Database syncrhonization
between devices

A new synchronization protocol for SOLite databases

&

£y,
SHITIAN LONG $KTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

Database
synchronization between
devices

A new synchronization
protocol for SQLite
databases

Shitian Long

Master thesis

2011.05.28

Examiner: G. Q. Maguire Jr.

Industrial Advisor: Anibal Wainstein, Diabetes Tools Sweden AB

School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden

maguire
Typewritten Text
2011.05.28

Abstract

Today people have multiple personal computers, personal digital assistants and smart
phones. Today’s advanced handheld devices have powerful processors, with a process
frequency of up to 1 GHz, huge storage capacities, flash storage capacities up to 32 GB, a
large (multi) touch screen, and a user-friendly user interface. Additionally, the device
may have various input and output devices, thus leading to people utilizing different
devices for different use cases. In order to provide the latest information to the users via
any of their devices, data synchronization becomes a requirement for users.

There are many data synchronization solutions for synchronizing database records and
files. In the current database synchronization solutions, there is no clear source and
target. For example, consider the case where a PDA synchronizes with a PC; the record
could have been edited (changed) on both the PDA and PC. In this case it is not clear
which should be synchronized with what should be the source for the value. In contrast,
a files synchronization system has a clearly specified synchronization source and
destination structure. In this case the client synchronizes their files with that of the
server. In a version control system the client devices synchronize files with a repository
acting as a version control server. There are many synchronization protocols and each
has been designed for a different purpose. Protocols for synchronizing database records
often provide continuous synchronization, leading to a lot of data being exchanging
during the synchronization process, as a result the synchronization process takes a
longer period of time, but maintains the semantics of the database updates (either a
complete transaction completes or it must be rolled back) On the other hand, protocols
for synchronizing files may require a short synchronization time, as the whole file
transferred and replaces the previous version of the file at the destination. Note file
synchronization may also transfer only the differences between the files, with a local
transformation of an existing file copy of the by applying these differences as updates to
the files. Sending only the updates to a file enables large files with a small number of
changes to be quickly updated. However, file based updated does not efficiently support
record level updates of a database.

In this thesis, we designed a new synchronization protocol for synchronizing two SQLite
databases. This synchronization protocol borrows from (and hence offers the
advantages of) a version control system in order to rapidly perform SQLite database
synchronization. Moreover, this solution brings SQLite database additional functions, for
example supporting multiple -user, transaction logs, and data roll-back.

Abstrakt

Idag manniskor har flera datorer, handdatorer och smarta telefoner. Dagens avancerade
handdatorer har kraftfulla processorer, med en process frekvens av upp till 1 GHz, stora
lagringskapaciteten, flash lagringskapacitet upp till 32 GB, en stor (multi) pekskdrm, och
ett anvandarvanligt anviandargrinssnitt. Dessutom kan enheten ha olika in-och
utenheter, vilket leder till manniskor som anvdnder olika enheter for olika
anvandningsomraden. For att ge den senaste informationen till anvindarna via nagon av
deras produkter, blir datasynkronisering ett krav for anvandarna.

Det finns manga datasynkronisering losningar for synkronisering av databasen register
och arkiv. I den nuvarande databaslésningar synkronisering, finns det ingen klar kalla
och mal. Till exempel anser de fall dar en PDA synkroniseras med en PC, posten kunde
ha utformats (dndrade) pa bade PDA och PC. I detta fall ar det inte Kklart vilka bor
synkroniseras med det som borde vara en kidlla for vardet. Daremot har en filer
synkronisering system en tydligt angiven synkronisering kalla och destination struktur.
[detta fall kunden synkroniserar sina handlingar med att pa servern. I en version
styrsystem klientenheter synkronisera filer med ett slutférvar fungerar som en version
Control Server. Det finns manga synkronisering protokoll och varje har designats for ett
annat dandamal. Protokoll for att synkronisera databasposter ger ofta kontinuerlig
synkronisering, vilket leder till en massa data som utbyte under synkroniseringen, som
ett resultat av synkroniseringen tar lingre tid, men behdaller semantik av databasen
uppdateras (antingen ett komplett transaktion slutfor eller si maste rullas tillbaka) A
andra sidan kan protokoll fér att synkronisera filer kraver en kort synkronisering tid,
eftersom de overforda hela filen och ersédtter den tidigare versionen av filen pa
destinationen. Obs filsynkronisering kan ocksa overfora endast skillnaderna mellan
filerna, med en lokal omvandling av en befintlig fil kopia av genom att tillampa dessa
skillnader som uppdateringar till filerna. Endast skicka uppdateringarna till en fil gor att
stora filer med ett litet antal dndringar som ska snabbt uppdateras. Men baserad fil
uppdateras inte effektivt stod till rekordnivan uppdateringar av en databas.

I denna avhandling har vi tagit en ny synkronisering protokoll fér synkronisering av tva
SQLite-databaser. Denna synkronisering protokoll lanar fran (och darmed férdelen av)
ett versionshanteringssystem for att snabbt utféra SQLite databas synkronisering.
Dessutom ger denna 16sning SQLite databas ytterligare funktioner, till exempel stéd for
flera anvindare, transaktionsloggar och data rulla tillbaka.

I1

Acknowledgements

My first acknowledgment goes to Anibal Wainstein, my supervisor who guided me with
regard to the standard of enterprise level distribution system programming, the magic
of design patterns and how to work with a development team. I also acknowledge
Mehmet Yildiz and Muhammad Ahmad, my team members at industry, thank you for
discussing technical problems with me. Mehmet Yildiz especially offered me a great deal
of help in C# programming with the .NET framework. I learned a lot from both of you. I
thank all my colleagues, Fredrik Wallander, Markus Eriksson, and others for your kind
help during my project at industry. I thank my boss Lars Liljeryd, for his support and
continuous encouragement.

I thank Professor Gerald Q. "Chip" Maguire Jr. who was my supervisor at KTH. He
reviewed my thesis carefully and gave me a lot of useful comments. I also thank
Professor Mark Smith, who gave me much good advice.

Finally, I give special thanks to Jian Wang, my unique fellow classmate at KTH. I want to
say, you are the one who always helped me with programming and I was very so lucky
and enjoyed working with you.

II

Table of Contents

AN) 0 = Lot OO I
ADSEIAKE ...ttt ettt e s es e s e a bR R RS R AR AR R R R 11
ACKNOWIEAGEIMEINES......ceereereerereerserse e sssessess s s st s s as bR s s R R I11
TaADIE Of COMEENTScurieereeeeeeeectreeeeaeteessee s s b s s s bbb a b s a s e bbb bbb b 1\Y
LIST Of FIGUIES ...ttt et ses st es bbb s R s a st VI
5] 0 0 = o (= PP VII
GLOSSATY weueeeeuseeseeeseeusebeess e s ssesse e s s e s s s s s RS E R ER £ AR ReEaEEER AR bbb st et VIII
B 0 U o L1 Ut o) o W00 PP 1
2 The concept of data SYNCRIroNIZatioN. ... 5
2.1 Fundamentals of SyNChronizZation. ... eeeneeneeseeseseesseessessssssssssssssseessesssssssssssanes 5
2.2 One to One synchronization model and SOIUtIONS ..o 8
2.3 Fastand SIOW SYNChIrONIZation ... sesssesee s ssssssssssesssessssasees 15
2.4 Database transaction log based synchronizationeeensensesseseenees 18
2.5 Repository based synchronization SyStem ... 18
2.6 Synchronization ProtOCOLS...... e isessesssse e sssessssssessessse s s sss s ssssasees 23
2.7 Real-time and non-real time SyNnchronization...........—n 26
2.8 Summary of performance evaluation ... ———, 27
3 Database synchronization with @ rePOSItOTY....coerrinereenneereesessersseessessesesssssssesesssesssssees 29
3.1 Introduction to zero configuration databases........eerreesreeesmeesseesseeseesssesssesssenes 30
3.2 Introduction to the testing bed STrUCTUTE........ovreereererrecrreereeseeseieesseesee e esseesseas 31
3.3 Synchronization Solution analySis......c e seesesseesseessssessessssssessssenes 32
4 Implementation a non-real-time synchronization SYStem ... 43
4.1 Synchronization SYStEIM OVETVIEWoereereeseseesseessessessesssssssssssssssssssssssssssssssessssssees 43
4.2 Synchronization system implementation ... —————. 47
4.3 Modules of the synchronization SYSTEM ... 49
4.4 Testand performance eValuUation....... e esssssssssssssseens 53
5 Conclusions and FULUIE WOTK ... sssssssssssssssssssssssssssssseses 55
5.1 CONCIUSIONS ouceieerieeireseesseeseessessesssesse s ssssss e s s es e s sse s a bbbt snna s 55
5.2 FULUIE WOTK oottt st ss et s s e s b 55
2T (=) (=) o Lol =T 3PP 57
APPENAIX eveeieeeeeretreeseteessee s es et es e s R R R E AR R AR E R e 61
A. Useful tools used when developing appliCationoeeeereeneeesseesseesssesseesseessesseesseees 61
B. Raw information COIlECHION. ..ot sesssessses s s sessssssnns 62

IV

List of Figures

Figure 1: Overview of synchronization across three SyStemsc.coccoeneensenmersneeneeessesseesnnes 2
Figure 2 Overview of solution based on the questions above.......coerenncneenseneesneseeneens 3
Figure 3: Different synchronization paradigms. ... ssesssssssenns 6
Figure 4: PIM contact information is modified and synchronized between the source
device and @ tArZEt AEVICE .. es e sess s ses s s s s ps s p s e 9
Figure 5: Time-stamps for one source and one target device synchronization..........c...... 11
Figure 6: Synchronization determination proCeAUIe. ... ereeneerneenseeseeseeessersessessessessees 12
Figure 7: Using synchronization flags for one source and one target device
ESN74 016 U (0} 4312 1 U0 o FOE OO PP 13
Figure 8: Synchronization flags solution working floweneneennsenecnseesseseeeseeeeeenns 14
Figure 9: Contact information changed on both source device and target device at the
T2 1 00T o D0 0 L 16
Figure 10: SIOW SYNChIONIZAtION.....ccrieceereeectreesetcessee s seses s ssses s st s s sss s nssse s 17
Figure 11: Typical structure of a version control SYStEM.couemeemeeereeesseessesseesssesseeesesesseenns 19
Figure 12: Copy - modify -merge solution work (where “+” indicates an insertion and “-”
INAICALES AELETIOMNS) .uueueerieerieeesreeeet e esesees e ees et es bbb bR s s 20
Figure 13: Copy - modify -merge solution works continuedccooeemenmeneenseenseeneennesseenees 21
Figure 14: Lock-Modify-UnloCK SOIUTIONvuueuriereeceereereceseisesersee e ieesssssses e seessessssssesssesssssees 23
Figure 15: SyncML protocol FramewWorK ... eeeeeessesssesssessssssssssssssesssessssssssssssessss 25
Figure 16: TeSting DEA SEIUCTUIE. ... reeeseeeseessessesssessesssess et sesssssssssessssssssssss s sssasssesssssssssssss 31
Figure 17: Indication different actions of database record........onenneneenseenseeseessesseenees 34
Figure 18 Encoding records time to either SQLite binary files or SQL Statement textual
(TN 36
Figure 19: Files length comparison SQL statement (text) and SQLite binary format........ 37
Figure 20: LatenCy tESTING CASES. ..o rersesseessesssessessesssssssssssssessesssssssssesssesssssssssessesssesssssnes 38
Figure 21: File length to be transferred based on different time intervalcccooecerirneunnen. 39
Figure 22: SFTP transfer at client has sleep time interval........ s 39
Figure 23: SFTP transfer time when synchronization process has sleep time interval....40
Figure 24: Performance of binary message encodingcoeeenreseesseesssesssesssesssesssesssseenns 41
Figure 25: Performance of textual message encodingoeneemeeseesneesnsesssesssessseessesssseenns 41
Figure 26: Synchronization bDasic SIIUCTUTE. ...t ieesssesse e sssse s ssesees 44
Figure 27: Synchronization data flOW ... esssssssssessessssaees 44
Figure 28: Network topology of the synchronization SyStem.......eeeeneeneesnsereeesseenns 46
Figure 29: SyncTable WOrK flOW ...t sesssssssssssssssssssssssssesssesssssssssssss 48
Figure 30: Overview of the structure of the synchronization system: Details of the server
) L[P O T 50
Figure 31: Synchronization server work flow to send filesccuorneconnneneenneeseesseesseseenees 51
Figure 32: Synchronization server work flow for database synchronization........c.ceec... 52
Figure 33: Working flow of the client side of the synchronization process.......cccoueneeenn. 53

VI

List of Tables

Table 1: Comparison between the regular DBMS and “Zero Configuration DBMS” 30
Table 2: Technical details of the three machines ... 32
Table 3: sample table used for teSting Ded.....cocorereenreeneerrereeseeeeseesee e eessee e 32
Table 4: Requirements of a synchronization protocol for use with databases........ccuucnen. 33
Table 5 Table structure in the synchronization SYSteM ... 35
Table 6: SYNC. tADIE STIUCTUTEcueeeceereereeeet et ssseessessessessessse s bbb s s s ss bbb 35
Table 7: Files length (in bytes) comparison with SQL statement textual files encodings
and SQLite binary filesS @NCOAINGS......coururenreueeseereesserssesssnsssseessessesssesss s sssss s s s sssssssssssesas 37
Table 8: Structures of COMMENTE tADLE........ e ess s 45
Table 9: Useful tools used when developing application ... eeeeeeesseesnsessseesseeeseeeseenns 61
Table 10: SEATCH LETIIIS c.ucuiuecerieereeeeseeseesseeees s ssses s es s s s es bbb s bbb 62

VII

Glossary

ACID Atomic, Consistent, Isolated, and Durable
CORBA Common Object Request Broker Architecture
DBMS Database Management System
DTD Document Type Definitions
FTP File Transfer Protocol
HSPA High Speed Packet Access
HTTP HyperText Transfer Protocol
HTTPS HTTP over SSL
ICT Information Communication Technology
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
LTE Long Term Evolution
MS Microsoft
PC Personal Computer
PIM Personal Information Message
RDBMS Relational Database Management System
RMI Remote Method Invocation
SFTP SSH File Transfer Protocol
SSL Secure Socket Layer
UDP User Datagram Protocol
WCDMA Wideband Code Division Multiple Access
WSDL Web Service Definition Language
XML eXtensible Markup Language

VIII

1 Introduction

During the last decade people have been using more and more information
communication technology (ICT) devices; based on annual reports of global computer
usage, cellular phones and other consumer electronic devices ownership has increased
and will continue to increase. [1] [2] [3] In some countries, the majority of people have
more than one computer or cellular phone. Users store different amounts of data in
many devices. These amounts of data can be stored or manipulated by a Personal
Information Manager (PIM) and it may include personal contact information, calendars,
schedules, or binary files such as MP3 media files and applications files. Different
devices are used in different situations. For example, at home a desktop computer might
be used, while on the train a cellular phone or tablet might be used often, and at the
office, customer sites, and in hotel rooms, the company’s laptop might be used. In any
cases, users need to review and update the same type of data on a different machine.
Additionally the users expect to have the latest version of their records or files, despite
they use different devices in different situations. Therefore data synchronization
between different devices is an increasingly important users’ requirement.

In order to make sure all the users’ devices have consistent information despite users
making update using different devices, these devices need to send updates messages
between themselves. For example, if users insert new contact record into their office
laptop, then this updated contact record should propagate to all of their contact
databases (i.e.,, the contact database on each of their different devices). If the user
downloads an MP3 media file to their cellular phone, then they might want this media
file propagated to their laptop and desktop computers. If the users update a document
file on their home desktop and might this document concerns their work, then users
may expect that their corporate laptop to receive an updated copy of this document. If
this document is subjected to vision control system, then updated version might be
placed in the company’s document repository. In these cases, the users’ devices have to
send messages between themselves with the changes necessary to ensure consistent
information in all of the users’ devices. These changes include database changes, binary
files changes, or ASCII (text)! files changes (see figurel).

1 An ASCII file is defined as a file that consists of ASCII characters. It is usually created by using a
text editor such as emacs, pico, vi, Notepad, etc. [43]

1

Office Laptop

PIM contact info.

Office laptop

PIM contact
info

MP3 binary file
MS Word files.

MP3 binary file
PIM contact info.

MP3 binary file
MS Word files.

Insert MP3
binary file

Smart Phone

MS Word files
PIM contact info.

MP3 binary file
MS Word files.

Home desktop Changes MS

Word files

Figure 1: Overview of synchronization across three systems

In the scenario shown in the Figure 1, a user has three devices: office laptop, smart
phone and home desktop. The user makes changes to databases records, binary files or
other files on these different devices. In the example above, a MP3 file is used as an
example of a binary file and Microsoft Word *.docx format file is used as an example of a
text file2. After synchronization, all the user’s devices should have the same contents.
Note that this example assume that all devices should be consistent and do not consider
policies about what updates should or should not be propagated to the other devices.
The issues of such policies will be addressed in Chapter two.

There are four important issues involved when discussing synchronization between the
three devices in the scenario above. First recognizing changes on end devices; for
example, how do end devices’ application recognize and record a user’s actions on a
database, like the user’s inserting, deleting or modifying records actions. The next
question will be how end devices encode the user’s changes and send the other devices
of these changes. For example, in this case shown in Figure 1 above, the changed PIM
contact information could be encoded in either a proprietary binary file format or a
plain text file (such as SyncML standard format text file) in order to inform a
synchronization server of these changes. After the user’s changes on one device has
been encoded and sent to the other devices, thus the next question will be which
protocol will be used to send these changes. The choices of protocols can be vary
depending on the types of physical and link layer connections that are available. For
example, a smart phone might be connected via a USB link with a computer, in this case
the encoded change data will be sent via the USB connection using a serial link protocol
[4]- In other case, the devices might be connected via an IP network; so the devices will
send packetized encoded information via a TCP connection, a series of UDP datagram or
via some other transport protocols. After the information about the changes is about to
send to a synchronization server (we assume that there is an application on the
destination devices that will make apply the changes to the local device in order to
synchronize the target device with the source device), next question concerns where a

2 In this example we consider Microsoft Word *.docx format a textual format file, since the *.docx
format is based on XML.

synchronization server or servers are. Therefore our choices of mechanism to propagate
the changes (i.e., to transport the change information) as well as our choice of method to
apply the changes may depend upon the number of recipients. For example, if multiple
recipients get the changes, then either multiple TCP connections or multicast UDP
connections need to be established. Alternatively, the data might be sent to a single
synchronization server which acts as a proxy for a number of other synchronization
servers, thus synchronization server is then responsible for updating each of the other
devices. In this thesis we mainly discuss one synchronization server model (the details
will be presented in Chapter four). Finally after the changes are received by
synchronization server, the next question is how the server performs the
synchronization. These four questions will be used to structure discussion and design of
a solution. Figure 2 shows an overview of the structure of data synchronization
solutions.

Data Synchronization

|
I S P—— — 1

Binary files | Database ASICII (Iextual) format Synchronization
data types
- I [l —_— [| — L} —_— n L]
1 |
Format to Plain text Format to Binary files I Encoding
I I I - o s " s " Em
Via other connection I Via TCP/IP I Choice of channel (path)
. I - o s " s " Em
- 1 |
Other protocols Via SFTP Transmission via a
1 " transport protocol
I I I —_— n — L} —_— n -_—
I - I . Performing the
Others I Use APl read changes synchronization at the
I target

Thesis focus

Figure 2 Overview of solution based on the questions above

The top layer of Figure 2 shows that an initial question is the data types that will be
synchronized. In this thesis we divide these types in to the followings: binary files,
database records and text files. The second layer shows two alternative ways of
encoding the changes for transmission between the source device(s) and the target
device(s). The third layer shows that there may be different paths for transmitting data
between the source and the destination(s). In this thesis we will consider the case of
using TCP/IP protocol. The forth layer indicates that different transport protocols can be
used, like SFTP or HTTPS; (HTTPS represents a combination of HTTP with SSL/TLS over
TCP; while SFTP represents a combination of a file transfer protocol with SSL/TLS over
TCP). Lastly, the end device can have different ways to process the received data, such as
use of a specific APIs to perform the actual data synchronization.

This thesis will describe mechanisms of data synchronization between Personal
Computers (PCs) and consumer electronics, consumer electronics including smart
phones or PDAs. The synchronization process between devices can be categorized into
two groups. Firstly from a temporal perspective, the process can be real-time or non-
real time synchronization. The second group concerns whether there is a single source
device synchronizing with one target device or a single source synchronizing with many
target devices. This thesis will mainly focus on non-real-time synchronization and a
single source synchronizing data with many target devices. The thesis will motivate the
need for solutions for handling non-real-time data synchronization using an example
use case. In this use case the thesis will analyze a number of different solutions with
their advantages and disadvantages and synchronization solutions will forces on
working with databases records. Next, the selection of solution methods will be
validated using measurements of an implementation of a non-real-time database
synchronization system with SQLite database and .NET framework.

This thesis is structured into a number of chapters: This first chapter introduced the
problem and gave an overview of this thesis. Chapter two introduced the concept of
synchronization, along with a discussion of differences between the real-time and non-
real-time synchronization. In chapter three, the thesis described non-real-time
synchronization in more details and listed solutions for performing non-real-time
synchronization, and then analyzes advantages and disadvantages of different solution
to implement a non-real-time synchronization system. In Chapter four the details of an
implementation and its design based on the .NET framework, SQLite databases and
TCP/IP connections are presented. The performance of this prototype will be examined
based upon analysis of the results of a number of tests. Chapter five presented the
results of the previous chapters and draws conclusions. Additionally, chapter five
presented some ideas for improvement to this prototype and suggestions for future
works.

2 The concept of data synchronization

In this chapter, we will introduce the concept of data synchronization; including theories,
single source and target synchronization versus single source and multiple targets, some
widely used solutions for real-time and non-real-time synchronization; commonly used
synchronization protocols for PIM database records; and the performance of different
protocols. This chapter is mainly based on the paper by Agarwal, Starobinski and
Tranchtenberg [5], Subversion Documentation [6], Concurrent Versions System (CVS)

[7].

2.1 Fundamentals of Synchronization

Data synchronization is a process to maintain data consistency among source(s) and
target(s). The data can be different types or formats, for example a database record,
binary file, or textual file [5]. We will separate this process into five topics in the
discussion below.

Firstly, the number of source and target devices: there might be only one source device
and one target device to synchronize; This single source to single target paradigm is
widely used for synchronizing data between a PDA and an especially PC for PIM data.
Another example of single source and target paradigm is to synchronize media files
between a media player and a PC, so that users can create their playlist using desktop or
laptop and utilize the playlist and media files in their media player. In contrast, there can
be more than two target devices which a single source should synchronize with. For
example, users might have a media player used for jogging and another that used when
commuting to and from work. There is also the possibility for more than two source
devices to synchronize with a single synchronization server. For example, this paradigm
is commonly used for file synchronization via a version control system, and sometimes it
is also used to synchronize a PDA with multiple desktop PCs. Lastly, there can be many
target devices synchronizing with many source devices; this model is more complicated
than the other cases, and more related to The Peer-to-Peer3 model. The example of this
scenario may involve many PCs synchronizing media files with each other without a
central media server. Figure 3 shows these different synchronization paradigms. Note
that the clients can be acting as either a source or target or as both a target and source.
For example in the case of source code version control system, the server is the target
for clients which act as sources to provide their individual updates, then the server acts
as a source to provide the updated files to any client which acts as a target. Figure 3
shows the three main synchronization paradigms: one device to one device, one device
to more devices and more devices to more devices synchronization.

3 Peer-to-Peer is any distributed network architecture composed of participants that
communicate with each other to share resources (for example disk storage,) directly between the
participants without the need for central coordination. [42]

5

iJ Synchronization

- T
Ry = =
Target device Source device

One target and one source device
synchronization

Synchronization server

| TCP/IP connection

Client device Client device Client device
A B N
Multiple clients and one server
synchronization

Client A

|

SyAchronization
ClientE [P conneytbn Client B

Client D Client C

Multiple peers synchronizing between
each other without a server

Figure 3: Different synchronization paradigms

The number of devices to be synchronized can lead to different synchronization
approaches. One approach does not have a clear synchronization server and client
structure; as both client and server can modify, delete, or insert the data in a local
database or file system. This approach is commonly used in synchronizing PIM data
between desktop PCs and hand held devices. The other approach has a clearly identified
synchronization server and client structure. All of the clients connect to the
synchronization server, the synchronized data is not accessed directly on the
synchronization server, rather than a client synchronizes with the server in order to
access the data. This structure is commonly used in version control systems.

6

As noted earlier different data types may be involved in the synchronization. As shown
in the previous example, these are frequently binary files, textual based files and
database records. In the case of the type of database records, the size of these database
records is very small. As a result an application might support real-time synchronization
by sending messages between devices when any change is made. In the case of a version
control system the program’s source code files are always in a text format. Because the
changes to these files generally only concern few lines of the file, it makes sense to send
only the additions and deletions in terms of lines between two versions of the files. This
reduces the amount of information that needs to be transferred between the two
machines and decreases the time it takes to synchronize. Lastly, there are binary files,
such as media files, executable application files, images, video clips, etc. Binary files are
generally synchronized as a single binary file (although the underlying system might
split the file into chunks - for examples as is done in BitTorrent [8]). There are a lot of
applications that perform binary files synchronization, some are media management
applications, such as Apple’s iTunes®4, DropBox.

When it comes to synchronization protocols: different synchronization protocols can be
used in different situations. The most commonly used protocol for handing PIM data
synchronization is Synchronization Markup Language (SyncML). SyncML is an open
standard for synchronizing PIM contacts, task lists, and scheduling records between
handheld devices and PCs or servers. A typical example is synchronizing a Windows
Mobile based PDA with a PC running Microsoft’'s Windows XP OS using the Microsoft
ActiveSync. [9] The SyncML protocol is frequently used over an USB connection, but it
also works a suitably equipped PC and PDA with serial connection such as Bluetooth.
SyncML can also be used over HTTP (which in turn uses TCP as its transport protocol),
for instance, Microsoft’s Exchange Server Protocols. The Exchange Server Protocols are
exchange information between two applications running on computers connected via a
network to accomplish predefined tasks. [10] This protocol frequently used by Windows
Mobile devices i0S devices to synchronize PIM data or e-mail with Microsoft Exchange
Server.

Another important factor in synchronization is the scalability of the synchronization
process. The most common evaluation of scalability is the performance of a
synchronization protocol or mechanism. This is a function of the time complexity of the
protocol (or mechanism), where a short synchronization time reflects better
performance. The performance can also be evaluated in terms of the following
parameters: [5] data transmission load; end device’s computational load; number of
devices involved in communicating; robustness (with respect to errors in transmission);
and the memory usage on the end device(s). We will examine each of these details
below.

e The data transmission load is the amount of data exchanged between source
(devices) and target (devices). For a given throughput over a connection, the
data transmission load affects the time consumed for each synchronization
process. The less data to be transmitted the better the synchronization protocols

4i{Tunes® is a free application for Apple’s Mac and PCs. This application synchronizes media
content between computer and the user’s iPod, iPhone, or Apple TV.

7

are. The pattern of communication may also be important - as the duration of
the connection might affect both cost and battery power consumption. This is
particularly important for handheld devices.

e For end device the computation load refers to the processing load on the end
device during the synchronization process. A lower computational load not
necessarily indicates a better protocol, since a higher computational load might
be acceptable to reduce the amount of data to be transferred, especially if the
cost of transferring data is high. Additionally, because different devices have
different performance processors it may be desirable to shift the processing load
to specific devices - if a device has a high performance processors, it will reduce
the load on the other device involved in the synchronization. However, if the
processing load on a handheld device is too high, then the protocol may not be
acceptable because of the limited battery power available to such devices.

¢ The number of devices that communicate together at one time (which might be
called the synchronization network size) refers to the ability of the
synchronization protocol to handle a number of nodes. For example, Palm’s
HotSync protocol only supports one PIM database synchronizing with a single
PDA, thus if a user has two or more PDAs they cannot use this protocol to
synchronize their PIM information across these devices. In contrast, Microsoft
Exchange protocol supports more than one device being synchronized with one
Or more source severs.

e Robustness refers to the error handling ability of the synchronization
mechanism. If the mechanism has a single point of failure or is unable to handle
message errors during the synchronization process, then the synchronization
protocol is not robust. Synchronization protocols that transmit text based
messages always have higher robustness than binary messages, as there is
higher redundancy in the text message. However, to achieve high robustness we
need to utilize some sort of error detection recovery or correction mechanisms.
This error detection and correction could be provided by the synchronization
protocol itself or by a lower layer protocol.

e The amount of memory needed by end device during synchronization is
important because handheld devices do not all have large amounts of memory.
Therefore this parameter is particularly important for handheld devices. As the
amount of memory increase this parameter becomes less important.

This thesis will study synchronization process in terms of the parameters above;
synchronization models, file types; standard synchronization protocols, and exchanging
messages between two devices.

2.2 One to One synchronization model and solutions

2.2.1 One source to one target device synchronization model

In the “one to one” synchronization model two devices synchronize data between
themselves. This model is mostly used for synchronizing PIM data between a PDA and a
PC. Here we will consider an example of this simple data synchronization model - one
source device and one target device in a synchronization scenario. In this scenario the
target device is always synchronized with the same source device. Furthermore we

assume initial the source device is a desktop PC, the initial target device is a PDA, and
the data to be synchronized between PC and PDA are PIM database records. Figure 4
shows an update of a PIM contact. The first portion of the example shows a PIM contact
(for Mr. Long) being added at the PC and this is propagated to the PDA. In the next
portion of the example, the user deletes an entry (for Mr. Green) form the PIM contact
database on the PDA. And the next step, it synchronizes with the PC, at this stage, this
entry is deleted from the PC’s copy of the PIM contact database.

Initial list (0) . . I Initial list (1) .]
i Contact information : = | Contact information
s T ot T ! s T SN SSa |
| Mr.Smith|+1888 | | Mr.Smith | +1888 |

i Mr. Green | +1 777

| |
L _il L g

| Mr.Green | +1777

Modified list (2) —.. ey
| | .
| Contact information

B e X !
- Mr. Smith | +1 888 I
| Mr.Green |+1777

Mr. Long | +467 I

| L i

< Synchponization >
|

Modified list (3) -

—— e — 1

i Contact information I
Target device

Source device

B R R |
Mr. Smith | +1 888 I
Mr. Green | +1 777

Mr.Long | +467 ! I
. a
L}
Modified list (4) .] I
i Contact information
- B ok SEE R R I "
Source device . Mr. Smith | +1 888 I I
| Mr-Green{+1-777 :
Mr. Long | +467 I -

— e i — e — s -

< Synchr'onization >

- Modified list (5)

Target device

i Contact information !
O e Tt e o T o !
Mr. Smith | +1 888 I
Mr. Long | +467

—_—— e e i — e — .]

Figure 4: PIM contact information is modified and synchronized between the source device and a
target device

In the scenario shown in Figure 4, initially both source device and target device have the
same two contacts records in their respective contact information list, there are shown
as “Initial list (0)” and “Initial list (1)”. Next one contact record (for Mr. Long) is inserted
into the source device. After inserting this synchronization of record occurs, the new
record is inserted into the list of contacts in target devices. Following there is a record is
deleted from the PDA, this now becomes the source device, thus in the next
synchronization the record will also be deleted from the target device.

2.2.2 Synchronization solutions

To implement one-to-one synchronization, it can be implemented by maintaining
synchronization flags or timestamps. The synchronization time-stamp solution is
commonly used to mark the records changed in the database. In order to store this time-
stamp, an additional field is implemented in each record of database to store the time of
its update. Normally the data type for this new field is the “time stamp” format. Figure 5
shows an example of using the time-stamp solution for synchronization. This example
uses the same data as in the scenario above.

10

PDA PC

Mr. Smith | +1888 |07:00 | _
Mr. Green | +1 777 | 07:00 | [| Mr. Green | +1 777 | 07:00 |

Initial Contact list (0) I Initial Contact list (1)
| Contact information | " | Contact information |
T s e : I T :
Mr. Smith | +1 888 | 07:00 !

I | Contact information |
- TS T S S S .

Mr. Smith | +1 888 | 07:00 !
I | Mr. Green | +1 777 | 07:00 |

| Mr.Long |+467 |07:04<-

|
< Synchronization >
L]

Modified contact list (3) I Modified contact list (4)
: . e —
| Contact information | | Contact information |
B o At ot = . I I e :
Mr. Smith | +1 888 | 07:00 ! © Mr. Smith | +1888 | 07:00 !
| Mr.Green | +1777 |07:00 I . | Mr.Green|+1777 |07:00 I
| Mr.Long |+467 |07:04<- | I | Mr.Long |+467 |07:04<- |

| Contact information |
I e e :

Mr. Smith | +1 888 | 07:00 ' |
| Mr Green}+1777 }08:00<-
| Mr.Long |+467 |07:04 | .
< Synchionization >
Modified contact list (6) I Modified contact list (7)

. : .)
| Contact information | | Contact information |
i B s T s g (ot : I | B T o St SR R :
Mr. Smith | +1 888 | 07:00 ' Mr. Smith | +1 888 | 07:00 '
W< | . o< |

| Mr.Long |+467 |07:04 | Mr.Long |+467 |07:04

Figure 5: Time-stamps for one source and one target device synchronization

In the example shown in the Figure 5, there is additional field, which contains the time of
the last change in any PIM record. In the initial case, there are two records in the contact
information table, which both have the time-stamp of “07:00”. Next a record is added to
PC at 07:04. After this the synchronization occurs. During the synchronization process,
both devices send each other their latest time-stamp, and check if these latest time-
stamps are equal or not. If the latest time-stamps from both PC and PDA are equal, this
means that there are no records need to be synchronized. Otherwise, the device with
later time-stamp become the source would send all of its records that have been
changed since the time of the last synchronization to the other device - excluding those
that have just been added due to the first phase of the synchronization. Now both

11

devices update their time of last modification and synchronization to the current time.
In the Figure 5, after synchronization both devices have same records.

Source latest timestamp = A [A==B]
Target latest timestamp = B

A\ 4 A\ 4

e a s N
Collect all records Collect all records
since last sync. since last sync.

\ J . l J
e l N e N
Send to device B Send to device A
\ J N l J
e l N e N
Make sync time- Make sync time-
stamp equal stamp equal
\ J \ J

I I
v

Marge data]

)

v

[Finished]4—

Figure 6: Synchronization determination procedure

As shown in the Figure 6, the first step has both devices send messages in order to
compare their latest time stamps, if the latest time stamps is equal, the synchronization
process finished, as no changes have been made on either device. If the latest time
stamps are not equal, the synchronization mechanism has to merge the changed data
from both devices. An alternative method other than using time-stamps to maintain
synchronization process is to use synchronization flags.

Figure 7 shows how synchronization flags works. It utilizes the same scenario as used in
the previous example. As shown in the Figure 7 an additional field has been added to
each record in the database. This field contains a flags which indicates if this record has
been synchronized with the other device or not. In our case, Zero (0) indicates that it has
not been synchronized, while a value of one (1) indicates that the record has been
synchronized. When a new record is added to the database, the flag is set to zero
indicating that the new record has not yet been synchronized with the other database.
After synchronization the flag will be set to one.

12

Source device

Initial Contact list (0)

Target device

Initial Contact list (1)

| Contact information | Contact information |
T s e : I T :

Mr. Smith | +1888 |1 I : Mr.Smith | +1888 |1 I
! Mr. Green | +1 777 |1 | [| Mr. Green | +1 777 |1 |
] S

" Modified contact list (2)
I | Contact information |
. T s e :
Mr. Smith | +1888 |1 '
I ! Mr.Green |+1777 |1 |
| Mr.Long |+467 |0<- :
. ! |
|
Synchronization
L]

Modified contact list (3) I Modified contact list (4)
e — . e —
| Contact information | | Contact information |
S e . I I e :

Mr. Smith | +1888 |1 ' Mr. Smith | +1888 | 1 '
! Mr.Green |+1777 |1 | " ! Mr.Green |+1777 |1 |
| Mr.Long |+467 |1<- | I | Mr.Long [+467 |1<- |

L}

Modified contact list (5) I
| Contact information |
I e e .

Mr. Smith | +1888 |1 ! |
| Mr Green}+1777 }0<- i
| Mr.Long |+467 |1 .

Synchionization

Modified contact list (7)

. . .

| Contact information | | Contact information |

i B s T s g (ot : I | B T o St SR R :

Mr. Smith | +1888 |1 ' . Mr.Smith| +1888 |1 '
<- I L]

| Mr Green|+1777 |1
| Mr.Long |+467 |1

Mr.Long |+467 |1

Figure 7: Using synchronization flags for one source and one target device synchronization

The Figure 8 shows the working flow of synchronization flags solution.

13

[“A” has flag with 1
“q

N
“B” has flag with
@
A
v Y
e N r A
Rec. “A” with flag Rec. “B” with flag
“0” to buffer A “0” to buffer B
& l J 1\ J
() e l R
Buffer A Buffer B
Send to B Send to A
& ‘ J g J
4) e ‘ N\
“A” setall flag “B” set all flag
with “1” with “1”
- J/ N\ J/
(l N\
Merge data A
(. J
s l \
Merge data B
| J
(N\
Finished
(. J

Figure 8: Synchronization flags solution working flow

In the Figure 8, this mechanism only checks the synchronization flags, then, moves all
the records with synchronization flags set to “0” to a buffer, send the buffer to other
device, and the target device merges these records with its own data. This approach
requires additional bit of storage per record in order to store the synchronization mark
data. Compared with the time-stamp solution, which requires four bytes of extras
storage per record and two times four bytes for the time stamps of the last
synchronizations process, [11] the solution using synchronization flags requires less
memory space. Therefore marking record in the database in order to keep data
consistency between source and target device, using synchronization flag has less data
consumption than using a time stamp. However, the use of synchronization flags is only
applicable to the case of two devices and does not extend to do synchronization of
multiple devices. Additionally, one should consider the number of records that are likely
to be involved in a PIM -in most cases- this number will not be a relatively big number,
hence storage consumption between synchronization time-stamp and flags is be
considered as a major issue.

14

The example above mainly focused on one source device synchronizing with one target
device. However, if more than two devices are involved in the synchronization process,
the case becomes more complicated.

2.3 Fast and slow synchronization
This section introduces two synchronization models called “fast synchronization” and
“slow synchronization”.

2.3.1 Fast synchronization model

Fast synchronization is most often used when a target only synchronizes with a single
source device, however it also can be used when one device synchronizes with more
than one device. In this case the target device uses synchronization flags or time-stamps
to mark records that have been modified since last synchronization, the synchronization
flags or time-stamps are saved with each record. When synchronization starts, the
synchronization flags or time-stamps will be checked. Source devices will compare these
records with the records on the target devices. After that, one of the following
operations will occur: The target device’s modified record(s) will be inserted to the
source device; the target device’s record(s) will be replaced by record(s) from the
source device; or the appropriate record(s) will be deleted from the source or target as
appropriate. After synchronization all the synchronization flags will be reset (i.e. set to
the value one). Note that, during the synchronization process, the computation work,
such as comparing the synchronization flags or time-stamps, should be done on the
more powerful CPU machine. For instance, if the synchronization is done between PC
and PDA, most of the computational work will be done on the PC side.

However, if there are more than one target devices or source devices in the
synchronization process, as shown in the Figure 9, the synchronization flags in used the
fast synchronization model cannot be used. This is because the synchronization flags
will be reset when the target device is synchronized with first source device; hence there
are no synchronization flags to be used for target device synchronizing at the second
source device connected. Although the synchronization flag concept could be extended
to have additional flags for use with multiple devices, the use of time stamps seems
more appropriate for use with multiple devices.

15

Source device A Target device

Initial Contact list (0) Initial Contact list (0)
| Contact information | | Contact information |
i B o At ot . I e
Mr. Smith | +1888 |1 I : Mr.Smith | +1888 |1 I
Mr. Green | +1 777 |1 | | Mr. Green | +1 777 |1 |

Source device B

Initial Contact list (0)

Contact information |
T e :

Mr. Smith | +1888 | 1 '
Mr. Green | +1 777 |1 |

Source device A Target device
Initial Contact list (0) Initial Contact list (0)
| Contact information | | Contact information |
T e e e : T e e e B :
Mr. Smith | +1888 |1 I © Mr.Smith | +1888 |1 I
Mr. Green | +1 777 |1 | | Mr. Green | +1 777 |1 |

I : | Mr.Long |+467 |0<-

Source device B
Initial Contact list (0)

Contact information |
[T T e e e e e R R .
Mr. Smith | +1 888 |1 !
Mr. Green | +1777 10 <- i

Figure 9: Contact information changed on both source device and target device at the same time

In the Figure 9, there are two source devices. If the changes have been made on both of
the source devices and target device, then synchronization flags will not work. To
address this problem we will introduce the slow synchronization model.

2.3.2 Slow synchronization model

For the cases that the fast synchronization model cannot handle, slow synchronization
should be used. More specifically, as long as there is more than one source device or
target device and more than one change made at a time, slow synchronization should be
used. During the synchronization process, the whole database will be sent from one
device to another in order to compute the changes. In the most of the case, the device
with more power CPU and memory capacity will take responsible for more computation
work.

The Figure 10 shows how slow synchronization is processed.

16

Source device A

| Contact information |
T I

| Mr.smith | +1888 |1

i Mr. Green | +1 777 |1 I
L Contact information |

T e :
Mr. Smith | +1888 |1 '
Mr. Green | +1 777 |1 |

Source device A

Contact information |
[T o e T e e o .
Mr. Smith | +1888 |1 !
Mr. Green | +1 777 |1 |

Contact information |
i B s o s ot SO IR TR A S .
Mr. Smith | +1888 |1 !
Mr. Green | +1 77710 <- i

Contact information |

Target device

Contact information |
[T e e e et e e e e

Mr. Smith | +1888 |1 !
Mr. Green | +1 777 |1 I

Target device

Contact information |
[T T e e e e e e e .
Mr. Smith | +1 888 | 1 !
Mr. Green | +1 777 |1 |
| Mr.Long |+467 |0<-

n L L] — L] L L] — L] L L] — L] L L] — L] L L] — L] L
C

Source device A

. Contact information |
I e e o e e e e e e e e e

Mr. Smith | +1888 |1 !
Mr. Green | +1 777 |1 I

Contact information |
T e e e :

Mr. Smith | +1 888 | 1 !
| M Greent+1777 |1 <- i
| Mr.Long |+467 |1<-

1 —_— - | |] —_— " L}
Source device A

Contact information |
T e e e :

Mr. Smith | +1888 | 1 !
: - 1<- I
| Mr.Long |+467 |1<-

| Contact information |
i e :

Mr. Smith | +1888 |1 !
' Mr 1<- |
| Mr.Long |+467 |1<-

Target device

| Contact information |
et S T S .
Mr. Smith | +1888 |1 !
! Mr-GreepH+1777—} 1<- |
| Mr.Long |+467 |1<-

| Contact information |
i B et I e ot .
Mr. Smith | +1888 |1 !
Mr. Green | +1777 |1<- i
| Mr.Long |+467 |1<-

Figure 10: Slow synchronization

17

Figure 10 showed how changes on either the source device or target device are
propagated using slow synchronization in the sections C and D. During slow
synchronization, all the records are sent to one of the devices in order to find all of the
differences since their last synchronization. This means that slow synchronization takes
time. It has a higher latency and higher bandwidth usage than fast synchronization.
Since slow synchronization processes all of the database records during the
synchronization process, the time complexities of slow synchronization increase linearly
with the number of records in the database, while, fast synchronization only needed to
transfer the data that was actually changed, so the bandwidth required only depends on
the number of modified records.

Both fast and slow synchronization are mainly used for database record synchronization,
and during the synchronization process, the messages sent between source device and
target devices are generally encoded as text records.

2.4 Database transaction log based synchronization

In a database that keeps transaction logs, it is possible to simply reply a log from a given
time point (the time of last synchronization) in order to synchronize the two databases.
This is because the transaction log contains all of the changes that have been made. This
process is linear in the number of changes and does not require accessing all of the
records in the database. However, it requires additional storage for the transaction log.

2.5 Repository based synchronization system

In the previous sections we have looked at the case of synchronizing a database
(specifically PIM data) between devices. In this type of synchronization the changes
could be made on any of the devices and the database in all devices should be brought a
consistent state. In this section we will consider another common case, repository
synchronization, where there is a dedicated system that is to store (as a central
repository) all of the information. In contrast with the previous synchronization models,
the files will not be changed independently on the central repository. Users check out
the data from the central repository in order to read and modify the data. This approach
can be used for files, both text files and binary files. This approach to file
synchronization keeps the files consistent - but only when they have been check-in and
are checked back out. This model is commonly used for version control and file backup
systems. There are many practical implementations of this approach to file
synchronization. The solutions are used for data synchronization between PCs or
between PCs and servers. Examples of this approach can be seen in the tools used for
version control, such as CVS® and Subversioné.

5 The Concurrent Versions System (CVS) is an application revision control system widely used for
distributed software development. It keeps track of all files changes, such as code insertions,
deletions and modifying. It allows multiple developers to collaborate, while preserving the edits
that have individually been made. [7]

6 Subversion (command name “SVN”) is a revision control system. Subversion can be used to
maintain current and historical versions of files such as source code, web pages, and
documentation. [46]

18

2.5.1 Version control system

A version control system can be defined as a centralized system for sharing information
which exists in distinct versions. The core of a version control system is a repository.
The repository is a data storage center. The repository stores information typically files
in a directory hierarchy. In a version control system, the central repository can be seen
as a source device and all the clients connecting to the repository can be seen as target
devices. Any target can connect, read and write data in the repository. When writing
data into the repository the clients send information to the repository, thus making this
data available for all the clients. Figure 11 shows a typical structure of version control
system

Repository

Write Read Read

[Client] [Client [Client]

Figure 11: Typical structure of a version control system.

—/

As Figure 11 shows, one client writes data to repository and the other clients can read
this data from the repository. Although this hierarchy looks similar to a common file
server, if offers more advanced functions than a typical file server, the repository in a
version control system has mechanisms that enable the repository to record every
change, such as inserts, modification, and deletions, to the files managed by the
repository.

For instance, when a client reads a file from repository, by default, the client will receive
the latest version of the file from the repository. In addition to checking out the latest
version, the client can also view the previous states of the file. The client not only can see
what changes were made to this file, but can also see who made these changes to this
file.

A version control system provides clients with a file synchronization function.
Additionally, the version control system also has to solve the problem of maintaining
consistency while merging multiple changes to a file, thus, the system has to allow
clients to share information, but prevents clients from accidentally stepping on each
other’s feet, i.e., preventing clients from overwrite each other’s changes. [6]

In the database synchronization discussed in the previous section, records could be
changed on both source device and target devices. In contrast, in a version control
system, changes cannot be made directly on the source (repository) machine. The
source device in this case updates the repository, and then end users at each of the
clients have to check out the files from the repository. These client devices can make
changes themselves to their local copy of the file, after that, each client will send their

19

changes to the repository. The version control system uses “a copy modify merge
solution” and “lock-modify-unlock” in order to keep the data consistent between
different clients. Figure 12 and Figure 13 show how the “copy - modify -merge” solution
works.

(a) Initial case client A and (b) Client A and client b change
client b check out same file file
Repository Repository
Read

Client A Client B Client A Client B

(b) Client B cannot update files

(c) Client A update files and get error indicating file out
of data
Repository Repository
D+ D+
| |
[
Write Cannot Write

)) ﬂ ﬁ
Client A Client B Client A Client B

“w,n = « n

Figure 12: Copy - modify -merge solution work (where “+” indicates an insertion and “-” indicates
deletions)

As Figure 12 shows, initially both client A and client B check out the documents “D” from
the repository. After that, both clients change the document. After completing its
changes client “A” sends its changes to the repository, as long as no other clients have
changed this file, it becomes the latest version of the file “D”. When client “B" tries to
change files “D”, the version control system will report a “file out of date” error to client
“B”. Now, client B has to fetch the latest version of the files from the repository server
compute the differences between the local version and the latest version of this file, and
then send its changes to central repository. Figure 13 shows how client B fetches the
latest version of the files and merges it. Finally client fetches the latest version of file D,
now both clients have a consistent copy of the file.

20

Client download latest version
and compare with its local
Repository

D+

Read

D+ D+

D+-

Client A Client B

(c) This new version is sent to

(b) An new version D* is
created by client B

Repository

D+

Client A Client B

(d) Client A fetches the updated
file from the central repository

repository
Repository Repository
D* D*
Write Read
D+ D* D* D*
Client A Client B Client A Client B

Figure 13: Copy - modify -merge solution works continued

Figure 13 begins with client B fetching the current version from the central repository in
order to compare it with client B’s local version of the files, after client B’s local file and
the file on the repository are compared, client B merges its changes (b). Next (c) client B
sends it’'s a new version of the file to the repository replacing the previous version of the
file. In the final step (d), the version control server will inform client A to fetch the latest
version of the files in order to synchronize its copy with the repository’s copy of the file.

The copy-modify-merge solution can work extremely smoothly in practice. The files in
the repository can be accessed and edited in parallel without waiting for other clients.
When clients work on the same files, the “copy - modify -merge” solution can maintain
the concurrent changes provided that the changes do not overlap with each other.
Although conflicts can happen, they can generally be solved without doing too much
computational work. However, some conflict resolution may require the user to
manually resolve the conflict.

This copy-modify-merge solution is always used for text file synchronization, since each
word (or line) in a file is distinct. Therefore during the synchronization process, only
differences between the files need to be sent between the clients and repository. Since
the version control system utilized a TCP connection (for reliability) network it is

21

possible to provide synchronization between any computers which have TCP
connectivity. This generally means that while the clients can be behind a network
address translation (NAT) device or firewall, but the server cannot be unless it has some
port forwarding mechanism. Additionally, this means that the clients have to remain
connected to the repository server in order get notifications.

As we can see, a version control system is more flexible than the previous solutions that
we examined while considering the synchronization of one source device and one target
device. The copy-modify-merge solution needs more computational resources, but
allows more devices to be involved in the synchronization process.

2.5.2 File synchronization (backup) system

In the previous section, we examined a version control system. In most of the time,
version control systems work with text files. Text files are easy to edit typically with an
editor application. However, binary files are quite different as generally, they cannot be
easily modified by common applications. Therefore, rather than performing
synchronization based on changes to the binary files we copy the entire binary file
between the source device and target devices in most of the cases. There are few tools
that compute differences and uses these differences for synchronization of binary files,
for example rdiff-back [12] and duplicity [13]. However these applications are rarely
used.

In order to maintain binary files consistency, a binary file synchronization system can
use the Lock-Modify-Unlock approach. This approach is also used in some version
control systems for text files, but it is more useful for binary file synchronization. In this
case, files the synchronization system also needs a repository.

22

(a) Client B down latest version
file; locks file on repository

(b) Client A cannot edit files
while the files locked

Repository Repository
D
Lock
Cannot
load the file™
@)
Client A Client B Client A Client B

(c) Client B writes back the file
and unlocks it at the repository (d) Client A can now download

and modify the file

Repository Repository
D+
Read
D+ D+
Client A Client B Client A Client B

Figure 14: Lock-Modify-Unlock Solution

In the case of Lock-Modify-Unlock, as shown in Figure 14 (a) client B checks out a binary
file from repository and locks the files at the repository in order to prevent other clients
from modifying the checked out file. A shown in Figure 14 (b) client A cannot download
the file from the repository. As show in Figure 14 (c), when the update of the file is
complete, client B sends the new version of binary file to the repository and unlocks in
the files in the repository. Now that the file is unlocked, other clients can check out the
latest version of the binary file.

This solution is able to maintain binary file consistency. However, it cannot provide real-
time synchronization and the synchronization process always takes time proportional to
the amount of time that it takes to transfer the file and to perform the processing on it
and to transfer the resulting file back to the repository. The Lock - Modify - Unlock
solution always utilizes a reliable connection (such as TCP or SCTP). File
synchronization is also commonly used for home backups to external hard drives or USB
flash drive(s); however, in these cases the connection is over an USB but not a network.

2.6 Synchronization protocols
A synchronization protocol must define a message format and procedure for
synchronization process. For example, the target device(s) may not always be connected

23

to the source device(s). When users want to synchronize the devices they must connect
the source device and target device via a network connection or cable. This connection
can occur explicitly when the user wants to explicitly perform synchronization or the
process could happen periodically or according to a pre-determined schedule. During
the synchronization process, the target device learns about the changes made on the
source device(s) (and vice versa). While the devices were disconnected, occasionally,
both source device(s) and target device(s) need to resolve conflicts among the changes.
This reconciliation process through which conflicts are resolved is part of the data
synchronization process. [14] The result of the synchronization process is to make the
source and target devices of data look identical.

A data synchronization protocol defines the communication workflow during the data
synchronization session between the target and source devices. The synchronization
protocol has to identify the records that have been changed and resolve the records that
have conflict issues. Note that for data that does not have explicit record structure the
protocol must determine what size objects will be examined, compared, and
synchronized.

During the synchronization process, the bandwidth between the source devices and
target devices is limited (even in the case when the source and target are interconnect
by a high speed network or bus? there is some limit to the throughput between the
devices). In order to minimize the required bandwidth, both the source devices and
target devices would encode and compress their messages. If the devices are connected
by a connection that has a high cost per packet, the protocol should minimize the
number of packets sent between the source and target devices. If there is high network
latency, then the protocol should attempt to utilize sufficiently large buffer and flow
control that it can effectively utilize the available bandwidth without causing congestion.
Furthermore, connection reliability may be an issue, if a disconnection occurs the
protocol should respond appropriately. Depending upon the probability of
disconnection the protocol may even need to resume the transfer of a file from the point
where the file was successfully transferred to avoid unnecessary packet charge, and
avoid unnecessary delay in completing the synchronization.

When defining a synchronization protocol, there are three important points to be
defined, firstly the synchronization architecture, next the communication protocol, and
finally the message format. In the following subsection we will examine, SyncML as an
example of a typical synchronization protocol.

2.6.1 SyncML protocol

SyncML is an open industry initiative supported by many companies including Ericsson,
IBM, Lotus, Matsushita, Motorola, Nokia, Openwave, and Starfish. The purpose of
SyncML is to provide a standard for data synchronization across different platforms and
devices. [15] It is a widely used synchronization protocol between PDAs and PCs,
specifically for exchanging PIM data. A later version of the specification supports Push

7 The bus is a subsystem that transfers data between components inside a computer, or between
computers.

24

email. The messages sent between source and target device contain only modified
information. Figure 15 shows the framework of SyncML protocol.

Source device Target device
Application layer Application layer
Sync Engine Sync Engine
Sync Service Agent Sync Service Agent
SyncML interface SyncML interface
t SyncML XML t
object
* SyncML Adaptor :l‘ :: SyncML Adaptor
> HTT/I? -> Internet SyncML XML HTT/I? : Intetrnet
ntranet obiect ntrane
Ly wspwar S — WP > WAP
> OBEX -> IrDA, OBEX -> IrDA,
USB. RS, Bluetooth USB. RS, Bluetooth

Figure 15: SyncML protocol Framework

Figure 15 shows how a synchronization service is provided by SyncML protocol. The
data exchange between two devices can be done directly via the SyncML adaptor
connection, via TCP/IP or a short range wireless connection (such as via Bluetooth). In
this framework, the 'Sync Engine' functionality is placed in both target and source
devices; this means both target and source devices must have the ability to do the
necessary computational work, specifically to compute the differences between the data
at the devices. Since SyncML is frequently used for PIM data placed on PDAs when
synchronizing with PCs. In this case PDAs often have limited processing power; thus the
sync engine is always only executed on the source devices. The 'Sync service Agent' uses
the protocol defined in the representation protocol [16] which is offered by the SyncML
interface to talk between source and target device. [17]

Since the SyncML protocol was original designed for synchronizing PIM data between
PDAs and PCs, there are many common data formats related to PIM data that are pre-
defined by SyncML, such as vCard for contact information, vCalendar and iCalendar for
calendar information, “To Do Lists” and “Journal” information. In addition to PIM

25

information, SyncML now has definitions for e-mail and network news. All of the
messages exchanged between source and target device(s) are based on the eXtensible
Markup Language (XML) according to the SyncML standard Representation Protocol
Document Type Definition (DTD)s.

Although SyncML has many well defined data formats, most of them are related to PIM
information. If the data to be synchronized is not PIM information, then a better solution
would be to exchange DTDs for the new objects which they are to be exchanged or to
utilize another synchronization protocol.

2.7 Real-time and non-real time synchronization

Synchronization can be divided into two categories: real-time synchronization and non-
real-time synchronization. Real-time synchronization always requires a continuous data
connection between source and target devices. This type of synchronization offers the
best to maintain data consistency between source and target devices, since any changes
to the data in one device will be rapidly propagated to the other device(s). In contrast,
non-real-time synchronization performs the synchronization at a specific time. Version
control systems and file synchronization systems are non-real-time synchronization
systems. The systems considered in chapter 2.1, with one target device and one source
device can utilize either real-time or non-real-time synchronization depending on the
system.

Real-time synchronization monitors the records in the database or the files in directories for
changes and replicates the changes soon after they happen. Since the sources device storage
areas are always monitored, there is no need for a special mechanism to build a
synchronization table, however, such tools often provide a way to indicate with entities are to
be synchronized or excluded. Real-time synchronization can provide data consistency in an
efficient way; however, real-time synchronization may not be appropriate in all situations. [18]
It needs continuous connectivity between the source and target devices, hence implementation
of real-time synchronization may be based upon use of remote procedure calls (RPCs)’, and
thus it means that providing reliability is necessary for this utilize.

2.7.1 Continuous Connectivity

Continuous connectivity can be provided by using a cellular network data connection or
via a fixed network connection. 3G cellular networks are widely used all over the world
and today such networks can provide a stable data connection over a wide area with a
maximum data rate of up to 7.2 Mbps. Furthermore, the Swedish telephone operator
“TeliaSonera” has already launched a 4G mobile broadband service in some cities within
the Nordic countries. These 4G cellular networks offer throughputs of up to a maximum
of 100 Mbits. [19] While such mobile broadband connectivity may fulfill the requirement
for connection throughputs, other factors have lead to them not being used. Until
recently, these mobile networks have not been particularly successful mainly because of
the retail service prices and the unreliability of receiving the expected data rate.

8 Document Type Definition (DTD) is a set of markup declarations that define a document type
for SGML-family markup languages (SGML, XML, and HTML). A DTD is a kind of XML schema. [44]
9 A remote procedure call (RPC) allows programs to call functions, which execute in another
address space, commonly on a network connected computer or server. When an application uses
object-oriented principles, RPC is called remote invocation or remote method invocation. [39]

26

In terms of prices, most wireless broadband operators are now offering “flat rate”
subscriptions (unlimited data volume subscriptions). However in practice, all of these
operators have restrictions on data usage, for example capping the “flat rate”
subscriptions to a total traffic of a few Gigabytes per month. So a user with a large data
transfer requirement could encounter problems with such a subscription. Although
most operators offer other subscriptions to high data volume users, these come at a
higher price. However, the connectivity required for data synchronization has a very
different characteristic than voice or other real-time services: because data
synchronization is frequently delay-tolerant, and does not have a strict minimum bit-
rate requirement, as a result non-real-time synchronization can utilizes the unused
capacity of a cellular network —hence this traffic need not interfere with the operator’s
voice traffic. If there is a need to synchronize large files to which there have been a lot of
changes, this will require either high data rates or a longer period of time for the
synchronization. Today online real-time synchronization which requires large volumes
of data to be transferred are not widely used. In contrast, when the amount of data that
needs to be transferred is small, then real-time synchronization (even when it involves
small amounts of change to large files) is very useful today. Due to increasing peak rates
and the delay-tolerance of most cases of data synchronization source and target devices
can opportunistically use the available capacity of the network to perform data
synchronization in practice within acceptable time periods. When wide area cellular
networks do not have sufficient resources, users can make use of wireless local area
networks in hot spots to get connectivity.

2.7.2 Summary of real-time synchronization

Real-time synchronization can be the best way to maintain data consistency, but it
requires continuous connectivity between source devices and target devices. Both target
and source devices may have to do more computational work than for non-real-time
synchronization mechanism. Real-time synchronization faces problems when the user
experiences high latency due to limited available network capacity (as a result of
competition with other users for these capacity or poor link path properties). Therefore,
real-time synchronization is currently only used for synchronizing small amounts of
time sensitive data, such as e-mail, PIM schedule or task data. In contrast, non-real-time
synchronization is widely used. In the next chapter we will examination the design and
implementation of a non-real-time synchronization system that will subsequently tested
in our test bed.

2.8 Summary of performance evaluation

Performance evaluation is always an important matter for software. The design of a high
performance synchronization process depends on the six factors mentioned in the
following: data transmission load; end device computation load; number of devices to be
synchronized; robustness of communication between the source and target device(s);
memory usage on the end devices; and time complexity of the whole synchronization
process. This chapter has examined these factors to offer some background for the rest
of the thesis, especially these evaluations of the system that was implemented.

These factors always depending on each other, for example, given a specific amount of
data to be synchronized, if the synchronization process minimizes the amount of data to

27

be transmitted, then fewer packets (and bytes) of data need to be exchanged potentially
lowering both the cost of the synchronization and lowering the amount of time required
to perform the synchronization. However, in order to exchange the same amount of data,
the end devices may need to perform more power on computation in order to compress
the data to be exchanged. If it is necessary to locally store two copies of the file to
compare them (as in the case for the binary file synchronization examined above), the
memory requirements may exceed the available memory of the device. Therefore it is
better to design a synchronization protocol based on the specific resources of the end
devices, computational ability, data rate of the connection, and the synchronization data
types. The next two chapters will provide some background and motivation for
synchronization solutions to be used for SQLite Database.

28

3 Database synchronization with a repository

There are many synchronization protocols and synchronization application designed for
different use-cases. For example, to synchronize PIM data, SyncML is very suitable as it
was designed explicitly for this type of data. For PostgreSQL, there is a database
replication solution called Slony-I [20]. It is a trigger-based database synchronization
solution specifically designed for PostgreSQL. This solution works asynchronously and
provides database synchronization. The Slony-I usage scenarios are: database
replication from a central office to branches in order to reduce network traffic or to
speed up database transactions; database replication for load balancing, and hot backup
using a standby server or upgrades to a new release of PostgreSQL [21]. For MySQL,
there is solution called MySQL Replication [22]. It automatically and continuously
replicates databases between two MySQL servers via an IP network. This could be used
to provide database redundancy. For example, if a failure happens on one MySQL server
there is a hot standby replicate on the other MySQL server. This solution utilizes a
master - slave relationship between the two databases. The database that is being
accessed and modified is the master. The slave server requests copies from master.
Moreover, a master database can have more than one slave, and each slave database can
be considered as a master that may in turn offer replication to this slave’s database
itself, therefore one can construct a tree of master - slave databases. MySQL Replication
runs two threads on each slave, one is an [/0 thread and the other one is an SQL thread.
The I/0 thread receives events, which are generated when operations occur on its
master database (these can be extracted from the binary logs or transaction logs of the
master database). The 1/0 thread writes these operations into its own log. Subsequently
the SQL thread then reads this log and executes the events as updates to the slave
database. The two threads work independently. In order to communicate between slave
and master database, the slave database has to have an account on the master database.
The exchange of data will resume at this point which the slave database periodically
connects to the master and locates the position in the master's binary log where it left
off the last time it connected. [23]

The database synchronization solutions mentioned in the previous paragraph always
need a Database Management System (DBMS) is properly installed in both target
devices and source devices. And it requests continuous connections between the target
and source devices. If usage scenarios do not provide a continuous connectivity, do not
have a DBMS installed in either source devices or target device, or the usage scenarios
need a non-real-time synchronization, we would need to design another database
synchronization structure. Later when we describe our tests, we will motivate our own
design for a non-real-time synchronization protocol. To help with this design process we
will analyze every stage during the synchronization process step by step and compare
different potential solutions and evaluate different combinations of synchronization
solutions. Finally, we implement a synchronization solution for our test case. Our design
is based on zero configuration databases; in this test we use a SQLite as an example
database management system.

29

3.1 Introduction to zero configuration databases

Considering synchronizing records in a database, the choice of DBMS plays an important
role in the selection of an appropriate synchronization mechanism. We chose a light
weight DBMS solution in order to suite the use case requirement.

Today more and more devices make use of a light weight DBMS. One form of such
databases is called a zero configuration DBMS. A “Zero Configuration DBMS” means that
the database does not need to be installed before it is used. Additionally there is no
setup procedure and no server process. There is nothing needed other than telling a
“Zero Configuration Database” is running [24].

Table 1: Comparison between the regular DBMS and “Zero Configuration DBMS”

Regular Database Zero Configuration Database
Install step Must first install No
Configuration Must configure the Database management system No
step
Server process Must start a database management system process No
running in the background
Database There is an initial database configuration process No
configuration
Database Database permission control must be specified in No
permission the configuration files
Database logs Database transaction logs taken care of DBMS No
Crash recovery There is a crash recovery mechanism controlled by No
the DBMS

Troubleshooting There are troubleshooting procedures when the No
database has problems

According to the web site http://www.sglite.org/about.html, SQLite is an embedded SQL
database engine. Unlike most other SQL databases, SQLite is a self-contained, server-less,
zero-configuration, transactional SQL database engine. It does not have a separate
server process. SQLite reads and writes directly to ordinary disk files. The disk file
includes tables, triggers, and views. In addition, the database file format is cross
platform, hence it can be read both under the 32-bit and 64-bit systems, on both PC
platforms the Apple Mac platform or other handheld devices OS. These features make
SQLite a popular choice for an application file format. SQLite cannot be considered as a
replacement for MySQL or Oracle, but it could be considered as a replacement for a
“fopen()”19 function. SQLite requires no maintenance from a database administer. In
addition, SQLite can be used for small or medium - sized websites. Lastly, SQLite is fast
and it requires no setup, hence SQLite can be used as a surrogate for an enterprise
relational DBMS (using a subset of the enterprise database and subset of the
transactions) and as an operational database in many applications settings.

Database transactions require that all changes and queries execute in an Atomic,
Consistent, Isolated, and Durable (ACID) manner. SQLite implements serialization

10 fopen() is function opens a file as indicated by parameters and returns a stream associated
with that file.

30

transactions that follow ACID, even if the transaction is interrupted by a program crash,
an operating system crash, or a power failure to the computer. [25]

SQLite has been used in many consumer electronics devices digital treatment devices,
for example, Polar’s Heart Rate Monitor [26] and many other devices. Implementing the
proposed repository based on synchronization solution can provide SQLite database
data consistency between separate SQLite databases on different machines.

The entire database must follow the transaction semantics. Although transaction logs
are always maintained by DBMS, there is no DBMS running behind the SQLite database,
hence there are no transaction logs for the SQLite Database. This means that we cannot
base a solution upon processing a transaction log, but instead, we can observe all of the
operations on the database and process those transactions completed to create self
made synchronization events.

3.2 Introduction to the testing bed structure

This testing bed was designed for testing non-real-time synchronization system. The
database records will be synchronized between two target devices and one source
device. These three devices connect to each other via three separate TCP connections.
Figure 16 shows the structure of this testing bed.

Source device

TCP connections 1 1TCP connections

Target device A Target device B

Repository —

S—

Figure 16: Testing bed structure

As Figure 16 shows properties in this testing bed structure, one source device has
connection with two target devices. The source device has a repository attached with it,
and both two target devices have database attached with them. This use case focuses on
a non-real-time synchronization SQLite database over TCP network. As the chapter 3.1
mentioned, SQLite database would not provide any build in synchronization and
transaction logs mechanism. Additionally, because of the characteristic of zero
configuration DBMS, SQLite database on different machines would run separately,
hence, separate SQLite databases would not have any build-in coordination mechanism
in order to make data consistency between separate SQLite databases. In terms of data
synchronization protocols, as the thesis mentioned in chapter two and chapter three, the
widely used SyncML protocol is good for PIM data. In this testing bed solution, we would

31

not have any data synchronized related to PIM data. Therefore, according to these two
facts from this use case, we have to build a database synchronization protocol on top of
SQLite DBMS. And this synchronization mechanism would be based on the theory of
repository mechanism in version control systems.

Table 2: Technical details of the three machines

Source device Target device A Target device B
Name HP WorkStation xw6000 ThinkPad X60 ThinkPad X300
CPU Intel® Xeon® v CPUs Intel® Core Duo® T2300 Intel® Core Duo® L7100
2.80GHz *2 1.66GHz CPU 1.2GHz
Memory 2.0GB 3.0GB 2.0GB
Hard Disk 5600 per second 5600 per second solid-state drive (SSD)
Network interface 100 Mbps Ethernet 100 Mbps Ethernet 100 Mbps Ethernet

Table 2 shows the technical details of three machines in this testing bed. There are two
target devices connected to the source device via TCP connections. Both target devices
have a local SQLite database. As can be seen in Table 2, the source device does in fact
have more computational power than the target devices.

In the testing, we assume the structure of the database shown in Table 3. In this sample
table, the “Items ID” is the primary key for this table. Both “Products Name” and “Selling
store” is TEXT data type. And “Price” is “FLOAT data type”.

Table 3: sample table used for testing bed

ItemsID ProductsName Sellingstore Price

In this thesis, the purpose would be design, analysis and implement a synchronization
system for this use case.

3.3 Synchronization solution analysis

We begin the analysis by dividing the complete synchronization process into different
steps. After that, we will analyze each of these synchronization solutions step by step in
order to design a protocol.

3.3.1 Key steps in synchronization protocols
Synchronization protocols would have the following mechanisms:

¢ Synchronization protocols must have mechanism to identify the changes in the
data to be synchronized (in this case, records in SQLite database that have
changed).

¢ Encode these modified changes from changed records into a message in order to
exchange the message between a source device and target devices.

e Read the messages and decode in order to merge the changes with the local
record in order to bring the two databases into the same state.

¢ Handle conflicts, to recognize different devices in order to identify which
changes are coming from which devices.

32

e Error handling mechanism and logging system in order to have greater
robustness and to understand what, when, and how changes have been made.

Table 4 below shows general requirements of synchronization protocols for use with
databases.

Table 4: Requirements of a synchronization protocol for use with databases

Requirement Priority
1: To identify the records that have been changed Must

2: To encode the changes in messages Must

3: To transmit and receive these messages Must

4: To handle conflict situation Must

5: To recognize different devices Must

6: Error handling mechanism Should
7: Logging system Should

As described in the previous chapters there are basically three ways to identify modified
records in a database, using timestamps, synchronization flags, or keeping a transaction
log. As SQLite does not keep a transaction log we cannot use this method. Using
timestamps consumes more storage than using synchronization flags, but enables some
additional features, which is not request in our testing case. Since according to the
chapter two, only synchronization flags mechanism does not multiple devices process
synchronization, and using timestamp would have more storage consuming, thus in our
testing bed, we implement a new mechanism to handle changes identifications. In this
mechanism, we add an additional field to each record to be used for a synchronization
flags. Rather than using a “bool data type” to identify records that have been modified
we have used, an “INTEGER data type” field. Since “INTEGER data types” can store more
than a single bit, we have used these additional bits to offer additional functionality; for
example, we will keep track of the type of changes insertion, modification, or deletion.
We will also use this integer field at the source device to encode which target devices
modified the record. This field enables us to meet the first and fifth requirements listed
in Table 4. Since there are two devices in the testing bed, we will encode the device's ID
as one decimal digit and encode in another decimal digit the operation that was
performed locally to change the record (i.e. modification, deletion or insertion). Figure
17 shows these two encoding mechanism.

33

Action indication:
— —.

|
|
' I o ;
| Device ID: From 0-9 to I : (1) dele;llon |
i support up to nine devices | J ; : o change |
___________________ I

L ..

0

2: modification
3: Insertion

The record without any

: ; - |
Case 1 | Database record... | L o B T i |
. .1 !] changes .

= ————
T . Device ID = 0 nochangeto
this record

rr———————— 1 - = ——— I ''''''' _ ''''''''''' I

Case 2 | Database record... | | ! 0o | i Delete this record I
. ! .

I R B ' !

=

i Device ID = 1 deleted this |

record .

................... |
T : Device ID = 2 modified this |
record |

— I | I I I
rr———————— 1 - = ——— I___ ''''''''''''' I
Case 4 | Databaserecord... ('3 ! 3 | Newly inserted record i
. . I . .
S B B | i
[|
i Device ID = 3 inserted new |
record .

Figure 17: Indication different actions of database record

Figure 17 shows how the synchronization field works. These two digits indicate both the
devices and action performed. For example, case 2 shows device 1 deleted a record; case
3 shows device 2 modified a record. Case 4 shows that device 3 inserted a new record,
which the device does not involved in our testing cases. Using INTEGER data type and
this mechanism would have less storage consuming than timestamps solution.
Additionally, it would be available functionality to monitor database operations of every
activity.

34

After the protocol data structure has been designed, an additional field is introduced in
to the database table. Table 5 shows a table structure used in the synchronization
protocol

Table 5 Table structure in the synchronization system

ItemsID ProductsName SellingStore Price SyncFlags

Now this table structures support identify changes and mark the device making the
changes, and in the Figure 17, it describe how these fields values should be used.
Following this design, in order to process the synchronization fields, the process has to
query the entire table. As the table increases this query time will increase. One way of
avoiding this quarry time is to great another table called a Sync Table to store a list of the
records whose synchronization flag has been changed, the purpose of this utilize is to
self construct a transaction log. This log can be done by adding a trigger to all the tables,
such that every time a record is changed and the trigger will be invoked and it can
generate the transaction entry. Note that the transaction log needs only include the
primary key, as all of the needed information is stored in the actual record. In this way,
the synchronization system can simply read the Sync Table and process the records to
know which records have been changed, how the records have been changed, and which
device changed the records. The Sync Table can be implemented based the structures
shown in Table 6.

Table 6: Sync. table structure

Sync ID TableName RowlID SyncFlags

In the Table 6, the first field is sync ID which is the primary key of this table. Next is a
table name indicating which table should be synchronized, also means which table was
changed before, next is the record identifier (called RowID) which indicates which
record in the named table was modified - in our case this field contains the itemsID as
this is the primary key in our example table structure (as shown in Table 5). The final
field is the syncFlags which is a copy of the sync flags for the indicated record. Therefore,
at run-time, the system needs only walk along the Sync Table and process the records of
the database changes. Note that it must also access the actual records in the database as
it needs to update the synchronization field of the record itself, once this record has
been synchronized with the other database(s).

3.3.2 Synchronization protocol analysis

The next step is to encode the changes into messages in order to send them to the other
device(s). This could be a textual encoding or a binary encoding. There are advantages
and disadvantages to both. They concern the following factors:

e End devices computational cost
¢ Data transmission cost
e Synchronization process latency requirements

35

e Protocol functional extension
¢ Time complexity during synchronization
e Error prevention & control

In terms of the end devices, computational cost, both methods of encoding (i.e., textual
versus binary encoding) share the common process of having to walk along the Sync
Table, process the data in the Sync Table. The difference will be in encoding the changes
into textual or binary records. Since in our testing bed case, the fact is both the source
device and target devices can be considered to have powerful computational capacity.
According to the static testing regarding the time consuming of fill in amount of data in
to the testing table and after that we have a program encoding this data into SQL
statement textual format or SQLite binary format below which is shown in Figure 18.
This test was done on one of the target device, which is ThinkPad X60.

Encoding record time

6000
5000 /—
__ 4000
g / - SQLite Binary Files Create
g 3000 / Time (ms)
= 2000 = SQL Statement Textual
/ Create Time (ms)
1000 //

1 10 100 1000 10000 50000

Number of records

Figure 18 Encoding records time to either SQLite binary files or SQL Statement textual files

In Figure 18 shows that the time consuming of encoding amount of data increases along
with the number of data increases. But there is not much difference between encoding
data to SQLite binary file and encoding data to SQL statement textual file. It means that
end device would have almost the same amount of computational cost consider the
SQLite binary files or SQL statement textual files. Therefore, according to the statistics, if
only device computational cost is considered, either choosing SQLite binary files format
or SQL statement textual files format, it is not a big issue for the entire synchronization
system.

Considering the second factor, end device data transmission cost, this factor is main
affected by the file length of exchanging messages between source and target devices;
bandwidth between source and target devices and other minor issues. In this thesis, we
firstly take the file length of exchanging messages into consideration. As pervious
paragraph mentioned, the exchange messages sent between end devices can be encoded
into SQLite binary file format and SQL statement textual file format. So in this part, we
will compare the data length of a file when it is encoded into either a SQLite binary

36

format or SQL statement textual format. For this textual format, we choose the SQL
statement format (which is presented as a *.sql file in the file system), and for the binary
format we chose the SQLite binary files format (which is presented as a *.s3db file in the
file system). We compare the files size between those two formats for a number of
records filled in the testing table in SQLite Database (The table structure was described
in Table 5). The results are shown in Table 7. Note that the text fields in these sample
records were generated by generating sample record which is shown in the Appendix
Sample Data.

Table 7: Files length (in bytes) comparison with SQL statement textual files encodings and SQLite
binary files encodings

Files size (KByte)

Number of records

SQL(Text) SQLite (Binary)
100 7.4 6.1
150 9.3 7.1
200 114 8.1
250 13.4 9.2
300 15.3 10.1

18

16

12 /
10 =—9—SQL Statement Text

Encoding
w 8 -
g’ == SQLite Binary Format
6 Encoding
4
2
0

100 150 200 250 300 (record)

Number of Records

Figure 19: Files length comparison SQL statement (text) and SQLite binary format

In Table 7 and Figure 19, with 100 records in the table, the textual SQL format required
7.4 KB, but the binary encoding required 6.1 KB. As the number of records increase, the
binary format continues to increase its advantage over the textural format. Before
making a final decision about which encoding to use, we also need to consider the rate at
which records are added to the database or the size of the data for updates. According to
this statistic, for small amount of records, it means the number of records less than 100,
there is not big difference in terms of files length after encoding records to either SQLite
binary file format or SQL statement textual file format. Note that the size of deleted
records is not a concern, since only the information needed to identify which record is to
be deleted needs to be transmitted. Thus, for some use cases which need frequency

37

synchronize records between target device and source device, it would not decrease the
transmission cost a lot either using SQLite binary format encoding or SQL statement
textural format, but regarding synchronizing large number of record, using SQLite
binary file format would have lower transmission cost between target device and source
device.

With regard to transmission latency binary encoding of the data can utilize a smaller
number of bits than textual encodings. Less data to transmit directly reduces the
transmission time. More specific, we can estimate the compress factor for binary versus
textual encoding by comparing uncompressed to compressed text using a number of
different compression algorithms. Typically the compressed file will be around 60%
smaller than the uncompressed file. [27] [28] Therefore using binary encoding would
allow transmission to be around 60% faster than textual transmission. It is not certain
that in a given situation we will experience this roughly factor of two decreases in
transmission time, as we must also consider how these messages are processed by the
transmission protocol and the application layer protocol. Experience with many internet
protocols has shown that the advantages of the textual encoding (simplicity, readability,
etc.) generally favor textual encoding over binary encodings -unless there is a very large
volume of data to be transferred.

Consider the next factor, the latency of synchronization process. In this thesis, we are
planning to analyze the synchronization latency issue based on the following module. In
this module, we are going to fill in amount of demo records into the sample table, which
is according to the Table 3, based on different time interval on a client device. After that,
those demo records will be synchronized with a synchronization server at a specific
time period. After the synchronization process, the demo data would arrive at
synchronization server with a SFTP transfer time. This testing case works like the block
diagram in Figure 20.

Client Server
— —
Sync -> Sleep -> Sync
Update -> Sleep -> Update Commit -> Commit -> Commit
Update Sleep Sync Sleep
time: time:
1 1
10 10
100 100
1000 1000

Figure 20: Latency testing cases

In Figure 20, we have client side application fill testing table with sample record
automatically, and each insertion action would have a sleep time, the sleep time would
be from one time unit up to one thousand time units. Additionally, synchronization takes
place at a specific time interval, which would be from one time unit up to one thousand
time units, as well. In this case, we will take a look at the file length to be transferred and
SFTP file transfer time. And in this case, the total latency would be the SFTP transfer
time plus end device encoding and decoding time. Figure 21 shows that the client has
the longer sleep time the shorter file length will be.

38

45
40

N W W
v O u»

=R
o un

(914q) 19jsueqy 03 yp3ua| a1
N
o

o un

1 10 100 1000 10000
Client sleep time

—o—File length to transfer

Figure 21: File length to be transferred based on different time interval

Since this case works with 100 Mbps Ethernet connections between client and server,
according to the Figure 22 and Figure 23, there is not much variation in client side
application working with different specific sleep times and synchronization sleep times.

SFTP Transfer Time

|

i

=== SFTP Transfer Time

N

(sw) awny 19jsuery saflg
w

[y

o

1 10 100 1000 10000

Client sleep time

Figure 22: SFTP transfer at client has sleep time interval

39

SFTP Transfer Time

4.5 /
4

3.5

2.5
2 == SFTP Transfer Time

1.5

0.5

1 10 100 1000 10000

Figure 23: SFTP transfer time when synchronization process has sleep time interval

Therefore, according to Figure 22 and Figure 23 end devices latency in this case can be
considered very low.

Next factor, we will consider the functionality of the protocol. One of the important
issues would be if this protocol will be easy to add additional functions or to change
functions. In order to extend more functionality in this protocol, the import part would
be change the structure of the current table. As it mentioned in Chapter three SQLite
binary formats would present all table structure in one binary file. Therefore, there
would not be additional work to modify table structure in current solution. So it means
that more functionality can be added in currently protocol.

After that, we would address with time complexity of the synchronization protocol.
According to the features of synchronization protocol, the time complexity of this
protocol is dependent upon the end devices computational capabilities plus the SFTP
data transfer time between a source device and target device. Based on the Figure 18,
the end device encoding time is not increase significant in different volume of record.
But there would be a significant overall difference in the synchronization time until the
number of messages becomes quite large or the contents of each message are very large
(for example if the database contains large high resolution images). However, the overall
time complexity would be considered as a linear equation function T(n) = O(f (n)) .

Finally, regarding with the error prevention and error control, textual encoding solution
is generally more robust to bit errors during transmission. In contrast binary encodings
are more sensitive to bit errors, especially when there is a very high degree of
compression. In this case a single bit error can destroy the whole message. However, as
we will use an underlying transport protocol, it is important that error detection, error
correction and retransmission functions the transport protocol will handle. For
applications such as databases it is very important that the databases remain consistent,
so we must detect errors even at very low rates - otherwise after some time the
databases will diverge - unless we make a complete new copy of the database.

40

Based upon the analysis above, we use radar charts to show the advantages and
disadvantages of sending or textual encoding of our messages.

Binary message encoding

end devices
computation
al cost

error 1/data
prevention transmission
control (@ lantency

=

1/time ,
complexity Packet
length

Sending binary files

Figure 24: Performance of binary message encoding

As shown in Figure 24, using binary encoding offers lower transmission latency, lower
time complexity, at the cost of computational effort, and protocol flexibility.

Sending ASCII (text) files
end devices
computation
al cost
error 1/data
prevention transmission
control lantency Sending Asic Il text
files
1/time

complexity Packet
length

Figure 25: Performance of textual message encoding

In contrast Figure 25 shows that although using textual encoding messages between
source devices and target devices has better error handling ability and greater protocol

41

flexibility, the transmission latency and time complexity are higher than encoding
message to binary. So for this database synchronization protocol it is better to send
SQLite binary format messages between source devices and target devices. It should be
noted that if there is a very large amount of data to be transmitted, then it could be sent
as binary data using another mechanism - that offers compression, for example, using a
transport protocol shim layer that would perform compression on the data stream.

42

4 Implementation a non-real-time synchronization
system

This chapter describes an implementation of a non-real-time synchronization system for
a use case of a telemedicine system. The mechanism of this non-real-time
synchronization is based on the analysis and performance evaluates part in the previous
chapter. This system runs on top of a Microsoft Windows platform. This implementation
will mainly be used to verify the design that we made in the previous chapter. As noted
earlier, we have designed this synchronization system to handle the use case of zero
configuration databases, specifically SQLite. Additionally, since this commercial system
is running on top of a Microsoft Windows platform, the implementation of the
synchronization system is based on the .NET framework. The source and target devices
are assumed to have a TCP/IP protocol stack. And both of source device and target
devices would have 100 mbps Ethernet connection. The synchronization protocol will
be based upon the concepts described in the previous chapter.

4.1 Synchronization system overview

The purpose of this synchronization system is to provide SQLite database running on
different machines having data consistency. All different machines are connected via
TCP connections over underlying IP network. The physical network could be an
Ethernet, 3G cellular network, or any other network that can provide IP connectivity. We
will also assume that there will always be new data arrived at target devices. This
synchronization system will determine the record differences on the SQLite database s
on both source device and target device and perform synchronization in order to ensure
eventual data consistency. It is important to emphasize that the goal is only eventual
data consistency, as we want to realize a non-real-time synchronization system for zero
configuration database in order to avoid with each other requiring that the different
machines always have connectivity to all other machines. A system structure overview is
shown in Figure 26.

43

Source device

Master Server

Client Devices

Client Devices

=)L EE
=5 = =9 =

Client Devices

= =

New data coming

New data coming

New data coming

New data coming

Target

In Figure 26, there is one source device, which can be considered as a synchronization
it implements a central
communicates with a number of target devices; these will be called synchronization

server, and

clients. Changes always occur first to the client database. Each synchronization client has
a local SQLite database. Synchronization is used to make all SQLite databases have data
consistency. In our scenario there are two client devices. Figure 27 shows a data flow

Target

Figure 26: Synchronization basic structure

during a synchronization process in more detail.

Recycle Bin

=

In Figure 27, 1: New records come from client’s I/0 devices; 2: Client writes record to its
local SQLite database; 3: client sends messages with new record to synchronization

L%}

Del...

Target

Target

repository. This synchronization server

New data arrives

Client Devices

2:

3: I

Sync. Server

Protocols...

Will be addressed in the thesis

Figure 27: Synchronization data flow

44

Server; 4: The new records could be sent in real-time or queued for sending later (i.e.
non-real-time); 5: Client deletes old record from its local database. We assume that
initially both client and server have data consistency. Next event number one happens
with the arrival of some new record to the client’s database. Next, the client device
writes the new record to the client’s local SQLite database. The local SQLite database
changes based upon this new record. The format of this record is assumed to be plain
text. Then the synchronization protocol takes over in order to update the other
databases by sending messages between the server and the other client(s). These
actions are events number three and four. If a local record is deleted, then the deleted
record will be sent to a recycle bin after the client synchronizes with server. It is
important to note that the local records will only be deleted after clients have
synchronized with the synchronization server, so that no new data would be lost - even
if it only exists as a valid record for a short period of time.

In this case, testing records to be synchronized are stored in a table called “Comment”.
In order to keep the testing case sample, we only keep three columns in the testing table.
The table structure is shown in Table 8.

Table 8: Structures of Comment table

Row name Data type Comment
ItemsID INTEGER Primary key
ProductsName TEXT

SellingStore TEXT

Price FLOAT

As Table 8 shows, there are four columns; they are “ItemsID” with “INTEGER” data type,
“ProductsName” with “TEXT” data type, and “SellingStore” with “TEXT” data type and
finally the “Price” with “FLOAT” data type. The primary key is “ItemsID” This table is
stored in a SQLite database, representing as a “*.s3db” file on the disk.

4.1.1 System hardware and software configurations

This subsection describes the details of hardware configurations in whole system. Our
testing bed consists of three physical machines, one machine is a synchronization server
and the other two machines are synchronization clients. The synchronization server as
described in “Table 2: Technical details of the three machines”. The synchronization
server connects via a 100 Mbps Ethernet interface to an intranet with an interface
having an IP address of 192.168.0.20 / 24.

One client machine (client;) as described in “Table 2: Technical details of the three
machines” is connected via a 100 Mbps Ethernet interface to an intranet with the
interface having an IP address of 192.168.0.10 / 24. The second client machine (Client;)
as described in “Table 2: Technical details of the three machines” on page 31 is
connected via a 100 Mbps Ethernet interface to an intranet with the interface having an
IP address of 192.168.0.11 / 24. The network topology is shown in Figure 28.

45

Other network

213.100.22.96/28

108
'
_i .1@

192.168.0.0/24

192.168.0.20: 3306 | mySQL
192.168.0.20: 21 | SFTP control
10 11 20 192.168.0.20: 999 | SFTP Data

J9 2 F

Figure 28: Network topology of the synchronization system

As shown in Figure 28, the three machines are connected to a local private network with
the IP addresses: 192.168.0.10/24, 192.168.0.11/24, 192.168.0.20/24. The
synchronization server provides two services: one is a MySQL database service and the
other one is a SFTP service. Within the private network, the default gateway is
192.168.0.1. This is the address of a router with a public IP address 213.100.22.108/28.
All of the interfaces in the 192.168.0.0/24 network are connected to a switch with
supports non-blocking 100 Mbps full-duplex Ethernet connectivity.

Concerning with a software structure of a system, the synchronization system is to be
developed based on .NET framework. All machines are equipped with .NET framework
2.0 the Microsoft Windows® Operating System (OS). Because the private intranet has
internet connectivity, all of the machines in the private intranet maintain Coordinated
Universal Time (UTC) !itime using the same Network Time Protocol 12(NTP) server,
which is “time.windows.com”.

4.1.2 Synchronization solution introduction

For this non-real-time database synchronization, one way of performing SQLite
synchronization is called “row-based” synchronization mechanism. In order to
implement this mechanism, each row in the database tables that are to be synchronized
must have a “DataUpdate” field which will contain a time-stamp in UTC format or a
synchronization flag. In this case, we have chosen to add a field called “isValid”

11 Coordinated Universal Time (UTC) is a standard time based on International Atomic Time.
12 NTP is a protocol designed to synchronize the clocks of computers over a network. In this case
we use the Windows system default NTP server “time.windows.com”

46

containing a synchronization flag. In addition, the “LastSyncDate” will be saved in a
separate table. We have implemented an additional table called “syncTable” to put
recent synchronization record. During the synchronization process, this system will
process the following steps:

e First the program will read information from “syncTable” to learn the last time
that synchronization was preformed;

e Next walks the “syncTable”, this must be done in the proper order in order to
prevent foreign key constraints, to find the rows that are not yet synchronized;

e Next, the rows which are not yet synchronized are sent to the central repository,
along with their synchronization flags (the rows are read using the SQLite
database APl in .NET Framework);

e After the central repository receives messages from the clients, this server will
insert all the records which are marked as unsynchronized. After the client has
received notices that the server has completed synchronization of the data it will
reset all the synchronization flags.

e If there are conflicts (for example, rows that changed on both server and client),
the server has to resolve the specific conflict. For this resolution method we will
rely on either a user interface to ask users which version to keep or use an
algorithm to choose one of the versions.

e The server inserts or updates rows into the server’s SQLite database and sends
to the client the rows that have been changed since last its synchronization with
the server.

e Finally, the client either inserts or updates these rows into its local SQLite
database.

While row based synchronization is simple, it would need a complex process to
manually configure and prone to conflicts and record. [29]

There are many different solutions using the same “row based” synchronization concept
to handle database synchronization. One of these is called “Auto-Generated Update SQL”.
[30] This approach generates SQL statement and transmits these SQL statements
between nodes in order to synchronize records. This solution works when the two
tables have matching records, the primary table is updated with the data from the
secondary table and if the secondary table has records that the primary table does not,
then those records will be appended to the primary table. This solution provides
synchronization without a hassle replication. [31]

4.2 Synchronization system implementation

This section describes an implementation of this synchronization system. First, we will
analyze in detail the synchronization process on the current server itself and then
decide a structure of this system, which is made in the previous chapter. The details that
we did examine include how to handle the messages mechanism exchanging between a
synchronization server and synchronization clients and how to identify the user.

4.2.1 Synchronization process
In order to perform synchronization, there are five questions: (1) how end devices
identify database record changes. (2) How synchronization server and clients exchange

47

messages. (3) When the synchronization server and clients exchange messages. (4)
What messages format the client and server will be used. (5) When the clients and
synchronization server would receive record.

Regarding the first question, since SQLite does not have transaction log mechanism, we
created a table called “syncTable” to log the SQLite database changes. In order to make
this “syncTable” work, a trigger is set for all tables that are to be synchronized. The
function of this trigger is to record all the database changes into syncTable. The table ID
is a primary key of ‘syncTable” table, additionally synchronization flags are saved in the
syncTable. Figure 29 below shows a work flow of “syncTable”.

Initial sate

SyncTable Comment table

SyncID | TableName | RowlID | isValid
B e ot TEE SRR SR S

CommentID | MeasureEventID | Text | isValid
B et ot ST L TR o e T e e

Data insert to comment table

SyncTable Comment table
SyncID | TableName | RowID | isValid

B ettt ot T T T S S

! CommentID | MeasureEventID | Text | isValid
01 commentTable 01 01 i

1

1

B e s s T T R A

01 01 test 01

Second step First step

Figure 29: SyncTable work flow

As shown in Figure 29, at initial state, both comment table and syncTable are empty.
When a record is inserted into comment table, the trigger will trigger an event which
inserts the table changes into the syncTable. The “SyncID” is a primary key of the
syncTable and is generated as a linear sequence. The table name is the table which had
been changed and the “RowID” indicates which row changed in that table. The “isValid”
field indicates that “syncFlags” in the comment table are to be used when
synchronization process is recorded.

The next step, concerns exchange of messages between synchronization server and
clients, because we are interested in a non-real-time synchronization system and since
there is already an SFTP service running on the server, our synchronization system uses
this SFTP service to provide reliable (and secure) data transmission between the server
and clients. Rather than have the clients and server exchanging individual messages, the
application start a synchronization process (for example when the application is started)
or a user clicks a “Synchronize” button, then messages will be exchanged. To create the
effect of exchanging lots of messages concerning the synchronization of individual

48

records, we create a table and send this table via SFTP. We made this design (since we
found that the SQLite binary file was smaller than the SQL statement textual format and
we can utilize the retransmission, error detection and error correction functions of the
SFTP application. The cost of creating this file rather than sending the individual
messages is that there is an increase in the latency between a local update and when the
report target is updated. However, buffering increases the amount of data that will be
transferred at one time, hence increasing the opportunity for compress and simplifying
the operations. It also means that when the synchronization happens that the
communication link can be turned on, while it can remain off at other times - potentially
saving battery power). The receiver reads the SQLite database and performs an update
with its local database. The SQLite binary files can be read by a standard SQLite API.
Note that this same approach could be used to send a compressed version of the SQL
statements, as SFTP already includes compression as one of its feature. We did analyze
of this part in the previous chapter measuring the performance of the system in this
testing bed.

4.3 Modules of the synchronization system

The synchronization system can be divided into the following modules: client
authentication modules; data transmission modules; and SQLite database handler
modules. Because, there is already an SFTP service and a MySQL database running at the
server, in order to simplify the synchronization system, we do not plan to add additional
services on the server, but rather the synchronization system uses the existing MySQL
database to manage authentication record and exploits this SFTP server for data
transmission.

4.3.1 Synchronization servers detail

The synchronization server performs client authentication; provides secure files
transfer between server and clients; and synchronizes SQLite database(s) with separate
SQLite database. Figure 30 shows server side of this synchronization system.

49

ﬁQLite Database storage \
Windows file system: (192.168.0.20) SFTP server:
(D:\ClientDB\) (ftp://admin:admin@192.168.0.20)
Client A Client B Client ... TYRY ~ Client A Client B Client ...
-Version -Version -Version : -Version -Version -Version
-VBackup -VBackup -VBackup . -VBackup -VBackup -VBackup
-final.s3db -final.s3db -final.s3db . -final.s3db -final.s3db -final.s3db
[|
A .
. m Files come from clients
Handle SQLite database . .
with SQLite API 3 . My SQL Database
[| 1
- ‘s ID | PWD | Allowed | Other
. e EEEEEE Server Application I
*
*
TCP/IP connections
Client A Client B
-Version Client Devices A Client Device B -Version
-VBackup -VBackup
-final.s3db -final.s3db

Figure 30: Overview of the structure of the synchronization system: Details of the server side

As shown in Figure 30, the synchronization server has three main modules. The first of
these three uses a MySQL database to handle clients’ authentication information. This is
shown as a table with the columns: ID, PWD, Allowed, and Other. These fields contain
user name (as the ID for the user), a password and a field that indicates what operations
this user is allowed to perform, and other information about current user - respectively
the MySQL database. The synchronization server utilizes an existing SFTP server to
secretly send and receive files containing what are essentially database transaction logs.
When one of these transaction log files arrives as a SQLite binary file at the
synchronization server, the server application utilizes a SQLite API in order to read the
SQLite binary file and complete synchronization process. As shown in the upper right of
Figure 30, every client has associated with it a directory (folder) named with client’s ID
in the SFTP root folder. In each client’s folder, there are two folders: “Version” and
“VBackup”. When each SQLite binary database arrives it will be placed in the “Version”
folder. After the synchronization process, that SQLite binary file will be moved to
“VBackup folder”. Therefore every time synchronization occurs, the synchronization
mechanism will check the “VBackup” folder first, to see if there are differences in the
files. The “final.s3db” file is the server’s copy of the client synchronized SQLite database
file. Both the SFTP server and server files share the same file structure on the disk.

According to the Figure 30 shows the server side working flow during the
synchronization process. Here we assume that the “client A” initiates synchronizing with
the server. After logging in client device “A” connects to a synchronization server and
requests synchronization. First, the client device must be authentication with user’s
credentials stored in the MySQL database. After authentication successful, the process

50

will move to the next step. As shown in Figure 31 block the synchronization folder on
the client device will be granted access to the server’s synchronization folder via SFTP.

Handle SQLite database with SQLite API

Files comd from clients

Figure 31: Synchronization server work flow to send files

Windows file system: (192.168.0.20) SFTP server:
(D:\ClientDB\) (ftp://admin:aimin@192.168.0.20)
Client A Client B Client ... YYy Client A Client B Client ...
-Version -Version -Version : -Version -Version -Version
-VBackup -VBackup -VBackup . -VBackup -VBackup -VBackup
-final.s3db -final.s3db -final.s3db . -final.s3db -final.s3db -final.s3db
7Y . i
[|
. .
: u My SQL Database
= |
L}
n e ID | PWD | Allowed | Other
fesssmnnms Server Application b aads
*
*
TCP/IP connections
S——]
Client A
-Version Client Devices A Clien|Device B Client B
—\(Backup I -Version
-final.s3db _VBackup
-final.s3db

Figure 31 shows the SFTP server has created a secure connection between client device
A and its associated synchronization data folder. The FTP LIST13 command will be used
to check if there is difference between the client’s “VBackup” folder and the server’s
“VBackup” folder. The missing files will be sent. After this step, as Figure 32 shows, if
there are new files in the folder, then the synchronization server will utilizes about

SQLite API to complete the synchronization process by updating and merging the
received file with the local copy of the client’s database.

13 The FTP LIST command will return information about a file or directory from the current

working directory.

51

Handle SQI

ite database with SQLite API

(D:\ClientDB

Windows file system: (192.168.0.20)

Files comg

from clients

SFTP server:
(ftp://admin:aj

Imin@192.168.0.20)

Figure 32: Synchronization server work flow for database synchronization

Client A Client B Client ... YYy Client A Client B Client ...
-Version -Version -Version : -Version -Version -Version
-VBackup -VBackup -VBackup . -VBackup -VBackup -VBackup
-final.s3db -final.s3db -final.s3db . -final.s3db -final.s3db -final.s3db
A : —
[|
n [|
n [|
. " My SQL Database
L}
n |
n S L ID | PWD | Allowed | Other
" ammmmn erver Application hmmmm
*
*
TCP/IP connections
S——
Client A
-Version Client Devices A Client Device B Client B
-YBackup 1 -Version
-final.s3db -VBackup
-final.s3db

As shown in Figure 32 block, in the last step of synchronization the synchronization
server application uses the SQLite API to insert or modify its copy of the client’s
final.s3db SQLite database files now the synchronization process is complete. This same
process can be used to synchronize a client. Part of the C# code to implement the server
is included as appendix C.

4.3.2 Client application in detail
The synchronization process on the client side shares the same concepts as the server
side. Part of the C# code of the client side implementation is included as appendix C.

52

In Figure 33, we can see that the client requests a connection to the server then sends
an authentication request to the synchronization server. After authentication successful,
the SFTP server establishes a secure and reliable connection between the server and
client. After this SQLite binary files will be sent to the client’s synchronization “Version”
folder. Next the client application will utilize SQLite API to insert or modify data in the
client's local “final.s3db” file based on the contents of the SQLite binary
file(s).

*
l MySQL DB \
| |
: |
I Rgquest
- SFTP Server authentication
Download data
from SFTP server "
- Server Application I

4
Process SQLite
Client A Binary files
-Version Client Application
————
-VBackup
-final.s3db

Figure 33: Working flow of the client side of the synchronization process

4.4 Test and performance evaluation

To validate this implementation a test was made to see if the system worked correctly
and additionally evaluate this implementation performance based on factors mention in
chapter two.. Because we have split the synchronization into operations performed at
the synchronization server and the client device we can measure them separately.

In terms of the end device computational load, this factor depends on the computation
effort to operate on the SQLite database. Based on SQLite the official documents, using
an Athlon CPU running at 1.6GHz with 1GB or memory, an IDE disk drive, and RedHat
Linux 7.2 operation system with a stock kernel, SQLite has better performance than
MySQL. [32]. In this testing bed when using, a T2300 CPU running at 1.66GHz with 3GB
memory and connecting to a hard disk with average writing speed of 35MB per second
and an average reading speed of 37 MB per second, we did insert 10000 records in the
SQLite (with transactions) in 0.452 second. In this test, 10000 records synchronization
time takes 1.43 seconds. The size of the binary SQLite files containing these 10000
records was 48KB; therefore the end device computation load was very low. Note that
this file size was based on new data of average size 4 KB arriving at a rate of 840 new
records per minute and synchronization occurs every 1 minute.

53

In terms of the solution extension, because this synchronization systems design has
similar with a version control system, it should be feasible to extend this design to
support a nearly unlimited number of devices for synchronization with a central server.
The actual performance with a given central server will of course depend upon the
details of the number of clients their rates of record updates, the size of these records,
etc. Based upon this test we expect that the system should scale roughly as that of a file
server excluding the extra work required for the data updated and merges.

Regarding the error handling ability, because the data exchanges between source and
target devices utilizes SFTP the underlying TCP connection and the application layer
protocol features of SFTP will ensure data integrity during the transmission process [33].
Therefore this mechanism would have an acceptable error handling ability.

54

5 Conclusions and Future Work

This chapter concludes the thesis and outlines future research directions.

5.1 Conclusions

The overall focus of this thesis was to design a “repository” based SQLite database
synchronization system that could operate in non-real-time. Throughout the thesis we
have shown that synchronization brings clients device benefits in terms of short
synchronization times, low bandwidth consumption and via the underlying database
function a rollback function when used in conjunction with a repository based
synchronization system.

From the end devices perspective, this design requires a minimal computation power on
the end clients, because this solution was designed to be a non-real-time and it does not
require continuous link layer connectivity between the client devices and the servers.
Since this design was based on the underlying concepts of a version control repository,
this synchronization system offers some of the benefits from version control system, for
instance data rollback.

From the SQLite database perspective, since SQLite does not support multiple users at a
time and it does not support functionality which is supported by most distributed
database system, for example transaction log. Although SQLite has better performance
in local applications than other database such as MySQL or PostgreSQL, by combining
SQLite with a repository with a MySQL (or other) database it is will not only deliver a
better performance for local application, but also support multiple-users, transaction
logs and supporting roll back functionally. Such a combined SQLite and repository
solution to could be used as distributed database system as well.

From the server perspective, in our test case, we ran on top of a Microsoft Windows®
platform, but the same approach could be used to run on a Linux platform. Similarly the
client was run on a Microsoft Windows platform in the test, but it could also be run on
top of Linux, Apples Mac OS, or one of many embedded operating systems such as
Android or iOS. In fact, the client only needs to support the SQLite API and the SFTP a
TCP/IP stack.

5.2 Future work

Even though the results show that this repository based solution works well with
SQLite, a number of assumptions concerning the testing platform and the rate at which
data is generated, the local memory capacity and local processing capacity, and the times
when synchronization occurs. To precisely quantify the performance in a real
application of this system, additional testing in a real network environment and a large
amount of user testing, needs to be performed. This leads us to our suggestions for
future work. Additionally, this testing environment mentioned in the previous section a
limited number of machines, we have not tested the performance of this implementation
on a wide variety of hardware and operation system (OS) platforms. This part would
remain for a future work.

Other than those, according to the chapter three pointed out, encoding difference
records to SQLite database binary file would provide a lower file length compare to the

55

SQL statement textural file. This argument is based on the assumption that the SQL
statement file without any compression. Therefore, it should be taken in to
consideration that encoding the difference records to SQL statement textural files with
properly compressed would even have lower file length than SQLite binary database
format. Thus, more analysis work regarding different encoding and compression
mechanism should be considered as a future work. Furthermore, the chapter four was
lack of conflict recording handing solution analysis, this issue also should be done in the
next step.

This thesis can be considered as an initial starting point for a repository database
synchronization system. There are several aspects of the current design that could be
optimized. The client authentication process is performed based upon exchanging a user
name and password via the SFTP server; this could be replaced by the use of LDAP14.

Finally, since SQLite databases are widely used in applications running locally, or in
applications running on a handheld device, we need to examine the performance on a
variety of devices and operating system platforms. In our test, both the client side
application and server side application ran on one of the Microsoft Windows platforms.
Therefore, an obvious next step is to run the client code on Microsoft’'s Windows Mobile
or the Android, and to run the server on a Linux server platform. With regard to the
server it would be interesting to explore executing the server on a virtualization server,
such as Amazon’s EC2 platform. Such a solution would enable a service to easily and
rapidly expand to support a large number of users.

14 Lightweight Directory Access Protocol (LDAP) is an application protocol for querying and
modifying data of directory services implemented in Internet Protocol (IP) networks

56

References

1. Shah, Agam. Global computer usage, cell phone ownership jump. InfoWorld. [Online]
InfoWorld, 10 05, 2007. [Cited: 07 01, 2010.]
http://www.infoworld.com/t/hardware/global-computer-usage-cell-phone-ownership-
jump-956.

2. Unit’s, Economist Intelligence. Global computer ownership will continue to rise in
2010. Economist Intelligence Unit’s. 2010. Web report.
http://www.economist.com/node/15062710.

3. Factbook, CIA World. Cell Phone Usage Worldwide, by Country. CIA World Factbook
2009. 2009. Information Please® Database, ©.

4. Agarwal, S., Starobinski, D. and Trachtenberg, A. On the scalability of data
synchronization protocols for PDAs and mobile devices. 4, 1984, Vol. 16, pp. 22-28.
10.1109/MNET.2002.1020232 .

5. —. Agarwal, S., Starobinski, D. and Trachtenberg, A. 4, Boston : IEEE
Communications Society, 2002, Vol. 16. 0890-8044.

6. Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato. Version Control with
Subversion. Stanford : TBA, 2008. 94305.

7. CVS. CVS--Concurrent Versions System v1.12.12.1: Overview. ximbiot.com. [Online]
ximbiot.com. [Cited: July 25, 2010.] http://ximbiot.com/cvs/wiki/CVS--
Concurrent%20Versions%20System%20v1.12.12.1:%200verview.

8. Tamilmani, Karthik. Studying and enhancing the BitTorrent protocol.: Stony Brook
University, 2006.

9. Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., Ltd., Motorola,
Nokia, Openwave, Starfish Software, Symbian. SyncML Sync Protocol, version 1.1.
[Electronic Document] 2002. Version 1.1.

10. Microsoft Corporation. Exchange Server Protocols Document Roadmap. Microsoft
Corporation. [Online] Microsoft Corporation, July 29, 2010. [Cited: July 31, 2010.]
http://download.microsoft.com/download/5/D/D/5DD33FDF-91F5-496D-9884-
0AOBOEE698BB/%5BMS-0XDOCO0%5D.pdf.

11. MySQL. 10.3.1. The DATETIME, DATE, and TIMESTAMP Types. MySQL 5.1 Reference
Manual. [Online] MySQL. [Cited: July 10, 2010.]
http://dev.mysqgl.com/doc/refman/5.1/en/datetime.html.

12. Ben Escoto,Andrew Ferguson. rdiff-backup. rdiff-backup. [Online] rdiff-backup,
Febrary 14, 2009. [Cited: October 01, 2010.] http://rdiff-backup.nongnu.org/.

13. Ben Escoto, Kenneth Loafman. duplicity. duplicity. [Online] duplicity, September 19,
2010. [Cited: October 01, 2010.] http://duplicity.nongnu.org/.

57

14. Building an Industry-Wide Mobile Data Synchronization Protocol. Paper, SyncML
White. Vol. 1.0.

15. SyncML. SyncML Sync Protocol, version 1.1. 2002.

16. SyncML. SyncML Representation Protocol, Data Synchronization Usage v1.1.
SyncML.org. [Online] SyncML., Feb 15, 2002. [Cited: June 30, 2010.]
http://www.openmobilealliance.org/tech/affiliates/syncml/syncml_dm_represent_v11_
20020215.pdf.

17. Dumbill, Edd. SyncML Reference Toolkit Manual. XML Watch: SyncML toolkits.
[Online] June 06, 2003. [Cited: June 23, 2010.]
http://www.ibm.com/developerworks/xml/library/x-syncml3.html.

18. A space-optimal wait-free real-time synchronization protocol. Cho, Hyeonjoong,
Ravindran, Binoy and Jensen, E.D. s.1. : [EEE, 2005. 17th Euromicro Conference. pp.
79-88.10.1109/ECRTS.2005.5.

19. Teliasonera. Teliasonera 4G. Teliasonera. [Online] Teliasonera. [Cited: July 24, 2010.]
http://www.teliasonera.com/4g/.

20. Slony-1. Introduction to Slony-1. [Online] May 2011.
http://slony.info/documentation/2.0/preface.htmI#INTRODUCTION.

21. Marcotte, Ludovic. Database Replication with Slony-I. http://www.linuxjournal.com.
[Online] Slony-I, April 28, 2005. [Cited: July 24, 2010.]
http://www.linuxjournal.com/article/7834?page=0,0.

22. MySQL. Setting the Replication Master Configuration. [Online] May 2011.
http://dev.mysql.com/doc/refman/5.0/en/replication-howto-masterbaseconfig.html.

23. Diehl, Mike. Database Replication with Mysql. linuxjournal. [Online] linuxjournal,
May 25, 2010. [Cited: June 25, 2010.] http://www.linuxjournal.com/content/database-
replication-mysql

24.SQLite Is A Zero-Configuration Database. SQLite. [Online] [Cited: 06 16, 2010.]
http://www.sqlite.org/zeroconf.html.

25. sqlite.org. About SQLite. SQLite. [Online] SQLite.org. [Cited: June 23, 2010.]
http://www.sqlite.org/about.html.

26.Veen, Jeffrey. Polar Heart Rate Monitors: Gimme my data! veen.com. [Online]
veen.com, November 2, 2005. [Cited: July 20, 2010.]
http://veen.com/jeff/archives/000810.html.

27.Lossless. Lossless Data Compression. http://www.data-compression.com/. [Online]
data-compression.com. [Cited: July 25, 2010.] http://www.data-
compression.com/lossless.shtml.

28. David Salomon (with contributions by Giovanni Motta and David Bryant). Data
Compression: The Complete Reference. 4th Edition. 2006. 1846286026.

58

29.1ab49.com. Adobe AIR: Synchronizing SQLite Databases With The Server. lab49.com.
[Online] lab49.com, November 19, 2007. [Cited: June 21, 2010.]
http://blog.lab49.com/archives/1569.

30. Ziegler, Ann. Auto-Generated Update SQL. vb123.com KB. [Online] [Cited: 05 15,
2011.] http://www.vb123.com/kb/index.html?200202_az_auto_updates_sql.htm.

31. Auto-Generated Update SQL. vb123.com. [Online] Febrary 2002. [Cited: July 23,
2010.] http://www.vb123.com/kb/index.html?200202_az_auto_updates_sql.htm.

32.SQLite.org. Database Speed Comparison. sqlite. [Online] sqlite.org. [Cited: May 20,
2010.] http://www.sqlite.org/speed.html.

33. Process Software. A Comparison of Secure File Transfer Mechanisms.
http://www.process.com/. [Online] [Cited: July 24, 2010.]
http://www.process.com/tcpip/sft.pdf.

34. Raj, Gopalan Suresh. A Detailed Comparison of CORBA, DCOM and Java/RMI. Web
Cornucopia. [Online] [Cited: 02 10, 2010.]
http://my.execpc.com/~gopalan/misc/compare.html.

35. Liu, Yan, Babar, Muhammad Ali and Gorton, Ian. Middleware architecture
evaluation for dependable self-managing systems. Karlsruhe, Germany : Springer Verlag,
Tiergartenstrasse 17, Heidelberg, D-69121, Germany, 2008. 03029743.

36. wikipedia. Constructive research. Constructive research_wikipedia. [Online]
wikipedia. [Cited: 12 23, 2009.] http://en.wikipedia.org/wiki/Constructive_research.

37. Susan Thomas, Jed Hartman, and Judith Radin. Introduction to RPC Programming.
[book auth.] Jed Hartman, and Judith Radin Susan Thomas. IRIX Network Programming
Guide. s.l. : sgi.com, 2003.

38. Nomor Research GmbH. Technology of High Speed Packet Access (HSPA). s.l. :
Nomor Research GmbH, 2006.

39. Draft summary minutes, decisions and actions from 3GPP Organizational Partners
Meeting. 3GPP . Tokyo : NTT DoCoMo's FOMA, 2001.

40. Charles Lin,. Ascii vs. Binary Files. Lecture notes for CMSC311: Computer
Organization, Spring 2003, Computer science department of University of Maryland. 12
March 2003. [Online] University of Maryland. [Cited: July 20, 2010.]
http://www.cs.umd.edu/class/spring2003 /cmsc311/Notes/BitOp/asciiBin.html.

41. W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). w3.org. [Online] w3.org,
November 26, 2008. [Cited: June 24, 2010.] http://www.w3.org/TR/REC-xml/#dt-
doctype.

42. Motorola. Long Term Evolution (LTE): A Technical Overview. s.. : Motorola, 2010.

43. apache.org. Subversion Documentation. Apache Subversion. [Online] Apache, June
21,2010. [Cited: July 23, 2010.] http://subversion.apache.org/docs/.

59

44. Dodig-Crnkovic, Gordana. Constructivist Research and Info-Computational
Knowledge Generation. [Online] 2009.
http://www.mrtc.mdh.se/index.php?choice=publications&id=1882.

45. Ahmad, S.Z. and Qadir, M.A. Terminal Mobility Services in the Middleware
Environment. Amman, Jordan : s.n., 2007. IEEE/ACS International Conference on
Computer Systems and Applications. pp. 332-335.10.1109/AICCSA.2007.370902.

46. A Study of Discovery Mechanisms for Peer-to-Peer Applications. M. Kelaskar, V.
Matossian, P. Mehra, D. Paul, M. Parashar. Washington : s.n., 2002. 2nd I[EEE/ACM
International Symposium. p. 444. 10.1109/CCGRID.2002.1017187.

60

Appendix

A. Useful tools used when developing application

Table 9: Useful tools used when developing application

Name Description Source
sqlite-manager Extension for Firefox and other apps http://code.google.com/p/sqlite-
to manage any sqlite database manager/
FileZilla Server SFTP server http:/ /filezilla-project.org/
Wireshark Wireshark® is the world's most http://www.wireshark.org/

MySQL-Front

popular network protocol analyzer
"MySQL-Front MySQL GUI for
database changes, data editing, SQL
queries and more”

http://www.sql-front.com/

61

B. Raw information collection

During the literature study process, raw information collection and provides practical
support argument. In this thesis literatures can be divided into three categories. They
are academic literatures web material, and Wikipedia. The academic literature was
found via various academic databases access to these databases was provided by KTH'’s
library. These sources mainly were used to support my technical analysis motivation
parts the solution and when writing the conclusions. The reset of literature was
primarily used as background information —particularly to explain technical terms and
to cite example of practical solutions.

As to the academic databases, Inspec (EV2), Computer Science Bibliographies, and
Scopus reference databases were mainly used during the research. In order to provide
easily understood definitions of the many technical terms related to data
synchronization and cross-platform software Wikipedia was used. Additionally some
web based material was used as references. These were found using Google or other
web search engines. | also discussed my idea with other group members at the company
where [was working and with professors in our department.

During the academic database search step, a number of keywords are validated in a
thesaurus, provided by “Inspec (EV2)”, in order to get “Inspec (EV2)”controlled terms
and make the search results more precise. Next controlled terms and uncontrolled terms
were use to search in the academic database in order to have both precise and extended
references. Table 10 shows some the controlled and uncontrolled terms from (Inspec)
used during the academic database search processes.

Table 10: Search terms

Controlled terms15 Uncontrolled terms
Synchronization Synchronization
database machines database

meta data

relational databases

file organization File system

cross-platform
Common Object Request Broker
Architecture

The literatures are chosen by relevant level and publication data. The reference rate is
used to ensure the reference’s validity. We were able to find two journal articles and one
conference article.

15 In our case, the controlled terms are verified by “Inspec”.

62

C. Code

The code can be checkout from SVN server

https://longst.dvdns.org:8443/svn/Doc/Code server

63

D.Sample Data

Table 4 SQL

CREATE TABLE "Culture" ("ItemsID" INTEGER PRIMARY KEY ,"ProductsName"
TEXT,"Sellingstore " TEXT, "Price" FLOAT)

Table 5 SQL

CREATE TABLE "Culture" ("ItemsID" INTEGER PRIMARY KEY ,"ProductsName"
TEXT,"Sellingstore " TEXT, "Price" FLOAT, "SyncFlags" INTEGER)

64

TRITA-ICT-EX-2011:88

www.kth.se

