features and Security Assumptions 14
2.2.3 VIFF architecture . 15
2.2.4 MPC, VIFF, and Anonymous Authentication 17

2.3 OAuth Protocol . 18
2.3.1 OAuth Terminology 18
2.3.2 Work Flow . 19
2.3.3 Prospect of coupling OAuth with MPC based authen-

tication system . 22

3 Anonymous Authentication:
A Proposed Model 23
3.1 Overview of the Model . 23

3.1.1 Defining the Roles . 24
3.1.2 The big picture . 25

iv

3.2 Operation of the proposed system 27
3.2.1 The Registration process 28
3.2.2 The Authentication and Authorization process 33

3.3 Behavior of the individual entities 38
3.3.1 Registrar . 38
3.3.2 AnonAuth . 39
3.3.3 CompServer and UnionServer 41
3.3.4 GWServer . 42
3.3.5 User . 43

4 Security Analysis of the proposed model 46
4.1 Issues to be addressed . 46
4.2 Secure Multi-party Computation 47
4.3 Anonymity of the user . 48
4.4 Security of the system . 49
4.5 Areas that need further improvement 50

5 Development of the System 51
5.1 SMPC part of the design:

VIFF development . 51
5.2 Skeleton of the System . 52

5.2.1 Registrar . 52
5.2.2 AnonAuth . 53
5.2.3 CompServer and UnionServer 54
5.2.4 GWServer . 54
5.2.5 User . 55

6 Implementation of a simplified prototype 57
6.1 Generating the configuration files and starting the entities . . 58
6.2 Registration . 59
6.3 Authentication . 60

7 Conclusion and Future Work 62
7.1 Conclusion . 62
7.2 Future Work . 63

A Skeleton of the proposed model 64
A.1 SMPC part of the model . 64

A.1.1 User . 64
A.1.2 Authentication Servers 69

A.2 Registrar.java . 70

v

A.3 AnonAuth.java . 71
A.4 CompServer.java and UnionServer.java 72
A.5 GWServer.java . 73
A.6 User.java . 75

vi

List of Figures

2.1 Secret splitting and sharing 8
2.2 Relationship between VIFF class instances [23] 16

3.1 Basic Diagram of the Proposed Model 26
3.2 Collaboration Diagram representing the Registration process . 28
3.3 Choreography diagram for the Registration process 29
3.4 Sequence Diagram explaining the Collaboration Registers. . . 30
3.5 Collaboration Diagram: Anonymous Registration 31
3.6 Choreography diagram for Anonymous Registration 31
3.7 Sequence Diagram representing the Anonymous Registration . 32
3.8 Sequence Diagram for Account Management 33
3.9 Collaboration Diagram for Authentication and Authorization . 34
3.10 Choreography diagram representing the Authentication and

Authorization process . 35
3.11 Sequence Diagram for Temporary Credentials Acquisiton . . . 36
3.12 Sequence Diagram: Authorization process 36
3.13 Sequence Diagram: Anonymous Authentication 37
3.14 Sequence Diagram: Acquiring Token Credentials 38
3.15 SDL State Transition Diagram for the Registrar 39
3.16 SDL State Transition Diagram1: AnonAuth 40
3.17 SDL State Transition Diagram2: AnonAuth 40
3.18 SDL: CompServer and UnionServer 41
3.19 SDL State Transition Diagram: GWServer 42
3.20 SDL State Transition Diagram: User 44
3.21 SDL State Transition Diagram2: User 45

6.1 User waiting for completion of registration 59
6.2 User notified after completion of registration 59
6.3 A snapshot of compServer’s screen when a user registers . . . 59
6.4 User notification after successful authentication 60
6.5 A snapshot of compServer’s terminal after user’s successful

authentication . 60

vii

6.6 User’s unsuccessful authentication 60
6.7 Authentication Failed . 61

viii

Listings

5.1 VIFF method for creating shares 52
5.2 VIFF method for XORing of two secret shared values a and b 52
5.3 Important functions of the Registrar 53
5.4 Important function of the AnonAuth 53
5.5 Important functions of the CompServer and UnionServer . . . 54
5.6 Important functions of the GWServer 55
5.7 Important functions of the User 56
A.1 user.py . 64
A.2 player-1.ini . 65
A.3 compServer.py . 69
A.4 Registrar.java . 70
A.5 AnonAuth.java . 71
A.6 CompServer.java . 72
A.7 GWServer.java . 73
A.8 User.java . 75

ix

List of Acronyms

AES Advanced Encryption Standard
API Application Programming Interface
AnonAuth Anonymous Authenticator
AnonAuthenticate Anonymously Authenticate
AnonReg Anonymous Registration
AnonRegisters Anonymously Registers
AuthAck Authentication Acknowledgment
AuthNAck Authentication Negative Acknowledgment
GWServer Gateway Server
GWServerSM Gateway Server State Machine
HTTP Hypertext Transfer Protocol
ID Identifier
MPC Multi-party Computation
OAuth Open Authentication Protocol
OT Key One time Key
U Key User Key
U ID User ID
PRSS Pseudo Random Sharing Scheme
RFC Request for Comments
RSA Rivest, Shamir, and Adleman
RegAck Registration Acknowledgment
RegNAck Registration Negative Acknowledgment
RegRequest Registration Request
RegUser Registers User
RegisterUser Register User
RegistrarSM Registrar State Machine
ReqAuthenticate Request for Authentication
ReqAuthorize Request for Authorization
ReqCred Request for Credentials
SDL Specification and Description Language
SIMAP Secure Information Management and Processing
SMPC Secure Multi-Party Computation
SSL Secure Socket Layer
TempCred Temporary Credentials
TokenCred Token Credentials
UML Unified Modeling Language
URI Uniform Resource Identifier

x

UnionServer Union Server
CompServer Company Server
VIFF Virtual Ideal Functionality Framework

xi

Chapter 1

Introduction

A major portion of the population make use of a variety of services provided
by different service providers. Depending upon the nature of the service, the
goal of the service provider, and requirements of the service; one group of
users can be distinguished from another and user can be put into different
classes. Users belonging to a certain class are provided with a specified
level of access. The service provider maintains a database of users. The
users normally provide some information that is stored in the database
when they register with the service provider. The service provided by the
service provided can later be accessed by registered users after authenticating
themselves to a server. The server authenticates a user based on the
credentials provided by the user. These credentials can be in the form of
a Username and Password, some sort of user specific secret key, etc. The
authenticated user is then allowed to access the service hosted by the server.

1.1 Context of the Problem

The credentials used in a typical authentication process is related to the
user’s identity and either directly or indirectly identifies the user. So the
authentication process enables the authenticating server to know about the
identity of the user along with allowing it to decide whether the user is a
valid user or not. Most of these services require that the user’s ID should
not only be known to the server but to other users as well. An example of

1

such kind of services can be an email service provided by a company. Here
the company’s webmail server should know the identity of the user before
registering this user with the service and the other users in the company
should also know the user’s identity in order to communicate with him. The
same company might provide some other services which require the user’s
ID to be known to the server, but this identity might not be of any concern
to the other users, e.g an Internet service where different users are provided
with different bandwidth and quality of service.

In contrast to the above mentioned services, it might not be important to
know the identity of the user as long as the service provider can be assured
that this specific potential user is a valid user. A valid user should be able
to make use of the provided service without anybody knowing the user’s
actual identity. An example service can be a ’Whistle Blower’ service. Any
problem in the company can be reported by a valid company employee but the
employee is able to conceal his or her identity. Such an anonymous service
is important as the company is concerned with having problems reported,
rather than who reports the problem. The only concern is that the person
who reports the problem should be an employee of the company.

1.2 Motivation for the solution

Implementation of the above service and other like it needs to consider two
important issues. The first issue is the anonymity of the user and the second
one is the authenticity of the user. A valid user must be able to report a
problem inside the company anonymously. Anonymity may be essential for
the safety, security, and personal integrity of the user. The reported problem
might be related to one of the company’s managers and this manager might
harm the person reporting the problem if the reporter’s identity were to be
known. Anonymity ensures that the report can be made, but the source of the
report can not be known. Authenticity of the user is also very important and
only a valid company user should be able to use the ’Whistle Blower’ service;
otherwise an intruder from outside could report an imaginary problem or
fabricate false accusations and create panic in the company wasting scarce
company resources and potentially impairing productivity of the employees.

2

1.3 Multi-Party Computation as a potential

solution

The problem described in the previous section can be solved using a system
that can authenticate users anonymously, i.e., splitting authentication away
from identification. A manual solution for this is to print anonymous IDs and
a corresponding password on pieces of paper and let everybody in company
take one or more of them. The system can then utilize these IDs and
passwords to authenticate users without knowing their actual identities. This
solution might be applicable for a small company with very few employees,
but it becomes more and more unmanageable as the number of employees in
the company increases. Also, this solution does not provide a back door for
tracking the user in case of a serious offense made by the user.

Another solution is to have a trusted third party between the employees and
company. The third party is provided with access to the company’s user
database and it is responsible for authenticating the user to use a service
provided by the company. Both the parties, i.e. employees and the company,
must trust the third party. The employee trusts the third party that it
will not reveal his or her actual identity and the company trusts the third
party that it will not authenticate invalid users. This solution has its own
problems. The company has to acquire the services of a third party and
bear the expenses. Involvement of a third party necessarily implies that the
company must expose a portion of its user’s information to someone who
does not belong to the company. The third party can also be influenced
or compromised by some malicious person or persons who could harm the
company’s cause.

So a trusted third party apparently solves the problem, but it raises a
lot of other issues. However, a trusted third party can be replaced with
Secure Multi-Party Computation (SMPC) [1]. Potentially Secure Multi-
Party Computation can resolve the issues and concerns raised when using
a trusted third party. This thesis focuses on how Secure Multi-Party
Computation can be used to anonymously authenticate a user, thus enabling
a user to access one or more services with the help of the Open Authentication
Protocol (OAuth) [2].

3

1.4 Goal of the project

The goal of this project is to utilize Secure Multi-party Computation to
enable anonymous user authentication. To demonstrate that this is feasible
required designing a model, performing a security analysis of the model,
and implementing a prototype based on Secure Multi-party Computation
which can be used to build a system where users can authenticate themselves
anonymously. After successful authentication a user should be allowed
to access specific services using the Open Authentication Protocol. The
resulting model, design and prototype should be evaluated.

1.5 Contributions

This thesis project describes Secure Multi-party Computations (SMPC),
Virtual Ideal Functionality Framework (VIFF), and the Open Authentication
Protocol (OAuth) in order to understand how these concepts can be used
to design a model for a user’s anonymous authentication. The main
contributions of this thesis project are:

• Designing a system for anonymous authentication using SMPC,

• Elaborating the proposed system using UML collaboration models and
SDL state transition diagrams,

• Analyzing the proposed system to ensure security,

• Providing a skeleton of the proposed system which needs to be
completed with appropriate code to realize the functionalities in order
to implement the complete system, and

• Implementing a VIFF based simplified prototype for anonymous
authentication.

4

1.6 Outline of the report

The thesis first lays some background about the problem and the techniques
that will be later user for the actual solution of the problem. The major
building blocks of the proposed solution are explained in Chapter 2 along
with a brief review of related work. Chapter 3 provides a detailed explanation
of the proposed model for the Anonymous Authentication using UML
collaboration diagrams and SDL state transition diagrams. Chapter 4 focuses
on a security analysis of the proposed model and discusses how well the
model achieves the goals of the project. The necessary guidelines for the
development of the proposed authentication system are provided in Chapter
5. Implementation of a simplified prototype is presented in Chapter 6.
Chapter 7 concludes this document and suggests future work to follow up
this research.

5

Chapter 2

Background and related work

This chapter establishes a base for this thesis by explaining the major
pillars which support the the proposed model. The three major sections
in this chapter explain Secure Multi-Party Computation, the Virtual Ideal
Functionality Framework, and the Open Authentication Protocol. The
chapter also provides a brief review of the work already done in these areas.

2.1 Secure Multi-Party Computation

Multi-party Computation (MPC) involves multiple parties who want to
compute a specific agreed function based on certain inputs from each party
in such a way that none of the parties know the input of any other party.
The only information each party acquires from the computation is the public
output of the MPC. The first MPC problem introduced was the Millionaire
problem where two millionaires want to know who is richer but do not want
to reveal any information about their wealth to each other [3].

2.1.1 Trusted third party and SMPC

These types of problems can be solved by involving a trusted third party
by each of the parties providing their inputs to the trusted third party and

6

the third party reveals the public output of the commonly agreed function
based on the inputs provided by the participating parties. However, MPC
replaces the trusted third party thereby avoiding the problematic issues of a
third party solution. The individual inputs are shared with the other parties
in such a way that every party is able to compute the agreed function and
learn the desired output but still remains unaware of the actual inputs of
the other parties. This is made possible with the help of a concept called
verifiable secret sharing [4][5].

Each of the parties splits its secret, before sharing it, into as many parts as
the number of parties take part in the MPC. In this way every party gets
a share of that secret, but not the complete. All the parties share their
secrets in the same manner. A secret can only be reconstructed if a party
has more than a specific number of shares greater than a certain threshold.
However, every party is capable of performing computations such as addition,
multiplication, and comparison on the secret shared values without knowing
the actual secrets. These computations are used to compute the commonly
agreed function.

2.1.2 Secret Management

The main feature of MPC is to hide the individual’s secret values from one
other, while still providing them with a method to do computations based
on these secrets values. This is done using a secret management process.
This process manages the splitting and sharing of the secrets as well their
reconstruction.

2.1.2.1 Secret Sharing

Secrets are shared among the participants in such a manner that the
individual shares do not reveal any information about the secret. Consider
the case of three parties named User1, User2, and User3 taking part in a
MPC as shown in Figure 2.1. X, Y, and Z are the secrets of User1, User2,
and User3 respectively. Each of these parties divides its secret in three parts,
e.g. User1 divides its secrets X into three parts x1, x2, and x3. User1 keeps
x1 to itself and sends x2 and x3 to User2 and User3 respectively. After the
exchange, every party has a share of every other party’s secret which it can

7

use to do certain kinds of computations as part of the commonly agreed
function.

There are various schemes available for secret sharing. Splitting a secret
directly into multiple parts is one of the easiest schemes, but it is not a
secure because an adversary an adversary can reconstruct the secret if the
adversary learns some of the shares. Therefore the secrets must be divided in
a such a way that the secret can only be reconstructed when a certain number
of shares greater than a specific threshold are known. Each individual share
also must not reveal any information about the secret.

Figure 2.1: Secret splitting and sharing

Some restrictions on the secret sharing scheme can help in fulfilling the
aforementioned conditions as stated in [6]. One restriction is that the size of
each share must be equal to the original secret and no information can be
obtained until more than a certain number of shares are known. The sharing
scheme must also use random bits in the formation of shares.

The number of shares required to reconstruct the secret is termed the
threshold t in most of the literature. This implies that we can have less
than t adversaries in a MPC without affecting the final result. In an n-
party computation, t varies from n to n/2 to n/3 depending upon the
sharing scheme used and the nature of adversaries [7][8][9]. The following
two subsections describe two sharing schemes: Additive Sharing Scheme and

8

Threshold Sharing Scheme [10][11].

2.1.2.2 Additive Sharing Scheme

The additive sharing scheme is the simplest sharing scheme. It is an
absolutely secure sharing scheme if done with care. It requires a knowledge of
all the shares to reconstruct the secret and therefore this scheme is also called
the perfect secret sharing scheme. Additive sharing schemes are methods for
creating shares and reconstructing the secret from the shares [12].

If there is a secret s to be shared among n parties, n-1 random numbers r1

to rn−1 are selected. The random values will be used to compute the shares
corresponding to the n-1 parties. A prime number p greater than all the
random numbers and the secret is selected and then the secret s and the
random numbers r1 to rn−1 are considered to be element from within the set
S mod p in order to make the selection of the values equally likely. The share
for the nth party is computed using equation 2.1 [12].

rn = s−
n−1∑

i=1

ri mod p (2.1)

The secret can be reconstructed using equation 2.2 only when all the shares
are known [12].

s =
n∑

i=1

ri mod p (2.2)

A variant of the additive sharing scheme is the XOR sharing scheme which
works in exactly the same manner as the additive sharing scheme. The n-1
shares are random numbers and the nth share is computed such that the
XOR of all the shares is equal to the secret s, i.e., the nth share is the XOR
of all the n-1 shares and the secret s itself. The secret s can be reconstructed
by XORing all the n shares [13].

The reconstruction of the secret requires the knowledge of all the n shares,
so an adversary having the knowledge of less than n shares will not be able

9

to reconstruct the secret. However, there is a problem if even one share is
missing, as no one is able to reconstruct the secret. This problem can be
solved by the sharing scheme described in the next section.

2.1.2.3 Threshold Sharing Scheme

Threshold sharing schemes uses a polynomial to create shares from a secret
and to reconstruct the secret from these shares. Such a scheme is also be
called a polynomial sharing scheme or a (t,n)-threshold scheme where n is
number of parties in a n-party computation among whom the secret s is
shared in such a way that any number of parties less than the threshold t
cannot reconstruct the secret [12].

Shamir came up with a sharing scheme based on polynomial interpolation
known now as the Shamir sharing scheme. The Shamir sharing scheme is
used in a framework for MPC called Virtual Ideal Functionality Framework
(VIFF). VIFF will be discussed later in section 2.2 [15]. In the Shamir sharing
scheme, a secret is represented by a polynomial where all the numbers in the
polynomials are from a finite field, i.e., a field with a finite number of elements
and having a prime number or power of a prime number p as its degree. A
modulo p secret sharing scheme ensures that the secret can be any element
from the ring of integers modulo p, whereas the same cannot be stated for
all the real numbers because the secrets may not be uniformly distributed
across all the real numbers.

The polynomial is constructed based the variable t in the (t,n)-threshold
scheme. A (t,n)-threshold scheme can be represented by a polynomial
of degree t-1 [11]. The secret s is represented by a point (0,s) on the
y-axis where the polynomial intersects the y-axis. For example a (2,n)-
threshold scheme is represented by line where (0,s) is the point on y-axis
representing the secret and a (3,n)-threshold scheme is represented by a
quadratic equation where (0,s) is a point on the y-axis, representing the
secret, where the curve represented by the quadratic equation intersects the
y-axis. The n shares are any other n points that satisfy the polynomial.
Similarly higher threshold schemes require higher degree polynomials.

The secret can be reconstructed having the knowledge of any t shares
using Lagrange’s formula as shown by equation 2.3 where s is the secret,
f represents the polynomial and f(x) = sx is the share corresponding to xth

10

player [14].

s =
t∑

i=1

si

t∏

j=1 j!=i

−xj/(xi − xj) mod p (2.3)

2.1.3 Arithmetic on secret shared values

The commonly agreed functions used in MPCs are based on arithmetic
operations such as addition, multiplication, etc. VIFF, to be discussed later,
provides support for all these arithmetic operations.

2.1.3.1 Addition

Addition of secret shared values is very simple. Each party can find the sum
of the secrets by adding their individual shares of the secrets. Secrets are
shared using particular polynomials. The sum of two or more polynomials
generate a new polynomial which has the coefficients equal to the sum of
the corresponding coefficients in the polynomials to be added up. The sum
of the polynomials intersect the y-axis at the same point as the sum of the
secrets represented by them.

2.1.3.2 Multiplication

Multiplication of secret shared values is more complicated as compared to
addition of the secret shared values. It requires multiple layers of sharing and
some extra calculations to compute the product of two secret shared values
[6]. The details are not discussed here because that is not relevant to the
goal the thesis.

2.1.3.3 Comparison

Comparison of secret shared values is much more complicated than either
addition or multiplication of secret shared values. A comparison operation

11

consists of multiple multiplication operations which makes it a very slow and
expensive process although researcher are trying to make the comparison
operation faster and cheaper.

This thesis focuses on one variant of comparison, specifically the equality
of secret shared values. There are different methods to find out whether
the secret shared number are equal or not. A bitwise XOR operation or
computing the difference of two secret shared numbers help in determining
whether these number are equal or not.

2.1.4 SMPC Work flow

We can now organize the above concepts and procedures to form a work flow
of the SMPC. SMPC is performed in three steps: input sharing, computing
the desired function, and revealing the output.

Input Sharing The secret are divided into shares and shared with other
parties according the sharing scheme, the number of parties, and the
requirements of the specific application.

Computing the desired function SMPC is based on some function which
all the parties agree upon. This commonly agreed function can be
based upon arithmetic operations as discussed above. The necessary
computations required to compute the desired function are performed
and final value of the function is computed.

Revealing the Output The output of the previous stage is revealed to all
or some of the parties at this stage based on the requirements of the
protocol. There can also be additional actions that are taken based
on the previous stage’s output in order to meet the requirements of a
particular application.

2.1.5 Related Work review

The core of MPC is based on secret sharing. Dividing a secret into
multiple shares in order to be able to share it with other parties was
introduced by Shamir and Blakley in 1979 [11][16]. Both of these authors

12

worked independent of each other and they used different methods for their
sharing schemes. Shamir used polynomial interpolation while Blakley used
intersection of hyperplanes. Shamir’s method is more well known and is used
in VIFF.

MPC potentially provides solutions to many problems involving trusted
third parties. After the introduction of the Millionaire Problem by Yao
in 1982, some work has been done to make MPC more secure [3]. This
work mainly has focused on how many adversaries a MPC can afford to
have while remaining secure. In a (c,n)-threshold scheme where c represents
the number of adversaries or corrupted parties and n represents the total
parties, a function can be securely computed in the presence of t < n/3
active adversaries and t < n/2 passive adversaries [7][8]. Another protocol
by Goldreich et al. presented in 1987 also ensures security of MPC in the
presence of t < n/2 adversaries.

There has been a very limited number of MPC based applications in practice
despite the fact that this technique potentially provides solutions to many
problems. Although there has been work done in the developing MPC based
applications, more work needs to be done in order to get the most out of
MPC. There have been several frameworks developed in order to facilitate
developing MPC based applications. Virtual Ideal Functionality Framework
(VIFF) is an example of such a framework (it will be discussed in detail
in the next section). Other frameworks include Fairplay and Sharemind
[21]. Fairplay has two versions, i.e. Fairplay for two-party computations and
FairplayMP for Multi-party computations (more than two parties) [19][20].

A few MPC based applications were developed using VIFF after the
introduction of the framework. The first application is Nordic Sugar, an
application for the sugarbeet contracts developed in Denmark [17]. Other
applications include Distributed RSA [13], Distributed AES [18], Ranking the
Authors and Secure Voting [6].

2.2 Virtual Ideal Functionality Framework

Virtual Ideal Functionality Framework (VIFF) provides a Python library
allowing multiple players to execute a cryptographic protocol to do secure
MPC. It works as an application prgramming interface (API) for MPC

13

and hides the cryptographic and communication details. VIFF handles the
network communications, secret sharing, and operations on the shares,thus
a developer does not need to be concerned with these details. A developer
only needs to know how to use the VIFF library calls. These call will be
interpreted by the Python Virtual Machine.

2.2.1 Background

VIFF, originally named PySMPC, is Python library for performing SMPC
and was initially developed by Martin Geisler in 2007. PySMPC was renamed
VIFF because of difficulties in pronouncing its name. As its name suggests,
VIFF is a framework for developing virtual ideal functionalities. A research
project named SIMAP (Secure Information Management and Processing) is
considered to be the root of VIFF [22].

SIMAP’s main goal was to develop tools for SMPC which can be used by
normal programmers to solve real world problems without requiring that the
developers be security experts. The sugarbeet contract application was the
first MPC based application developed by the SIMAP project [17]. This
application is based on a secure double auction which was implemented by
the SCET project (Secure Computing Economy and Truct: Successor of the
SIMAP project).

2.2.2 Current Features and Security Assumptions

VIFF provides an easy way to implement SMPC based applications by
making use of the features provided by VIFF. Its current features as described
on the VIFF webpage are discussed in this subsection [15].

The arithmetic operations discussed earlier are performed with shares for Zp
or GF28 where Zp and GF are finite fields. All the numbers involved in the
SMPC are required to be from these fields in order to ensure perfect security.
Secret sharing is based on Shamir’s scheme and the Pseudo Random Sharing
Scheme (PRSS) [27]. VIFF consists of a field module for handling the finite
fields and separate modules for Shamir and PRSS schemes. VIFF provides
overloaded operators for secure addition, subtraction, multiplication, and
XORing on the shares as well as comparison of the secret shared inputs with

14

secret shared outputs. VIFF makes use of Twisted for asynchronous and
automatic parallel execution [28]. Secure Socket Layer (SSL) is used for
secure communication between two communicating parties.

VIFF documentations make it clear that the protocol is only secure if
certain security assumptions are fulfilled (just like any other cryptographic
system) [15]. These assumptions include that the assumption there must
be majority of honest parties. The maximum number of parties that can
be corrupted must be less than one third of the total number of parties
in case of active adversaries and less than half of the total number of
parties in the case of passive adversaries. VIFF protocols rely on assuming
a certain degree of computational hardness and it is assumed that the
adversary is computationally bounded, i.e., the adversary cannot overcome
this computational hardness with its bounded computational power. A
passive adversary observes the protocol by monitoring the traffic, but it does
not inject any traffic itself.

2.2.3 VIFF architecture

VIFF consists of a number of modules for handling different features and
performing various functions. The most important of these modules are
the Runtime, Finite Fields, and Shamir modules. These modules are
discussed in this section.

2.2.3.1 Runtime module

The Runtime module hides the virtual ideal functionality. Its main
responsibilities are secret sharing, communication, and operations on the
shares. It contains the Runtime and Share classes. The Runtime object
operates on the Share object in order to perform SMPC. Every party has
multiple Share objects and a single Runtime object. Each Runtime object
operates on the local Share object and is connected to the Runtime objects
of other parties using the ShareExchanger object. The link between two
ShareExchanger objects is a SSL connection. Figure 2.2, taken from the
D4.3 MPC Virtual Machine Specification (A project of CACE: Computer
Aided Cryptography Engineering), shows the relationship between instances
of these classes [23].

15

Figure 2.2: Relationship between VIFF class instances [23]

2.2.3.2 Finite Fields module

The Finite Fields module handles the finite fields elements used SMPC. It
contains different classes for modeling Galois Fields. One can instantiate an
object of the Galois field to get an element of the field. Operations over these
elements can be performed using the overloaded arithmetic operators. The
overloaded arithmetic operators are addition, subtraction, multiplication,
bitwise XORing, exponentiation, etc.

2.2.3.3 Shamir module

Shamir module contains an implementation of secret sharing and recombina-
tion according to Shamir’s sharing scheme. Along with other the modules,

16

VIFF also contains a module for Pseudo Random Sharing Scheme (PRSS)
which handles secret sharing and recombination according to the Pseudo
Random Sharing Scheme.

2.2.3.4 Twisted

VIFF utilizes an asynchronous design and makes use of the Twisted
framework. Twisted is not an integral part of VIFF, but rather the library
is used to support the asynchronous design. Twisted uses deffered objects
to ensure asynchronous and parallel execution. A Callback function is called
when data is available. Twisted is an event driven networking engine. Part
of a function might be executed while another part might be waiting for
data to be available. The total latency of a function is the sum of the
local computation time, the communication time, and overhead. Local
computations take much less time than distributed computations. Therefore,
multiplication is more expensive than addition because addition can be
performed locally. Moreover, comparison of shared secret values is very
expensive because it consists of several multiplication operations.

2.2.4 MPC, VIFF, and Anonymous Authentication

The VIFF framework provides support for developing MPC based applica-
tions to solve real world problems. MPC potentially provides a solution
for various problems where a trusted third party otherwise needs to be
involved. MPC replaces the third party by acting as a virtual third party,
hence it avoids the issues associated with a real world trusted third party.
As described earlier anonymous authentication could be solved by using a
trusted third party, but since MPC can be used to replace the third party,
MPC can be used to solve the problem of anonymous authentication without
a trusted third party. The goal of this thesis, as mentioned in Chapter 1, is
to provide anonymous authentication. In the next chapter we will explain
in greater details how we will use MPC and VIFF to provide anonymous
authentication.

17

2.3 OAuth Protocol

The Open Authentication Protocol (OAuth) offers a model for authentication
and authorization. OAuth introduces a third role to the traditional client-
server service model. In the traditional client-server service model, a server
hosts some resources owned by the client and provides other services. In
the OAuth model, the resource owner is someone other than the client. The
client (which is not the resource owner) requests access to the resources
hosted by the server, but owned by a resource owner. The resource owner
may authorize the server to allow the client to access the protected resource
owned by the resource owner. A client accesses the resources of the resource
owner on the server without knowing the credentials of the resource owner
[2].

2.3.1 OAuth Terminology

It is important to understand the terminology used in the OAuth protocol.
The terminology is given below as described in OAuth 1.0 (See RFC 5849[2]).

client An HTTP client capable of making OAuth-authenticated requests.
The client requests access to some protected resources owned by the
resource owner on a server.

server An HTTP server capable of accepting OAuth-authenticated requests.
The server hosts the resources of the resource owner. When a client
requests access to those resources, the server redirects the client to the
resource owner for authorization.

protected resource The protected resources are the resources owned and
controlled by the resource owner hosted on a particular server. A
client can access these access-restricted resources after authentication
and authorization by the resource owner using an OAuth-authenticated
request.

resource owner The owner of the resources hosted on the server. The
owner can access and control the protected resources by using cre-
dentials to authenticate itself with the server. It can also authorize the
server to allow an authenticated client to access the protected resources.

18

credentials Credentials are pieces of information which allow a client to
authenticate and authorize itself in order to access the resource owner’s
protected resources on the server. Credentials are most often a pair
consisting of a unique identifier and a matching shared secret. There
are three types of credentials defined in the OAuth specification. Client
credentials are used to identify and authenticate the client, whereas
temporary and token credentials are used to identify and authenticate
the authorization request and the access grant respectively.

token When a client requests access to a protected resource on the server
and the server receives authorization from the resource owner, the
server issues a unique identifier, called a token, to the client which
can be used by this client to associate authenticated requests with
the resource owner whose authorization has been obtained by the
client. Clients use a matching shared-secret in the token to establish its
ownership of the token and henc authorization by the resource owner.

2.3.2 Work Flow

OAuth provides a method for clients to access server resources on behalf of
a resource owner. It can help an end user by allowing a third party access
to the user’s resources on the server without sharing the user’s credentials
with the third party. The protocol is still in the process of maturing and
there are several different protocol flows as explained in the OAuth RFC
[2]and draft revision [24]. For the sack of illustration and simplicity, a basic
protocol flow is briefly explained in this subsection. This protocol flow is
called redirection based authorization and is coupled with the proposed model
for Anonymous Authentication which is explained in the next chapter. There
are other protocol flows which can also be coupled with the Anonymous
Authentication system based on the requirements of the application.

The redirection based authorization method consists of three steps as
specified the OAuth RFC [2]: obtaining temporary credentials, authorization,
and receiving token credentials. Each of these is described below.

19

2.3.2.1 Obtaining temporary credentials

A client requests temporary credentials from the server in order to be able
to get authorization for itself from the resource owner. Once the temporary
credentials are obtained by the client, they are used as an identification
for resource access request during the entire process for authorization. The
server advertises a URI of an endpoint which the client can use to obtain
their temporary credentials. An example URI for a temporary credentials
request is something like:

https://www.example.net/initiate

A client normally has to be registered with the server with a client identifier
and shared secret before it is able to request temporary credentials. The
client requests the temporary credentials using the above URI. The will
subsequently send these credentials as part of an access request. The server
validates the request and sends a set of temporary credentials to the client
in response to the request for temporary credentials.

2.3.2.2 Authorization

After obtaining temporary credentials, the client is redirected to the resource
owner by the server to acquire authorization from the resource owner. The
resource owner authorizes the server to allow the client access to the protected
resources. The resource owner checks the authenticity of the client at this
stage. The server advertises a URI for the resource owner’s authorization
endpoint that is used to redirect the client to the resource owner in order to
be authorized by the resource owner. An example URI for an authorization
request is something like:

https://www.example.net/authorize

The client redirects the resource owner to the authorization endpoint using
the above URI. The server asks the resource owner for his credentials and
asks him for approval of the client’s request, but only if the credentials
provided by the resource owner are correct. If the resource owner approves

20

the access request, then the client is redirected to the callback URI provided
by the client in order to inform client that the resource owner has successfully
completed its authorization. This confirmation also includes a verifier which
is later used in the token request.

2.3.2.3 Token credentials

Having temporary credentials and being authorized by the resource owner,
the client requests token credentials which are actually used to access the
resource owner’s resources on the server. The temporary credentials are
revoked once the client is given the token credentials. The token credentials
have limited scope and can be revoked by the resource owner at any time.
The server advertises the endpoint which will be used by the client to request
token credentials. An example token request URI could be:

https://www.example.net/token

The client requests token credentials using the above URI by providing its
temporary credentials. The client also provides its own identifier and the
verifier, obtained from the authorization step, along with the temporary
credentials when requesting the token credentials. The server verifies all the
credentials that are provided and replies with a set of token credentials.

The received token can be used to access the protected resources of the
resource owner on the server. The client can make authenticated requests
to ask for access to the resources. The authenticated request includes the
client’s identifier along with the token credentials and other parameters. The
server validates the request and responds with the requested resource. The
client is able to use the token to access the protected resource for a specified
duration of time during which the token is valid. The resource owner can
also revoke the token prematurely. In that case, the client is no longer able
to use the token.

21

2.3.3 Prospect of coupling OAuth with MPC based

authentication system

OAuth can be coupled with an MPC based authentication system in many
ways according to the one of the protocol flows explained in the OAuth
RFC and draft revision. The flow described fits into the authentication and
authorization system when the user utilizes an OAuth client. A resource
owner can be one of the authentication servers having an account on the
server, providing services for each valid user. In turn the OAuth client
(user) has an anonymous account on the server. The user can access this
account after authenticating itself to the authentication servers and obtaining
authorization from the resource owner (one of the authentication servers).

According to the OAuth protocol when the client tries to access the services
provided by the server, the client cannot directly access them on its own
because the service are protected. Thus the client needs obtains the
temporary credentials; therefore the server redirects the client to the resource
owner (one of the authentication servers) in order for the resource owner to
authorize the server to allow the client to access the service. The resource
owner then asks for the client’s anonymous authentication. Once the client
is anonymously authenticated, the resource owner authorizes the server to
grant access to the client. The client then requests the token credentials.
These token credentials are subsequently used by the client to access the
services provided by the server.

22

Chapter 3

Anonymous Authentication:
A Proposed Model

This chapter explains the composition of the proposed model, the relationship
among the different entities that are involved in the model, the registration
process, the authentication and authorization process, and the behavior of
each of the individual entities in the model. The work flow of the proposed
system and the behavior of individual entities are described using standard
UML collaboration diagrams and SDL state transition diagrams respectively
[25][26]. The sections of this chapter give a brief overview of the model before
delving into the details of model.

3.1 Overview of the Model

The proposed system for anonymous authentication is composed of various
interacting entities. Each of these entities plays its part at some stage in the
registration, authentication, and authorization process. We will take a brief
look at these individual entities before presenting the big picture.

23

3.1.1 Defining the Roles

Every entity or node in the system is assigned a name that indicates the role
it plays. The assigned name is either the full name of the entity or a derived
version of its full name.

User The user can be an employee of the company where the anonymous
authentication system is deployed. Generally, the role of the user
is manifest by a human user utilizing a client. This client registers
itself with the system and makes use of services after authenticating
itself to the system. The user also plays the role of an Oauth
client while accessing services. The user registers with the Registrar
after providing its information enabling it to register anonymously
with the Authentication Servers (CompServer, UnionServer, and
GWServer) through the AnonAuth (described below). The user
accesses the services provided by the Server using the Oauth protocol
and anonymously authenticates itself to the Authentication Servers.

Registrar The Registrar is one of the servers involved in the anonymous
authentication system. The user provides its information to the
Registrar in order to be registered. The Registrar validates and
registers the user which enables the anonymous registration of the user
to the other servers.

AnonAuth The Anonymous Authenticator (AnonAuth) acts a mediator
between the user and the Authentication Servers. After successfully
registering with the Registrar, the user requests the AnonAuth to
perform anonymous registration. The request contains a secret
shared and encrypted information destined for the Authentication
Servers. The AnonAuth acknowledges the User ’s registration after the
Authentication Servers complete anonymous registration process.

CompServer and UnionServer The CompServer and the UnionServer
are two of the Authentication Servers belonging to the company (or
organization) and the employee union respectively. They take part
in the anonymous registration and authentication process. They
register the user after receiving the secret shared information via the
AnonAuth and anonymously authenticate the user using the SMPC
Authentication process. These are two of the servers, along with
GWServer, which take part in the SMPC.

24

GWServer The role of the Gateway Server (GWServer) is the same as
the CompServer and UnionServer during the process of registration
and authentication. However, GWServer has some additional respon-
sibilities, specifically it manages the user ’s accounts on the server and
authorizes the server to grant access to the user after it successfully
authenticates itself. The GWServer acts as the Resource Owner of the
OAuth protocol.

Server The server provides some services or hosts some protected resources
which can be accessed by the user after anonymously authenticating
itself to the Authentication Servers. The server ’s role is as described
in the OAuth protocol, where the GWServer is the resource owner and
the user is the OAuth client.

3.1.2 The big picture

The proposed system helps the user to register itself, anonymously au-
thenticate, and access the resource hosted by the server. We divide the
complete process into two subprocesses: Registration and Authentication &
Authorization. Figure 3.1 shows the basic diagram for the proposed model
where the shaded part represents the Authentication Servers which take part
in the SMPC to anonymously authenticate the user. A user is assumed to
be registered with the system before he can access the services provided by
the server.

25

Figure 3.1: Basic Diagram of the Proposed Model

3.1.2.1 Registration process

The Registration process is initiated by the user. A new User is added to
the database of the company and is provided with a one time key, OT Key,
which can be provided to the Registrar for initial registration. The user
provides the OT Key along with its other information to the registrar. The
registrar validates the OT Key and registers the user. A user’s key, U Key,
and a one time link to AnonAuth is generated and provided to the user.

The U Key is subsequently used by the user when performing an anonymous
registration and authentication. The U Key is shared using Shamir’s secret
sharing scheme. The shares are encrypted using the respective keys of
the Authentication Servers when provided to AnonAuth for registration.
The AnonAuth generates an INDEX for the Authentication Server which
helps identify the user ’s secret shared information during the authentication
process. The Authentication Servers register the User using the provided
INDEX. This INDEX is also provided to the user.

26

3.1.2.2 Authentication and Authorization

The authentication process is initiated after the user tries to access the
resources hosted by the server. The user first obtains temporary credentials
(TempCred) from the server. These temporary credentials are used as
an identifier through-out the authorization process. The server needs
authorization from the resource owner (GWServer in this case) to grant
access to the user. The GWServer initiates authentication of user through
AnonAuth before authorizing the server to grant access to the user. The
user provides its U Key in a secret shared and encrypted form to the
authentication servers via AnonAuth.

At this point the SMPC part of the anonymous authentication occurs. The
authentication servers validate the user by using an XOR operation on the
secret shared information provided for authentication and the secret shared
information provided during the registration process. The XOR operation
on secret shared values is implemented by VIFF as discussed in the previous
chapter. After the user is authenticated, the GWServer authorizes the server
to grant access to the user. The GWServer also sends a Verifier to the
user which helps the user in obtaining the token credentials (TokenCred).
Once the TokenCred are obtained by the user, the user can access the
protected resources on the server using HTTP authenticated requests until
the TokenCred expires or is revoked by the GWServer [2].

3.2 Operation of the proposed system

The proposed model is explained in this section with the help of UML
collaboration and choreography diagrams. The collaboration diagrams show
the relationship between the different components in the model; whereas the
choreography diagrams represent the occurrence of these collaborations in
a specific flow. These collaborations are further elaborated using sequence
diagrams showing the message flows and events that are triggered by these
messages.

27

3.2.1 The Registration process

A user registers with the registrar and anonymously registers with the
authentication server through AnonAuth. The GWServer manages the user ’s
account on the server. A user ’s registration with the registrar, anonymous
registration with the authentication servers, and the GWServer account man-
agement is represented by the collaborations Registers, AnonRegisters,
and ManageAcc respectively in the collaboration diagram shown in Figure
3.2.

Figure 3.2: Collaboration Diagram representing the Registration process

The registration process starts with the user providing its information to
the registrar in order to register. If the user turns out to be a valid user
and the information provided is correct, then the anonymous registration
process follows up. Once the user is anonymously registered, then the
GWServer performs the account management tasks providing the user with
some credentials which the user will require while accessing the resources
on the server. Figure 3.3 shows the choreography or activity diagram for
the registration process. The choreography diagram shows the order of
the different activities and how the results from one activity might lead to
different activities.

28

Figure 3.3: Choreography diagram for the Registration process

When a new employee joins the company, his information is added to the
company’s database. The new employee is also provided with a one time key,
OT Key, which is used to prove that he or she is a valid user when registering
with the registrar. Figure 3.4 shows the sequence diagram explaining the
collaboration Registers.

29

Figure 3.4: Sequence Diagram explaining the Collaboration Registers.

The user requests registration using the RegRequest(Userinfo, OT Key)
message. Here the Userinfo might contain the name of the user, position
within the company, etc. The OT Key is the key provided to the user
when the user was added to the database for the first time and can only be
used once. The registrar validates the information provided by the user and
generates a pair of user key (U Key) and a one time verifiable Link to the
AnonAuth. If successful a RegAck(U Key, Link) message is then sent to
the user, if unsuccessful a RegNAck message is sent to the user.

A successful registration with registrar is followed by the anonymous
registration process. The anonymous registration AnonRegisters is shown
in Figure 3.5 using a collaboration diagram. The diagram shows that
AnonRegisters can be divided into two subcollaborations: AnonReg and
RegisterUser where the user only interacts with the AnonAuth. The
AnonAuth handles the registration process with the authentication servers.
Figure 3.6 shows the choreography diagram for anonymous registration.
The diagram shows how the AnonReg activity leads to the RegisterUser
activity.

30

Figure 3.5: Collaboration Diagram: Anonymous Registration

Figure 3.6: Choreography diagram for Anonymous Registration

A user obtains a U Key and a one time Link to the AnonAuth after
successful completion of registration with the registrar. This U Key is
the secret that the user shares with the authentication servers using a
secret sharing scheme. The user creates shares of this secret U Key, but
encrypts it with the corresponding authentication server key when sending

31

it to the AnonAuth in the AnonRegReq(EncShares) message as shown
the sequence diagram in Figure 3.6. The AnonAuth generates an INDEX
which the authentication servers use to register the user. This INDEX later
helps in the authentication process. The AnonAuth forwards the encrypted
shares and INDEX to the corresponding servers in a RegUser(Index,
EncShare) message. The authentication servers register the user using
the given INDEX and send a UserRegistered(INDEX) to the AnonAuth
which it forwards to the user.

Figure 3.7: Sequence Diagram representing the Anonymous Registration

The user is anonymously registered with the authentication servers and can
authenticate itself anonymously at a later stage. However, based on the
requirements of the specific application, the user might need to have an
anonymous account on the server. This account is needed to enable the user
to see and manage his or her activities. We are using the OAuth protocol
to enable the user access to the services provided by the server (where the
user acts as an OAuth client). Here we need a resource owner who initiates
the user ’s account and authorizes the server to grant access to the user.
The resource owner though must not be allowed to access the service directly
from the same account. Since, the authentication process is performed by the
authentication servers, the resource owner can be any of the authentication
servers who have only partial knowledge of the user ’s actual identity and
therefore cannot conclude on its own whether the user should be given access
or to determine the identity of the user.

We put the responsibilities of being the resource owner on the GWServer.

32

The GWServer has a pool of user accounts on the server and simply maps
one of these accounts to a new user when the user registers. The GWServer
also manages how an anonymous user accesses the same account every time
this user authenticates. The sequence diagram for account management is
shown in Figure 3.8.

Figure 3.8: Sequence Diagram for Account Management

After a user is anonymously registered with the authentication servers, it
requests the AnonAuth to provide credentials using a ReqCred message.
This message is forwarded to the GWServer by AnonAuth. The GWServer
maps User to one of the accounts from its pool of accounts and sends the
necessary credentials to the user using the Cred(U ID, sh secret) message.
Here U ID and sh secret are the credentials which the user needs to provide
when requesting temporary credentials before accessing the resources on the
server.

3.2.2 The Authentication and Authorization process

A user can make use of services and resources, hosted by the server, by
accessing the account maintained for it by the GWServer. In order to access
resources on the server, the user needs some credentials which the server
provides after being authorized by the GWServer. The GWServer authorizes
the server to grant access to the user only when the user is anonymously
authenticated by the authentication servers.

33

The collaboration diagram for authentication and authorization process
is shown in Figure 3.9. This complete process is composed of the sub-
collaborations AcquireTempCred, AnonAuthenticate, Authorize, and
AcquireTokenCred. The user obtains temporary credentials using the
AcquireTempCred collaboration and authenticates itself to the authenti-
cation server using the AnonAuthenticate collaboration. After authenti-
cating the user, the GWServer authorizes the server using the Authorize
collaboration which allows the user to obtain the token credentials using the
AcquireTokenCred collaboration.

Figure 3.9: Collaboration Diagram for Authentication and Authorization

The sequence of activities is shown by the choreography diagram representing
the authentication and authorization process in Figure 3.10. According to
the OAuth protocol, the user must obtain token credentials before he or
she is allowed to access the resources on the server. In order to be able
to provide token credentials to the user, the server must seek authorization
from the GWServer. The GWServer authorizes the server after the user is
anonymously authenticated. The user obtains temporary credentials from
the server, in the first step of this authentication and authorization process,
in order to be identified throughout the process. Temporary credentials are
revoked as soon as the user obtains token credentials.

34

Figure 3.10: Choreography diagram representing the Authentication and
Authorization process

The user obtains the temporary credentials using the AcquireTempCred
collaboration whose sequence diagram is given in Figure 3.11. A ReqTem-
pCred(U Cred) message serves as a request for temporary credentials.
U Cred represents the U ID and sh secret given to the user at the time of
anonymous registration. The server validates the U Cred before providing
the user with temporary credentials (TempCred). The requests and
responses in the OAuth protocol are normally HTTP requests and responses.
These message are shown in a simplified form to facilitate understanding the
model and to avoid some of the irrelevant details of the original requests and
responses.

35

Figure 3.11: Sequence Diagram for Temporary Credentials Acquisiton

The server asks the GWServer for authorization using a ReqAutho-
rize(U Cred) message. The sequence diagram for the authorization process
is shown in Figure 3.12. The request for authorization initiates the
anonymous authentication process of the user. The server is authorized using
Authorized(verifier) message if the anonymous authentication process is
successful. The verifier, also provided to the user, is later used to acquire
the token credentials.

Figure 3.12: Sequence Diagram: Authorization process

The GWServer authorizes the server only after the user ’s anonymous

36

authentication was successful. The anonymous authentication process
is shown using a sequence diagram in Figure 3.13. This process is
initiated by the GWServer with an InitiateAuth message to the AnonAuth
which is subsequently forwarded to the user. The user responds with
a ReqAuthenticate(Index, Shares) message to the AnonAuth, where
Index is the INDEX used by the authentication servers to register the
user and Shares are the shares of the secret U Key encrypted with the
corresponding keys of the authentication servers. The AnonAuth sends an
AuthenticateUser(Index, Share) message to each of the authentication
servers containing the index and share destined for that particular server.
The user is anonymously authenticated by comparing the current secret
shared value with the secret shared value provided during the registration
process. This is done using the XORing of secret shared values based on
SMPC. XORing of secret shared values is performed by VIFF.

Figure 3.13: Sequence Diagram: Anonymous Authentication

An acknowledgment message is sent to the user and the server is authorized
to grant access to the user if the anonymous authentication ends successfully.
At the end of a successful authorization process, a user gets a verifier
which it uses to obtain the token credentials. Acquisition of the token
credentials (TokenCred) is shown in Figure 3.14 using a sequence diagram.
The user requests the TokenCred using the ReqTokenCred(U Cred,
TempCred, verifier) message. U Cred identifies the user, TempCred
binds the session, and verifier proves that this is the user for whom the
server is authorized to grant access to the resource. The server validates

37

all this provided information and responds with the TokenCred. The User
can now access the resources with an HTTP authenticated request using
the TokenCred until the TokenCred either expires or is revoked by the
GWServer.

Figure 3.14: Sequence Diagram: Acquiring Token Credentials

3.3 Behavior of the individual entities

This section focuses on the behavior of individual components or entities in
different circumstances. We examine their behavior one by one through a
thorough explanation of the proposed model. Their behavior is explained
using SDL state transition diagrams. These state transition diagrams shows
the transition of a component from one state to another state along with
the activity triggered by a specific input signal. The following subsections
explain the behavior of the individual components.

3.3.1 Registrar

The registrar handles the initial registration of the user. The SDL state
transition diagram for the registrar is shown in Figure 3.15. The registrar
is in the idle state until it receives a RegRequest message from the user.
After receiving the message it validates the information provided by the user

38

in the request. If the user is a valid user, it generates the U Key and a
one time Link to the AnonAuth and sends these to the user along with
a RegAck message. In the case of an invalid user, it sends a RegNAck
message to user. The registrar remains in idle state in both the cases.

Figure 3.15: SDL State Transition Diagram for the Registrar

3.3.2 AnonAuth

AnonAuth takes part in both the registration process as well as authenti-
cation. The SDL state transition diagrams for the AnonAuth are shown in
Figure 3.16 and Figure 3.17. AnonAuth ’s role in the registration process
starts when it receives an AnonRegReq message from the user when
in the idle state. The AnonAuth generates an INDEX and sends a
RegUser message to authentication servers along with the shares of the
secret information in encrypted form provided by the user. The AnonAuth
moves to the regInProcess states and waits there until it receives a
UserRegistered message from the authentication servers. It forwards the
received message to the user and moves to the accountManage state. In
this state it waits for the ReqCred message from the user. When it receives
this message, it forwards to the GWServer and moves to the finalizeReg
state. When it receives credentials from the GWServer and forwards these

39

credentials to the user, then it moves back to the idle state.

Figure 3.16: SDL State Transition Diagram1: AnonAuth

Figure 3.17: SDL State Transition Diagram2: AnonAuth

If the AnonAuth receives an InitiateAuth message from the GWServer
while in the idle state, it forwards this message to the user and moves to the
authenticationRequested state. When it receives a ReqAuthenticate

40

message along with an INDEX and shares of the secret in encrypted form,
then it forwards the INDEX and the corresponding secret shares to the
authentication servers in an AuthenticateUser message and moves to the
authInProcess state. In this state, it either receives an AuthAck or an
AuthNAck message depending upon whether the user is valid user or not.
In both the cases, it forwards the message to the user and moves back to the
idle state.

3.3.3 CompServer and UnionServer

The CompServer and UnionServer behave in the same manner both during
registration and authentication. Therefore their SDL state transition
diagrams are the same (as shown in Figure 3.18). If they receive a RegUser
message from the AnonAuth along with an INDEX and an encrypted share
of a secret value, they register the user using the provided INDEX and send
a UserRegistered message to AnonAuth while remaining in the idle state.

Figure 3.18: SDL: CompServer and UnionServer

They can receive an AuthenticateUser message from the AnonAuth while
in the idle state during the authentication process. This message contains
an index and a share of the secret value. They perform an XOR using
SMPC of the current secret shared value with the secret shared value stored

41

together with the given index. The user is successfully authenticated if
both the secret shared values match. These servers send an AuthAck
or AuthNAck message to AnonAuth depending upon the result of the
authentication process and will remain in the idle state.

3.3.4 GWServer

The behavior of the GWServer is more or less the same as the CompServer
and UnionServer except for the fact that it is also responsible for some
account management tasks. The SDL state transition diagram for the
GWServer is shown in Figure 3.19. When the GWServer registers the
user, it moves to the accountManage state rather than returning back
to the idle state, unlike the other authentication servers. It waits for a
ReqCred message from the user through the AnonAuth. When it receives
the ReqCred message, it performs the necessary account management tasks
and sends the credentials to the user via AnonAuth before moving back to
the idle state.

Figure 3.19: SDL State Transition Diagram: GWServer

42

When a user tries to access some resources on the server, the server sends
a ReqAuthorize message to the GWServer. While in the idle state, when
the GWServer receives this message, it sends an InitiateAuth message to
AnonAuth and moves to the authInitiated state. When it receives an
AuthenticateUser message in this state, it performs the SMPC based
authentication process just as the other authentication servers. The only
difference is that it also sends an Authorized or Denied message to the
server along with sending the AuthAck or AuthNAck message to the user
(depending upon the success of the authentication process). It moves back
to the idle state in both the cases.

3.3.5 User

A user is the most important component of the whole system and is involved
in all the processes. The user ’s SDL state transition diagrams are shown in
Figure 3.20 and Figure 3.21. A user is the initiator of both the registration
and authentication process. The user sends a RegRequest message, along
with the necessary information for registration, to the registrar and moves
to the unregistered state. When it receives a RegNAck message in the
case of an invalid user, it remains in the unregistered state. In the case of
a valid user, it receives a RegAck message along with a U Key which it
provides in a secret shared and encrypted form enclosed in an AnonRegReq
message before moving to the halfRegistered state. When it receives a
UserRegistered message in this state, it requests the credentials using a
ReqCred message and moves to the credWait state. When it receives the
credentials in this state, it becomes eligible to access the resources on the
server.

43

Figure 3.20: SDL State Transition Diagram: User

In order to access the resources on the server, it requests temporary
credentials from the server and moves to the tempCredNeeded state until
it receives the TempCred, at which it moves to the tempCredAcquired
state. At this stage, the server requires authorization from the GWServer
and the GWServer needs to authenticate the user. To do this the GWServer
sends an InitiateAuth message to the user through the AnonAuth. The
user responds with a ReqAuthenticate message along with the necessary
information and moves to the authInProcess state. An AuthNAck
message in this state moves the user back to the tempCredAcquired state
where the user needs to repeat the authentication process once again. In
contrast reception of an AuthAck message prompts the user to request
for the token credentials and move to the tokenCredNeeded state. When
in this state it will wait to receive the TokenCred, then it moves to the
authenticated state. At this point the user can access the resources on
the server until it receives an InvalidToken message which means that the
token has either expired or been revoked by the GWServer. Upon receiving
an InvalidToken message, the user asks for temporary credentials and has
to pass through the authentication process again.

44

Figure 3.21: SDL State Transition Diagram2: User

45

Chapter 4

Security Analysis of the
proposed model

This chapter provides a theoretical analysis of the model proposed in the
previous chapter. The main goal of this thesis project was to design a system
by which a user can authenticate itself in such a manner that none of the
servers, involved in the authentication process, can individually know the
actual identity of the user. In other words, the user’s authentication must
be anonymous and only a valid user should be able to successfully complete
the authentication process.

4.1 Issues to be addressed

The problem of anonymous authentication is dealt with using SMPC in the
proposed design. There are certain basic issues that need to addressed before
this anonymous authentication system can be implemented. The proposed
system is based on SMPC. SMPC needs to be sufficiently secure that a limited
number of adversaries can not compromise the security of the system or affect
the end result in any way. Another issue that needs to be addressed is the
anonymity of the user. How is the anonymity of a user assured? How can
we be sure that the user will be anonymous, but still able to access the same
resources every time the user authenticates?

46

Security of the complete system is one of the major concerns. An invalid
user must not be able to authenticate or access protected resources on the
user’s behalf. In fact no one should be able to access the account created
for a particular anonymous user except the user. The following sections of
the chapter discuss these issues and try to indicate how these issues were
handled during the design of the proposed model. Possible areas of further
improvement are also discussed at the end of this chapter.

4.2 Secure Multi-party Computation

Secure Multi-party Computation (SMPC) potentially provides a solution to
problems which are generally solved by involving a trusted third party. A
trusted third party normally takes inputs from the parties involved in the
computation, performs some arithmetic operations on the inputs according to
a specified function, and reveals the output of the computation. The trusted
third party guarantees the correctness of the output and that the inputs are
not revealed to any one. SMPC replaces this trusted third party in order to
avoid concerns with using a trusted third party as discussed in chapter 1.

Since SMPC replaces the trusted third party, it must also guarantee the
same properties that were guaranteed by the trusted third party. Security
in SMPC requires the correctness of the output and esuring the secrecy of
the individual inputs even if some parties try to cheat [1]. SMPC operate
successfully despite some bounded number of adversaries involved in the
MPC, while still producing a correct output and maintaining the secrecy of
the inputs. According to Ben-Or, Goldwasser, & Widgerson and Chaum,
Crépeau, & Damg̊ard, SMPC provides perfect security for computing any
function if the number of corrupt parties is less than n/2 where n is the total
number of parties in the MPC [7][8]. Since the number of servers involved in
the design can be adjusted according to the situation, this number of servers
can be fixed in such a way that none of the parties can control more that
half of the servers and hence no one will be able to compromise the security
of the system. SMPC also assumes that there is an unconditionally secure
channel between every two parties. This secure channel is ensured by using
SSL in VIFF.

The framework used for realizing SMPC is VIFF. VIFF makes some security
assumptions which must be in place to assure that the system is secure. The

47

security assumptions are based on the security requirements of SMPC. The
assumptions say that the adversary can corrupt a number of parties less than
a certain threshold. The threshold is assumed to be half of the parties, thus
implying that there must be an honest majority in the participating parties.
The adversary is also assumed to be computationally bounded. If all these
assumptions and constraints are met, the SMPC can considered secure.

4.3 Anonymity of the user

The concept of MPC is to distribute information in such way that none
of the participating parties has all the information. MPC provides a
method of performing arithmetic operations on the distributed secret shared
information in a such a manner that the original information is not revealed
to any one. In our design, the goal was to hide the identity of the user so that
the identity is not revealed during authentication. This implies that none of
the servers involved in the authentication must posses all the information
about the user’s identity. However, any number of servers greater than the
threshold can share their information and obtain the actual identity of the
user.

Our design makes it sure the user’s actual identity is only provided to the
registrar when the user is registered for the first time. In all of the subsequent
registration or authentication processes only a user key U Key, provided by
the registrar, is used. The U Key is not used in its actual and plain text
form, but rather in the form of encrypted shares of the secret. The shares
are encrypted with the corresponding keys of the authentication server. So,
no one can decrypt the shares other than the corresponding authentication
server. Even if all the authentication servers agree to reveal the identity of
user, they will not be able to do so even with their combined effort. They
will only be able to reconstruct the U Key which does not tell anything
about the user’s actual identity. To learn the user’s actual identity, they will
require the services of the registrar to match the U Key with the entries in
its database in order to lookup the user’s actual identity. Thus the user’s
actual identity is protected from all server except for the registrar and the
registrar is not involved in authentication.

48

4.4 Security of the system

The proposed model assures the anonymity of the user, but this is of no
use if the overall system is insecure. Our proposed model ensures that an
invalid user is not be able to register, authenticate successfully, or access
the protected resources on the user’s behalf. The model also ensures that
no one, except for the users themselves are able to access the anonymous
account created for the user.

The registration process is secured by the introduction of a one time key
OT Key provided to every new user when the user is first added to the
user database. The user needs to provide this OT Key along with other
information to the registrar at the time of initial registration. Subsequently
anonymous registration commences only if the user’s initial registration with
the registrar was successful. This ensures that only valid users can be
registered.

An invalid user cannot authenticate to system because this invalid user would
have to successfully pass through the authentication system and provide
the secret index as well as the shares of the secret U Key– however, this
information can only be provided by a valid user. Even if the adversary
eavesdrop one session, they will not gain sufficient information to be able
to authenticate an invalid user in another session. Timestamps and nonces
ensures that each session is fresh one.

However, the GWServer posses the information about the account and could
authenticate itself and access the services itself. This security weakness can
be detected by maintaining a secure log of users who were authenticated by
the system and a log of users who accessed the resources. The GWServer
obviously will be able to access the resources, but it cannot authenticate
itself to the system by pretending to be a user. The GWServer can access
the protected resources on the server because the resources are owned by
the GWServer. However, to access the protected resources pretending to
be a valid user, the GWServer would have to provide the index and shares
of the secret U Key. Since, the GWServer can not provide the shares of
the the secret U Key, the GWServer cannot access the protected resources
pretending to be a valid user. This ensures no one other than the user can
access the resources on user’s behalf.

49

4.5 Areas that need further improvement

This chapter described solutions to most of the concerns, but although some
of these solutions are expected to be trivial to implement, they are not
yet incorporated in the proposed model. The proposed model will only
be completely secure if all of these solutions are included in the design
before implementing and testing it. Timestamps and secure logs are two
such features which must be included in the design to ensure security or
to detect the GWServer by-passing the system’s access controls. Both of
these features are included in the future plan for the project, but were not
considered essential to implement at this stage of the project.

The other area that needs some improvement is the OAuth protocol. As
mentioned earlier, the protocol flow used in the proposed design is a very
basic one and may not be the most optimal one. However, the choice of
flow depends upon specific situations and further research needs to be done
to find the optimal (i.e., most efficient) protocol flow for different specific
situations.

50

Chapter 5

Development of the System

SMPC is a very new field of research in terms of application development and
we could not find much work done in the area of anonymous authentication.
We believe that designing and implementing a solution for anonymous
authentication exceeds the scope of a masters thesis project. However, a
model is proposed as a solution for the problem as explained and analyzed
in the earlier chapters. Implementation and testing of the proposed model,
however, will require additional time and effort. Although we have managed
to built a skeleton of the proposed model, this skeleton is the output of the
SDL state transition diagrams of chapter 3. It contains all the messages that
are exchanged between different components of the system. However, there
is still a need to realize the functionality of each of the necessary functions.
The rest of this chapter explains how these functions can be realized.

5.1 SMPC part of the design:

VIFF development

All the components involved in the system are not part of SMPC. Only
user, CompServer, UnionServer, and GWServer are components involved in
SMPC. Since VIFF is a Python library each of these components needs to
have a few lines of Python code to realize it semantics. This code can be
invoked from the java code of the overall system at appropriate locations.
For example, a user needs to create shares of the secret input and can use

51

the method given in Listing 5.1 to do so. This method is based on Shamir’s
secret sharing scheme.

1
2 //VIFF implemented Method for c r ea t i n g shares .
3
4 shares = r t . shami r share ([1 , 2 , 3] , GF256 , input)

Listing 5.1: VIFF method for creating shares

The authentication servers need to compare two secret shared values in order
to find out the whether the user is a valid user or not. They can learn this
by XORing the two values. They can also learn this by using a subtraction
operation. Listing 5.2 shows the VIFF method for XORing two secret shared
values a and b.

1
2 //VIFF implemented Method for XOR−i ng two sec r e t shared

numbers a and b .
3
4 xor (s e l f , share a , share b)

Listing 5.2: VIFF method for XORing of two secret shared values a and b

5.2 Skeleton of the System

This section discusses the important functions of the components and
briefly describes how the corresponding methods can be completed with the
appropriate code.

5.2.1 Registrar

A registrar receives registration requests and acknowledges the user ’s
requests based on the validity of this user. However, its main function is
to validate the user and generate the U Key and one time verifiable Link
to the AnonAuth. Listing 5.3 provides the two methods that need to realize
these functionalities. A user is initially validated by validating the user ’s
provided user information and the OT Key by comparing it with values in
the user database.

52

1
2 //Method for va l i d a t i n g the user
3
4 pub l i c s t a t i c void va l idateReg (RegRequest s i g na l , RegistrarSM

asm){
5 // Code for va l i d a t i n g a user ’ s r e g i s t r a t i o n reque s t
6 }
7
8 //Method for Generating the U Key and the one time Link to the

AnonAuth
9

10 pub l i c s t a t i c void GenerateKey (RegistrarSM asm){
11 // Code for generat in g the U Key and one time Link to

AnonAuth
12 asm . sendMessage (new RegAck () , ” address ”) ;
13 }

Listing 5.3: Important functions of the Registrar

5.2.2 AnonAuth

AnonAuth is a mediator between the user and the authentication servers. Its
job is, most of the time, to forward the received messages back and forth to
the appropriate destination. However, its own function is to create a unique
INDEX which is used by the authentication servers to register the user.
Listing 5.4 provides a method for this INDEX generation which needs to be
completed with the appropriate code.

1
2 //Method for generat ing INDEX aga i n s t which a user i s

r e g i s t e r e d in the Authent i ca t i on Server s
3
4 pub l i c s t a t i c void GenerateIndex (AnonRegReq s i g na l , AnonAuthSM

asm){
5 // Code for generat in g the INDEX
6 asm . sendMessage (new RegUser () , ” address ”) ;
7 }

Listing 5.4: Important function of the AnonAuth

53

5.2.3 CompServer and UnionServer

The functionality of the CompServer and UnionServer is the same in both
the registration and authentication processes. They register the user by
storing the provided information in their databases and authenticate the
user by the comparing the newly provided information with the information
provided during the registration process. The methods for both the
registration and authentication are given in Listing 5.5. Since, authentication
is performed using SMPC, the method responsible for authentication should
be linked with the Python code for SMPC.

1
2 //Method for the user ’ s r e g i s t r a t i o n
3
4 pub l i c s t a t i c void Reg i s t r a t i o n (RegUser s i g na l , CompServerSM

asm){
5 // Code for r e g i s t e r i n g a user
6 asm . sendMessage (new UserReg i stered () , ” address ”) ;
7 }
8
9 //Method for the SMPC authen t i ca t i on

10
11 pub l i c s t a t i c void SMPCAuthenticate(Authent i ca teUser s i g na l ,

CompServerSM asm) {
12 // Code for i nvok ing the Python code for SMPC

authen t i ca t i on .
13 }

Listing 5.5: Important functions of the CompServer and UnionServer

5.2.4 GWServer

Listing 5.6 shows the methods representing the important functionalities
of the GWServer. The functionality of the GWServer is the same as
that of the CompServer and the UnionServer during a user ’s registration
and authentication. However, the GWServer also has some extra account
management responsibilities. The UpdateDB() method in Listing realizes
the account management functionality and should be completed accordingly.

54

1
2 //Method for user ’ s anonymous r e g i s t r a t i o n
3
4 pub l i c s t a t i c void Reg i s t r a t i o n (RegUser s i g na l , GWServerSM asm

) {
5 // Code for user ’ s r e g i s t r a t i o n
6 asm . sendMessage (new UserReg i stered () , ” address ”) ;
7 }
8
9 //Method for Account Management

10
11 pub l i c s t a t i c void UpdateDB(ReqCred s i g na l , GWServerSM asm) {
12 // Code for Account management tasks
13 asm . sendMessage (new Cred () , ” address ”) ;
14 }
15
16 //Method for the SMPC authen t i ca t i on
17
18 pub l i c s t a t i c void SMPCAuthenticate(Authent i ca teUser s i g na l ,

GWServerSM asm){
19 // Code for i nvok ing the Python code for SMPC

authen t i ca t i on .
20 }

Listing 5.6: Important functions of the GWServer

5.2.5 User

Modern day design of the Internet is pushing the complicated part of the
applications towards the core of network and edges are made as simple as
possible. The user in our design is also not very complicated. It performs
only one key function along with sending requests to various servers and
receiving their responses, it that it creates shares of the secret U Key and
provides these shares to the authentication servers in encrypted form both in
registration as well as during the authentication process. The method shown
in Listing 5.7 should depend upon some Python code to create shares of the
secret value.

55

1
2 //Method for generat ing the share s o f s e c r e t U Key and

encrypt ing them
3
4 pub l i c s t a t i c void U KeyToShares(RegAck s i g na l , UserSM asm) {
5 // Code for i nvok ing the python code to c r ea t e shares o f

U Key
6 asm . sendMessage (new AnonRegReq () , ” address ”) ;
7 }

Listing 5.7: Important functions of the User

56

Chapter 6

Implementation of a simplified
prototype

We have implemented a simplified prototype of the proposed model which
realizes the basic registration and authentication process. The prototype
consists of four entities: user, compServer, unionServer, and gwServer.
The user shares a U Key with these authentication servers in a secret
shared form and then tries to authenticate using the same U Key. The
authentication servers perform a SMPC comparison operation using the
VIFF libraries. At the end of the authentication process, each of the
authentication servers knows whether the authentication was successful or
not. Each entity in the prototype operates only for a single registration
and authentication process. All the entities shut down on completion of
the authentication process irrespective of the result of authentication. The
prototype is implemented in Python. Functionalities of the user, compServer,
unionServer, and gwServer are realized by user.py, compServer.py,

unionServer.py, and gwServer.py respectively. The Python code for these
files is given in the appendix.

57

6.1 Generating the configuration files and

starting the entities

Each of the entities involved in SMPC has a configuration file. This
configuration file contains the keys and network information corresponding to
all the parties involved in SMPC. A party involved in SMPC is also called a
player. So, there is a configuration file for every player. These configuration
files are generated before the start of SMPC. We ran the authentication
servers and the user on the same computer. The network address of each
player is specified when generating the configuration files. The configuration
files for four players, running on the same computer, are generated using the
following command.

python generate-config-files.py -n 4 -t 1 localhost:9001\

localhost:9002 localhost:9003 localhost:9004

This command runs the file generate-config-files.py which can gen-
erate configuration files for any number of players. The network ad-
dresses of player-1, player-2, player-3, and player-4 are localhost:9001,

localhost:9002, localhost:9003, and localhost:9004. Each of the
players is configured according to its configuration file. Configuration files
for player-1 is given in the appendix.

Each of these players needs to be started. These players can be started in
any order. When the player is started, the configuration file is given as an
argument to it. A player waits for the other players when it is started. All
four players are started in separate terminals windows using the following
commands.

python user.py player-1.ini

python compServer.py player-2.ini

python unionServer.py player-3.ini

python gwServer.py player-4.ini

58

6.2 Registration

The user is asked to provide a U Key when the user.py starts. The user
provides the U Key and waits for the completion of registration with the
authentication servers as shown in Figure 6.1(a snapshot of the user ’s screen
during registration). The U Key is shared with the authentication servers
using Shamir’s sharing scheme.

Figure 6.1: User waiting for completion of registration

The user is notified when the authentication servers complete the registration
process as shown in Figure 6.2. Operation of all the authentication servers
is the same. These authentication server start and then wait for the other
authentication server to start. When all of the these authentication servers
are started, they receive shares of the U Key and register the user as shown
in Figure 6.3(a snapshot of the compServer’s screen only).

Figure 6.2: User notified after completion of registration

Figure 6.3: A snapshot of compServer’s screen when a user registers

59

6.3 Authentication

After completion of the registration process, the user is asked to provide to
the U Key in order to authenticate. The user provides the U Key which is
shared with the authentication servers using Shamir’s secret sharing scheme.
The authentication servers validate the U Key using SMPC. The user is
notified of a successful authentication if the U Key provided by the user is
correct as shown in Figure 6.4. A snapshot of the compServer’s terminal,
after successful authentication of the user, is given in Figure 6.5.

Figure 6.4: User notification after successful authentication

Figure 6.5: A snapshot of compServer’s terminal after user’s successful
authentication

If the U Key provided by the user in not valid, the user is notified of the
denial of authentication as shown in Figure 6.6. The authentication servers
display an Authentication Failed message, if the U Key provided by the
user is invalid, as shown in Figure 6.7. The user and the authentication
servers shut down after both successful and unsuccessful completion of the
authentication process.

Figure 6.6: User’s unsuccessful authentication

60

Figure 6.7: Authentication Failed

61

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Traditional authentication systems authenticate the user after the user proves
his or her valid identity. Based on the requirements of the service, it might
be important that the user should be able to authenticate without his or her
identity being revealed to anybody; not even the authentication server. This
leads to a problem called the Anonymous Authentication problem. The idea
behind this problem is that a valid user must be able to authenticate and
access protected resources without revealing his or her actual identity to any
one.

A solution to these sort of problems is generally a trusted third party solution,
in this thesis project we have replaced the trusted third party with Secure
Multi-party Computation (SMPC) due to issues that occur when using an
actual trusted third party. A model for anonymous authentication was
developed based on SMPC by using VIFF as a development framework.
The anonymous authentication system is coupled with the OAuth protocol
to allow the user to access protected resources. A java based skeleton
of the proposed model was developed which still needs to be filled in to
realize appropriate functionalities. A simplified prototype, realizing a basic
anonymous authentication system, of the proposed model was implemented.
This prototype was developed in Python using VIFF libraries to realizes
SMPC.

62

While there has been very little work done in SMPC regarding application
development, this thesis project provides a potential base for anonymous
authentication. This base could potentially lead to many projects based
on anonymous authentication and therefore can practically serve as the
pioneering work in this field.

7.2 Future Work

The proposed model requires some refinements and addition of some new
features as mentioned at the end of chapter 4. The proposed system could
then be implemented using the code skeleton and tested in some real world
scenarios. Once, the anonymous authentication system has been developed,
it could be coupled with various services to provide anonymity.

63

Appendix A

Skeleton of the proposed model

A.1 SMPC part of the model

A.1.1 User

1 from optparse import OptionParser
2 import v i f f . r ea c t o r
3 v i f f . r ea c t o r . i n s t a l l ()
4 from twi sted . i n t e rn e t import r ea c t o r
5
6 from v i f f . f i e l d import GF
7 from v i f f . runtime import create runt ime , Runtime
8 from v i f f . c o n f i g import l o ad con f i g
9

10 parser = OptionParser ()
11 Runtime . add opt i ons (parse r)
12 (opt i ons , a rgs) = parse r . p a r s e a rg s ()
13
14 Zp = GF(1031)
15
16 id , p l a y e r s = l o ad con f i g (args [0])
17
18 input1 = input (’ Enter your U Key to be r e g i s t e r e d with the

Serve rs : ’)
19
20 def p ro t o co l (r t) :
21
22 def g o t r e s u l t (r e s u l t) :

64

23 i f r e s u l t == 0 :
24 print ”You are authent i ca t ed ! ! ! ”
25 else :
26 print ” Authent i ca t i on Denied ! ! ! ”
27 r t . shutdown ()
28
29 x1 , y1 , z1 , w1 = r t . shami r share ([1 , 2 , 3 , 4] , Zp , input1)
30
31 print ”You are r e g i s t e r e d now ! ! ! :) ”
32
33 input2 = input (’ Enter Your U Key f o r au then t i ca t i o n : ’)
34
35 x2 , y2 , z2 , w2 = r t . shami r share ([1 , 2 , 3 , 4] , Zp , input2)
36
37 d i f f = x1 − x2
38 opened d i f f = r t . open (d i f f)
39 opened d i f f . addCal lback (g o t r e s u l t)
40
41
42 pre runt ime = create runt ime (id , p l ayers , 1)
43 pre runt ime . addCal lback (p ro t o co l)
44
45 r ea c t o r . run ()

Listing A.1: user.py

Configuration files for all the parties are similar to the one given in the below
listing.

1 # VIFF con f i g f i l e f o r Player 1

2
3 [Player 1]
4 host = l o ca l ho s t
5 port = 9001
6 [[p a i l l i e r]]
7 type = v i f f
8 [[[pubkey]]]
9 g =

10 56678271179901109264145933570996430936533296773475641446
11 08991545236005938252823766630546943935623120671805107782

1590987181050434013376790951002636882791365118182379003
12 4798681166445242627813405043636748853930920050194460379
13 1413610725415367615313574113248857728839138126563492423
14 7359318923242169770106950328181196662755919116232689506
15 4044524603854670324922271534687489196212728904978913632
16 8267544067667465644599953553648433737327316733977888225
17 4095338728878396898410903067739894000547882224028695178
18 1053336800855823110387640323113408558375531094352415024

65

19 9352245704237827416406010108482520473597020724461052295
20 86935215
21 n =
22 2624586894220560356342839878120272346880576617445357095
23 1146605230919231211730165724670857481839040972656810686
24 0445766402663575503773987569873263986705195899027977400
25 1531609395196782736801748973689493468962801312935673727
26 4521091962371732844477063188252384031241633948907257442
27 122190369051071856591136932465151
28 [[[seckey]]]
29 lm =
30 1312293447110280178171419939060136173440288308722678547
31 5573302615459615605865082862335428740919520486328405343
32 0222883201331787751886993784936631993352597875639710174
33 6275597550150810053740646127243540389922594147923142022
34 8736826278110429392507771155432720057460562078027075335
35 686532788116878317368413030256952
36 g =
37 5667827117990110926414593357099643093653329677347564144
38 6089915452360059382528237666305469439356231206718051077
39 8215909871810504340133767909510026368827913651181823790
40 0347986811664452426278134050436367488539309200501944603
41 7914136107254153676153135741132488577288391381265634924
42 2373593189232421697701069503281811966627559191162326895
43 0640445246038546703249222715346874891962127289049789136
44 3282675440676674656445999535536484337373273167339778882
45 2540953387288783968984109030677398940005478822240286951
46 7810533368008558231103876403231134085583755310943524150
47 2493522457042378274164060101084825204735970207244610522
48 9586935215
49 n =
50 2624586894220560356342839878120272346880576617445357095
51 1146605230919231211730165724670857481839040972656810686
52 0445766402663575503773987569873263986705195899027977400
53 1531609395196782736801748973689493468962801312935673727
54 4521091962371732844477063188252384031241633948907257442
55 122190369051071856591136932465151
56 [[p r s s k ey s]]
57 1 3 4 = 0x1a62b461b17e5028fd35f1e89d0e68112b1055efL
58 1 2 3 = 0x9aeaad1a98673bf7338cba7902cc33 fd9962f295L
59 1 2 4 = 0xc57cf71 f316c6cd43cc11ec3cd562893f40620d9L
60 [[p r s s d ea l e r k ey s]]
61 [[[Dea l er 1]]]
62 1 3 4 = 0 x9bf83e70e0c108ab4d34671ac797f0f0b5e0053eL
63 1 2 3 = 0 x6a928718c30853 fe1 f72bcf7 f3c4c64ee9a3e4b6L
64 2 3 4 = 0 x1 fa66a196f6065654782e15cf86e07a44407c825L
65 1 2 4 = 0 x431473a17 f94dfe7c9680148 f1a3e1706a1c8dd8L
66 [[[Dea l er 2]]]
67 1 3 4 = 0 x304b4c3a2 fa4d911038556512c3f ea1e9f34 f9b6L

66

68 1 2 3 = 0xbf2d04368e1be935368cfb0d5a8abdb312ed89c0L
69 1 2 4 = 0 xf6d9441664c98ddd65aa7bc89fbd3d0cc28ff76cL
70 [[[Dea l er 3]]]
71 1 3 4 = 0xa7b47fc69c639c672d94ce436880b695b7079240L
72 1 2 3 = 0 xda0cc02084a2ebe1042b31429c6f3aa0e999087L
73 1 2 4 = 0 x39926 fe2 f c99e0 f0454a924d59c9 f219963f580L
74 [[[Dea l er 4]]]
75 1 3 4 = 0 x59ac11c2cc0b3c31b9272e34b5dec018e330493eL
76 1 2 3 = 0x6e1bd58b3cdb3b578915a2c39dc0ee88b6b99a5eL
77 1 2 4 = 0 x38f92062204f3a8e6ad0d93315bcc57ab58f4d08L
78
79 [Player 2]
80 host = l o ca l ho s t
81 port = 9002
82 [[p a i l l i e r]]
83 type = v i f f
84 [[[pubkey]]]
85 g =
86 1453531844901316634616950767710486089659569076066699225265
87 1837761012440462811949464793739290288531259549252145467920
88 6994731104207001790011135924749995845017398010616277064828
89 2143044720204096280414048097565582562556020579157494697198
90 7332638088983229797847188218189773570032804680656601203754
91 6367470243607042945687428329068832026483564590702456749213
92 6474946811035270398706735507646776983264261719488344324869
93 5436099430488180307095127667945950320191388491186427801978
94 8429459763119463542095473741968851083088549459294492964311
95 5119473105353904987840514018292038839773103007434898676518
96 127803737101205346468870173975476
97 n =
98 2853705750126245384587377339904853712363121633741393079067
99 6164434278610894726746170506408401227714569305989949090128

100 4530682997583013170710242627922243204762503727165127589648
101 5735792739534936809316345811314068811150289202498086386744
102 1908706023072081758671410745924191953387924551694633978595
103 71047272303205031
104
105 [Player 3]
106 host = l o ca l ho s t
107 port = 9003
108 [[p a i l l i e r]]
109 type = v i f f
110 [[[pubkey]]]
111 g =
112 96063216852800873834094005814189629457136202550142892390480
113 53569858389537910476054762037286500924083787868604712408450
114 72591243164609690374259575806450867240458639126701556571664
115 72168409078677163049689091313024770702813281456511634466204
116 24065126269059238100335678651585802072580482473698058770187

67

117 24409786047640316841569274099974468884391217053406492433158
118 77775185215496521046289975959990902270513137192710673364316
119 53323168311432880284146294704090568621467848240560956281851
120 54228100757963075656586293131986550601129254953379738044410
121 24216846068506454790456184536144463695554153776382969573246
122 173664058585401982261917
123 n =
124 10029792981827416955186307547092470391058583296966807726266
125 92736665507760705291327550780375764020868331774456161978182
126 76901084967075076771283004599279964601878863873625115609582
127 80699472692929484342395296407108074029321342617713670589075
128 34620180936082827315371325583254258970879591787438735938895
129 4434442323123
130
131 [Player 4]
132 host = l o ca l ho s t
133 port = 9004
134 [[p a i l l i e r]]
135 type = v i f f
136 [[[pubkey]]]
137 g =
138 77583613698523480211767191578815912061645238079812427488540
139 59128056053037213804463092113903944293871456679476451211937
140 78317968081170026549897881224504107814348457248151560778982
141 22278761347655756819578637684345965801882644405789931092908
142 64428298033934070555108403066559847902627879977779934832739
143 15094894387663526674673006756615995039720875373962194322774
144 99928433531621272141275466384890666521653503454695508802989
145 54576688092419312021711672563324760413702994134585703128408
146 50934840792916083447571934368798752005905410132511551069931
147 81861371687334801424647654774860718832491624865939632396757
148 5607230580576067686249275
149 n =
150 50326937329697552486992809787620724612567637601545272448629
151 44856511853878420343387137602320774363271671245525955215722
152 84323375832291646222039283091883386684620614695598201060745
153 07200160706906092489995032715502872885079786726812835281270
154 32527074038827179006600333910570561706626065162263456391131
155 7967611248833
156
157 # End of con f i g

Listing A.2: player-1.ini

68

A.1.2 Authentication Servers

The behavior of all the authentication server is the same in SMPC part of the
model. As an example, compServer.py (python file for the company server)
is given in the below listing.

1 from optparse import OptionParser
2 import v i f f . r ea c t o r
3 v i f f . r ea c t o r . i n s t a l l ()
4 from twi sted . i n t e rn e t import r ea c t o r
5
6 from v i f f . f i e l d import GF
7 from v i f f . runtime import create runt ime , Runtime
8 from v i f f . c o n f i g import l o ad con f i g
9

10 parser = OptionParser ()
11 Runtime . add opt i ons (parse r)
12 (opt i ons , a rgs) = parse r . p a r s e a rg s ()
13
14 Zp = GF(1031)
15
16 id , p l a y e r s = l o ad con f i g (args [0])
17
18
19 def p ro t o co l (r t) :
20
21 def g o t r e s u l t (r e s u l t) :
22 i f r e s u l t == 0 :
23 print ” Authent i ca t i on Succe s s f u l ”
24 else :
25 print ” Authent i ca t i on Fa i l ed ”
26 r t . shutdown ()
27
28 x1 , y1 , z1 , w1 = r t . shami r share ([1 , 2 , 3 , 4] , Zp , 0)
29
30 print ”User i s r e g i s t e r d ! ! ! ”
31
32 x2 , y2 , z2 , w2 = r t . shami r share ([1 , 2 , 3 , 4] , Zp , 0)
33
34 d i f f = x1 − x2
35 opened d i f f = r t . open (d i f f)
36 opened d i f f . addCal lback (g o t r e s u l t)
37
38
39 pre runt ime = create runt ime (id , p l ayers , 1)
40 pre runt ime . addCal lback (p ro t o co l)
41
42 r ea c t o r . run ()

69

Listing A.3: compServer.py

A.2 Registrar.java

1 package anonymousauthent ication . r e g i s t r a r ;
2
3 import anonymousauthent ication . RegRequest ;
4 import anonymousauthent ication .RegNAck ;
5 import anonymousauthent ication . RegAck ;
6
7
8 pub l i c c l a s s R eg i s t r a rAct i on s extends Object {
9

10 pub l i c s t a t i c void va l idateReg (RegRequest s i g na l , RegistrarSM
asm){

11 // User ’ s r e g i s t r a t i o n
12 }
13
14 pub l i c s t a t i c boolean va l i d (RegRequest s i g na l , RegistrarSM asm

) {
15 return f a l s e ;
16 }
17
18 pub l i c s t a t i c boolean i nva l i d (RegRequest s i g na l , RegistrarSM

asm){
19 return f a l s e ;
20 }
21
22 pub l i c s t a t i c void sendNAck (RegistrarSM asm){
23 asm . sendMessage (new RegNAck () , ” address ”) ;
24 }
25
26 pub l i c s t a t i c void GenerateKey (RegistrarSM asm){
27 // Generating U Key and one time Link to AnonAuth
28 asm . sendMessage (new RegAck () , ” address ”) ;
29 }
30
31 }

Listing A.4: Registrar.java

70

A.3 AnonAuth.java

1 package anonymousauthent ication . anonauth ;
2
3 import anonymousauthent ication . AnonRegReq ;
4 import anonymousauthent ication . RegUser ;
5 import anonymousauthent ication . UserReg i stered ;
6 import anonymousauthent ication . ReqCred ;
7 import anonymousauthent ication . Cred ;
8 import anonymousauthent ication . I n i t i a t eAuth ;
9 import anonymousauthent ication . ReqAuthenticate ;

10 import anonymousauthent ication . Authent i ca teUser ;
11 import anonymousauthent ication . AuthAck ;
12 import anonymousauthent ication .AuthNAck ;
13
14
15 pub l i c c l a s s AnonAuthActions extends Object {
16
17 pub l i c s t a t i c void GenerateIndex (AnonRegReq s i g na l , AnonAuthSM

asm){
18 // Generating the INDEX
19 asm . sendMessage (new RegUser () , ” address ”) ;
20 }
21
22 pub l i c s t a t i c void SendUserReg i stered (UserReg i stered s i g na l ,

AnonAuthSM asm){
23 asm . sendMessage (new UserReg i stered () , ” address ”) ;
24 }
25
26 pub l i c s t a t i c void sendReqCred (ReqCred s i g na l , AnonAuthSM asm)

{
27 asm . sendMessage (new ReqCred () , ” address ”) ;
28 }
29
30 pub l i c s t a t i c void sendCred (Cred s i g na l , AnonAuthSM asm){
31 asm . sendMessage (new Cred () , ” address ”) ;
32 }
33
34 pub l i c s t a t i c void sendIn i t i a teAuth (I n i t i a t eAuth s i g na l ,

AnonAuthSM asm){
35 asm . sendMessage (new In i t i a teAuth () , ” address ”) ;
36 }
37
38 pub l i c s t a t i c void sendAuthent i ca teUser (ReqAuthenticate s i g na l

, AnonAuthSM asm) {
39 asm . sendMessage (new Authent i ca teUser () , ” address ”) ;
40 }
41

71

42 pub l i c s t a t i c void sendAuthAck (AuthAck s i g na l , AnonAuthSM asm)
{

43 asm . sendMessage (new AuthAck () , ” address ”) ;
44 }
45
46 pub l i c s t a t i c void sendAuthNAck(AuthNAck s i g na l , AnonAuthSM

asm){
47 asm . sendMessage (new AuthNAck () , ” address ”) ;
48 }
49
50 }

Listing A.5: AnonAuth.java

A.4 CompServer.java and UnionServer.java

Since CompServer.java and UnionServer.java are exactly the same, so only
CompServer.java is included here.

1 package anonymousauthent ication . compserver ;
2
3 import anonymousauthent ication . RegUser ;
4 import anonymousauthent ication . UserReg i stered ;
5 import anonymousauthent ication . Authent i ca teUser ;
6 import anonymousauthent ication . AuthAck ;
7 import anonymousauthent ication .AuthNAck ;
8
9

10 pub l i c c l a s s CompServerActions extends Object {
11
12 pub l i c s t a t i c void Reg i s t r a t i o n (RegUser s i g na l , CompServerSM

asm){
13 // User ’ s r e g i s t r a t i o n
14 asm . sendMessage (new UserReg i stered () , ” address ”) ;
15 }
16
17 pub l i c s t a t i c void SMPCAuthenticate(Authent i ca teUser s i g na l ,

CompServerSM asm) {
18 // SMPC authen t i ca t i on p ro ce s s . Python code for SMPC i s

invoked from t h i s method
19 }
20
21 pub l i c s t a t i c boolean authVal id (Authent i ca teUser s i g na l ,

CompServerSM asm) {
22 return f a l s e ;

72

23 }
24
25 pub l i c s t a t i c void sendAuthAck (CompServerSM asm){
26 asm . sendMessage (new AuthAck () , ” address ”) ;
27 }
28
29 pub l i c s t a t i c boolean authInva l id (Authent i ca teUser s i g na l ,

CompServerSM asm) {
30 return f a l s e ;
31 }
32
33 pub l i c s t a t i c void sendAuthNAck(CompServerSM asm) {
34 asm . sendMessage (new AuthNAck () , ” address ”) ;
35 }
36
37 }

Listing A.6: CompServer.java

A.5 GWServer.java

1 package anonymousauthent ication . gwserver ;
2
3 import anonymousauthent ication . RegUser ;
4 import anonymousauthent ication . UserReg i stered ;
5 import anonymousauthent ication . ReqCred ;
6 import anonymousauthent ication . Cred ;
7 import anonymousauthent ication . ReqAuthorize ;
8 import anonymousauthent ication . I n i t i a t eAuth ;
9 import anonymousauthent ication . Authent i ca teUser ;

10 import anonymousauthent ication . Authorized ;
11 import anonymousauthent ication . AuthAck ;
12 import anonymousauthent ication . Denied ;
13 import anonymousauthent ication .AuthNAck ;
14
15
16 pub l i c c l a s s GWServerActions extends Object {
17
18 pub l i c s t a t i c void Reg i s t r a t i o n (RegUser s i g na l , GWServerSM asm

) {
19 // User ’ s R eg i s t r a t i o n
20 asm . sendMessage (new UserReg i stered () , ” address ”) ;
21 }
22
23 pub l i c s t a t i c void UpdateDB(ReqCred s i g na l , GWServerSM asm) {
24 // Code for User ’ s Account Management

73

25 asm . sendMessage (new Cred () , ” address ”) ;
26 }
27
28 pub l i c s t a t i c void sendIn i t i a teAuth (ReqAuthorize s i g na l ,

GWServerSM asm){
29 asm . sendMessage (new In i t i a t eAuth () , ” address ”) ;
30 }
31
32 pub l i c s t a t i c void SMPCAuthenticate(Authent i ca teUser s i g na l ,

GWServerSM asm){
33 // SMPC authen t i ca t i on p ro ce s s . Python code for SMPC i s

invoked from t h i s method
34 }
35
36 pub l i c s t a t i c boolean authVal id (Authent i ca teUser s i g na l ,

GWServerSM asm){
37 return f a l s e ;
38 }
39
40 pub l i c s t a t i c boolean authInva l id (Authent i ca teUser s i g na l ,

GWServerSM asm){
41 return f a l s e ;
42 }
43
44 pub l i c s t a t i c void sendAuthorizeNAuthAck (GWServerSM asm){
45 asm . sendMessage (new Authorized () , ” address ”) ;
46 asm . sendMessage (new AuthAck () , ” address ”) ;
47 asm . sendMessage (new Denied () , ” address ”) ;
48 asm . sendMessage (new AuthNAck () , ” address ”) ;
49 }
50
51 pub l i c s t a t i c void sendDeniedNAuthNAck (GWServerSM asm) {
52 asm . sendMessage (new Denied () , ” address ”) ;
53 asm . sendMessage (new AuthNAck () , ” address ”) ;
54 }
55
56 pub l i c s t a t i c boolean authVal id (Authent i ca teUser s i g na l ,

GWServerSM asm){
57 return f a l s e ;
58 }
59
60 }

Listing A.7: GWServer.java

74

A.6 User.java

1 package anonymousauthent ication . user ;
2
3 import anonymousauthent ication . RegAck ;
4 import anonymousauthent ication . RegRequest ;
5 import anonymousauthent ication . AnonRegReq ;
6 import anonymousauthent ication . UserReg i stered ;
7 import anonymousauthent ication . ReqCred ;
8 import anonymousauthent ication . Cred ;
9 import anonymousauthent ication . ReqTempCred;

10 import anonymousauthent ication . I n i t i a t eAuth ;
11 import anonymousauthent ication . ReqAuthenticate ;
12 import anonymousauthent ication . AuthAck ;
13 import anonymousauthent ication . ReqTokenCred ;
14 import anonymousauthent ication . TokenCred ;
15
16
17 pub l i c c l a s s UserAct i ons extends Object {
18
19 pub l i c s t a t i c void sendRegRequest(RegAck s i g na l , UserSM asm) {
20 asm . sendMessage (new RegRequest () , ” address ”) ;
21 }
22
23 pub l i c s t a t i c void U KeyToShares(RegAck s i g na l , UserSM asm) {
24 // Code for i nvok ing the Python code for c r ea t i n g shares

o f U Key
25 asm . sendMessage (new AnonRegReq () , ” address ”) ;
26 }
27
28 pub l i c s t a t i c void sendReqCred (UserReg i stered s i g na l , UserSM

asm){
29 asm . sendMessage (new ReqCred () , ” address ”) ;
30 }
31
32 pub l i c s t a t i c void sendRegRequestTest (UserSM asm) {
33 asm . sendMessage (new RegRequest () , ” address ”) ;
34 }
35
36 pub l i c s t a t i c void sendReqTempCred(Cred s i g na l , UserSM asm) {
37 asm . sendMessage (new ReqTempCred() , ” address ”) ;
38 }
39
40 pub l i c s t a t i c void sendReqAuthenticate (I n i t i a t eAuth s i g na l ,

UserSM asm) {
41 asm . sendMessage (new ReqAuthenticate () , ” address ”) ;
42 }
43

75

44 pub l i c s t a t i c void sendReqTokenCred(AuthAck s i g na l , UserSM asm
) {

45 asm . sendMessage (new ReqTokenCred () , ” address ”) ;
46 }
47
48 pub l i c s t a t i c void AccessResources (TokenCred s i g na l , UserSM

asm){
49 }
50
51 }

Listing A.8: User.java

76

Bibliography

[1] Oded Goldreich. Secure Multi-Party Computation.
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot. October 2002.
http://www.wisdom.weizmann.ac.il/õded/pp.html.

[2] E. Hammer-Lahav. The OAuth 1.0 Protocol. IETF RFC 5849, ISSN:
2070-1721, 2010.

[3] Andrew C. Yao. Protocols for secure computations. Foundations of
Computer Science, 1982. SFCS 08. 23rd Annual Symposium, pages 160-
164, 1982.

[4] Torben Pedersen. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. Advances in Cryptology CRYPTO 91, 1992,
pages : 129-140.

[5] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. STOC ’89 Proceedings of the twenty-first
annual ACM symposium on Theory of computing, ISBN:0-89791-307-8

[6] H̊avard Vegge. Master Thesis: Realizing Secure Multiparty Computation.
Department of Telematics, Norwegian University of Science and
Technology, Norway, June 2009.

[7] Michael Ben-Or, Sha. Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
STOC 88: ACM Symposium on Theory of Computing, New York, NY,
USA, 1988, pages 110.

[8] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty
unconditionally secure protocols. STOC 88: ACM Symposium on Theory
of Computing, New York, NY, USA, 1988, pages 11-19.

77

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. STOC 87: ACM Symposium on Theory of Computing, New York,
NY, USA, 1987, pages 218-229.

[10] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Proactive RSA.
CRYPTO’97: International Cryptology Conference on Advances in
Cryptology, 1997, , pages 440-454.

[11] A. Shamir. How to Share a Secret. Communications of the ACM,
22(11):612-613, 1979.

[12] Wade Trappe and Lawrence Washington. Introduction to Cryptography
with Coding Theory. Pearson Prentice Hall, Upper Saddle River, NJ,
USA, 2006.

[13] Atle Mauland. Master Thesis: Realizing Distributed RSA using
Secure Multiparty Computations. Department of Telematics, Norwegian
University of Science and Technology, Norway, July 2009.

[14] Branden Archer and Eric W. Weisstein. Lagrange
Interpolating Polynomial. MathWorld-A Wolfram Web Resource,
http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html,
Last Accessed: June 2011.

[15] Official Webpage: Virtual Ideal Functionality Framework,
http://viff.dk/doc/index.html, Last Accessed: June 2011.

[16] G.R. Blakley. Safeguarding cryptographic keys. National Computer
Conference, 48:313-317, 1979.

[17] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Multiparty computation goes live. Cryptology ePrint Archive,
Report 2008/068, 2008.

[18] Ivan Damg̊ard and Marcel Keller. Secure Multiparty AES. Financial
Cryptography’10, 2010, pages: 367-374.

[19] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay
- a secure two-party computation system. USENIX Security Symposium,
pages 287-302, 2004.

78

[20] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: A
system for secure multi-party computation. CCS 08: ACM conference
on Computer and communications security, pages 257-266, New York,
NY, USA, 2008. ACM.

[21] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. Cryptology ePrint
Archive, Report 2008/289, 2008.

[22] Simap - secure information management and processing, The
Alexandra Institute Centre for IT security, Last Accessed: June 2011,
http://www.alexandra.dk/uk/Projects/Pages/SIMAP.aspx.

[23] Martin Geisler, Ivan Damg̊ard, and Benny Pinkas.
MPC virtual machine specification. Technical report:
Computer Aided Cryptography Engineering, January 9,
2009. http://www.cace-project.eu/downloads/deliverables-
y1/CACE D4.3 MPC Virtual Machine Specification.pdf.

[24] E. Hammer-Lahav, D. Recordon and D. Hardt. The OAuth 2.0
Authorization Protocol. Internet draft, IETF, draft-ietf-oauth-v2-16,
May 2011.

[25] Humberto Nicolás Castejón and Rolv Bræk. A collaboration-based
approach to service specification and detection of implied scenarios.
SCESM ’06: International Workshop on Scenarios and state machines:
models, algorithms, and tools, 2006, isbn: 1-59593-394-8, Shanghai,
China, pages: 37–43.

[26] Rolv Bræk, Oystein Haugen, and Ystein Haugen. Engineering Real
Time Systems: An Object-Oriented Methodology Using SDL (The BCS
Practitioner). Prentice Hall, 1993. 416 pages, ISBN–10: 0130344486,
ISBN–13: 978-0130344489.

[27] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share Conversion,
Pseudorandom Secret-Sharing and Applications to Secure Computation.
Theory of Cryptography, 2005, pages 342–362.

[28] Twisted Documentation. Webpage http://twistedmatrix.com/documents/
current/core/howto/index.html. Last accessed: June 2011.

79

www.kth.se

TRITA-ICT-EX-2011:176

