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Abstract 
Wireless sensor networks, networks of nodes communicating wirelessly with 

sensing capabilities, are becoming more popular and are utilized by an increasing 
number of applications. Some wireless sensor networks are implemented because the 
usual network solutions of an always connected network could not be applied. 
Specifically this thesis is concerned with the case when the connection between the 
end-user and the network is not always available, i.e., there is only intermittent 
connectivity. 

This masters thesis gives an introduction and provides some background 
knowledge concerning wireless sensor networks, specifically focusing on 
disconnected operation. A set of building blocks will be presented to help 
programmers deal with programming disconnected operations. Examples to 
demonstrate our solution is implemented as shell commands using the Contiki 
operating system. Our solution was tested in the field and compared against a 
common, monolithic, programming approach. This practical example shows the 
potential significance of this thesis project in real world applications and allowed an 
evaluation of both the qualitative and quantitative aspects of our solution. The results 
of our evaluation prove that our solution offers an easier interface for the 
programmer to work with at the cost of possible less memory space. 

 

Sammanfattning 
Trådlösa sensornätverk, nätverk med noder som kommunicerar trådlöst och har 

sensorer, blir mer populära och används av i ett ökande antal applikationer. Några 
trådlösa sensornätverk används för att en vanlig nätverkslösning med ständigt 
uppkopplade noder inte går att genomföra. Det här examensjobbet är specifikt 
inriktat på fall när en uppkoppling mellan slutanvändaren och nätverket inte alltid är 
tillgängligt, t.ex. när det bara är tillfällig uppkoppling. 

Detta examensarbete ger en introduktion och bakgrund till trådlösa sensornätverk 
med fokus på programmering av frånkopplade operationer. Ett antal byggstenar har 
tagits fram för att hjälpa programmerare att programmera frånkopplade operationer. 
Exempel för att styrka vår lösning i vår rapport kommer att implementeras som shell-
kommandon i operativsystemet Contiki. Vår lösning kommer att testas i verkligheten 
och jämföras med ett vanligt, monolitisk, programmeringsangreppssätt. Detta 
praktiska exempel kommer visa den potentiella nyttan av detta examensarbete i 
verkliga applikationer och tillåta utvärdering av kvalitativa och kvantitativa aspekter 
på vår lösning. Resultaten från vår utvärdering bevisar att vår lösning erbjuder ett 
enkelt gränssnitt för programmeraren att arbeta med till en kostnad av möjligen 
mindre minnesplats. 
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 1

1  Introduction 

A wireless sensor network (WSN) [1] is a wireless network consisting of sensor devices, 
deployed to monitor physical or environmental conditions. The network nodes, in WSNs 
called motes, are characterised by having constrained resources, often deployed on a large 
scale, should have low production cost, be adaptable to environmental changes, and operate 
unattended (i.e., autonomously).  The network must adapt to changes, such as the loss of 
nodes or obstacles in the terrain attenuating or blocking transmissions. Researchers have in 
the past defined a wireless sensor network as “large-scale ad hoc, multihop, unpartitioned, 
network of largely homogenous tiny, resource-constrained, mostly immobile sensor nodes 
that would be randomly deployed in the area of interest” [2]. While this is true for most 
applications, there are those that do not follow this definition, but are still considered WSNs. 
An example of the use of a traditional WSN is monitoring battlefields with sensors used as 
sentries, to provide alerts whenever an enemy is moving in its vicinity [3]; where motes are 
fully connected with each other and the end-user. Other less classical networks are GlacNet 
[4] and a project in the Baltic Sea’s Bothnian Bay [5] that both are neither large-scale ad hoc 
networks nor have the motes been randomly deployed. 

When a connection from the end-user to the network cannot always be sustained it is 
considered “disconnected” during this time. In the last two scenarios mentioned above 
programming a network that is to operate over a temporary disconnected medium is called 
programming disconnected operations. 

Due to the advantages and possibilities of WSNs there is a wide range of applications 
where WSNs can be used. They are most commonly used in military applications and 
environmental studies, e.g. deploying sensors over a battlefield to detect enemy intrusion 
instead of using landmines [3] or measuring environmental changes in bodies of water [5,6]. 
Other common application areas where WSNs are used are: monitoring homes, monitoring 
vehicle traffic, monitoring people’s health, monitoring wildlife habitats, surveillance, disaster 
discovery, mobile entertainment, home automation, security, and lots more. In the future we 
expect WSNs to be used in cooperating smart everyday things. 

A typical mote consists of a transceiver unit, processing unit, power supply, and one or 
more sensors; as shown in Figure 1. Depending on the application there might be extended 
storage space (flash memory), a power generating unit (e.g. a solar cell), or additional 
hardware that is related to the requirements of the application. 

 
Figure 1: The components of a mote; sensors, power supply, memory, ADC (analog-to-digital converter), 

MCU (Micro Controller Unit), and transceiver unit. 
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The deployment of motes can either be done one at a time (carefully positioned at a 
specific location, e.g. inside machines to monitor temperature and hardware failure) or at 
random (scattered over a large area for instance from an airplane or a cannon). The flexibility 
in deployment methods has large advantages over wired sensor networks and also broadens 
the application spectrum. There are also cases where the environment prohibits the use of a 
wired sensor network or where it is not feasible to use wired sensor nodes, e.g. when motes 
are attached to moving objects or deployed in large numbers over a large area. In this setting 
it is impossible to deploy and wire all nodes. ARGO [6] is such an example, a WSN with 
thousands of motes floating all over the world’s seas following currents and communicating 
wirelessly. 

The majority of WSNs today use a radio link to communicate [7], but light (an example is 
given in [8]) or even sound is sometimes used. While radio is not the least power consuming 
method [2], it is the most convenient because of its wide range of use. On a typical mote the 
radio is the most power consuming subsystem, and since power is the scarcest resource of the 
node, power usage by the radio should be kept at a minimum. This has lead to research 
efforts concerning how to minimize power consumption. This research will continue in the 
future as the volume to store energy is getting smaller due to technology advances. Better 
power utilisation will make it possible to make really small motes. For example, “Smart dust” 
motes are only a few cubic millimetres in volume [8].  

An approach to save energy is to use aggregation [9]. Another solution is to compress the 
data [10] at the node before transmission since processing instructions uses less power than 
transmitting additional bytes over a radio link. Another method is letting the nodes power 
down their radios during periods of time when there is no need to transmit data. It should be 
noted that this last approach also causes the node to be disconnected for the period of time 
that its radio is powered down. 

Technology advances will result in smaller nodes, higher processing capabilities, and 
greater memory resources. The hardware challenge to produce these devices is to keep their 
power usage and manufacturing cost at a minimum. The software should adapt algorithms 
and protocols to save energy, increase robustness, enable self configuration, increase fault 
tolerance, and ease usage. There is also a need to simplify the implementation, maintenance, 
and the user interface to the network. 

While in the future it might be possible to use technologies that allow us to send data over 
greater distances and at lower energy costs to sustain a connection where it is currently 
impossible, we might never be able to create a fully reliable connection when we are 
monitoring nodes in a changing environment. For this reason this thesis topic is not only of 
interest today, but also in the future. 

1.1  Problem statement 

Programming disconnected operations today is a problem due to the very limited number 
of abstractions provided to programmers. In this thesis, an application driven approach will 
be proposed. The proposed solution should be applicable as a general solution. We will 
identify, implement, and evaluate a set of building block functionality to simplify 
programming disconnected WSN applications. The results will be tested through 
programming example software and also used in a real life application. It is hoped that this 
set of building blocks will increase the interest in developing WSN applications for as wide a 
variety of scenarios as possible, specifically including those that must support disconnected 
operation. 

 2
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With the increased interest of WSNs it is important to look into new ways to further 
expand the use of WSNs. However, the desired characteristics of a WSN change with the 
specific requirements that an application has. This thesis is specifically concerned with 
situations when implementing a WSN cannot be done without considering disconnected 
operations, in particular when connections between the end-user and the WSN cannot be 
sustained. 

Disconnected operation could be due to limited power when the communication distance is 
so great that it requires a large amount of energy to keep the connection alive or when the 
power needed to send a large amount of data exceeds the nodes’ power resources. The project 
“Sensor Networks to Monitor Marine environment with Particular Focus on Climate 
Changes” [5, 11] by SICS and partners is an example of disconnected operation due to the 
first of these limits (high power consumption due to large distance between the end-user and 
the senor node). Another reason for periodically closing the connection could be because the 
end-user’s control station cannot remain within range of the WSN. For example, when 
measuring volcano activity, as done by researchers at Harvard’s Sensor Networks lab [12]; 
although the WSN must be expendable in the case of an eruption, they cannot afford to put 
the base station too close to the volcano because of the risk losing the equipment and data. 
Over such long distances it might be wise to shut down the connection to save energy when 
nodes are not experiencing any volcanic activity. 

A problem in these scenarios is developing the disconnected WSN applications, as the 
connection between the end-user and WSN cannot be sustained. Most work that has 
addressed the problem of disconnected operations has been based upon application specific 
solution, while this thesis seeks to develop a solution that can be applied to many different 
applications. To keep the interest for new applications growing it is crucial that WSNs be 
portable to as many different scenarios as possible. 

1.2  Method 

The main goal in this thesis is to provide a solution to help programmers program 
disconnected operations for WSNs. The solution will be general so it can be adapted to more 
environments that examined in this thesis. By targeting disconnected operations this thesis 
will contribute to the WSN community in a unique way -- not seen up to this point. 

The solution presented in this thesis will be implemented and tested against another 
possible solution for programming disconnected operations. Looking at both qualitative and 
quantitative aspects of our solution will be a part of our analysis and together with live testing 
will show the significance of the proposed solution in real applications. 

1.3  Thesis structure 

This thesis begins with background literature study (chapter 0) where the fundamentals of 
WSNs and its software are described. 

Chapter 3 will take the reader deeper into the issues of disconnected scenarios and 
programming. While chapter 4 presents a new model for categorizing disconnected WSNs 
and shows the effects of different parameters. 

In chapter 5 the design of our solution will be presented and later how it will be 
implemented. This is followed by evaluating the solution in chapter 6, looking at both 
qualitative and quantitative aspects. 
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Conclusions and results are presented in chapter 7, together with a description of future 
work. 
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2  Background 

In this chapter the background for this thesis will be presented, including a look at some 
specific applications and software of current interest (such as operating systems and 
programming abstractions). 

2.1  Background on WSN applications 

WSNs have found their way into a wide variety of application areas. The most common are 
military, environmental, health, and other commercial applications. Applications using these 
WSNs can be used for monitoring, surveillance, targeting, damage assessment, disaster 
detection, tracking, automation, etc.  

2.1.1  Traditional WSN applications 

Up to this point defining a traditional WSN has been difficult since almost all WSN 
applications have been unique applications. Some WSNs have nodes distributed in great 
numbers, others only a couple nodes; some nodes are randomly distributed, other carefully 
positioned at exact locations; etc. Since this thesis focuses on disconnection, a traditional 
WSN is considered as one that does not deal with the issues due to disconnection. 

A traditional WSN application is a military application using sensors in cooperation with 
mines [3]. In this application sensor are placed on a battlefield, near the ground, always 
connected to each other - so that if one node is removed the end-user is alerted. In this 
application power efficiency is very important since it takes more energy to send data from 
nodes that cannot have an antenna placed high above the ground, thus radio communication 
requires more energy when nodes are at ground level. By communicating between the nodes 
it is possible for other nodes to take action when an enemy tampers with a real mine to create 
a breach lane, e.g. a mine nearby the breach could use rocket thrusters to move into the 
breach lane, filling the gap of the disabled mine. This is discussed as a feature of the Self 
Healing Minefields application mentioned in [3]. 

Another typical application is monitoring seabird nesting and behaviour at Great Duck 
Island [13]. To identify important areas of further work, a WSN application was used to 
avoid potential impacts of human presence on the animals being monitored. Nodes could be 
placed in nests before the breeding season when the island was inhabited to later measure 
data about nesting birds. Motes send data to a base station that is accessed through the 
internet via a two-way satellite link. In their implementation the mote data is always 
accessible, hence there is no need to approach the deployment site until after the breeding 
season when birds are no longer nesting. For operating “off the grid” this report discusses the 
use of disconnected operations as a possible solution, but did not implement such a solution.  

2.1.2  Disconnected WSN applications 

Scenarios for disconnected applications are commonly found in environmental monitoring, 
such as monitoring moving animals or geological activities at remote and hazardous 
locations. Usually the area that the motes need to cover is so great that it is inefficient from 
an energy resource and hardware cost perspective to maintain a constant connection. In 
general, an application has to be prepared for disconnected operation when monitoring the 
behaviour of moving objects (which have motes attached to or incorporated in them). 
Consider the case of monitoring the movements of cars [14]. Cars could act as carriers for the 
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nodes - utilizing energy from the car’s batteries or generator. Since it may be difficult or 
uneconomical to provide wireless coverage of the entire road grid, the cars may continuously 
or periodically make measurements when driving around – but only transfer this data to the 
end-user when passing fixed base stations, for example, the base stations could be affixed to 
traffic lights or street lights as these sites also have electrical power available to them and 
might even have network connectivity. Similarly, passing cars can be used to gather data 
from sensors monitor structures, e.g. bridges [15].  

The ZebraNet project [16] is another example of mobility in WSN, in this case by using a 
mobile control-station to gather data from nodes attached to zebras. Researchers follow the 
herd in vehicles to collect data. As there is not a fixed location to send data to, a flooding 
protocol is used for short range connectivity together with a direct-connection protocol for 
long range. Gathered data is flooded to nearby neighbours, thus the base-station only needs to 
come in contact with a few nodes to collect data. To improve this further the direct-
connection protocol is used for long distance radio links -- when limited bandwidth and 
limited storage space at the node does not noticeable affect the efficiency of the protocol due 
to the small amount of data being sent. This optimizes energy consumption. The connection 
is set up by nodes only during the day, when nodes search for a control-station. If a control-
station is nearby, then data is uploaded. Since the researchers themselves determine when to 
collect data, they control the disconnection between the control-station and the nodes. 

David Jea, et al. [17] propose to use so called “data mules”, mobile elements moving 
around in the vicinity of the deployment area, to collect data from nodes. This concept of data 
mules is seen in other projects, such as ZebraNet. This method addresses both bottlenecks at 
access points (hotspots) and data load balancing, but presumes the possibility of having a 
mobile element, which is not always the case in environmental monitoring. It has also high 
latency, might not be sufficiently scalable, and for many applications does not fully address 
the problems related to disconnection, although it gives a general solution to handle 
disconnected operations in many cases. 

Another example of mobility in WSNs is when monitoring whale activity [18]. Several 
control-stations are placed along paths that whales travel or at regularly visited feeding 
grounds. When the whale surfaces and exposes their radio antenna data is uploaded to a 
nearby Shared Wireless Infostation Model (SWIM) control-station. Data is shared among 
whales so that only a single whale needs to access a SWIM control-station and when a whale 
uploads its data the previously stored copy is erased. A timestamp is used to determine when 
data on a whale’s memory storage has become obsolete. SWIM stations can work together as 
an ad hoc network to transfer data to shore or use a satellite connection, whenever a satellite 
passes over the area. This network topology is “multi disconnected”: (1) the nodes on the 
whales are disconnected from each other and the control-station and (2) the SWIM control-
station could be disconnected from the end-user on shore if a satellite is used to gather data 
from the control-station, since the satellite might not always be in such a position that a 
connection can be established. 

A project that both has mobile nodes and is deployed over a large area is the ARGO 
project [6]. Over 3000 floats (floating motes) are deployed in the world’s seas (Figure 2) 
measuring the temperature and salinity in the water down to a depth of 2000m. 
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Figure 2: The ARGO project with nodes deployed (updated 4-Mar-2009) 

Source: www.argo.ucsd.edu 

By using a satellite tracking system it is possible to measure the velocity of the ocean 
current by looking at the movement of the floats. Most of the time floats are underneath the 
surface, typically for a 10-day period, without the possibility to connect to the satellite. When 
a float surfaces it will transmit data for 6-12 hours, then start another dive. All of the floats 
are disconnected from each other and only communicate via a satellite to the end-user. 

As a result of the high cost of monitoring remote areas, especially bodies of water, such 
environments are poorly monitored. A solution to the problem of high cost and rarely 
gathered results is to use sensor networks as proposed in [5, 11], deploying buoys in the 
Baltic Sea (Figure 3). The buoys are anchored with a line to the sea bottom. On this line a bin 
containing several nodes will travel, measuring data at specific depths as determined by a 
pressure sensor. Light and acceleration sensors are attached on top of the boy. For powering 
the system rechargeable batteries are used. The batteries are recharged by both solar cells and 
a wave energy generator. 

The potentially large amount of measurement data requires more storage space than what 
the node’s RAM can offer. For this application flash memory cards are used. To minimize the 
energy-cost for transmitting data, the data is compressed before transmission. Transmission is 
planned to be done by GPRS which has a long range, but at the cost of high energy 
consumption. Additionally nodes can only be placed near the coast where there is GSM 
coverage. To further minimize energy consumption the GPRS link between the buoy and 
control station is disconnected when transmission is completed and remains disconnected 
during measurements.  
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Figure 3: Sensor system for remote water monitoring (exploiting solar and wave powered recharging of 

the on-board batteries). 
Illustration: Bo Reinerdahl 

An application where nodes are not mobile, but still may be disconnected is monitoring 
glacier movement [3]. In this example the WSN is often disconnected from the end-user due 
to the distance and medium between nodes, base-station, and end-user. When monitoring 
glaciers the nodes do not communicate with each other and only temporarily communicate 
with a base station above the glacier on a scheduled basis. This is because the density of the 
ice reduces signal propagation. Synchronization of the nodes to a schedule is done by using 
GPS timing. Note that the end-user might always be able to access the base-station through a 
satellite connection. 

2.2  System software 

Software development for WSNs occurs primarily on the operating system level or the 
application layer, or between them using middleware. Middleware is used to connect 
applications with operating system (OS) and network services [19]. Operating systems differ 
extensively from OSs for personal computers, but share functionality and needs to a great 
extent with OSs for embedded systems. When programming applications for WSNs many 
challenges, such as those mentioned in section 3.2, are a constant concern. 

2.2.1  Operating systems 

Operating systems for WSNs often needs to deal with resource constrained devices. A 
typical sensor node is equipped with an 8-bit microcontroller, on the order of 100 Kbytes for 
code memory, and up to 20 Kbytes of RAM. Such a device has limited processing power, 
memory, and available energy. The number of different devices is increasing and the 
application specific nature of sensor networks contributes to this diversity. Therefore, it is 
desirable that the OS is portable across hardware platforms. Other desired features of the OS 
are that it should use little code space, support reprogramming of the nodes (during run-time), 
use little memory allocation, utilize energy efficient algorithms, and in general be efficient 
about using its resources. Creating an implementation that meets all of these requirements 
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can be quite difficult; therefore it is common that OSs specialize in certain application areas 
in order to meet some of the requirements very well at the cost of not meeting others.  

 One way to minimize memory resources is to use an event-driven kernel. A multi-
threaded model, in comparison, consumes larger amounts of memory and every thread must 
have its own stack in memory. Since the system does not know how much stack space the 
thread needs when memory is allocated at thread creation the stack is over provisioned. On 
the other hand while event-driven systems work well in sensor network applications; the 
event-driven programming model can be difficult to manage for programmers. Code 
generation could facilitate programming such event-driven applications [20]. 

Examples of potential OSs for wireless network devices are: 

• Contiki - Light weight event-driven OS that targets WSNs, provides power profiling, 
dynamic programming, and node shell command line interface (CLI)[21] 

• eCos – A fully pre-emptive real time operating system (RTOS) running one process 
with multiple threads, supporting many different platforms [22] 

• LiteOS – UNIX like OS that specifically targets WSNs, provides shell command line 
interface, multi-threaded kernel, hierarchical file system, dynamic programming, and 
online debugging [23] 

• Magnet OS – Single system image (Java virtual machine), power-aware algorithms 
for component distribution, statically partitions applications and dynamically places 
them on the network [24] 

• Mantis – Multi-threaded OS that targets WSNs, designed to deal with complex tasks 
such as compression, aggregation, and signal processing; but still be lightweight [25] 

• MicroC/OS-II – Priority based pre-emptive RTOS with multitasking kernel, 
performing scheduling with tasking aware interrupt service routines [26]  

• Nano-RK – Pre-emptive reservation based RTOS. Supports fixed-priority fully pre-
emptive scheduler and reservation on system resource consumption [27]  

• Nemesis – Designed to distribute multimedia applications. It has few hardware 
abstractions and uses shared libraries resulting in a small kernel [28] 

• NutOS – Non pre-emptive multithreaded RTOS that featuring events and dynamic 
heap memory allocation. Uses libraries instead of a fixed kernel block, thus reducing 
the footprint [29] 

• Tiny OS – Light weight event-driven OS that targets WSNs, completely non-blocking 
with a single stack [30]  

The hardware of a WSN mote and normal embedded devices are similar allowing OSs for 
embedded devices to be run on WSN devices; although WSN devices do not necessarily 
require the real-time properties which are normal in an OS for embedded devices. Three of 
these OSs are described in the following sections. These examples were chosen because 
Contiki was developed at SICS and was selected earlier for the project, LiteOS is a UNIX 
like OS - with a similar user interface to Contiki, and TinyOS is widely used and has 
expanded into many different areas. 

2.2.1.1 Contiki 

Contiki [21] was created as a light weight OS for constrained networked embedded 
systems. While the kernel is event-driven, the OS supports pre-emptive multi-threading, thus 
benefitting from both event-driven systems and pre-emptive multi-threading. The 
multi-threading is implemented as an optional application library that can be linked with 
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programs that explicitly require it. The type of thread used in Contiki has been called a 
protothread [31]. 

For reprogramming nodes during run-time, Contiki uses ELF-files for dynamic linking. 
This allows loading and unloading of individual applications or services during runtime [32].  

In Contiki, the kernel provides a minimum of abstractions. Instead abstractions are 
provided by libraries that have nearly full access to the underlying hardware. Contiki is 
designed to be portable and has been ported to 14 different platforms and 5 different CPU 
architectures [33]. 

To interact with a network node a command-line shell, running on the nodes, can be used. 
This shell offers UNIX-like commands. 

Software-based power profiling is another feature of Contiki. This allows the programmer 
to measure the energy consumption of a node. Nodes in WSNs seldom have hardware 
mechanisms for measuring their energy consumption; this is to keep down the cost of the 
node since a large number of them might have to be produced. By implementing a software-
based on-line energy estimation tool, it is possible to estimate the node’s energy 
consumption. This a valuable tool when building a WSN and when evaluating different 
energy saving algorithms and communication protocols. While the results from this tool are 
close to reality, they are still estimations. The possibility to see differences and trends in 
energy consumption for different ways of using of the node and for different algorithms is 
very valuable. Extensive related work in this area has been done by Tajana Simunic Rosing at 
Department of Computer Science and Engineering, University of California, San Diego [34]. 

2.2.1.2 LiteOS 

To fulfil the need of an easy to use an OS with a well known interface LiteOS [23] was 
created, giving programmers a familiar programming environment. LiteOS features a subset 
of UNIX-like commands, hierarchical UNIX-like local file system, kernel support for 
dynamic loading and native execution for multithreaded applications, online debugging, and 
dynamic memory. 

The LiteOS architecture can be divided into three categories: kernel, file system, and user 
environment. The kernel in LiteOS is thread-based, but allows events in user applications 
using call-back functions. Scheduling is either round-robin or priority based. LiteOS supports 
dynamic loading and unloading of user applications. All applications are compiled into a 
modified HEX format; lhex, that is very small in size. Reprogramming is done on the 
application level using lhex-files. 

The file system used in LiteOS is called LiteFS and is similar to the UNIX file system in 
how it represents different entities, such as data, application binaries, and device drivers. A 
radio, sensor, and LED are examples of supported device drivers. Read/write operations are 
mapped directly to hardware, e.g. writing a message to the radio would broadcast it. 

The LiteOS user environment consists of a UNIX-like command line interface to sensor 
nodes. The shell, called LiteShell, runs on the end-user’s PC providing a front-end that 
interacts with the user. The nodes receive translated messages as compressed tokens that are 
easy to parse. This approach minimizes the run-time footprint on the nodes, while allowing 
the shell to be easily extended. 
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2.2.1.3 TinyOS 

TinyOS [30] is a tiny embedded operating system targeting WSNs. The entire operating 
system requires only 226 bytes of RAM and 3.5KB of instruction memory. TinyOS started 
out as a project at University of California, Berkeley in corporation with Intel Research, as a 
project in the DARPA NEST program (Smart Dust [8]). It is one of the first OSs targeting 
WSNs and was developed to cope with technological advances in integrated, low-power, 
CMOS communication devices and sensors.  

The philosophy behind TinyOS is to get the work done as quickly as possible, and then go 
to sleep as soon as possible. TinyOS is interrupt driven and uses an event-driven architecture 
so that high concurrency can be handled in a very small amount of memory space. 
Scheduling is implemented through a two-level structure; short hardware events are 
preformed immediately while longer applications are run as tasks. The tasks can be 
pre-empted by events, are time flexible, and run in FIFO order, in comparison to events that 
are time-critical and use first-in first-out (FIFO) semantics. 

Programs are built out of software components that communicate with each other via 
interfaces. A component consists of four parts: command-handlers, event-handlers, a fixed-
size memory segment frame, and tasks. Tasks, commands, and handlers execute in the 
context of frames.  

Since frames are of fixed size, static memory allocation enables the allocation size to be 
known at compile time, reducing memory allocation overhead. Memory is organized as a 
single shared stack, no heap, and no function pointers. 

2.2.2  Programming abstractions 

Programming WSN applications differs very little from programming other embedded 
hardware, as the fact that OSs can be used in both environments proves. As noted earlier, 
real-time properties are often required in embedded systems, but are not always required in 
WSNs. 

On top of the operating systems, additional abstractions are often provided to facilitate 
programming and to hide complexity. Examples of such an abstraction are TinyDB [35] for 
TinyOS, implemented as a library. TinyDB handles cooperative data acquisition using 
macroprogramming. Conversely, in node-centric programming the focus is on an individual 
node rather than the aggregate system. The programmer writes code for each node which may 
enable the executing code to be more efficient, but is more time-consuming, error prone, and 
requires significant expertise in the area. Macroprogramming offers a more generic solution 
by way of high-level programming, by utilizing suitable programming abstractions [36]. 

To support such programming abstractions, OS-specific programming languages are often 
developed, such as NesC [37] for TinyOS, which is an extension of the C-programming 
language. Another WSN-specific programming language, but one not bound to an OS, as it is 
platform independent, is SPIDEY [38]. 

2.2.2.1 TinyDB 

TinyDB is a system that gathers data via queries from nodes running TinyOS. Instead of 
writing embedded C-code for each node, TinyDB offer a SQL-like interface together with 
additional parameters to specify the data to be extracted. Given a query TinyDB collects the 
data, filters it, aggregates it, and routes it to the end-user. 
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The goal of TinyDB is to make programming a WSN application significantly easier. 
Specifically, it allows data-driven applications to be developed and deployed quicker than 
what was previously possible. Some of the features provided in TinyDB are: metadata 
management through a metadata catalog, high level queries with a declarative query 
language, network topology tracking, multiple queries, and incremental deployment via query 
sharing that allows for nodes with TinyDB to be added to the network at a later stage. 

 
Example 1: Query for TinyDB 

In Example 1 sensor nodes monitor rooms in a building. The code is used to learn which 
rooms are in use; by defining a room as being ‘in use’ as having an average amount of light 
greater than a threshold and an average volume larger than v. This will be checked every fifth 
minute. 

2.2.2.2 SPIDEY 

The programming language SPIDEY was created to meet the new challenges emerging in 
decentralized architectures, where several data sinks might be used to collect data. SPIDEY 
offers a high-level, application oriented way of defining logical neighbourhoods. The 
neighbourhoods can be defined declaratively based on the type of nodes, together with 
requirements about the cost of communication. 

SPIDEY was conceived to be an extension of an existing programming language, making 
it available to a wide range of OSs. Programming in SPIDEY revolves around two concepts: 
nodes and neighbourhoods, code examples for each concept can be seen in Example 2. 

 
Example 2: SPIDEY code for a logical node (top) and logical neighborhood (bottom). 

A node is defined by a node template. This template is later used to derive actual instances 
of logical nodes. A static declaration represents information that does not vary in time; unlike 
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dynamic information, such as sensed data. A node is created by binding attributes to constant 
values or functions. 

A neighbourhood is first defined as a template, which defines the nodes belonging to the 
neighbourhood. The logical neighbourhood is then instantiated by specifying where and how 
it is supposed to be constructed and maintained. In the bottom code example of Example 2 a 
neighbourhood template is defined as consisting of temperature sensors whose reading is 
above a given threshold, then instantiated in terms of nodes that meet or exceeds a threshold 
of 100, are a maximum of 2 hops away, and for which communication requires spending less 
than a maximum of 30 “credits”. These credits represent the communication cost – each node 
has a function to calculate this cost. 

No matter what OS is used and which abstraction that is used to implement the application, 
there might be several reasons that changes need to be made to the programming after 
deployment. Reprogramming of the network can therefore be expected in most applications. 

2.2.3  Reprogramming 

From the perspective of constrained resource programming, WSNs and other embedded 
devices share many similarities since it is important not to waste energy or memory space as 
both could significantly shorten the application’s lifetime. Even though the first step of 
programming is important and builds a foundation on top of which changes might be made, it 
is important that the system offers reprogramming in an as easy to use way as possible [39]. 

There are different methods for reprogramming nodes: full system image replacement, 
changing different small parts of the binary image, passing interpreted code, virtual 
machines, and loadable native code modules. One challenge of reprogramming is to keep the 
energy cost as low as possible during the reprogramming phase, both by minimising the 
number of bytes sent over the network and minimizing the effort it takes to process the data 
at each node. Virtual machines have the advantage over native code that the code can be 
smaller, but the drawback is usually increased energy spent on interpreting the code, 
especially for long running programs [21]. In some scenarios using long running programs 
the run-time processing eats up the energy saved by the smaller code. Replacing the full 
system image is an easy and straight forward approach, but has a high overhead. Editing parts 
of the binary image during run-time works well for networks where all nodes run the same 
binary image, but can easily become complicated if they do not. With loadable modules only 
parts of the system need to be modified, but this method requires support from the OS. The 
best reprogramming solution would be to use a mix of a virtual machine code and native 
code, giving good energy efficiency [32]. 

After setting up a WSN there might be several reasons why a software update is needed. 
There might be problems with bugs in the software that were not discovered before 
deployment, or the network needs some new functionality. Since it might not be plausible or 
even feasible to collect all nodes in order to reprogram them; thus it is in the interest of the 
programmer that the nodes support reprogramming during run-time.  

2.3  Related work 

Most related work concerning disconnected operations concerns disconnections within the 
WSN. However, a small amount of work has been done when the disconnection occurs 
between the end-user (base-station) and the rest of the WSN. In particular, some work has 
been done regarding data management [14] [40] and storage [41]. Other work is more related 
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to networking within the WSN, for example DARPA’s Disruption Tolerant Networking 
program [42], other DARPA funded DTN programs, and research by the Delay-Tolerant 
Networking Research Group (DTNRG) [43]. One project related to this thesis is the 
“Disruption Tolerant Shell” project by Martin Lucac et al. [44]. However, their work is 
application driven as for a certain scenario they are looking at synchronisation between nodes 
and management, not from a general point of view toward disconnected operations. 

The above projects focus on routing of packets within the WSN. This thesis approaches a 
similar problem with disconnection, but at an abstract software level, with an aim of offering 
a tool for programmers to program disconnected operations. We have not found any 
published prior work that deals with disconnection in the fashion presented in this thesis. 
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3  Motivation 

This chapter examines more deeply the issues that arise in disconnected scenarios and 
programming for applications that must address these issues. First we will identify different 
ways of connecting and being connected to a WSN, then look at challenges in WSNs 
scenarios due to disconnected communication. 

3.1  Connection to a WSN 

There are three important cases when a connection between an end-user and the WSN is 
not available. Sometimes a connection between the end-user and the WSN and (even) inside 
the WSN is deliberately disconnected; for example, periodically disconnecting to save power. 
In other cases it may only be possible to sustain a connection on an irregular basis; for 
example, when monitoring a heard of moving animals [13]. Finally, there is the case of a 
broken connection because of unreliable links, failed nodes, or other unpredicted events that 
causes a temporarily prevented connection. The whole chain of connections from one mote to 
the end-user is shown in Figure 4. 

 
Figure 4: Architecture showing a connection between a mote and an end-user. 

Three types of connectivity are described by Kay Römer and Friedemann Mattern: 
connected, intermittent, and sporadic [2]. If there is always a connection between nodes, then 
the network is connected; if nodes may be occasionally partitioned, then the connectivity is 
said to be intermittent; and if nodes are isolated most of the time and only communicate with 
other nodes occasionally, then the connectivity is sporadic. In this thesis the last two types, 
intermittent and sporadic, are both considered as disconnected scenarios. 

The area addressed by this thesis has many similarities with other topics, such as: 
“delay-tolerant networking” (DTN), “disruption tolerant networks”, and “opportunistic 
connectivity”, amongst others. In most of these topics the focus is on the connections within 
the WSN, specifically the network layer dealing with routing of packets. However, little 
research has focused on investigating how to program solutions for when there is not 
continuous connectivity between the end-user and the rest of the WSN. 

Whenever we want to access a WSN for any reason, be it for (re-)programming the nodes, 
updating software, querying nodes for their current status, changing tasks, or acquiring data, 
this access can be done in different ways. Generally we communicate via some kind of 
gateway. This gateway could be one of the motes, a data sink, or a special control-station or 
base-station. The gateway node might also function as an access-point for the rest of the 
WSN to access other networks. 

The different ways of connecting to a WSN and the different types of WSNs increases the 
complexity of the system. This thesis project tries to simplify this process. We will assume in 
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all our scenarios that an end-user wishes to connect to a WSN. In general this end-user will 
be connected via a wired or wireless connection to a node that could be part of the WSN, but 
might not always be part of the WSN. See Figure 5. 

 
Figure 5: Gateway connecting an end-user with a WSN. 

The disconnection that is discussed in this thesis concerns both the connection between the 
node that is directly connected to the end-user and the connection from this node to the rest of 
the WSN (as shown in Figure 6). An alternative way of describing this disconnection is that 
the WSN is partitioned into one part that the end-user is able to communicate with and 
another part of the WSN that is currently disconnected from the first part.  

 

 
Figure 6: The end-user is disconnected from the WSN. 

3.2  Challenges 

Challenges concerning WSNs can be divided into two areas: hardware and software. 
Hardware challenges are to increase performance, create flexible platforms, and reduce the 
component sizes and cost. Hardware advances such as processor speed and memory capacity 
amongst others have followed Moore’s Law, resulting in the speed or capacity doubling 
every second year for a given cost. Software challenges are related to programming 
environments, algorithms, and efficient code. It is not only important to make best use of 
hardware resources, but also to facilitate programming by the programmers. 

To follow trends in embedded systems and offer WSNs solutions in a wide variety of 
applications it is important that these challenges are met. Also, it is important that suitable 
program building blocks (often implemented as libraries) be available in the programming 
environments that the programmers are most likely going to use. 
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3.2.1  General 

An important area of software challenges is producing an easy to understand environment 
and interface for programmers to work with. Not only experienced programmers will use the 
network, but researchers who might not have a background in programming computer 
networks may need to develop applications for a WSN. Therefore, making it easy to create, 
deploy, and operate a WSN is important, as it does not matter how energy efficient software 
is if no one uses it. This leads to a more human centric focus for programming WSN 
applications. This is in contrast to the traditional node centric focus of developing software 
for embedded systems, which viewed programmers' time as having low cost.  

In WSN applications the constraints due to limited resources are always an important to 
address. While hardware advances give greater processing capabilities, larger memory 
resources, and smaller components – there is still a need for cheaper, less power consuming, 
and more flexible platforms.  

A major challenge in producing software for WSN is due to the scarce energy resource of 
the node. Thus the challenge is to produce energy efficient software, as this will increase the 
lifetime of the network. For nodes that do not have the possibility to recharge their battery (or 
be refueled), if the energy consumption can be halved, the lifetime of the node is doubled.  

3.2.2  Disconnected operation 

Programming WSNs is often done in conjunction with a specific application 
implementation, making the solution suitable only for this specific application and not 
reusable for disconnected networking. Not only are all deployments of WSNs with 
disconnected applications unique in their application, but also their solution to disconnected 
operation is also unique. Therefore, many applications might benefit from a common 
solution. One challenge is to create such a common solution. 

Another issue in disconnected networks that does not relate to routing packets and making 
good use of storing and collecting data is the user interface for programming disconnected 
operations. The expanding use of WSNs in different applications today results in scenarios 
where the programmer needs to operate the WSN over an intermittent or sporadic connection. 
This is a challenge that is not solved by any of the applications mentioned in section 2.1.2. 

Most of the typical challenges of disconnected operations lie within the WSN, for instance 
collecting results and routing packets within the WSN. Examples of problems that can occur 
during result collection include a mote experiencing a memory overflow while waiting for 
connectivity to be re-established in order to transmit its measurements. Another challenge can 
be the uncertainty that a given software update has disseminated fully, i.e., that every mote 
has been updated. 

When the end-user issues a data collection request, this request is spread through the WSN 
to cause the relevant motes to return their sensed data. When the WSN needs to be 
reprogrammed there is a similar course of events. In both cases the end-user relies on the 
routing of the packets to ensure that every node gets the relevant information. When all nodes 
within the WSN have direct connectivity with the end-user the end-user can ensure that each 
node receives the information. A more difficult case is when the end-user can only 
communicate directly with one or a small number of nodes, thus the user must depend upon 
these nodes to act as relays for the required communication. 
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3.2.3  Programming Disconnected Operations 

We have so far shown that there are a number of applications that are affected by 
disconnection (see section 2.1.2), and will continue to be so in the future. A novel approach 
to programming an abstraction to handle such disconnection and the challenges that follow is 
needed. Today no such abstraction exists. 

When programming disconnected operations it is important to know what kind of 
disconnection you are programming for. When the WSN is in a disconnected state it is 
usually the WSN that has disconnected itself by turning off its transceiver or the connection 
was for some reason lost. In the first case, it is the WSN that activates and deactivates the 
connection, i.e. connectivity is determined by how the WSN was programmed to function. In 
this case the end-user usually knows for how long the connection will be down, or knows 
what the schedule of connectivity is planned to be. If this time is known by the end-user, then 
programming disconnected operations is much easier since the end-user does not have to 
synchronize when the node will be reachable by the end-user with the time the end-user is 
accessing the network. Another way around this is tell the nodes about the desired 
operation(s) and when there is a connection execute these operations. In this case, buffering 
of operations and possible associated data is needed. Also necessary is some way of marking 
operations with a timestamp or a comparable identification of the state of the network so no 
an isolated node starts to execute old operations when it (re-)connects after a long time. 

It is obvious (by definition) that sending packets between nodes is impossible when they 
are disconnected from each other. In the case of packet-switched communication, every 
problem that arises from this disconnection is related to packets not being sent or received. 
Unfortunately, unexpected disconnections can occur when updating software in the network, 
when reprogramming, during data collection/transfer, and when querying nodes for status. 

There can also be indirect effects when programming if the WSN is partially 
disconnected. For example, when using data management equalization algorithms (to spread 
load or storage of data over nodes [40]) and altering information dissemination, as the end-
user might not know that some parts of the network are currently disconnected. 
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4  Classification of disconnected WSNs 

A classification model is needed to classify different WSNs and eventually their 
differences in disconnection. Knowing these differences it should be possible to better adapt 
the approach to the problem of disconnected operations. Classification of a WSN can be done 
in different ways and a WSN can be characterized in different ways using different 
parameters.  

4.1  Classification model 

In the classification model for disconnected WSNs presented here three parameters are 
used. These three parameters are: entry point, network topology, and mobility of the network. 
Details for each of these parameters will be presented below. 

Entry point characterization concerns the means of connecting to a WSN. The entry point 
refers to the connection from the end-user to the gateway to the WSN. One way to connect is 
through a fixed gateway, i.e., always using the same (intermediate) node to access the WSN – 
as illustrated in Figure 7. A second way is to connect to any random node or a subset of 
nodes that are connected to the rest of the WSN – as illustrated in Figure 8. 

  
Figure 8: Any entry point Figure 7: Fixed entry point 

The network topology can be divided into three categories: fully connected nodes, 
disconnected islands of nodes, and isolated nodes. These three types of network topologies 
are shown in Figure 9. Due to characteristics of WSNs categorising a WSN based upon 
network topology is not a straight forward task. If the network should be able to adapt to 
changes in topology, then a failing node might change the topology from fully connected to 
disconnected islands or a disconnected island might change to isolated nodes. Note that a 
fully connected network could transition in stages (i.e., via link failures to become 
disconnected islands) to isolated nodes, or this transition from fully connected to only 
isolated nodes could even happen in a single step. In this thesis we are assuming that the 
system finds itself most of the time and that a change in network topology is unlikely and 
temporary. 

 
Figure 9: Three types of network topologies. 
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Mobility of the network is a third parameter for classifying a WSN. The network (as a 
whole) or parts of the network could be mobile. Mobility of the nodes may lead to changes in 
the network topology (as described above). Recent work by David Culler et al. [46] discusses 
that “mobility changes everything” in WSN. A common scenario for mobility in WSNs is 
when a node (mote) is attached to an animal, as shown in Figure 10. Note that if multiple 
nodes were carried by the animal, then the network formed by these nodes would be mobile. 
One of the important questions is if the nodes are moving coherently together (i.e., all moving 
on the same path), in this case there is a different expectation for the stability of the network 
topology, than in the case when paths of the nodes are not coherent (i.e., they are moving 
along different paths). In this second case, link failures will be more likely. 

 
Figure 10: Mobile WSN containing mobile motes, e.g. motes attached to animals. 

These three parameters enable us to classify a WSN in a three dimensional space. With two 
classes of entry point (fixed or mobile), three network topologies (fully connected, 
Disconnected islands, and isolated nodes), and with or without network mobility – results in 
12 different classes (as illustrated in Figure 11). 

 
Figure 11: WSN classification graph with three dimensions: entry point, network topology, and mobility. 
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Some of the combinations in the classification graph are not relevant to this thesis project. 
For example a WSN with isolated nodes, where the nodes do not communicate with each 
other for any reason, that the end-user must access through each individual node (i.e., each 
node is the only entry-point to access this node) gives no programming challenge and if a 
wire is used to connect to the node is not a wireless network by definition; hence it is not of 
further interest in this thesis. While a collection of isolated nodes with a fixed entry-point that 
must be used to communicate with any of the nodes (i.e., this entry point acts as a gateway) is 
clearly a WSN – since the nodes are communication with the gateway wirelessly. These two 
scenarios are shown in Figure 12 and Figure 13.  

  
Figure 13. Isolated nodes accessed through a fixed 
gateway. 

Figure 12. Isolated nodes accessed one by one. 

The examples above suggest that there is an intermediate situation that is of interest: when 
the user can communicate with isolated nodes or disconnected islands via a number of 
different gateways. There is also the related situation when a fully connected network has 
multiple gateways – this situation is interesting as it increases the robustness of the 
communication between the end-user and the nodes; as a link failure that results in a 
partitioning of the network into disconnected islands might still provide connectivity with the 
end user if there is at least one gateway to each node or island. 

Table 1. Examples of applications classified according to the proposed model. 
 
Mobility Entry Point Network topology Example 
Yes Fixed Fully Connected  
Yes Fixed Isolated Islands ZebraNet [13] 
Yes Fixed Isolated Nodes Argo [6] 
Yes Any Fully Connected  
Yes Any Isolated Islands  
Yes Any Isolated Nodes  
No Fixed Fully Connected  
No Fixed Isolated Islands  
No Fixed Isolated Nodes Glacier [4] 
No Any Fully Connected Rolls Royce WIDAGATE [47] 
No Any Isolated Islands   
No Any Isolated Nodes Buoys [11] 

4.2  Other classification parameters 

In other classification models, for classifying WSN applications, many other parameters 
have been used. Kay Römer et al. [2] looked at a design space using the following parameters 
to differentiate applications: deployment (in regard to method and time), mobility of nodes, 
resources, implementation cost, energy source, heterogeneity, modality, topology, coverage, 
connectivity, size, and lifetime. Table 2 shows an example of this method of classification for 
two disconnected WSNs: ZebraNet and a WSN used for herding. 
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Table 2: Example of a classification table. [2] 
 Deployment Mobility Resources Cost Energy Heterogeneity Modality 

ZebraNet Manual,   
one-time 

all, 
continuous, 

passive 

matchbox - battery nodes, gateway radio 

Herding Random, 
iterative 

all, 
continuous, 

passive 

brick - battery homogeneous radio 

       
 Infrastructure Topology Coverage Connectivity Size Lifetime 

ZebraNet Base station, 
GPS 

Graph Dense 
(every 
animal) 

sporadic Tens-
thousands 

One year 

Herding Satellite Star Sparse Intermittent 1300 
deployed, 

3000 
planned 

4-5 years 

 
Another example of classification of WSN applications is given in [36], where a two-

dimensional classification model is described. The model has two parameters, space and 
time, which are each divided into two segments: global and local for space, and periodic and 
event-driven for time. 

As described above, this thesis utilizes its own classification method. This method will be 
used later to (1) evaluate the implementation of the solution and (2) to make programming 
disconnected operations easier.  
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5  Design and implementation 

This chapter begins with a presentation of the general problem and its general design 
solution. Following this is an examination of specific problems derived using the 
classification model presented in the previous chapter. From these specific problems a set of 
building blocks will be presented. The following chapter evaluates these building blocks, also 
called modules. 

5.1  General problem 

As stated in section 1.1 on page 2, a WSN application programmer who is developing 
disconnected WSN applications must currently implement an application specific solution, as 
a general solution or solutions do not currently exist. A general solution that addressed the 
problem of disconnected operations could be applied to many different applications. 
Simplifying the development of disconnected WSN applications could foster the 
development of new WSN applications by an expanded set of developers. 

5.2  Design of a general solution 

To simplify programming of disconnected operations we introduce a number of modules as 
a part of the solution (illustrated in Figure 14). These modules can be used in conjunction 
with other modules or by themselves and allows for different implementations with different 
functionality. A module can communicate with other modules on the same node or through 
the network with modules on other nodes. The end-user might both give input and receive 
output from modules. Due to the use of a common interface, these different implementations 
can be interchanged with each other to meet the needs of a specific application. The re-use of 
hardware and software modules has been successful in many other areas, by reducing 
development time and effort, increasing quality - as an improvement in a module can be 
applied to all instances of its use, enabling “best of breed” selection of modules, etc. In the 
following sections we will present this common interface and some of the modules that we 
believe are necessary to address the problems faced when developing applications for 
disconnected WSNs. 

 
Figure 14: Utilization of modules in different ways 
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One of the benefits of this modular design is that it permits the application programmer to 
easily replace one module with another. For example, a module used to communicate with 
other nodes could be replaced by another module that has a different power profile. This can 
have significant benefits, if only local optimizations are necessary to meet the application’s 
overall power requirements. 

5.3  Proposed Modules 

After examining a number of WSN applications a need for a general solution to enable 
these applications to be used in conjunction with disconnected operation is considered. We in 
this chapter propose a small set of modules to facilitate the development of future 
disconnected WSN applications. The modules are: UserWait, Buffer/Store, Replicate, 
Collect, and Schedule. These modules will each be described in detail in the following 
subsections. 

5.3.1  Userwait 

A common feature of many WSN application is the need for a process to execute up to 
some point (specified by the programmer), where it should wait for the user to continue the 
process. The initial execution of this process could be activated by an end-user connecting to 
the WSN or initiated automatically based on some event (time of day, sensor threshold, 
completion of another task, etc.). Userwait divides a series of processing into portions that 
can be executed without the presence of the user and wait barriers that require 
communication with the end user before the processing can continue. 

A typical example of when such a module would be used is in a disconnected WSN where 
the end-user is only connected to the network for a limited time. The nodes will run the 
userwait module individually when measuring data and storing it locally. When the end-user 
connects and announces its presence the nodes will react to this and start sending their stored 
data to the end-user. 

5.3.1.1 Design 

The design of this module could be divided into two sub-modules: one sub-module that 
manages the execution of the process and the other sub-module communicates with the end-
user and acts on the first sub-module by allowing it to continue the execution of the process. 
The first sub-module could be further divided into three parts: one part that handles execution 
of the process before the break, one part that handles the break and waiting for the end-user to 
connect, and a third part that handles the execution of the following process. This is 
illustrated in Figure 15. 
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Figure 15: Userwait module with sub-modules 

5.3.1.2 Requirements 

The programmer specifies what is to be executed before waiting for input from the end-
user and what is to be executed afterwards. Communication between the two sub-modules (1) 
announces that the first sub-module has completed its execution and that the second sub-
module is waiting before proceeding (2) communication from the end-user to the module, and 
(3) communication from this end-user signalling module to the sub-module that is waiting 
indicating that the end-user wants the processing to continue. 

5.3.1.3 Discussion 

This design could be used to allow a measurement process to collected data in a WSN that 
will be buffered (by the first sub-module) until the end-user connects and activates the third 
sub-module (e.g. sending measured data to the end-user). 

Announcing the presence of the end-user could be done by broadcasting the end-user’s 
presence over the whole WSN independent of the entry point that is being used by this user to 
connect to the (previously disconnected) WSN. 

More generally we can think of the activity as: Execute process; signal that you are at the 
barrier; wait at the barrier; execute the process. As there can be multiple such barriers in the 
WSN, especially if the WSN is being used to perform several different tasks. This implies 
that we need labels for the barriers – so that the end-user can know which barrier the 
execution is waiting at, in order to be able to say which of these is to continue.  

5.3.2  Buffer/Store 

In many WSN applications there is a need to temporarily store data. In both connected and 
disconnected WSNs this is needed. 
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An example of when a buffer/store module would be used is when data traversing through 
the network, or between different modules, needs to wait for a certain event to happen before 
it can continue. In a disconnected scenario it is likely that the buffer/store module will be 
used by another module made for disconnected scenarios (e.g userwait module) and therefore 
might have dual functionalities for better utilization, e.g. it might both write and read data 
depending on the situation. 

5.3.2.1 Design 

The Buffer/Store module stores data locally at a node when given data. The stored data 
will now be available from this buffer, for use by other modules. This module is simple in its 
design and different implementations of this module can be constructed depending on the 
policy used for storage. In a disconnected scenario this module would store data when given 
input and should be able to output all its previous data upon request. Depending on the policy 
the data that has been output could be removed from the buffer or not. 

5.3.2.2 Requirements 

To identify this buffered data some sort of identifier is needed. The data can be retrieved 
later using this identifier. The module must be able to receive input in some way and return 
the buffered data as output. This data could be stored in a local file system. 

5.3.2.3 Discussion 

The Buffer/Store module functionality is needed both for buffering scenarios and for 
persistent storage in the nodes of the WSN. Many different implementations of this module 
are possible and each of them might be useful in specific situations depending on the 
application. 

These different implementations have different properties, hence raising a number of 
questions, such as whether the data can be asked for only once or more than once; whether 
asking for the data using this identifier is idempotent, i.e., that it returns the same data, or if it 
only returns the data currently stored using this identifier; when should data be deleted; when 
can identifiers be re-used; what is the valid scope of an identifier (for example is it a locally 
valid ID or globally valid ID – in the later case can it be guaranteed to be unique); … . These 
questions need to be taken into consideration when implementing a new module. 

5.3.3  Replicate 

In many applications copies of data values need to be made available to more than one 
node, i.e., the data needs to be replicated. As this is a general problem, it should have a 
general solution; but the solution may need to be parameterized. Forwarding data from one 
node to another can be achieved by the degenerate case of replication to a single node. 

An example where the replicate functionality is helpful is in mobile disconnected WSNs 
where data gathering relies on nodes being in the vicinity of a sink that collects data. The 
end-user would not always be able to connect to moving nodes, but the sink would be static 
and might always reachable. A node that will never be near the sink could replicate its data to 
other nodes that might upload their own data along with the replicated data from other nodes 
to the sink when the node is near a sink. 
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5.3.3.1 Design 

Data or copies of data can be broadcast or unicast from a node to other nodes in the 
network1. Data produced locally on the node is replicated to other nodes so that several nodes 
share the same data. Replicated data received from other nodes, just like locally produced 
data, is stored locally. 

5.3.3.2 Requirements 

The replicate module must be able to take input and provide output, as well as 
communicate with other nodes. What policy should be used for data replication should be 
decided by the programmer when using this module. The policy(s) selected for 
communication will also be coupled to the means of communication – which can also be 
encapsulated by this module. 

5.3.3.3 Discussion 

Replicating data can be done in different ways in order to achieve different goals, therefore 
it is important that this module can be tailored as needed. For example, an instance of this 
module might replicate data only to the closest neighbours, while another instance might 
replicate the data to all nodes in the network. Replication of data (and processing) can be 
used for load balancing, to provide redundancy so data is not lost if a node goes down, and to 
locally compute functions over data in a region. 

5.3.4  Collect 

The Collect module is designed to run on a node acting as a sink, i.e., it will collect data 
from other nodes. Note that in most cases this module will inform other nodes of its 
existence, enabling the nodes to route data to this sink. 

Collecting data could both be done by the end-user as well as single nodes, possibly acting 
as gateways. In a time synchronized network nodes could at a given time instance all start 
transmitting data to some destination that could be the end-user or a sink that would collect 
the data. 

5.3.4.1 Design 

The Collect module can have two major designs. One design opens a connection to the 
network and starts listening if any node is sending measured data, while another design 
would pull data from a source and collects it. This module’s design should make it easy for 
the application programmer to collect data from many nodes, then process and store the data 
for subsequent transmission to the end-user. Having this collection occur within the WSN 
(particularly at the gateway) is quite suitable for disconnected WSNs, as it allows the data to 
be staged for later collection. 

Some of the design questions that need to be addressed are: can there be multiple sinks, 
can a sink indicate what type of data it is interested in, can a sink indicate that it is no longer 
interested in data, can a sink indicate that it is interested in data at some specific point (in the 
future) in time, can a sink indicate a maximum rate for data from any single source, etc. 
                                                 
1 Any sensors in the WSN will be attached to a node, hence using replication the sensor data can be sent to 
multiple other nodes from the node connected to the sensor. 
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5.3.4.2 Requirements 

Important when collecting data is the type of communication to be used. In some settings a 
reliable way of transferring large amounts of data over several hops is desirable. There also 
needs to be a way to identify the data to be collected.  

5.3.4.3 Discussion 

Collecting data is crucial in WSNs, as one of the major uses of WSNs today is to collect 
data from sensors that are attached to the nodes of the WSN. The method chosen for 
communication should be that method that best suits the specific application. For a 
disconnected WSN it is advantageous to be able to retrieve data when it is convenient for the 
end-user, therefore a pulling collect is needed and not only a collect that announces its 
presence and then only waits for nodes to send data. 

5.3.5  Schedule 

The Schedule module is the most complex module to implement due to its many 
parameters and because it ties many of the other modules together. While it does not directly 
address disconnected operations, it helps the programmer to schedule the execution of the 
other modules. This module might also be used to allow the end-user to schedule when and 
how to run commands (that have been implemented by the programmer who developed the 
application). 

The schedule module would be very helpful in WSNs where different operations need to 
be executed at different time instances. A typical example is monitoring animals or 
environments with different cycles, e.g. nocturnal animals that are active during night and 
sleeps during the day. In this case it might be wise to schedule that the radio should shut off 
during the day and turn on again during the night when the animal is active to start measuring 
data. 

5.3.5.1 Design 

The schedule module should be divided into one part that handles end-user requests for 
managing tasks and one module that executes the tasks at the specified (scheduled) time. The 
first part is generally implemented via a command shell that takes user requests to execute 
specific commands/tasks and schedules them. Some of these commands/tasks may modify 
the current schedule, for example increasing or decreasing the priority of a task, removing a 
task from the schedule, adding a task to the schedule at a particular point in time, adding a 
task to follow the completion or another task, etc. The second part is generally referred to as 
the scheduler.  

5.3.5.2 Requirements 

Several types of user inputs are needed for this modules functionality. It is needed to 
identify different tasks, schedule them according to starting time and runt time. The end-user 
should be able to remove existing tasks and also add new tasks according to parameters such 
as the time interval, frequency, and priority. 

28 
 



  December 9, 2009 

5.3.5.3 Discussion 

The schedule module allows for better utilization of all the other modules. Many different 
ways of implementing this module is possible. There are several parameters to take in 
consideration and many different algorithms can be used to compute a schedule according to 
these parameters. One of the most important design questions is if the scheduler should be a 
pre-emptive scheduler or not. 

5.4  Implementation 

Five different modules have been presented to aid programming disconnected WSNs. 
These modules will be implemented as shell commands in the Contiki OS, enabling them to 
be used in a shell environment. 

5.4.1  Contiki Shell 

Many operating systems for WSN offer a shell interface to the user, see for example the 
previously mentioned OSs: Contiki[21], LiteOS[23], and TinyOS[30].  

The Contiki shell is similar to most other shells, using the ability to send data between 
commands through “pipes”, and allow commands to run in the foreground or background. 
Hence by implementing the modules as shell commands the functionality of the commands is 
transportable to other OSs that uses a shell. However, the actual code itself is not portable 
since it is optimised to work with the Contiki OS. The code would have to be modified and 
adapted to work on another OS.  

The UNIX shell [48] utilizes standard input and output of bytes between programs via a 
pipe. In this thesis we also propose to use a shell based solution with pipes. Thus the common 
user interface to all programs will be the shell input and output. The Contiki OS does not use 
standard input/output filehandlers as in an UNIX based OS, instead the shell utilizes an ad 
hoc implementation to handle data via pipes. 

Shell commands are easy for programmers to use. This is particularly important when the 
user is not an experienced programmer - but instead is often a scientist with little 
programming experience. The interface that a shell often offers is easily understood. 

The Contiki shell differs from other shells, such as the UNIX based OS shells, in that two 
instances of the same command cannot be run at the same time. This may or may not lead to 
unexpected behaviour for end-users (especially if there are multiple simultaneous end-users 
of a single WSN). In conjunction with the Userwait module this may lead to blocking the use 
of commands for the end-user for indefinite time, or even lead to deadlocks. 

5.4.2  Alternatives 

Another ways of implementing the modules would be by implementing a new 
programming language. This approach would give the programmer a more complex interface, 
but allow the programmer more detailed control. As the scope of the language would be quite 
small it could be built as a “little language” [49] on top of an existing language, since the 
extensions are only intended to support programming of disconnected operations.  
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5.4.3  Implementation details 

The implementation of the proposed set of modules will be described in this section. The 
approach that has been taken is a scripting based approach in which the end-user enters 
commands that are to be run in a shell via a command line interface. These commands have 
been implemented specifically for the Contiki shell, but the general idea is not specific to 
Contiki. Therefore other OSs with a shell (such as TinyOS and LiteOS) can benefit from 
similar commands. 

Code examples will be given in a separate text-box with explanatory text following the 
example code. All commands in the body of the thesis will be set in an italic font face to 
highlight the command. 

5.4.3.1 UserWait 

The userwait command takes two separate input arguments. The first argument is a 
command, or set of commands, that when executed is expected to be able to take input data, 
and when executed without input data it should output its previously stored data. The store 
command is built this way. The second input argument for userwait can be any subset of 
Contiki commands that will take the first command’s output as its data input. 

The userwait command shares information about input arguments with the userconnect 
command. The second string of commands, which was given as input to userwait, will only 
be executed when the end-user runs the userconnect command. When running the 
userconnect command, output from the first command is passed as input to the second 
command string. The userconnect command can be executed several times until the userwait 
command stops receiving data, then the userconnect command can only be run once more. 

By programming several nodes, or just one node, with the userwait command it is possible, 
together with the existing Contiki Shell commands netcmd or nodecmd, to activate the second 
command string on all nodes in the network, or just one node, when connected to another 
node. 

5.4.3.2 Store 

The store command is a very basic command and is easily implemented using Contiki’s 
existing file system. This command is very useful in a disconnected application scenario, 
specifically with the “userwait” command. For example, one might want to store data locally 
before any further processing of the data occurs. 

Store has two modes; as long as it is given input through its pipe it simply stores the 
received data, as soon as it receives a null-byte it outputs all of the data to the following 
command in the pipe. Note that the end of input is signalled as a null-byte. 

The reason for implementing store as a separate command, rather than building it in to the 
userwait command, is because a user might want to utilize a number of different policies for 
storing data; depending upon characteristics of the data and of its inter-arrival times and 
duration of storage. Two examples of different implementations of store are given below. 
One is queue-based, perhaps the most typical scenario, where the first data that is written to a 
queue is the first to be taken from the queue, a so-called “first in, first out” (FIFO) queue 
discipline – see Figure 16. Another implementation provides stack based storage, such that 
the last data that is written to a stack is the first to be read, a so-called “last in, first out” 
(LIFO) queue discipline. Both these disciplines have been implemented in our solution. The 
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FIFO store-command is named only store in our solution, and the second LIFO discipline is 
called store2. 

 
Figure 16: Stack and queue policy 

 
Shell>echo test | userwait {store buffer_file}{write output_file} & 
Shell>userconnect   

In the code example above all of the commands in the first line will be run in the 
background, as specified by the “&” parameter .This allows the system to execute multiple 
commands and for the user to enter additional commands while userwait is waiting. Echo 
will output “test” as input data to userwait, userwait will run the command store with the 
string “test” as input. Store will write its input data (in this case the string “test”) to the file 
“buffer_file” with FIFO policy. Store2 command could be used for LIFO storing policy. 
When no more data is received userwait will start waiting on a continuation event. This event 
is caused by the user running userconnect. The userwait will run the store command without 
input (a 0 byte length input) which tells store to output all the previously stored data. The 
output data is sent as input to the following write command that will write the input to a file 
named “output_file”. Note that echo and write are existing Contiki shell commands. 

Shell>sendcmd node-id {userconnect} 
Shell>netcmd {userconnect} 

Userconnect can be run when the end-user is connected to the network. It will activate 
userwait commands running in any part of the network. All of Contiki’s built-in commands 
can be used in conjunction with the new commands that this thesis project introduces. Note 
that the command sendcmd tells one specific node to run a command; alternatively netcmd 
can be used to tell all nodes in the network to run a command. In the first line of the example 
code the netcmd is used to tell all of the nodes to execute a userconnect, while the second line 
using the sendcmd is used to tell a specific node (identified by node-id2) to run the 
userconnect command. 

5.4.3.3 Replicate 

The replicate command takes the input data and broadcasts it to other nodes, then outputs 
this data as its output (i.e., as input to the following command), see Figure 17. 

                                                 
2 For details of how the nodes are identified and how an end-user or program can know these identities see 
Contiki Reference Manual [43x]. 
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Figure 17. Replicate command with “send through” functionality (highlighted by red arrow) 

Note in the example above that the replicated data from other motes is also output. An 
alternative version of the replicate command might only replicate input data and only output 
data received from other nodes, as shown in Figure 18. In our implementation it is possible to 
choose between these two policies by giving an input parameter to the replicate command. 
The input is “1” for the above policy and “2” for the policy below. 

 
Figure 18: Replicate command data passing 

The replicate command will generally be located between pipes of other commands. 

Shell>echo test | replicate 1 | write file 

In the above code example, the command echo sends the string “test” as its output through 
a pipe to the replicate command. The replicate command will subsequently receive this data, 
and then broadcast it to other nodes. Having given the input “1” to the replicate command , it 
will output data that comes in through the pipe as well as replicated data from other nodes. 
Note that these other nodes must be waiting for such a broadcast by being in a replicate 
command themselves. After broadcasting the input data to all of the other nodes, the replicate 
command outputs the string “test” through the pipe. In this example, this output becomes the 
input to a write command that writes the string to a file named “file”. 

5.4.3.4 Collect 

As mentioned in section 5.3.4, two basic designs were possible for the collect module. 
Since a collect shell command already exists in Contiki we will only implement the “pulling 
collect”. The existing command starts by announcing itself as a sink node, then starts to listen 
for certain packets sent by the motes. The sink waits until it receives data.  
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Since there is no way for the sink node to collect only certain data from the motes a pulling 
collect command was created in this module. The functionality of the pullcollect command 
could be achieved by using the collect command and other existing commands available in 
the Contiki shell. However, we have chosen to implement the pullcollect command as a 
building block of its own. This makes it independent of other specific commands and 
simplifies usage for the programmer, amongst other advantages (mentioned in section 5.2). 

The Pullcollect command acts as a “pulling-command” that pulls data from other nodes. 
This command takes a filename as input. The filename will specify the name of the file 
whose contents are to be transmitted by each node in response. Pullcollect sends a message to 
all nodes in the network telling them to open and read the contents of the file specified by a 
filename, then each node will send the contents of this file back to the node issuing the 
pullcollect command. If the file does not exist or the file exists but does not contain any 
content, then an empty packet of zero length  will be sent back. Pullcollect will output the 
data interleaved messages as it receives the data, independent of what node it received it 
from. It is therefore important that data has some kind of stamp or difference so it is later 
possible to identify data from a certain node, e.g. a node could prepend its node ID at the 
beginning of the data. 

Shell>pullcollect file | write collected_data 

In the above example, the pullcollect command issues a pulling collect at all nodes 
connected to the network. All nodes attempt to open the file named “file”, if this is successful 
they will each attempt to read the contents of this file. Each node will reply by either sending 
the contents of the file back to the node issuing the pullcollect command or sending an empty 
packet. Received data is outputted to write command through the pipe and written to the file 
named “collected_data”. 

5.4.3.5 Scheduling 

The schedule module is divided into two parts; one shell command part and a server that 
runs in the background. The command discsched adds, removes, or lists scheduled tasks, 
depending on its arguments. The server waits until the scheduled time to start the first task to 
be run. Note that the scheduler utilizes its local sense of time to determine when these tasks 
are scheduled. 

When a task is added it is inserted into a list that is sorted by the time the task is scheduled 
to run. Tasks in this implementation do not have user specified priorities. Any task that is 
scheduled to run while another task is already running will interrupt and terminate the 
currently running task, before starting to run the new scheduled task. At the same time as the 
task is terminated it is removed from the schedule list. A task is identified by a task 
identification number that is specified by the program. When adding a task it is possible to 
make it cyclic, by giving input arguments that specifies the period of the cycle and the 
number of cycles. There is only one instance of a cyclic task in the sorted list, but whenever 
the task has finished or been interrupted it is added again to the list with a new start time and 
a decremented number of cycles left to run. 

Shell>discsched 

If the discsched command is run without any input argument, as in the example above, 
then if there is one or more tasks in the waiting list the command will print information about 
each task. This information includes the ID (number) of the task, the starting time when it is 
scheduled to run, how long it should run, the commands to be run, and also information about 
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cycling if the task is cyclic. The local time (i.e., a timer used by the scheduler) is incremented 
every second, starting at the value 0 when the discsched server started. This command will 
also output the local time that the scheduler uses for scheduling the tasks. 

Shell>discsched 10 

To remove a task from the list of scheduled tasks, the discsched command is run with a 
single input argument, the identification number of the task to be removed. If the task exists, 
then it will be removed from the list. If the task does not exist, the command will do nothing. 
When removing a cyclic task the instance of the task in the list will be removed, hence no 
future cycles of this task will be executed. The example above removes the task with ID 10. 

Shell>discsched 7200 600 {echo test | write file} 

The above code example adds a new task to the schedule. The new task will be scheduled 
to be run after the server has been active for two hours (7200 seconds). This task will run for 
a maximum of ten minutes (600 seconds). The commands to be run at the specified time are 
given as the last input argument to the discsched command. In this example the echo 
command will simply output the string “test” through the pipe as input to the write command 
that will write this string to the file named “file”. The command will only execute on the one 
node at where it was initialized. 

When specifying how long a task is to be run, it is important to know that a task can finish 
before this time, although it is still kept in the task scheduler. Instantaneous tasks will run in 
under a second, unless for some reason the task execution hangs – in this case, the task will 
be terminated by the scheduler when the time for the task has elapsed. 

Shell>discsched 1 5 100 25 {blink 5} 

The above example adds a new cyclic task to the schedule. This task will start immediately 
at time value “1” (given by the first input argument), run for 5 seconds (given by the second 
input argument), the command “blink 5” will be executed (causing a LED on the mote to 
blink 5 times), the number of iterations is defined by the third input argument and the period 
of each iteration is specified by the fourth input argument. In this example the task will be 
repeated 100 times with a period of 25 seconds. The run time is included in the period, i.e. in 
the above example the task will be run every 25th second (as shown in Figure 19) giving a 20 
second period in between for other tasks to execute. 

 
Figure 19: Execution of a cyclic task 
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6  Evaluation 

In this chapter an evaluation of the shell-based solution and commands will be presented. 
This evaluation will look into different aspects of the solution, compare it with similar 
solutions and evaluate its performance by implementing it in a live application. Finally, the 
solution will be evaluated from a qualitative point of view as well as a quantitative one. 

The qualitative aspect when evaluating this solution concerns how well and correctly this 
solution (using shell commands) works. The quantitative aspect concerns the performance of 
the implemented solution with regard to energy consumption, code size, and coupling 
between modules. 

6.1  Evaluation scenarios 

Due to the differences between disconnected WSNs and how they might be programmed 
two scenarios will be discussed. The first scenario will be a WSN with mobile nodes and the 
second scenario will be with static nodes. 

6.1.1  Scenario with mobile nodes 

This scenario represents a typical application of an animal monitoring WSN. For example, 
monitoring badger habitats [50]. Here badger families move around in different areas and 
placed between these areas is the base station. The base station is placed where many of the 
badgers will visit. The base-station will be at a fixed location and the end-user will 
opportunistically connect to the base-station to gather data. When motes attached to the 
badgers approach the base-station the mote’s data will be transferred. Since badgers are 
nocturnal animals the radio will be shut off during most of the day when the badgers are 
sleeping and less active. 

6.1.2  Scenario with static nodes 

This scenario represents a typical application of an environmental monitoring WSN. For 
example, monitoring sounds in a forest [51] where static nodes are used. Here the nodes are 
attached to trees throughout a forest. Collecting data in such a network could be done 
opportunistically by announcing the presence of a sink node so that a routing table can be set 
up at each node, so that subsequently all of the nodes can send their collected data to this sink 
node. 

6.1.3  Shell implementation 

Examples of shell commands to address these two specific cases using our solution are 
presented in this subsection. The scenarios differ in the way that the mobile nodes may move 
around, thus only when the nodes are near the sink it is possible to upload data to it, if they 
ever are near. In the static scenario nodes will have fixed locations where all nodes are 
connected which makes it possible for the sink to communicate with every node at any time 
instance. The difference in the two scenarios requires different implementations. 
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6.1.3.1 Mobile 

To represent the mobile scenario with monitoring badgers, or similar cases, a predefined 
movement pattern will be used. This movement pattern represents the case where nodes are 
separated from the sink, then one node at a time approaches the sink and uploads data to it. In 
this specific case we used a total of four nodes: three mobile nodes and one sink node. The 
three nodes will be out of communication range of the sink, but within communication range 
of each other. Between the three nodes data will be replicated.  

 
Figure 20: Two nodes, A and B, move along the dotted lines in the numbered order to connect to the sink 

and upload data. 

 The order of how nodes move is shown in Figure 20. Two nodes, A and B, will one after 
the other approach the sink. All nodes in the network will replicate to nearby neighbors. In 
this scenario node C will never approach the sink, but since its data is replicated to nodes A 
and B the sink will receive node C’s data when nodes A or B approach the sink. 

Node > discsched 0 140 { dummy_data | replicate 1 | userwait {store fileX} {send}} 

Node > discsched 141 20 {radioOff} 

The above code will be programmed into the three mobile nodes. Each node gets two tasks 
added to its scheduler (referred to as task numbers 1 and 2). Immediately at start up the 
mobile nodes’ task 1 will execute the dummy data command that generates test specific data 
once every second. In a real deployment a command that reads data from one or more sensors 
would replace the dummy_data command. The dummy data is sent through a pipe to the 
replicate command, which replicates data to nearby nodes. The input argument “1” tells the 
replicate command to both replicate to other nodes and locally store the generated dummy 
data. Finally, the data is received through the pipe by the userwait command that in turn 
forwards its input to the store command that saves the data locally into a file fileX. When a 
node runs the userconnect command, then the second part of the userwait command is 
activated and stored data is sent to the sink node by the send command. 

Task 2 will execute at time instance 141, after task 1 has finished at time instance 140. 
Task 2 will turn off the radio in order to save energy. This would represent the scenario of 
monitoring cyclic environments where there are periods where the node does not need to 
communicate with other nodes.  

Sink > collect | write collect_data & 
Sink > discsched 30 5 6 30 { netcmd {userconnect} } 

At the sink-node the above code will be programmed. The two code-lines will run one set 
of commands (those shown on the first line) in the background, while the second line will add 
a new task, here called task 1, to the scheduler. The first line of code will start the collect 
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command. All data received by this command will be forwarded through a pipe to the write 
command that will save collected data to a file collect_data. 

After 30 seconds, Task 1 will run the netcmd command. This command will be 
rescheduled by the scheduler to run every 30 seconds and be repeated 6 times. netcmd is an 
existing command in Contiki that takes a text string as an input argument and tries to run this 
on all the nodes in the network as a command. In this example the netcmd will cause all 
nodes to run the userconnect command. When a node approaches the sink and receives a 
netcmd-message from the sink the userconnect command will be executed activating the node 
to send collected data to the sink. 

6.1.3.2 Static 

In the case of the static node scenario, a set of four nodes will be used, with one of them 
acting as a sink. The sink is added to the network by the end user to gather data from the 
other nodes. The three static nodes will be programmed differently that the sink node. In this 
scenario the nodes generate data individually. When the sink is added to the network it will 
issue a pulling collect causing the nodes to route their data through the network to the sink. 

Nodes> dummy_data | write fileX 

The above code will be run on the static nodes. The dummy_data command will generate 
data for this test scenario. In a real deployment this would be replaced with a command or 
several commands that read data from sensors. The generated data will be forwarded though 
a pipe to the write command that writes the data to file fileX. 

This code example contained no specific active commands for using the disconnected 
operations provided in our shell solution. However, it is important that the nodes are 
programmed to handle data pulling requests. Therefore, in order for the sink to pull data from 
the nodes the nodes need to be programmed with code that will respond to such a pulling 
request. 

Sink  > pullcollect fileX | write gathered_data 

The sink node will be programmed with the above code. The pullcollect command will 
send a message, containing the name of the file to be pulled, throughout the network to 
activate the code that responds to the pullcollect command at each of the static nodes. The 
nodes will read the file specified, then send the contents of this fiole back to the node issuing 
the pullcollect command. Data is received by the sink via the pullcollect command and is 
forwarded through a pipe to the write command that writes the data in file gathered_data.  

6.1.4  Monolithic implementation 

The shell solution should be compared against a monolithic approach. A monolithic 
approach is defined by programming scenario specific code in a unified and single file 
manner. Using both approaches, the shell-based and monolithic, we will program the two 
scenarios mentioned in sections 6.1.3.1 and 6.1.3.2. In both the mobile and static scenario the 
sink and nodes will be programmed separately. Both scenarios will be programmed in the 
same environment as the command solution, i.e. the Contiki OS with appropriate libraries 
added. 
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6.1.4.1 Mobile 

On the nodes two threads and handlers for incoming data will be running in the monolithic 
implementation. The first thread will handle data generation, write the data to a file locally on 
the node using Contiki’s file system, and will also replicate this data to nearby nodes. The 
scheduling of when to generate data and when to shut off the radio will be handled in the first 
thread using a timer. The first thread will implement the same functionality as the scheduling 
command, the schedule server, the dummy_data command, parts of the replicate command, 
and parts of the store command. 

One handler will receive replicated data from other nodes and write to the data-file. This 
handler will implement the same functionality as the part of the replicate command that deals 
with receiving data. 

The other handler will wait for the end-user node to announce its presence by sending a 
message, and then start a second thread that reads the data-file and sends its contentsi to the 
end-user node. This handler and thread will implement the same functionality as the userwait 
command and the part of the store command that finally reads the content of the data file. 

On the sink only one thread will run and it will handle scheduling of when to announce the 
presence of the sink. There will also be one handler that receives data and write to a local file 
that the end-user can access. This thread and handler will implement the same functionality 
as all the commands that are run on sink node, i.e. discsched, netcmd, userconnect, collect, 
and write command. 

6.1.4.2 Static 

On the node two threads will be running and one handler. The first thread will only 
generate the data and write it to a data file using Contiki’s file system. This thread represents 
the dummy_data command and the write command that writes the data to a file.  

The second thread is activated by the handler that will wait for the sink node to announce 
its presence in the network. When the second thread is activated it will read the data file and 
send it to the sink node. This thread and handler will implement the same functionality as the 
part of the pullcollect command that is activated by the sink node. 

The sink node in this scenario will only run one thread and one handler. The thread will 
handle the announcement of the sink node in the network. The handler will receive data and 
write it to a file locally on the sink node that the end-user can access. This thread and handler 
will implement the same functionality as the write command and parts of the pullcollect 
command. 

6.2  Results 

In this section results from implementing the shell-based solution in different scenarios 
will be presented as well as results from the monolithic solution. First we will look at the two 
scenarios from a qualitative point of view and later from a quantitative view. 

6.2.1  Qualitative 

For the qualitative evaluation we will consider both the mobile scenario and the static 
scenario. Further we will consider how well the building block solution based on shell 
programming assists the programmer. 
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6.2.1.1 Building block solution 

Using building blocks, also called modules, enables these modules to work together in 
several ways with few changes and little effort needed from the end-user. Additionally, since 
programs are seldom initially perfect, and the prerequisites and environment might change 
over time or bugs may be discovered in the code, there are two ways to deal with the need for 
changes. One could either discard the solution by replacing it with a complete new solution, 
or one can make changes to the current solution to a sufficient level. In the case of changing 
the code we will now discuss. By using separated modules it is not necessary to change the 
whole solution, but only one module. It is also possible to use several versions of modules for 
different cases without having to have complete copies of all other code. It is also easier to 
change only specific modules than digging into a big block of code and making changes 
spread throughout the code. 

Unfortunately, the building block solution is not perfect for all cases. There may be a 
scenario that requires a unique set of commands that either does not match the existing 
commands (hence new commands are needed) or the scenario requireis a functionality that 
requires old commands to be heavily modified. Even in such a scenario it is still likely that a 
building block solution, in comparison to a monolithic one, would offer a simpler interface to 
work with and be a simpler solution to expand at a later stage. This is something we show 
when evaluating coupling types in section 6.2.2.3. 

In the case of needing different policies for a module, we have proven, by implementing 
some of these different policies, that application specific demands of policies does not present 
a problem for the building block solution. Modules with different policies can be 
implemented either by different commands (e.g. store and store2 commands in section 
5.4.3.2), or the command can take an input argument that indicates the policy to use (e.g. the 
replicate command in section 5.4.3.3). The latter alternative should be used if both policies 
are expected to be used within the same application. The end user has to weigh pros and cons 
of either using only one of two similar commands (with different policies) or adding some 
code overhead in one command that can utilize both policies. 

When considering the mobile and the static scenarios it is beneficial to use a building block 
solution in both cases. This is true, even if the end-user might want to use different methods 
of storing and collecting data, as they only need to change the modules rather than modify a 
large block of code.  If the programmer who has programming experience enough to write 
well structured code the effort to change the code can be expected less than if the 
programmer was inexperienced. 

The different types of commands provided in our solution cover a large range of problems 
and address many of the problems in programming disconnected operations. Even if some 
commands might be further developed, this set of commands offers a basic solution to the 
programmer for disconnected operations.  

Using a shell to implement the building block solution has several benefits. The shell 
implementation’s strongest benefit is its simple and easy to use interface. This is the reason 
why a shell interface is still popular among many operating systems today, even though the 
idea originated in OSs that were created decades ago. Another advantage is that it fits well 
into a building block solution where commands can represent individual modules. 
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6.2.2  Quantitative 

In this quantitative evaluation the commands will be evaluated in comparison with a 
monolithic code approach in the two deployment scenarios. It is important to keep in mind 
that the monolithic code has been written after the first command solution, therefore the 
programmer had a better understanding of the problems that needed to be addressed in these 
two scenarios. In addition, the programmer also had a better general knowledge of 
programming, both generally and specifically in Contiki. 

In the following sections the energy consumption, code size, and design coupling of the 
solutions will be presented. We will not look into routing issues, loss of data, or 
retransmissions – even though these will affect the energy consumption – as these issues 
primarily concern areas that are outside the domain of this thesis, such as the type of media 
access and control (MAC) layer that is used, how packets are routed in the network, and other 
aspect of how the motes transmit packets.  

During the energy consumption tests the following equipment and settings were used: 

• 3 battery driven Sentilla nodes 

• 1 Sentilla sink 

• MAC protocol: X-MAC[52] 

• Contiki OS version 1.41 

• Channel: 22 

6.2.2.1 Energy consumption 

The energy consumption in the two scenarios for both the shell-solution and the monolithic 
solution have been monitored with Contiki’s own software based on-line energy based 
estimation mechanism, the power profiler [53]. The power profiling in Contiki is based on 
energy consumption estimations of each hardware device on the mote. When these devices 
are used, e.g. radio unit or CPU, a predefined estimated value of energy consumption is 
added to the estimate of the system’s total energy consumption. Even if the value from the 
power profiler is not exact, it still provides a good tool to measure the estimated energy 
consumption and differences between different solutions. 

When comparing the energy consumption in the mobile scenario there are factors that we 
were unable to control, but that could alter the outcome of the test. One factor is the human 
factor; the tests were performed by moving and placing nodes by hand, thus the distance 
between nodes could vary. In addition, the time to move the nodes may not be reproduced in 
the separate tests. Another factor is network interference from other devices using this same 
radio spectrum. Unfortunately, these factors affecting radio performance can have a 
substantial effect on the total energy consumption, since the radio transceiver consumes the 
largest about of energy at each node. 

The energy consumption in the following tests will be presented in watt seconds (Ws), 
where one Ws is equal to one joule (J) – the SI-unit (International Standard of Units) for 
energy. 
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6.2.2.1.1 Mobile scenario 
In Figure 21 a graph of energy consumption over time is shown for the mobile scenario 

using the shell solution. All nodes were started at approximately the same time, e.g. within 
one second. In this scenario mote 1 was never near the sink. 

 
Figure 21: Power consumption over time for the mobile scenario using the shell-solution. 

The energy presented is the average energy during one second. 

In the graph we can see a similarity in the start-up of all nodes where a lot of energy is 
consumed; with a peak energy consumption of approximately 61700 μWs. It is also possible 
to see that the energy consumption generally never decreases under around 2300 μWs. Table 
3 shows the events that happened along with the approximate time of the event in the 
scenario using the shell solution. While it is possible to say that some peaks in the chart 
follows the events, some peaks could occur for reasons (e.g. network disturbance) other than 
the described events. 
Table 3: Events for the mobile scenario using the shell solution. 
Approximate 
Time (s) 

Event 

15 Node2: leaves the network and moves towards the sink 

40 Node2: finished transmitting to sink, going towards network 

70 Node3: leaves the network and moves towards the sink 

100 Node 3: finished transmitting to sink, going towards network 

140 Node 1,2,3: Radio shut off 
 

In Figure 22 the energy consumption is shown for the mobile scenario using the monolithic 
version of the code. In this scenario mote 3 was never near the sink. As in the shell solution 
we see a similar pattern for start-up. In this case the peak energy consumption the same as the 
shell solution; around 61700 μWs. This is as expected, since it is not until after the start-up 
that the different configurations of the nodes will affect the way that the nodes behave, thus 
effecting their energy consumption. The threshold value that the consumption never 
decreases under is also the same as the shell solution, around 2300 μWs. Table 4 shows the 
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events and their approximate time of occurrence for the monolithic solution in the mobile 
scenario. 

 
Figure 22: Energy consumption for the mobile scenario using the monolithic solution. 

 
Table 4: Events for the mobile scenario using the monolithic solution 

Approximate 
Time (s) 

Event 

20 Node 1: leaves the network and moves towards the sink 

70 Node 1: finished transmitting to sink, going towards network 

80 Node 2: leaves the network and moves towards the sink 

130 Node 2: finished transmitting to sink, going towards network 

140 Node 1,2,3: Radio shut off 
 

From the two tests in the mobile scenario, using both the shell-based implementation and 
the monolithic implementation, we can see that they both operate within the same range of 
energy consumption. Due to many uncontrolled factors affecting the radio, it is not possible 
to give any final conclusions just by looking at the two graphs. However, we can compare 
these two sets of results. 

Figure 23 the total energy consumption over time is shown by aggregating all nodes energy 
consumption (i.e., the power consumed by all nodes and the sink). It is difficult to see any 
systematic differences between the two solutions, however we can compare the highest and 
lowest values. By looking at the accumulated energy consumption over time it is easier to 
compare the two solutions against each other. This is shown in Figure 24 
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Figure 23: Energy consumption of all nodes for each solution in the mobile scenario 

 

 
Figure 24: Accumulated energy consumption over time for the mobile scenario 

In Figure 24 saw that in terms of the total energy consumption over time that the 
monolithic solution is more energy efficient. The shell solution has an average of 8.1% higher 
power consumption, ranging from 20.0% at most to -2.5% at a minimum. In Table 5 the total 
energy consumption from each note and all nodes together are shown. From these results we 
see that the total power consumption of all nodes in the shell solution is 6.2% larger in the 
shell implementation as compared to the monolithic solution. 
Table 5: Mobile scenario power consumption. The difference is in comparison to the monolithic solution 

where the values show the shell solutions increase. 
Mobile 
scenario 

Shell 
(μWs) 

Monolithic 
(μWs) 

Difference 

Node 1 *1 550 599  1 379 550
Node 2 1 492 689 1 314 894
Node 3 1 617 247 * 1 722 221

 
Average 5.5%  

Sink 1 256 882 1 155 101 8.8% 
Total 5 917 317 5 571 766 6.2% 

*Motes that did not go towards the sink. 

Summarizing the mobile scenario we can see that there is a difference in energy 
consumption between the two solution approaches. In the mobile scenario the monolithic 
solution has low total energy consumption. Since both solutions use the same libraries and 
protocols for sending and receiving packets the difference must lie in how these protocols and 
libraries are used by the implementation. 
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From these experiments we draw the conclusion that during these specific experiments the 
monolithic solution requires lower total energy consumption and lower energy consumption 
at each node. If the energy consumption of the nodes is the major concern in a mobile 
scenario, such as the one we have tested, then the monolithic solution is preferable to the 
shell-based solution – however, the difference might not be significant in a specific scenario. 
It is unclear if energy consumption could be further reduced by changing the routing 
algorithms and if this difference in power consumption would be greater than the difference 
in power consumption of these two different approaches for implementing a solution. 

6.2.2.1.2 Monolithic scenario 
Testing of the static scenario for the monolithic and shell solution was conducted under 

more similar circumstances than the mobile scenario, since there are fewer events in this 
scenario and there was no need for the experimenter to move the nodes about during the 
experiment. In both experiments concerning the static scenario the nodes generated the same 
amount of data before the sink node connected to the network and started collecting data. Still 
network interference and other external factors could affect the network’s performance and 
these could be different in the two tests. 

Figure 25 shows the energy consumption as a function of time in the static scenario using 
the shell solution. All of the nodes were started up at the same time and at approximately 108 
seconds into the test the sink is powered on and connected to the network. The sink node has 
therefore no energy consumption up to this point in time. 

 
Figure 25: Energy consumption for the static scenario using the shell solution. 

Figure 26 shows the energy consumption as a function of time for the static scenario using 
the monolithic solution. This test was performed under the same conditions and with the 
same choice of settings as the shell solution test. The combined (total) energy consumption of 
all nodes as a function of time for both tests is shown in Figure 27. In this plot we note that 
the shell solution has higher peak power usage. The minimal thresholds for both solutions are 
the same. Compared with the mobile scenario the initial energy consumption is higher in the 
mobile scenario than in the static scenario, this is due to the number of nodes started at the 
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same time. In the mobile all four nodes are started in the beginning, in the static the sink is 
started at a later stage, as can be seen in Figure 25 and Figure 26. 

 
Figure 26: Energy consumption for the static scenario using the monolithic solution. 

 
Figure 27: Energy consumption of all nodes for each solution in the static scenario 

Looking at the total energy consumption over time, as shown in Figure 28, we can see that 
the monolithic solution that has a greater total energy consumption. Here the shell solution, in 
comparison to the monolithic solution on average consumes 3.2% less power (ranging from 
2.0% to -17.9%). Table 6 shows the total energy consumption for each node and all the nodes 
combined. From these results we observe there is almost no difference between the power 
consumption of the different nodes, but the sink in the shell solution is 11.3% more energy 
efficient that the monolithic solution. 
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Figure 28: Accumulated energy consumption over time for the static scenario 

 
Static scenario Shell 

(μWs) 
Monolithic 
(μWs) 

Difference  

Node 1 976 374 973 845
Node 2 915 041 915 021
Node 3 1 031 445 1 018 298

 
Average. 0.5% 

Sink 399 314 450 269 -11.3% 
Total 3 322 174 3 357 433 -1.1% 

Table 6: Static scenario power consumption 

Summarizing the results from the static test we can see that during the time when no radio 
communication between nodes or sink was active both solutions had very similar power 
consumption. Despite the fact that the shell-solution uses more processes (one for each 
command) and also the scheduler server is always running in the background (even if no 
tasks are to be scheduled) there seems to be no difference in energy consumption. What 
seems to matter is how the radio on the nodes is used for sending and receiving packets. 
Additional reasons for differences could be local disturbances as well as details of the 
implementations. From these results we can conclude that there is almost no difference 
between these two approaches to a solution in the total power consumption in the static case, 
although there was roughly a 6% difference in the mobile case. 

Because of the difficulty to replicate these scenarios we have made further tests to see the 
difference in radio characteristics for similar scenario to our static scenario. These tests were 
made with three nodes sending data to a sink. We looked at the total energy consumption and 
later calculated the mean total energy value of all samples. With this value we calculated the 
difference for each sample. We calculated the confidence value for this difference with a 
confidence level of 95%. The confidence interval with a 95% level means that 95% of all 
measured values, are within a certain interval. This interval can later be used to assume that 
in following measurements 95% of these measurements should also be within this interval. 
The samples of difference can be seen in Table 7 and our results can be seen in Table 8. 
Having an interval of 0 ± 11.4 % shows that the differences for the two scenarios (-1.1% and 
6.2%) are within the interval and therefore within the span of normal deviation of the radio 
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energy consumption. Therefore we can not draw a conclusion that the monolithic solution or 
shell based solution is significantly better than the other in regard to energy consumption. 
Table 7: Measurements 
Difference (%) 

‐6.2 
‐23.3 
17.6 
26.3 
‐26.0 
‐15.6 
17.1 
‐17.9 
14.6 
‐5.1 
18.4 

 
Table 8: Confidence interval calculation results 

Parameters / formulas Values 

Mean value: 0 

Standard deviation: 19.2 

T-distribution (95% level): 11.4 

Interval 0 ± 11.4 ( -11.4 – 11.4) 

6.2.2.2 Code size 

When comparing the code size of each solution we have looked both at the number of lines 
of code and at the number of bytes actually programmed in the node, e.g. the total size after 
the code has been optimized and compiled. 

Comparing code size is not as trivial as it might seem. A programmer might be concerned 
about how much code needs to be written to implement a solution using the two different 
approaches. Naïvely we might assume that the programmer writes a monolithic 
implementation from scratch for every scenario, however, this would ignore the fact that 
much of the code from one implementation to the next can be reused. Due to open source 
efforts more and more code is being reused by others (in addition to reuse by a given 
programmer). With the shell-solution much of the code is already implemented in the 
modules, and the programmer only needs to combine these modules to create their program. 
In this comparison we count the number of lines of code (LOC) using the tool CLOC [54] 
version 1.08. CLOC is a Perl script program that takes code file as input and calculates the 
LOC, blank lines, and commented lines. In our comparison we will only look at LOC. 

Table 9: Shows bytes of code 
Scenario Shell solution Monolithic - Sink Monolithic - Mote 
Static  100 148
Mobile 

 

893 121 203
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The shell solution has a total of 893 LOC and the monolithic solution has a total 572 LOC, 
hence the shell solution is 56% larger than the monolithic solution. The static scenario 
required 248 LOC and the mobile scenario 324 LOC. The code for the shell solution is larger 
for several obvious reasons: 

1. The shell solution has more overhead since each command is implemented as a 
process with process names, input arguments, local variables, etc. The shell solution 
has a minimum of 11 processes and handlers, while the monolithic solution uses 
between 3-5 processes and handlers. 

2. Where the monolithic solution only has the functionality needed for this specific 
scenario, the shell solution offers the full functionality of all of the commands, even if 
some of the commands are not used. 

3. With the shell solution it is possible to program nodes for other scenarios besides 
these specific mobile and static scenarios. The monolithic solution requires a new 
implementation for each scenario, as has been done for the mobile and static scenario. 
The shell solution is re-usable and generic. It should be noted that the number of LOC 
needed to implement a certain scenario using shell-commands is of the order of 1-10 
lines while the monolithic solution requires hundreds of lines. Specifically in these 
two scenarios no more than two lines of code were used on each node. 

After looking at the code size in terms of lines of code, we compared the actual number of 
bytes programmed in the nodes. This was done by first compiling the code using the standard 
GCC compiler provided in the Contiki development environment. After compilation the code 
is programmed in the nodes and the actual number of bytes programmed for the node is 
presented in Table 10. The compiler used was a modified GCC compiler, msp430-gcc, that 
was run with option ”-Os” that tells the compiler to optimize for the smallest code size. 

Table 10:  Shows bytes programmed to the nodes 
Scenario Shell solution Monolithic - Sink Monolithic - Mote 
Static  29 600 29 112 
Mobile 

 

44 708 29 784 29 354 
Calculating the difference between the shell solution and the different code in the four 

monolithic solutions the shell solution requires an average of 52% more bytes per node. 
However, the shell solution uses the same image and code independent of the node type 
(sink, mobile note, etc.) hence the same number of bytes is programmed in all nodes. If the 
programmer knew that some commands would never be run on some nodes, e.g., the sink 
might not need commands for using sensors if no sensors exist, he could customize the image 
for each type of nodes making it smaller, thus saving memory space. In environments 
offering dynamic runtime linking it is also possible for the programmer to upload some code 
to the nodes and at a later stage upload more commands when needed. 

The reasons why the shell solution results in more bytes after compilation is the same 
reasons as why more LOC are needed. The second reason, of the three reasons mentioned 
above, is the biggest contributor to the shell solution requiring more bytes to programmed. 
Some of the code will be optimized by the compiler, but the compiler does not know which 
commands are going to be used on the specific nodes and therefore has to include all 
commands. This has the effect of putting similar commands together in libraries instead of 
linking commands one by one. The results is that the user only sees the functionality at the 
library level and not at the command level when linking libraries, hence linking whole 
libraries even if some commands are not used or planned to be used. Therefore the image size 
is larger for the shell solution. If the programmer knows that some commands will never be 
used in a certain scenario, then these commands could be commented out in the code and the 
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compiler will not emit code for them, thus reducing the number of bytes that have to be 
programmed in the nodes. This could be achieved by using conditions in the code that the 
compiler would act upon. Preferably all conditions could be set in a separate configuration 
file so no change would have to be made to the actual code. This would result in no memory 
overhead at the nodes, at the cost of a slight increase in compile time. 

The overhead of the commands for programming disconnected operations is calculated by 
first compiling the nodes with shell support and our commands, then only programming with 
shell support without our commands and calculating the overhead as the difference in the 
number of bytes. The overhead of using our commands in the shell solution is shown in Table 
11. It covers all the commands written specifically for disconnected operations. If the 
functionality of all the commands is needed only 7704 bytes are added to the image no matter 
what other shell commands are used. Therefore a significant portion of the overhead is due to 
the actual shell run-time, not in our commands. 

Table 11: Disconnected operation commands overhead 
Shell with 
Disconnected 
Operation support 

Shell Difference 

44 708 37 004 7 704 
Only compiling nodes with support to run shell commands, without adding any actual 

commands except the build in commands (i.e., help, kill, killall, and null command ) the 
image would then be 29 286 bytes. This is about the same image size as the monolithic 
solution, but offers the end user the ability to choose any existing commands to his or her 
liking and that best suited for the scenario- at the cost of adding the size for these commands 
on top of this base image size. Adding all of the commands for disconnected operations 
would give a total image size of 36 990 bytes. 

An additional consideration is the number of bytes of memory that have to be used at run-
time since in the processor that has been used for these experiments one of the constraints is 
the amount of memory that is available for data. 

6.2.2.3 Coupling 

Here we will look at seven types of coupling for the different solutions. The types of 
coupling used were defined by Stevens, et al. [55]. Seven types of coupling will be used, 
ranging from tight to loose. These types are presented in Table 12. A tight couple design can 
be considered to be more difficult to debug and maintain while a loosely coupled design is 
easy to understand and re-use. 
Table 12: Description of coupling types for software modules 

Coupling Type Description 

Content (tight) One module relies on the internal working of another. Changing one 
module requires changes in the other as well. 

Common Two or more modules share some global state, e.g., a variable. 

External Two or more modules share a common data format. 

Control One module controls the flow of another, e.g., passing information that 
determines how to execute. 
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Coupling Type Description 

Stamp Two or more modules share a common data format, but each of them 
uses a different part with no overlapping. 

Data Two or more modules share data through a typed interface, e.g., a 
function call. 

Messages (loose) Two or more modules share data through an untyped interface, e.g., 
via message passing. 

In this case there are some different cases of granularity that can be applied to the shell and 
monolithic solution. In shell solution a command can be considered a module, as well as a 
process or a single function. Looking at shell coupling types we have chosen to look at 
command granularity, since it is the most intuitive approach because shell commands are 
what programmers ultimately use. In the monolithic solution a module can be defined as a 
process or a single function. For the monolithic solution the coupling types will be compared 
at process granularity. Other granularities for both solutions have been considered, but are not 
considered here in our comparison between the two solutions. In this comparison we look at 
the solution as a whole and do not need finer granularity in the types of coupling. 
Table 13: Design coupling for the two solutions 

Coupling Type Monolithic solution Shell solution 

Content No No 

Common Yes No 

External No No 

Control Yes Yes 

Stamp No No 

Data No No 

Message Yes Yes 

The monolithic solution has common coupling where several processes share global 
variables, such as timers, flags and file pointers. Messages between sink and nodes control 
when uploading of data between a node and a sink is supposed to occur, thus both control and 
message coupling types are present in the monolithic solution. 

The shell solution has control coupling, since there are commands that control the 
execution of other commands, such as: userwait and discsched. Also message coupling is 
present since messages through pipes are used between almost all commands and also 
messages are sent over the network between nodes. 

Analyzing these different coupling types it is expected that the monolithic solution is more 
complex and has more and tighter coupling types. This is where a shell solution benefits most 
in comparison to a monolithic solution. By using commands as modules it is easier to 
program nodes directly, re-use code where commands do not necessarily have to be changed, 
and to extend the solution by adding more commands. The tighter coupling types in the 
monolithic solution makes it more difficult to use, to re-use, and to expand. 
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7  Conclusions and Future work 

In this chapter some conclusions of the thesis will be briefly discussed. These are 
considered in the context of the initial goals and the experimental results. Subsequently 
possible future work that could build upon this thesis will also be described.  

7.1  Conclusions 

The main goal for this thesis was to devise a solution that would help programmers to 
program disconnected operations for WSNs. This was done by using the existing shell in the 
Contiki OS and writing additional commands that would help programmers both generally 
and specifically with the targeted disconnected operations. To determine if this solution really 
helps programmers an experiment could have been done with a number of different 
programmers who each had to use and evaluate the commands for some time in 
implementing real life deployments of WSN. However, such an evaluation was not feasible 
within the scope of this master’s thesis project, hence we simply assume that using the well 
known approach of shell commands would meet the goal. 

Based upon the results of our evaluation there is no obvious relation between power 
consumption and our shell solution. In both scenarios the power consumption was very 
similar except when the radio was used, then both scenarios gave different results indicating 
that the shell solution and the monolithic solution differed in power consumption – but 
without a clear indication of whether the differences are significant. However, there is a large 
difference in the power consumption in the case of the mobile scenario that might favour the 
monolithic solution. 

The monolithic solution requires less code than the shell solution, but at the cost of reduced 
flexibility of the code. The shell solution requires less code to be written to implement 
different scenarios. The ability to incrementally modify the code by sending only changes to 
the nodes was not evaluated, but there are some indicatations that this might result in an 
advantage for the shell based solution. 

Finally the types of coupling that the shell solution offers in comparison to the monolithic 
illustrate the advantage of the shell solution. Both solutions share some coupling types, but 
the monolithic has one more coupling type with tighter coupling indicating that the shell 
provides a simpler programming interface solution. 

A general and obvious difference between the solutions is that when programming nodes 
using a monolithic solution code has to be written for each new scenario. This is not the case 
for the shell solution since commands can be re-used and used in different ways to fulfil the 
needs that a new scenario puts on the programming solution. However, no systematic 
analysis of potential code re-use for different scenarios was done for code from a given 
monolithic solution. 

7.2  Personal reflections 

As a result of doing this thesis project I have realised that WSN is a broad area with many 
different application areas that all might affect the requirements of both hardware and 
software in many ways. Creating general solutions for WSNs is difficult, but is needed to 
increase the interest in and use of WSNs. 

To encourage others to start working in this area I think that it would be beneficial for the 
WSN-community if their work aimed at making WSNs easier to use, with respect to 
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programming, maintenance, and deployment of solutions. The easier it is to use WSNs the 
more people will do so, resulting in WSNs becoming more interesting both for research and 
to industry. The increased interest will lead to more people trying to improve WSNs from 
many aspects. 

If I were to redo this thesis project more time would have been spent on further improving 
the resources usage of commands, such as CPU usage, memory usage, and code size. I would 
also have investigated if there were more commands that could be used for disconnected 
operations.  

7.3  Future work 

A step to further help programmers in programming disconnected operations would be to 
implement our shell solution on other platforms that also use shell commands. Such platforms 
have been discussed in section 2.2.1, such as TinyOs and LiteOs - as both provide the 
possibility to program nodes through shell commands. 

The commands provided in this solution could be further expanded and improved. 
Additional versions of commands with different policies could be implemented or commands 
could have added functionality to make them more general, hence becoming suitable for 
more scenarios. For example, the scheduling command would benefit from another parameter 
defining each task’s priority. 

Finally there is another way of using shell commands than has not been investigated in this 
thesis. By extending the shell commands into a scripting language, or providing such an 
environment for commands to be programmed in, the programming interface to the 
programmers could be improved. Such an extension would be beneficial for more complex 
scenarios where the normal usage of commands and pipes would not suffice. 
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