
Master of Science Thesis
Stockholm, Sweden 2009

TRITA-ICT-EX-2009:177

T A O S U N

 OptiCaller Application and Provisioning System

 Developing a Mobile Extension
Application

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Developing a Mobile Extension Application

OptiCaller Application and Provisioning System

Masters thesis

Tao Sun

<taos@kth.se>

2009-10-15

Examiner:

Professor Gerald Q. Maguire Jr.

Industrial Supervisor:

Jorgen Steijer, OptiCall Solution AB

School of Information and Communication Technology
Royal Institute of Technology

i

Abstract
Today companies (especially large companies whose employees make a lot of international business
trips) often have very large telephone bills. While international roaming technically works with GSM,
the cost of phone calls from one country to another are often much higher than calls within a country.
Despite political pressure to reduce the costs of roaming within the European Union, the cost of phone
calls from one country to another are often quite expensive. A cost-saving solution is eagerly desired by
many firms. OptiCall Solutions AB has designed an integrated system called the Dial over Data (DoD)
solution. In this scheme, a caller sends a data request to the DoD server instead of directly making a
call to the party that they wish to speak with. The DoD solution uses an Internet Protocol Private
Branch Exchange (IP-PBX) to make two Session Initiation Protocol (SIP) calls, one to the caller and
another to the callee, then bridges these two calls. To realize cost savings, the cost of these two calls
and the cost of the infrastructure necessary to make the two calls and to bridge them must be lower than
the cost of the direct call.

Call Through is a service for making cheap international calls which is provided by many
telecommunications companies. Instead of making a direct call to the party the caller wants to speak
with, the caller makes a call to the local call-through service access number. The caller dials the actual
callee’s number after the call is established. The service provider then makes a call to the callee and
bridges the two calls. The caller only needs to pay for a local call and the service subscription fee,
rather than the expensive international call fee. This can greatly reduce the costs for user who need to
make a lot international calls. Today, many companies use such a call-through service in order to
reduce the total cost of their employees’ calls.

Additionally, the Mobile Extension (MEX) is a concept which gives mobile users the ability to use
their mobile phone in the same manner as their fixed office phone, for example, by providing services
such as setting presence and transferring a call. In addition, the user should experience a consistent
interface, for example the calling number displayed for the callee should always be a number that the
callee could use to return the call.

In this thesis project, a mobile extension application called ‘OptiCaller’ based on the Symbian OS was
developed and evaluated. This application is part of the DoD solution and provides client side
functionality. Furthermore, it supports making call-through calls and using the MEX functions.
Additionally, it is designed and implemented in a flexible way so that it can work with a variety of
different PBX solutions.

A provisioning system called ‘OptiCaller Provisioning System’ was also designed and evaluated. This
provisioning system was tailored for the ‘OptiCaller’. It provides administrators a platform to manage
the OptiCaller application on the end-users’ mobile phones.

ii

Sammanfattning
Idag har företag (i synnerhet stora företag vars anställda gör en hel del internationella affärsresor) ofta
mycket stora telefonräkningar. Även om internationell roaming fungerar tekniskt i GSM så är
kostnaden för telefonsamtal från ett land till ett annat ofta mycket högre än samtal inom ett land. Trots
politiska påtryckningar för att minska roamingkostnaderna inom EU, så är kostnader för telefonsamtal
från ett land till ett annat ofta ganska dyra. En lösning som kan minska dessa kostnader välkomnas av
många företag. OptiCall Solutions AB har utvecklat ett integrerat system som kallas Dial över Data
(DoD). I detta system skickas först en samtalsbegäran från en klient till en server istället för att klienten
direkt ringer ett samtal till den som de vill tala med. DoD systemet använder Internet Protocol Private
Branch Exchange (IP-PBX) för att göra två Session Initiation Protocol (SIP) samtal, en till den som
ringer och en den uppringda parten. Sedan kopplas dessa två samtal ihop. Värt att beakta är att
kostnaden för denna infrastruktur samt att producera två samtal i stället för ett bör vara lägre än
kostnaden för ett direkt samtal.

Samtalskort är en tjänst för att göra billiga internationella samtal vilket erbjuds av flera
telekommunikationsföretag. Istället för att göra ett direkt samtal till den som den uppringande vill tala
med, gör först ett samtal till den lokala call-service noden. Med hjälp av en transparent klient så
behöver användaren inte själv ringa call-service noden utan det sker helt automatik. Väl besvarat av
call-service noden så kopplas samtalet till den destination användaren vill ringa till. Den som ringer
behöver bara betala för ett lokalsamtal och tjänstens prenumerationsavgift. Detta kan kraftigt minska
kostnaderna för användare som gör en hel del utlandssamtal. Idag är det även många företag som
tillhandahåller en sådan funktion till sina anställda för att minska den totala kostnaden för deras samtal.

Mobile Extension (MEX) är ett begrepp som ger mobila användare möjlighet att använda sin
mobiltelefon på samma sätt som sina fasta kontorstelefon, till exempel genom att tillhandahålla tjänster
såsom inställningen närvarostatus och koppling ett samtal. Användaren bör uppleva ett konsekvent
gränssnitt, till exempel att det uppringande numret som visas alltid bör kunna användas för att ringa
tillbaka till den som ringt.

I detta examensarbete har en så kallad mobil anknytning tillämpning "OptiCaller", baserad på Symbian
OS, utvecklats och utvärderats. Denna applikation är en del av DoD lösningen och ger funktionalitet på
klientsidan. Den har även stöd för samtalskortfunktioner och MEX funktioner. Den är dessutom
utformad på ett flexibelt sätt så att den kan arbeta med en rad olika PBX lösningar.

Ett system för provisionering anpassat för OptiCaller kallat ”OptiCaller Provisioning System" har
också framtagits och utvärderats. Det ger administratören en plattform för att administrera OptiCaller
klienter i en större skala och hanterar såväl installation samt inställningar av OptiCaller klienter på
mobiltelefoner.

iii

Acknowledgements
First, I want to express my thanks to my thesis examiner Professor Gerald Q. "Chip" Maguire Jr. He
encouraged me from the first to the end of my thesis project. He also gave me valuable advise and
suggestions. With respect to the research method, he told me to make progress gradually and write
every day. Additionally, he provided me important technical suggestions for the project. Without his
generous help, this project would not have come to reality. You have enhanced my capacity in more
ways than you know; words are simply inadequate to express my sincere gratitude.

I am also extremely grateful for all the encouragement, support, and constructive advice from my
industrial supervisor Jorgen Steijer. You supplied me with a good platform to display my ability and
provided so many great thoughts about how to make the project useful in the real life. It is my pleasure
to have done my thesis project in your company.

Additionally, I want to thank my colleagues, Li Zhang, Ioannis Metaxas, and Xiao Wu, for their
support and constructive advice. It was a memorable experience for me to work with you.

Last but not least, I would like to thank my parents and girlfriend for their spiritual support and love.

iv

Table of Contents
Abstract ...i

Sammanfattning..ii

Acknowledgements ..iii

Table of Contents.. iv

List of Figures ... viii

List of Tables..x

List of Acronyms and Abbreviations..xi

1. Introduction...1

2. Related Work ...4

3. Symbian OS C++ ...7

3.1 BASIC TYPES ...7

3.2 NAMING CONVENTION ...7

3.3 EXCEPTION HANDLE ...8

3.3.1 Leaving Function...8

3.3.2 CleanupStack and TRAP/TRAPD..8

3.3.3 Two-phase Construction ...9

3.4 ACTIVE OBJECTS ..9

3.5 CLIENT-SERVER MODEL ..10

4. Symbian Architecture Overview ...12

4.1 USER INTERFACE FRAMEWORK LAYER..12

4.2 APPLICATION SERVICES LAYER ..13

4.3 OS SERVICES LAYER ...13

4.4 BASE SERVICES LAYER AND KERNEL SERVICES & HARDWARE INTERFACE LAYER ..14

5. User Interface Framework layer ...15

5.1 USER INTERFACE PLATFORMS...15

5.2 USER INTERFACE FRAMEWORK LAYER..15

5.2.1 The Control Environment ..15

v

5.2.2 The Uikon Framework...16

5.2.3 The S60 View Architecture ..17

5.2.4 The Front-End Processor framework ..19

6. Application Services Layer ..20

6.1 HTTP FRAMEWORK...20

7. OS Services Layer ...22

7.1 GENERIC OS SERVICES..22

7.1.1 Task Scheduler ..22

7.1.2 Event Logger ...22

7.1.3 Certificate and Key Management Framework..22

7.1.4 C Standard Library ..23

7.2 COMMUNICATIONS SERVICES...23

7.2.1 Telephony Services..23

7.2.2 Networking Services ...24

7.2.3 Messaging Services...26

8. Java Platform, Enterprise Edition..28

8.1 SECURITY IN JBOSS ..28

8.2 JAVA DATABASE CONNECTIVITY...30

9. AT Commands and SMSLib ...33

9.1 AT COMMAND..33

9.2 SMSLIB...33

10. OptiCaller...35

10.1 DEVELOPMENT PROFILE ..35

10.2 OPTICALLER OVERVIEW ..37

10.3 CALL BACK IMPLEMENTATION...39

10.3.1 Introduction to Call Back...39

10.3.2 Call Back Configurations ...41

10.3.3 HTTP/HTTPS CALL BACK...42

10.3.4 SMS CALL BACK..43

vi

10.4 CALL THROUGH IMPLEMENTATION ..44

10.4.1 Call Through Introduction ...44

10.4.2 Call Through Configurations ...45

10.4.3 Call Through Dial Plan...46

10.5 MOBILE EXTENSION IMPLEMENTATION ..47

10.5.1 Call Through..47

10.5.2 Three Lists – Presence, MEX, and Call Service...47

10.6 IMPLEMENTING PROVISIONING...49

10.6.1 Overview of Provisioning ..49

10.6.2 Provisioning Configurations ..50

10.6.3 Configuration Handling...50

10.6.4 Waiting for an Update Notification ..51

10.6.5 Updating the Application's Configuration...52

10.7 OTHER FUNCTIONS ..52

11. OptiCaller Provisioning System ...53

11.1 OPTICALLER PROVISIONING SYSTEM ARCHITECTURE ...53

11.2 OPTICALLER PROVISIONING PROCEDURE ..54

11.3 PROVISIONING SERVER DEVELOPMENT PROFILE...55

11.4 OPTICALLER PROVISIONING WEB SITE ...56

11.4.1 End-User Services..56

11.4.2 Manager Services..56

11.4.3 Administrator Services ..57

12. Evaluation ..58

12.1 OPTICALLER EVALUATION ..58

12.1.1 Test Equipments ..58

12.1.2 Call performance...59

12.1.3 Power Consumption..61

12.1.4 Conclusions From These Two Sets of Tests ..63

12.2 PROVISIONING SERVER EVALUATION ..64

vii

12.2.1 Test Equipment..65

12.2.2 Test Tool Introduction..65

12.2.3 Web Server Test...66

12.2.4 JDBC & MySQL Test ...72

12.2.5 Conclusions ...74

13. Conclusions and Future Work ...75

13.1 CONCLUSIONS...75

13.1.1 OptiCaller ..75

13.1.2 OptiCaller Provisioning System ...76

13.2 FUTURE WORK..76

13.2.1 OptiCaller ..76

13.2.2 OptiCaller Provisioning System ...77

References ..79

Appendix A Test Results ...83

Appendix B Provisioning System Web Interface ..86

viii

List of Figures
Figure 1: DoD Web User Interface 4
Figure 2: DoD Java User Interface 4
Figure 3: New Java Client User Interface 5
Figure 4: Client-Server IPC mechanism 10
Figure 5: Symbian OS layer model 12
Figure 6: Frameworks on which UIKON is built 16
Figure 7: Alert Dialog of S60 (left) and UIQ (right) 17
Figure 8: Tranditional Symbian OS UI Application Architecture Classes 18
Figure 9: S60 View Architecture Classes 18
Figure 10: GPRS Connection to the Internet 25
Figure 11: JDBC Architecture [34] 31
Figure 12: Carbide.c++ Interface 36
Figure 13: Error Reader Notification 37
Figure 14: OptiCaller Interface 37
Figure 15: Call Method Setting Interface 38
Figure 16: Selection Call Method during Call 38
Figure 17: OptiCaller on the background 39
Figure 18: Call Back Procedure 40
Figure 19: Call Back Procedure on the OptiCaller 40
Figure 20: Call Back Setting User Interface 41
Figure 21: HTTP/HTTPS Call Back Call Procedure 42
Figure 22: Call Through Procedure 45
Figure 23: Call Through Setting User Interface 45
Figure 24: Presence List 48
Figure 25: Provisioning Procedure 50
Figure 26: Partial Configuration on a Nokia E66 51
Figure 27: OptiCaller Provisioning System Architecture 53
Figure 28: Eclipse IDE for Java EE Developers Interface 56
Figure 29: Call Performance Test Scenario 59
Figure 30: Nokia N95 Battery Level 62
Figure 31: Nokia E61 Battery Level 63
Figure 32: Provisioning Server Test Scenario 67
Figure 33: Number of Runing Virtual Users 69
Figure 34: Number of Connections 70
Figure 35: Number of Connections Per Second 70
Figure 36: Number of Threads as a function of Time 73

ix

Figure 37: End Users Login Page 86
Figure 38: End Users Update Profile Page 86
Figure 39: Managers and Manager Login Page 86
Figure 40: Managers and Administrator Update Profile Page 86
Figure 41: Managers and Administrator Add Group Page 87
Figure 42: Managers and Administrator Update Group Page 88
Figure 43: Managers and Administrator Deploy Page 89
Figure 44: Managers and Administrator Deploy Result Page 89
Figure 45: Administrator Manage Manager Page 89
Figure 46: Administrator Upload File Page 90
Figure 47: Administrator Serial Control Page 90

x

List of Tables
Table 1: Basic Data Type in Symbian OS and Standard C++ 7

Table 2: Application Framework Classes 18

Table 3: HTTP Transaction Event Code 20

Table 4: Part of ETel Telephony Server functions 24

Table 5: Part of Call Status 24

Table 6: OptiCaller Development Profile 35

Table 7: Tested Modules 37

Table 8: Call Back Configurations 42

Table 9: Special Characters in SMS Format 44

Table 10: Call Through Configurations 46

Table 11: Dial Plan Operations 47

Table 12: Special Characters in Lists 49

Table 13: Provisioning Configurations 50

Table 14: OptiCaller Provisioning System Roles 54

Table 15: Provisioning Server Development software 55

Table 16: Call Establishment Test Results 60

Table 17: Nokia N95 Battery Life 61

Table 18: Nokia E61 Battery Life 62

Table 19: Provisioning Server Test Result 71

Table 20: Call Establishment Delay Test Results 83

Table 21: Access Point Connecting Delay Test Results 84

Table 22: DTMF tones (10 digits) Transmission Delay Test Results 85

xi

List of Acronyms and Abbreviations
AP Access Point
API Application Programming Interface
APN Access Point Name
APPARC Application Architecture
CDMA Code Division Multiple Access
CONE Control Environment Hierarchy
DoD Dial over Data
DTMF Dual-Tone Multi-Frequency
EJB Enterprise JavaBeans
FEP Front-End Processor
GGSN General GPRS Support Node r
GPRS General Packet Radio Service
GSM Global System for Mobile communications
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HTTP over SSL
IDE Integrated Development Environment
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IP Internet Protocol
IPC Interprocess Communication
IP-PBX Internet Protocol Private Branch Exchange
J2EE Java Platform, Enterprise Edition
JME Java Platform, Micro Edition
J2SE Java Platform, Standard Edition
JAAS Java Authentication and Authorization Service
JDBC Java Database Connectivity
JNDI Java Naming and Directory Interface
JSP Java Server Pages
LDAP Lightweight Directory Access Protocol
MEX Mobile Extension
MIDP Mobile Information Device Profile
MMS Multimedia Message Service
OS Operating System
OTA Over-The-Air
PAM Pluggable Authentication Module
PBX Private Branch Exchange
PIPS PIPS Is POSIX on Symbian OS
POSIX Portable Operating System Interface for Unix
SDK Software Development Kit

xii

SGSN Serving GPRS Support Node
SIM Subscriber Identity Module
SIP Session Initiation Protocol
SMS Short Message Service
SOA Service-Oriented Architecture
SQL Structured Query Language
SSL Secure Socket Layer
TAN Trunk Access Number
TCP Transmission Control Protocol
TLS Transport Layer Security
TSY Technology Systems
UDP User Datagram Protocol
UI User Interface
UID Unique Identity
Uikon User Interface Kernel on Display
UIQ User Interface Quartz
UMTS Universal Mobile Telecommunications System
URL Uniform Resource Locator
WLAN Wireless LAN
XML Extensible Markup Language

1

1. Introduction
Nowadays, most companies pay the business phone bills of their employees, including their fixed line
phones and mobile phone(s). The total amount of these phone bills in many companies is millions of
Swedish krona per year. Especially for large companies whose employees make many international
business trips, the phone bills for roaming cellular service can be very huge. Today the mobile roaming
fee often comprises the majority of a business’ phone costs.

“Dial over Data” (DoD) is a solution introduced by OptiCall Solutions AB. It is an integrated system
which provides customers with a means to reduce the cost of their mobile phone calls. [1] There are
three key components in the system: DoD clients, a DoD server, and a IP-PBX. Instead of dialing the
callee’s number directly, a request to call the callee is submitted to the DoD server over a data link by
the DoD client. After the DoD server receives this request, it uses the IP-PBX to set up a call between
the caller and callee. This call can use least cost routing techniques and can even utilize SIP calls to
carry the signaling and traffic over an IP network. This cost saving solution is suitable for the common
scenario in which the sum of the data fee (for the traffic to & from the client), the call receiving fee (at
the client), the two call origination fees from the PBX, and the cost of the two calls themselves are less
than the calling fee for the direct call. This saves a lot of money for customers especially when the
customers are roaming abroad and there are one or more local gateways to the IP-PBX that can be used
to turn a international roaming call into one or two local calls.

Besides cost savings, the DoD solution gives customers the ability to control and monitor the calling
cost of their employees. For instance, using the DoD solution the IP-PBX can refuse to establish
connections between employees, or monitor use of the company’s subscription for private use.

Today, people rely on fixed line phones when they are in office and their mobile phones when they are
away from the office. However, people work out of the office more frequently than before, so for
convenience they use their mobile phones as a replacement for their fixed office phones. Unfortunately
this can lead to high costs for the use of the cellular phone within the office. There are several ways to
reduce the cost of these for example; turning calls into WLAN based calls, corporate site rate cellular
calls, single number calling approaches, and the use of the DoD solution. Note that this thesis will not
focus on costs savings or monitoring of employees calls, but rather will focus on the technical aspects
of the client side of the DoD solution.

Call Through is a service for making cheap international calls, and already is provided by many
telecommunications companies. Instead of making a direct call to the party the caller wants to speak
with, the caller makes a call to the local call-through service access number. After the first call is
established, the caller dials the actual callee’s number. The service provider makes a call to the callee
and bridges the two calls. The caller only needs to pay the local call and the service subscription fee
instead of an expensive international call fee. Today, many companies provide such a call-through
service to their employees to reduce the costs to the company for international calls.

Mobile extension is a popular concept which gives mobile users access to their corporate network’s
voice calling features on their mobile phones, for example features such as internal extension dialing,
conferencing, and call transferring; while consolidating their mobile, fixed, and soft devices under a

2

single unique business phone number. [2] With a mobile extension system, users can use their mobile
phones as a replacement for their fixed office phones. For an outgoing call, making a call looks and
feels the same to the user no matter whether a call is made from a fixed office phone or a mobile phone.
Depending on the PBX’s configuration, even the callee cannot tell whether the source of the call is a
fixed office phone or a mobile phone -- as the call always appears to be coming from the company's
PBX. For an incoming call, both the fixed office phone and mobile phone can ring, thus users will not
miss incoming calls to their office -- even if they are not in their office. Additionally, such a mobile
extension can provide additional advanced functions, such as setting presence status, login groups, and
transferring a call to another extension.

A DoD client was previously developed in Java. Although this client implements the DoD solution,
However, this Java application is not sufficiently user-friendly. However, ease of use is especially
important for telephony functionality. The reason for this lack of user friendliness is that to access a
Java application, the user must normally open a Java application manager, launch the Java application,
and interact with this application. This requires a change in the user’s calling behavior -- as the user
wishes to simply dial the number of the party that they wish to call or even more commonly click on a
contact in the phone's phone book. Additionally, this Java application does not support mobile
extension functionalities well.

The goal of this thesis project was to develop and evaluate a mobile extension application, called
‘OptiCaller’, running on a mobile phone running the Symbian operating system (OS). The most
significant advantage of the OptiCaller application is transparency. In this approach the OptiCaller runs
on a Symbian OS based mobile phone in the background. This approach enables users to make a call in
lower-cost way without changing their behavior -- as the application intercepts the user's dialing
interaction with the phone as it is dialing a number or choosing a contact in the phone's phone book.
Additionally, OptiCaller supports making call-through calls and a number of mobile extension
functions; including setting presence status, ongoing call services, and so on.

The new OptiCaller application will be evaluated from several aspects, including call performance as
compared to the existing Java application (which is the new Java client, see Chapter 2) and power
consumption. These two metrics were chosen as the user wants to simply make calls, but with an
application running in the background they might be concerned about the power consumption of such
an application - to avoid significantly reduced talk and standby time.

Additionally, a provisioning system called ‘OptiCaller Provisioning System’ was designed and
implemented in order to handle the provisioning of the OptiCaller. By using the provisioning system,
the OptiCaller application can be delivered and easily managed. This provisioning system allows
over-the-air (OTA) installation [3] and remote updates the client application's configuration. This
provisioning system will be evaluated in terms of its load capacity. Specifically, we want to determine
how the load on the provisioning system will scale with the number of users.

Chapter 2 introduces related work. Chapters 3 to 9 describe the background of this project. The
material about the Symbian OS and its C++ APIs are the subject of Chapter 3. Chapter 4 describes the
Symbian OS architecture, while Chapters 5 to 7 explain the most important three layers of the Symbian
OS in detail, specifically the User Interface Framework Layer, Application Services Layer, and OS
Service Layer (they are described in this order). Chapter 8 introduces the Java Platform, Enterprise

3

Edition (J2EE) and the application server used in this project. Chapter 9 explains how to send an SMS
from a PC in a program. OptiCaller is described in Chapter 10, while the OptiCaller Provisioning
System is described in Chapter 11. Chapter 12 focuses on the evaluation about the OptiCaller and the
OptiCaller Provisioning System. Chapter 13 gives a summary of our conclusions and suggests future
work.

 2. Related Work
Currently, there are two ways for a user to access the DoD solution: (1) via a Web browser or (2) via a
mobile phone Java application. [4] The web interface is designed for web browsers such as Mozilla
FireFox and Internet Explorer. Additionally, a mobile client developed in Java Platform Micro Edition
(JME) was previously designed and implemented for mobile phones supporting the Java Mobile
Information Device Profile 2.0 (MIDP provides a standard Java runtime environment [5]). Figure 1 and
Figure 2 show the two user interfaces currently available.

Figure 1: DoD Web User Interface

Figure 2: DoD Java User Interface

Both the web client and mobile client support call-back. Call-back is one of the two basic methods used
to realize the DoD solution. Rather than directly calling the callee, the caller sends a data request to the
DoD server, the server causes a PBX to establish calls to both caller and callee, then bridges these two

4

calls together to create a connection between the caller and callee. Hence the origin of the name:
"call-back".

However, both clients suffer from a number of problems. A disadvantage of both clients is that they
require that the human change their usual dialing behavior. For instance, the Java client requires the
caller to perform 4 steps to make a call:
1. Open the Java application
2. Input the callee’s number in the application user interface
3. Send the request and wait for an incoming call-back call
4. Accept the incoming call in order to connect to the other party

Additionally, the two current clients do not support call-through (another method that can be used in
the DoD solution) nor do they support mobile extension functions such as presence setting and ongoing
call services. For details of the call-back and call through solutions as seen by the server, see the
companion master’s thesis by Zhang Li. [6] It is worth mentioning that a new Java client is developed
in another thesis project by Ioannis Metaxas. [7] Figure 3 shows the interface of the new Java client.

Figure 3: New Java Client User Interface

To increase the ease of use of the DoD solution, a more integrated client needs to be developed. In this
thesis project, a client tailored for a Symbian OS based phone was designed, developed, and evaluated.
One goal was to explore alternative ways for user dialing without changing the user’s dialing behavior
(which could be manually dialing number or choosing a contact from the phone's phone book). Another
goal was to support the mobile extension functions.

There are other cost-saving products in the market. A solution using a Skype PBX [8] was introduced
by OnState [9]. Users make a call into the Skype PBX, then the call will forwarded onward via Skype.
This solution is similar to call-through and is one of functions provided in the new OptiCaller
application. In the call-through approach the user makes a voice call into the IP-PBX, enters the phone
number of the callee (for example using DTMF), and the IP-PBX will use a SIP trunk to make a call to
the callee. Additional details of call-through are given in following chapter. Additionally, TelePo [10]
provides a solution called Telepo Mobile+ [11]. It runs as a background application providing automatic
access to the enterprise voice network using local access gateways or automatic call-back. [11]
Compared to Telepo Mobile+, the OptiCaller supports triggering a call-back via a data-link; which takes
full advantage of the wide use of GPRS and 3G. It also supports SMS call-back. Additionally, OptiCaller
is compatible with most PBXs supplying mobile extension functions, because instead of being tailoring
to a specific PBX, OptiCaller is designed in a flexible way. OptiCaller allows users to edit their mobile
extension function codes by themselves (or the OptiCaller Provisioning System) in order to adapt to

5

6

different PBX solutions. In contrast the Telepo Mobile+ is tightly integrated with their choice of a SIP
proxy server.

7

3. Symbian OS C++
The Symbian OS was developed in a non-standard C++. There are some differences from the standard
C++, these differences are described in the following sections.

3.1 Basic Types

It is possible to use the basic types of standard C++, but it is recommend that a programmer use the
Symbian specific types to preserve compiler independency. Table 1 shows some of the corresponding
data types of Symbian OS C++ and standard C++.

Table 1: Basic Data Type in Symbian OS and Standard C++

Symbian OS C++ basic data type Standard C++ basic data type
TUint uint
TInt int

TReal float
TBool bool
TAny void

3.2 Naming Convention

Symbian OS uses a naming convention to indicate what is important and to make the source code more
readable. The naming convention rules in Symbian OS C++ are [12]:

For a class name, there are four main prefixes for different types of classes:
T T classes are built-in classes which do not need deconstructor. Examples are: TInt,

TFileName, and TBuf.
C C classes are any classes derived from CBase class. They always are allocated on the heap.

Examples are: CActive, CCoeControl, and CAknView.
R R classes own the resources. Most of them need to be connected to or open the resources

before using them. And they need to be closed at the end. Examples are: RFile, RTimer, and
RWindow.

M M classes are interfaces. Symbian OS supports multiple inheritances by them. The visual
functions of M classes need to be implemented. Examples are: MEikMenuObserver,
MHTTPDataSupplier, and MProgressDialogCallback.

For data names, there are four main prefixes for different types of data:
 Arguments use the prefix ‘a’.
 Class member data uses the prefix ‘i’.
 Constants use the prefix ‘K’.
 Enumerated constants use the prefix ‘E’.

For function names, the convention is the same as standard C++, except for the leaving function. More
details about the leaving function are given in the following section.

8

3.3 Exception Handle

Unlike standard C++, Symbian OS C++ has its own mechanism to handle exceptions. Some new
concepts are introduced such as the Leaving Function, CleanupStack, and Two-phase Construction.
[13]

3.3.1 Leaving Function

Lack of resources is a common environment error for programs; especially for the Symbian OS, since
mobile devices frequently have more limited resources than larger devices such as PCs and laptop
computers. Lack of memory is the most common issue. If several functions ask for resources at a
critical time, when there are insufficient resources available, then the function will leave, i.e., be
terminated. Functions which may leave are called leaving functions. This behavior is similar to the
functions that may throw exceptions in standard C++.

It is important to handle the leaving functions properly since failing to do so could lead to serious
problems. For instance, consider a leaving function that applies for memory twice within the function.
Assume that it receives memory successfully at the first request, but it fails to receive the requested
memory allocation with its second request. Due to the second request failing, the function leaves, but
the memory allocated the first time is still allocated leading to a memory leak. Such memory leaks can
be crucial for a mobile device since the resources are so limited. Restarting the device could release the
allocated memory, but if the allocated memory is in the persistent storage, it is unavailable forever.
This means that all functions which allocate resources must be carefully designed so that upon exiting
they properly return resources that should returned to their respective resource pools. This is addressed
using Symbian OS's exception handling - as described in the next subsection.

3.3.2 CleanupStack and TRAP/TRAPD

Symbian OS uses two mechanisms, CleanupStack and TRAP/TRAPD, to handle exceptions.
TRAP/TRAPD is similar to try and catch in standard C++. TRAP/TRAPD runs a leaving function, and
puts the leave code into an integer. If the code is KErrNone, this indicates that the function executed
successfully. Otherwise, the program needs to correct the situation indicated by the error code. The
difference between TRAP and TRAPD is that an error variable needs to be defined for storing the error
code before TRAP is used; while TRAPD can be used without an error variable definition.

The CleanupStack works with TRAP/TRAPD to prevent memory leaks when a leave occurs. It
performs three operations:

 It stores the address of allocated memory, pushing it onto a stack.
 After finishing the operation which may leave, it pops the address out of stack.
 TRAP/TRAPD marks when the leaving function starts. If a leave occurs, the memory blocks

allocated after that mark are released, and the allocated address pointers (to these blocks) on
stack are popped.

9

The name convention for leaving functions is:
 Leaving function uses the suffix ‘L’.
 If a leaving function has the suffix ‘LC’, this means that it pushed one item onto the

CleanupStack.
 If a leaving function has the suffix ‘LD’, this means that it deletes or releases the item which

is pushed onto CleanupStack.

3.3.3 Two-phase Construction

Two-phase construction is a typical use of CleanupStack and TRAP/TRAPD. The Symbian OS
introduced two-phase construction to avoid memory leaks when constructing an object.

The construction is divided into two steps. The whole construction is TRAPed by a framework. All
safe operations such as standard construction functions will be executed in the first step. All potential
leaving operations are executed in the second step. The object’s address will be pushed onto the
CleanupStack before the construction moves to the second step. Thus, if the second phase of the
construction leaves, the framework will release the memory already allocated and pop the object
pointer off of the stack.

3.4 Active Objects

Active objects are a fundamental part of the Symbian OS. In an operating system, a service can be
performed either synchronously or asynchronously. A synchronous request means the control does not
return to the caller until the service is completed. In contrast, an asynchronous request means that control
returns to the caller immediately after submitting the request. The service could complete sometime later.

Normally, operating systems use multi-threading and multiprocessing to deal with multiple tasks. The
Symbian OS supports multi-threading. Threads are preemptively executed by the kernel which controls
thread scheduling. The thread with the highest priority which is not in the blocked state is run by the
kernel. A blocked thread is waiting for an event to happen, for example a service completion. A context
switch occurs if the current thread is suspended. [14]

However, mobile phones are not as powerful as desktop PCs. Hence multi-threading should be avoided
on mobile phones due to the limited resources (specifically computation power and memory). To provide
a light weight alternative to multi-threading, the Symbian OS introduces Active Objects to deal with
multi-tasking.

Active objects are a unique concept to Symbian OS. It is a way to implement non-preemptive
multi-tasking inside a thread. The core of an active object is active scheduler which is similar to a
mini-kernel for each thread. There is only one active scheduler in each thread. It manages several active
objects. Each active object is responsible for making a request and handling its completion. A single
thread usually issues many outstanding requests. The Active scheduler handles the completion of
requests and calls the corresponding active object to handle the request. Each active object has a RunL()
method which is called when the request of this active object completes. As a kernel managing multiple
threads, if several requests complete at the same time, then the active scheduler decides which active
object corresponding to the completed request is called. [15]

Active objects are widely used in the Symbian OS. For example, the Graphic User Interface (GUI)
framework is a typical user of active objects. Usually, developers only need to implement the
OfferKeyEventL() method to handle a keyboard event. The method is invoked in the RunL() method
which is implemented by the GUI framework. Symbian applications usually only have one thread, so that
all asynchronous requests are handled by active objects.

As we known, time and memory consumption are two key factors for software applications. According
to the test performed by Aapo Haapanen [16], a thread-based solution consumes about ten times as much
memory as the active-objects-based solution. Additionally, an active-objects-based solution is much
faster than a thread-based solution. Therefore, using active objects instead of multi-threading improves
the performance of Symbian OS applications.

3.5 Client-Server Model

The Symbian OS offers several services at different layers. Normally, the server runs in a separate thread;
while processes are used to execute the application process. Therefore, the Symbian OS supports
interprocess communication (IPC) mechanisms. [12] Event driven processing is the base of the Symbian
OS. Most event interactions are initiated by the user. Thus a Client-Server model using the IPC
mechanism is a very common approach to implementing services running on the Symbian OS. Most of
the system services in Symbian OS are Client-Server-based; such as the Window Server, File Server, and
Telephony Server.

Figure 4 illustrates this Client-Server IPC mechanism. Firstly, the client needs to establish a session with
the target server. This session is used for all further communication between the client and the server.
There are two kinds of messages in such communication: client requests and server responses. The
Symbian OS kernel manages the sessions. For each session, the kernel delivers the request to the
appropriate server. The server retrieves the data in the request (if there is additional data), then processes
the request and notifies the client that its request is completed. Since this is connection-oriented
session-based communication, the Client-Server IPC mechanism is a guaranteed request-completion
mechanism. [12]

Figure 4: Client-Server IPC mechanism

The Client-Server IPC mechanism has advantages in terms of efficiency and security. [17] Multiple
clients can use a single server at the same time, while these clients and the server are executed in different
processes. All the session management is done by the kernel. Therefore, a client failure will not affect the
server. This Client-Server IPC mechanism supports both synchronous and asynchronous requests.

However, in such a Client-Server IPC mechanism, each client must know which server provides the
service it wants. Additionally, requests may be suspended by the kernel making this approach unsuitable
for real-time communication. The Symbian OS provides two additional IPC mechanisms for interprocess

10

11

communication; a Publish and Subscribe IPC mechanism and a Message Queues IPC mechanism. [12]
Since in this thesis project the server needed is known and there is no real-time requirement, these other
two IPC mechanisms are not used.

 4. Symbian Architecture Overview
The Symbian operating system can be represented as a layered model (see Figure 5). This model divides
the Symbian OS architecture into five layers, from top to bottom: User Interface (UI) Framework,
Application Services, Operating System (OS) Services, Base Services, and Kernel Services & Hardware
Interface layers. [18] The Symbian OS also supports Java ME on top of the OS Services layer.

Figure 5: Symbian OS layer model [18]

4.1 User Interface Framework Layer

The user interface (UI) Framework layer is the top most layer in the Symbian OS layer Model. It
delegates tasks to the Application Services layer. This UI framework layer is used for constructing a user
interface by providing UI frameworks and libraries.

The basic class hierarchies provided by the UI Framework layer implement user interface controls. These
class hierarchies include the Uikon framework, the control environment hierarchy (CONE), and the
front-end processor framework. [19] The classes are also available to applications besides the user
interface. Uikon and CONE are the most important classes for the GUI, since together they provide the
framework which defines the basic GUI behavior.

The UI Framework layer also provides other frameworks and utilities, including the UI Graphic Utilities
and Graphics Effects components, the Animation components, and the Grid framework. Together they
support fonts, colors, and graphics effects for the user interface. Some of these frameworks and utilities
are available to applications besides the user interface. More details are given in Chapter 5.

12

13

4.2 Application Services Layer

The Application Services layer provides services for applications. These services can be divided into
three categories: system-level services, technology-specific logic, and specific individual applications.
[18]

System-level services include basic application frameworks which can be used by all applications. As an
example, MIME-based content recognition and handling can recognize files according to their MIME
type so that a suitable application can be launched to open that file.

Technology-specific logic supports several application-level standards, such as email standards
(including SMTP, POP, and IMAP), internet data protocols (including WAP, HTML, and HTTP), and
phone message standards (including SMS and MMS).

Specific individual applications include personal information management, device management and
client provisioning, not only on-device but also over-the-air (OTA).

Most of services supplied by this layer are used for standard phone functionality. However, they are also
available to the third party developing new applications.

More details of this layer, as related to this thesis project, are given in Chapter 6.

4.3 OS Services Layer

The OS Service layer supports graphics, communications, multimedia, and other system-level utilities. It
also provides a number of generic system frameworks and libraries such as the C Standard Library. It
extends the bare system into a complete, programmable operating system.

This layer can be divided into four major blocks: [18]
 Generic OS Services
 Multimedia and Graphics Service
 Connectivity Services
 Communications Services

These blocks are not isolated, but in fact are related to each other. For instance, Generic OS Services is
used by other blocks, and Communications Services is used by Connectivity Services.

These services seldom are used by applications directly. Instead, applications use the service by way of
higher-level frameworks. However, some core services are used by all applications, such as the window
services (no matter whether the applications knows it or not).

More details, as related to this thesis, are given in Chapter 7.

14

4.4 Base Services Layer and Kernel Services & Hardware

Interface Layer

The Base Services layer and Kernel Services and Hard ware Interface layer are the lowest layers of the
Symbian OS. These two layers comprise the operating system kernel, device drivers, and the
device-driver framework support. [18]

The Base Services layer provides basic operating system services. These basic services include file
services, persistent storage services, and so on.

The Kernel Services and Hardware Interface layer is the lowest layer of the Symbian OS. It consists of
the kernel and the infrastructure needed to boot and run the kernel on top of a specific hardware platform.
It is responsible for fundamental operating system services, including initializing hardware accessing
devices, creating and managing system kernel abstractions such as threads, processes and memory
spaces, and so on.

These two layers constitute a minimal operating system which can boot and run other code.

15

5. User Interface Framework layer
5.1 User Interface Platforms

Nowadays, there are a lot of mobile phone manufactures whose products are based on the Symbian OS.
Although the basic operating system is the same, these mobile phones have their own distinct looks and
behaviors. The reason for this is that the different mobile phone manufacturers have implemented their
own User Interface Platforms on top of the UI Framework layer.

When the Symbian OS is delivered to licensees, a minimal test user interface is included. This is an
incomplete user interface which is called ‘TechView’. It is used in the emulator (when running on a
Microsoft OS platform) to provide a Microsoft Windows-based implementation of the Symbian OS.
Mobile phone manufactures that have a Symbian OS license either develop their own user interfaces or
license/buy a suitable one.

Currently, there are three main UI platforms used in the market: S60, UIQ, and MOAP. [19] S60 was
developed and is licensed by Nokia to other vendors. Some of these manufacturers who license and ship
S60 phones based on Symbian OS are: Lenovo, Panasonic, and Samsung. UIQ is owned by Sony
Ericsson. Other manufacturers (such as Motorola) license and ship UIQ phones. MOAP was developed
by the FOMA consortium in Japan and is licensed and shipped by Fujitsu, Mitsubishi, and Sony Ericsson.
S60 and UIQ are two most popular UI platforms now. The UI Framework layer has some differences
corresponding to which UI platform is built on top of it. We will not discuss the difference in this report
since this project only focused on S60 as it is the most common UI platform.

5.2 User Interface Framework Layer

The UI Framework layer underlies the various UI platforms supplied by mobile phone manufacturers. It
provides frameworks and libraries for developers to construct a customized user interface on top of the
Symbian OS. For instance, it has frameworks for extending a customized user interface and provides
some generic frameworks such as animation.

Although the UI Framework layer has become thinner since the since the introduction of the UI platforms
on top of it have developed rich user-interface functionality. However, the UI Framework layer sill
provides important core user-interface functionality which determines basic application behavior, such
as window interactions. This is achieved by two major components: the Uikon framework and the
Control Environment (CONE). (See Section 4.1)

5.2.1 The Control Environment

Controls are the basic concept used in CONE. Controls are window-using, possibly nested, rectangular
screen areas that accept user input and other events. [12] These events include redraw, user-input,
foreground-focus events, and so on. Some events are supplied by the Window Server to CONE,
including user-input events, while some events are generated by controls themselves such as the change
of focus event.

CONE defines the base classes that encapsulate basic behavior, such as user input, and the relationship
between controls and their environment. CONE could be seen as an abstract middle layer between the
Window Server providing low-level functionality and the concrete user-interface classes provided by
Uikon (see Section 5.2.2). The events supplied by the Window Server to CONE are routed to controls.

There are three essential classes defined by CONE: CCoeControl, CCoeEnv, and CCoeAppUi.

CCoeControl is the base class from which all other controls are derived. It displays the application data
on the screen and allows users to interact with the application. This is sometimes called a ‘view’.

CCoeEnv is the class which encapsulates the application session with the servers including the Window
Server, File Server, and so on. Every application owns a single object of a class derived from CEikonEnv,
which is a sub-class of CCoeControl. This object is responsible for routing input-event messages from
the Window Server to the application framework CEikAppUi class.

CONE also defines the application user interface base class CCoeAppUi. Handling commands is the
main responsibility of an application UI class. These commands are specified in the application’s
resource file. The application is also responsible for dealing with other kinds of events sent by the OS to
the application, including key events, application switching to foreground event, etc. CEikAppUi is an
application UI class derived from CCoeAppUi class. An application always owns a concrete application
UI class derived from CEikAppUi. Some UI-specific features may be added to this application UI
derived class.

5.2.2 The Uikon Framework

Uikon stands for User Interface Kernel on Display. It is the generic Symbian user interface on top of
which various manufacturer specific user interfaces are implemented.

Uikon is based on two important frameworks: the Control Environment (CONE) and the application
architecture (APPARC) which is a framework for applications and application data. Figure 6 illustrates
the Uikon Framework. [12]

Figure 6: Frameworks on which UIKON is built [12]

APPARC consists of application class (CEikApplication) and document class (CEikDocument). Each
application always owns a pair of concrete derived classes from the application class and document class.

The application class (CEikApplication) defines properties of the application, such as its globally unique
ID (UID) which is defined in project’s ‘.mmp’ file. This class is responsible for creating the
document-derived class. This derived class is the interface to the resource file and the document.

The document class (CEikDocument) represents the data model for the application. In file-based
applications, it stores and restores the application's data. Even if the application is not file-based, a

16

document class must exist in each application for storing and restoring the application data. Additionally,
it creates an application UI class which is a component of CONE.

The framework also includes a component named look-and-feel which is provided by each user interface
variant. This component defines a standard set of methods which the user interface variant can use to
define the different behaviors of user interface elements. The different behaviors include the layout of
windows; system fonts; and the appearance of the toolbar, dialog, and button; and so on. Figure 7 shows
the different behaviors for an alert dialog on S60 and UIQ (respectively).

In addition, there is a small component called the Uikon Error Resolver Plug-in. This component is used
by the UI variant to map system error codes to strings. This mapping makes the system errors more
understandable to users.

Figure 7: Alert Dialog of S60 (left) and UIQ (right)

5.2.3 The S60 View Architecture

Avkon provides the S60-specific application framework layer implemented on top of Uikon. It adds
further UI libraries that can include controls derived from the ones provided by Uikon. [20] Moreover, it
defines many S60-specific controls, such as list box, editor, and dialog. Table 2 indicates the generic
Symbian OS application framework classes, provided by S60. [12]

The traditional S60 platform applications follow the traditional Symbian OS UI application architecture,
which is illustrated in Figure 8. [21] As shown in this figure, the views are derived from the standard
CCoeControl. These views are responsible for showing data and accepting user interaction events.

The application UI class is derived from CAknAppUi which is called a UI controller. This derived class
creates one or more CCoeControl-derived classes, enables them to handle key events, and switches
between the CCoeControl-derived classes. This application UI class also handles menu commands; and
receives and handles events such as when an application is brought to foreground from the background in
the run-time environment.

However, using a traditional UI architecture, the developer has to do all the view management (such as
view switching). Sometimes this will be very complicated. Therefore the view architecture was

17

introduced to simplify development. Figure 9 shows the S60 view architecture of S60. [21] As in a
traditional UI architecture, the views are derived from the standard CCoeControl.

Table 2: Application Framework Classes [12]

Class Generic Symbian S60 (Avkon)
Application CEikApplication CAknApplication
Document CEikDocument CAknDocument

Application UI CEikAppUi CAknAppUi
View CCoeControl CCoeControl

Figure 8: Tranditional Symbian OS UI Application Architecture Classes [21]

Figure 9: S60 View Architecture Classes [21]

A new concept is introduced by the S60 view architecture is the view controller (CAknView). It owns
one or more CCoeControl-derived objects. It implements the MCoeView interface which manages the
view ID by which the corresponding view can be activated. It also deals with the events which will be
trigged when a view is activated or deactivated. For instance, when the view controller is activated, the
view controller could decide which view (CCoeControl-derived class) should be activated. When a view
is activated, the view controller adds it to the control stack, which means that the activated control is

18

19

registered to receive key events. The view controller also has the ability to handle the command which is
a partial responsibility of the application UI class. Using the view controller, views can be easily
switched by simply invoking one method.

The application UI class in the S60 view architecture is not derived from the standard CAknAppUi
directly; rather it is derived from CAknViewAppUi. It creates one or more view controllers and manages
them; including adding or removing the view controllers into or from the view framework. It switches the
view controllers and handles the commands passed to it by the view controllers. It also handles the events
which are not handled by the view controllers, such as the event when an application is brought to
foreground event.

The disadvantage of the S60 view architecture is that it has more limitations than the traditional UI
architecture. For instance, it cannot provide views that could be used in other applications nor can it be
layered over other applications.

5.2.4 The Front-End Processor framework

The Front-End Processor framework (FEP) is another interesting framework provided by the UI
Framework layer. It provides abstractions that implement user-input capture and preprocessing. [12] It is
managed by CONE -- which creates, owns, and destroys the FEPs.

The FEP is based on the CCoeFep class which owns a high-priority and invisible control thread. Because
the FEP has a high-priority, it receives keyboard events before other controls. As a result FEP captures
and preprocesses the input events, then returns them to the control stack as new events for lower-priority
controls. For instance, when a user uses the visual keyboard to input a character ‘1’, the FEP captures the
event, then returns a key event whose code is ‘1’ to the control stack. Subsequently the other controls in
the control stack can receive this event and handle it.

20

6. Application Services Layer
The Application Services layer provides services for applications. As stated earlier, it supports email
standards (such as SMTP, IMAP, and POP), phone-messaging standards (such as SMS and MMS), and
internet document and data protocols (such as HTTP, XML, and HTML). For this thesis project, HTTP
support will be used; hence the rest of this section will focus on the Application Services Layer HTTP
framework.

6.1 HTTP Framework

HTTP uses TCP as its transport protocol. It uses a client-server model. The Symbian OS supplies a HTTP
framework to support all HTTP-defined request methods, including GET and POST. It provides a set of
application programming interfaces (APIs) which helps programmers to develop applications without
needing to pay attention to details of the HTTP stack. The framework also supports HTTPS as well, for
added security (see section 7.2.2).

To develop an HTTP application, a HTTP session needs to be established using the API called
RHttpSession. Within a session, a client sends a request to and waits for a response from an HTTP
servers. Since creating a session consumes time and memory, it is recommended that only one session is
created in an application. Fortunately, multiple HTTP transactions can take place during one session.
Several different session properties can be set, for instance, the network connection could be set for the
session so that a user prompt will not be triggered to ask the user to select the network connection to be
used. The ownership of this connection belongs to the application, thus after finishing using the
connection it is the application’s responsibility to close the network connection - rather than this being a
responsibility of the framework. The session properties apply to all transactions within the session.
However, some properties could be set for a specific transaction overriding the session’s settings.

The processing of an HTTP transaction is encapsulated in an API called RHTTPTransaction. It creates
the request message, including the header and the body, and submits the message to the HTTP server.

To customize the request body, an object which implements the interface MHttpDataSupplier is needed.
This object supports creating the body in parts if the data is large.

The HTTP framework provides a way to monitor the transaction so that the developer can concentrate on
dealing with processing the data. To monitor a transaction, the interface MTransactionCallback needs to
be implemented. Table 3 shows the common events supported by the HTTP framework. [22]

Table 3: HTTP Transaction Event Code [22]

Event Name Description

EGotResponseHeaders
Indicates that the response has been received and the status line and
header field information can be retrieved

EGotResponseBodyData Indicates that body data is ready for access
EResponseComplete Indicates it is the end of the body
ESucceeded Transaction completed OK, the session needs to be closed
EFailed The cause of the failure needs to be investigated

21

StringPoll [22] is an important concept for the HTTP framework. It efficiently deals with standard
strings. This is particularly useful for HTTP, because HTTP uses a lot of well-know and standard
strings such as the header field name. There is member data in the RHttpSession class called stringpool
into which the commonly used HTTP strings will be loaded. They can be conveniently passed to an
HTTP API. For instance, when the request method needs to be defined as POST, the value
stringPool.StringF(HTTP::EPOST,RHTTPSession::GetTable()) can be directly assigned to.

22

7. OS Services Layer
Except for the kernel server and file server, all core services are provided in the OS Services layer. The
services can be classified into four classes: Generic OS Services, Multimedia and Graphics Services,
Connectivity Services, and Communications Services. [18] Graphics Services provide an efficient
architecture to support various devices. Meanwhile, Multimedia Services provide a framework for
supporting multimedia such as audio, video, and cameras. Connectivity Services provide frameworks for
supporting device-host connectivity functions. With this, mobile phones can communicate with a host
platform, for example a desktop, for data backup, remote software installation, and so on.

The following sections will introduce the Generic OS Services and Communications Services which are
most relevant for this thesis project.

7.1 Generic OS Services

Generic OS Services include a number of general services and some useful frameworks and libraries.
The following subsections will highlight some of these (that are most relevant to this thesis project).

7.1.1 Task Scheduler

The Task Scheduler is one of most important services provided in the OS Services layer. It is an
application-launching server which takes responsibility for creating, querying, and editing
time-and-condition-based tasks. In other words, the application is invoked by the task scheduler when a
specific task trigger occurs. This task schedule determines if the time is up or a condition is met. For
instance, OptiCaller is configured to launch when the cellular phone starts-up; this behavior is controlled
by the Task Scheduler.

7.1.2 Event Logger

The Event Logger provides a service for logging and filtering system events for the system or
applications. Maintaining a list of recent calls is a typical use of the Event Logger. Events expire when
their lifetime ends.

7.1.3 Certificate and Key Management Framework

The Certificate and Key Management framework provides a complete framework for managing
certificates and keys. This framework supports public key cryptography for RSA, digital signature
algorithm, and Diffie-Hellman key pairs, assignment of trust status and certificate-chain construction,
and key validation and revocation. [18][23] This framework is used by system clients and licensee
applications, such as the Application Installer, browsers, and virtual private network client applications.

The private public key infrastructure keys which are used to sign data and verify signatures are stored
in the Key Store. The framework provides APIs for storing and retrieving keys. Similarly, the
certificates which belong to the root and users are stored in a Certificate Store. However, generating the
certificate/key pairs is not supported by Symbian frameworks. The certificate/key pairs can be provided
by the trusty organizations, such as VeriSign [24] and TrustCenter [25]. In this project, the

23

certificate/key pair is used for signing the OptiCaller installation file. Because the application is signed,
the application can utilize protected capabilities, such as accessing the mobile phone network without
requiring the user to explicitly give their approval each time. [26]

7.1.4 C Standard Library

The C Standard Library provides a basic subset of the standard ANSI C library functions and POSIX
system calls. [18] POSIX defines APIs for software compatible with variants of Unix OS. The Symbian
OS supplies a library called PIPS which stands for ‘PIPS Is POSIX on Symbian OS’. This library
facilitates porting applications from other platforms to Symbian OS based mobile phones.

However, the C Standard Library does not support some Symbian OS native idioms such as the active
object which the Symbian OS uses for achieving multi-tasking without multi-threads. More details
about active object are in Section 3.4. More details about Symbian OS C++ are in Chapter 3.

7.2 Communications Services

The Symbian OS supports various communication technologies including telephony services, IP
network services, USB, Bluetooth, and so on. [18] The three main communication services used in this
thesis project are: telephony services, IP network services, and messaging services.

7.2.1 Telephony Services

The Telephony Services are provided by the ETel Telephony Server. It supplies a number of telephony
APIs by which application can access a generic phone link. Access to the phone link can be divided
into two categories: data-centric and voice-centric. Data-centric applications do not use the ETel
Telephony Server directly; rather they use higher-level APIs such as the ESOCK APIs. Interaction with
the ETel Telephony Server is done via the Network subsystem which provides Networking Services. In
contrast, voice-centric applications directly use the ETel Telephony Server. These services include
dialing an outgoing call and answering an incoming call. Both of these operations are of particular
importance to this thesis project.

The ETel Telephony Server provides a client-side API to implement the Symbian OS client-server
framework. [27] It supports sending a request to the telephony stack for dialing or answering a call. As
a standard client-server framework, clients need to open a session with the ETel Telephony Server;
then they can open sub-sessions with phone, line, and call objects. The phone object provides the
ability to access the specific phone, for example, to get the status of the phone hardware. It is
implemented in the class RPhone. The line object provides the ability to access a specific line, for
example, to get the number of calls opened from this line. It is implemented in the class RLine. The
call object provides the ability to access functions related to a specific call, such as answering an
incoming call. It is implemented in the class RCall.

A Technology SYstems (TSY) module is a plug-in which could be seen as a middle-layer between
ETel Telephony Server and the telephony stack. Before the client requests arrive at the telephony stack,
they should be translated into appropriate requests by TSY module. Symbian OS provides four TSYs
as reference implementations. They are Multimode TSY, Global System for Mobile communications
(GSM) TSY, Code Division Multiple Access (CDMA) TSY, and SIM TSY. It is worth noting that the

24

Multimode TSY supports both GSM and GPRS functionality. It uses Hayes AT style commands to
communicate with the telephony stack. SIM TSY is a simulator module and does not communicate
with actual hardware. The TSY should be loaded before trying to use the functionality provided by
ETel Telephony Server. Since a phone may support several TSY modules, it is recommended that the
name of the current TSY module should be obtained by querying the communications database.

The main two functions supplied by the ETel Telephony Server are answering an incoming call and
dialing an outgoing call. To achieve these, ETel Telephony Server provides simple APIs. Additionally
this server provides services such as obtaining an IMEI or IMSI; and retrieving information about the
connected network, for instance the connected Cell ID, and monitoring call and voice line status. Table
4 [28] lists the ETel Telephony Server functions that are relevant to this thesis project and Table 5 [28]
shows the call status values relevant to this thesis project.

Table 4: Part of ETel Telephony Server functions [28]

Functions Description
CTelephony::DialNewCall() Initiate a new call
CTelephony::AnswerIncomingCall() Answers an incoming new voice call

CTelephony::SendDTMFTones()
Transmit DTMF tones across the current
active voice call

CTelephony::NotifyChange()
Register the events on this line including
incoming call events and outgoing call events

Table 5: Part of Call Status [28]

Call Status Description
EStatusUnknown Indicates that the status is unknown
EStatusIdle Indicates that no active calls
EStatusRinging Call ringing status
EStatusAnswering Call answering status
EStatusDialling Call dialing status
EStatusConnecting Call connecting status
EStatusConnected Call connected status
EStatusDisconnecting Call disconnecting status

7.2.2 Networking Services

As mentioned before, Symbian provides a HTTP framework to support HTTP transactions. These
HTTP transactions are based on using a TCP/IP network stack. This network stack is the core of the
implementation of Networking Services. The networking services also include network security
protocols and packet-data services such as GPRS, UMTS, and Wi-Fi.

The Network Security protocols work at different levels in the networking stack. TLS and SSL operate
at the transport level, providing encryption and decryption per TCP segment. Symbian supports TLS
v1.0 and SSL v3.0, as they are used in HTTPS and SyncML. IPSec operates at the network level. It is
used for support secure networks, for instance virtual private networks.

The networking services support a number of standard networking daemons such as DNS and DHCP.

Today, a cellular phone can use GPRS to access packet-data networks, including the Internet. There are
two elements of the GPRS that are relevant to using GPRS to access these packet-data networks: the
serving GPRS support node (SGSN) and the general GPRS support node (GGSN). The GGSN helps
the cellular phone to access the various packet-data networks, as it acts as a gateway between the
GPRS network and external networks. Figure 10 shows a GPRS connection to the Internet.

Figure 10: GPRS Connection to the Internet

The concept of an Access Point (AP) is one of the most important elements of the network
configuration information. This concept is not only used for GPRS connections, but also other
packet-data networks, such as Wi-Fi. This configuration information consists of the settings defining
how to connect to a particular network. The information usually consists of an Access Point Name
(APN), user name, password, and bearer type. The APN is sent to a SGSN by the cellular phone. The
SGSN discovers a GGSN responsible for this APN. The GGSN is responsible for the interworking
between the GPRS network and external packet switched networks, such as the Internet. There are a lot
of GGSNs in the world. A mobile operator may provide several GGSNs which connect to different
kinds of networks; including external network such as the Internet, the operator’s internal network, and
some specific service networks such as the MMS network. The (optional) user name and password are
used for authentication.

Different Access Points can be used on conjunction with different services. The list of these APs is
stored in the communication database of the cellular phone. It is important to choose an Access Point
appropriate to the type of network service(s) the application needs. Additionally, multi-homing may be
necessary. Sometimes, operators provide different services over different interfaces. For instance,
MMS service is only available over a connection to the operator’s MMS network. Thus the Symbian
OS requires that the application declare which interface it needs to use, then it binds a socket to that
connection using the RConnection API. The following steps are necessary to use an IP network
connection:

1. Make a connection to the Socket Server using the RSocketServ API.
2. Use the Socket Server handler to open an RConnection instance (a connection handler).
3. Use the Connection handler to connect to the IP network. The application is allowed to

specify a connection preference. Additionally, the application could define the specific AP by
specifying the APN, user name, password, bearer type, and so on. Alternatively, an
application could query the communication database to fetch a suitable AP. However, the
filter criterion for APs needs to be defined by application developer. These criteria could be

25

26

any information about an AP. If the application does not specify the AP, then the user will be
prompted to select the AP they want to use.

4. Do a data transaction using TCP, UDP, or using the HTTP framework over the connection.
5. After the application is finished using the network, then the connection handler should be

closed.

In this thesis project, network services and the HTTP framework (see Section 6.1) are used together.

7.2.3 Messaging Services

The Messaging services give the user access to the messages which are owned by the Message Server.
SMS (Short Message Service), MMS (Multimedia Message Service), and email are three typical types
of messages in mobile phones. The Message Server supports storing and retrieving messages using the
message store, notifying multiple applications of changes to the message store, and allowing multiple
applications to receive, create, and send messages.

To use these message services, the application needs to open a session to the message server. The
session is encapsulated by the CMsvSession class. The classes owning a CMsvSession usually
implements the MMsvSessionObserver interface. The method HandleSessionEventL() in the interface
will be called by the message server.

The message store uses a tree structure to store messages. Every node in the tree structure is
represented by an entry. Each entry can be one of four different types: folder entry, message entry,
service entry, and attachment entry. [22]

CMsvEntry is the key for the Message Services. It can be regarded as a pointer to the entry in the
message store. So the application can do change, copy, move, and delete operations on the CMsvEntry.
For instance, the method RSocketServ::GetEntryL(KMsvGlobalInBoxIndexEntryId) can be called to
get an instance of CMsvEntry. KMsvGlobalInBoxIndexEntryId is the id of the inbox folder in the
message store. After getting an instance of CMsvEntry, the application can call
CMsvEntry::ChildDataL() to get the TMsvEntry instances which represent the message entries. At this
point, the application can perform operations such as reading, modifying, and deleting messages.

7.2.3.1 Sending an SMS

The following steps are needed to send an SMS message:
1. Connect to the Socket Server (RSocketServ), and open a socket (RSocket) for SMS.
2. Set TSmsAddr::ESmsAddrSendOnly (TSmsAddr is the class represents the SMS address for

the socket) as the SMS address family for the socket.
3. Insert the SMS body into CSmsBuffer (the class for storing the SMS text), and associate

CSmsMessage (the class represents a complete SMS message) with the CSmsBuffer.
4. Set properties for the CSmsMessage, such as SMSC (Short Message Service Center) address.
5. Use RSmsSocketWriteStream class to send the SMS through the socket.
6. Call RSocket::Ioctl() method to apply an asynchronous I/O control operation. So that when

the SMS is sent, the RunL() method will be called. (RunL() is the callback method for
Active Objects, see section 3.4).

27

7.2.3.2 Receiving an SMS

The Symbian OS organizes the messages into a tree structure which included at least three different
messages to different folders: Inbox, Sent, and Drafts. Thus, an incoming SMS message will be put in
the Inbox folder, while an outgoing SMS message will be places in the Sent folder.

An application can register to be notified when entries are added, changed, or deleted. For example, we
consider the case of receiving an SMS message: a messaging observer can be waiting for a new SMS
message to appear in the inbox. When a new SMS arrives in the Inbox, a method called
HandleSessionEventL() would be called. The application can now perform some operation such as
check if the new incoming SMS message is specifically for this application.

However, this approach has a main drawback: all observers in the system are notified about the SMS
message; adding, changing, or deleting. While this means that the user may be alerted to the arrival of a
new SMS, for a message based application would be better to receive and process the incoming SMS
message quietly without any disturbing the user. As a result, the application needs to intercept the
incoming SMS message before it arrives at the message store. Fortunately, this is supported by the
SMS Socket API. There are three phases for receiving an incoming SMS message: (1) waiting for the
application specific SMS message, (2) intercepting the specific SMS message and processing it, and (3)
acknowledging the received SMS message.

In the first phase, the application connects to the socket server (RSocketServ), then opens a socket
(RSocket) for SMS. Similar to sending an SMS, the RSocket::Ioctl() method is called request an
asynchronous I/O control operation. Thus when the new message arrives, the RunL() method will be
called. A specific prefix can be bound with the SMS socket. For instance, assume there is an
application waiting for receive a soccer match score via SMS, this match score SMS starts with string
“MATCHSCORE”. TSmsAddr::SetTextMatch(_L(“MATCHSCORE”)) can be used to set the SMS
prefix that will be applied to arriving messages. Based upon this filter the SMS messages starting with
“MATCHSCORE” will be intercepted before reaching the Inbox.

In the second phase, once the SMS message starting with the specific prefix is intercepted by the
application, the application can process the SMS message. This might include computing an abstract of
the message and updating the user’s screen.

In the third phase, the application must acknowledge the incoming SMS message. This
acknowledgement is needed so that the SMS stack knows that the SMS has been dealt with
successfully, hence it can be deleted from the reassembly store. Otherwise, the SMS stack will attempt
to deliver the message again.

28

8. Java Platform, Enterprise Edition
Java Platform, Enterprise Edition (Java EE) builds on the solid foundation of Java Platform, Standard
Edition (Java SE) [29] and is the industry standard for implementing enterprise-class Service-Oriented
Architecture (SOA) [30] and next-generation web applications. [31] It consists of a set of services, APIs,
and protocols that provide the functionality for developing Web-based applications.

The following are the key features and services of J2EE which are relevant to this project:
 It supports standard HTML, Java applets, and Java applications.
 It uses Java Server Pages (JSP) and Servlet code to create HTML or other data for the

web-client.
 It uses Java Database Connectivity (JDBC). It uses JDBC as an interface to communicate

with a database which could be MySQL, Oracle, Access, or other similar database.
 It supports using JBoss as the application server. This makes developing web applications

easier.

JBoss is an open-source Java EE based application server. It standardizes the application development
architecture by defining several component models. These components include Enterprise JavaBeans
(EJBs) [32], Java Server Pages (JSP), Java Servlets, and so on.

Without JBoss, the application always starts by executing a main method. Additionally, if the
application needs to access various services, the developer has to write the code to handle the
communication with the corresponding server(s).

However, with JBoss, the developer uses models to write the code, package it into a standard archive
format, and deploy it to JBoss. Instead of accessing the services by writing code, the developers only
need to provide the metadata in the form of Extensible Markup Language (XML), then JBoss uses the
service managers and frameworks to access the services for the application.

8.1 Security in JBoss

JBoss uses the Java Authentication and Authorization Service (JAAS) API for user authentication and
authorization. It implements a Java version of the standard Pluggable Authentication Module (PAM)
framework and compatibly extends the Java 2 Platform's access control architecture to support
user-based authorization. [33]

There are three key concepts for the security in JBoss: ‘username’, ‘role’, and ‘security domain’. The
‘username’ and the ‘role’ are a pair used for representing a user. And the ‘security domain’ is an abstract
concept which defines the authentication, authorization, and mapping modules. It is specified in the file
‘jboss-web.xml’ as following:

<security-domain>java:/jaas/exampledomain</security-domain>

In the above declaration, the ‘exampledomain’ is this security domain’s name. Once the security domain
is defined, all the resources put in the domain will be protected. If any resource is requested without
authentication, the user will be redirected to the authentication page. A resource is only accessible when

29

the user logs in with the relevant role. If the user is not allowed to access the resource, then the HTTP
status code 403 will be returned in the response to the request.

Database based authentication can be used in this project. There is a file called ‘login-config.xml’ to
define the configuration for the database based authentication in JBoss. The following is an example of
an authentication policy:

<application-policy name=" exampledomain">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">java:/OptiCallMySqlDS</module-option>
 <module-option name="principalsQuery">
 select user_password from users where user_name=?
 </module-option>
 <module-option name="rolesQuery">
 select user_role, 'Roles' from users where user_name=?
 </module-option>
 </login-module>
 </authentication>
</application-policy>

In the above example, the name for the ‘application-policy’ should be the same as the name of the
‘security domain’ defined in ‘jboxx-web.xml’. The database login module of JAAS is specified as the
login module in the example. The value of the module option ‘dsJndiName’ is the data source name for
the database, this will be discussed in the next section. The values for the module options
‘principalsQuery’ and ‘rolesQuery’ are the SQL query for verifying the user’s ‘username’ and ‘role’
respectively. It is worth mentioning, these are not standard SQL query statements , but rather are the
variant of query statements used for JDBC.

The roles are defined in the file ‘web.xml’. An example of a role definition is:
<security-role>
 <role-name>administrator</role-name>
</security-role>

The access policy, called ‘security constraint’, is also stored in the file ‘web.xml’. Below is an example
of a ‘security constraint’.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>example area</web-resource-name>
 <url-pattern>/usermanager</url-pattern>
 <url-pattern>/groupmanage.jsp</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 <role-name>administrator</role-name>

30

 </auth-constraint>
</security-constraint>

In the above example, the value of the ‘web-resource-name’ is the name of the protected web resource in
this constraint policy. The value(s) of the ‘url-pattern’ are the protected web resource’s URLs. In addition,
the value(s) of the ‘role-name’ is the role with which a user can access this web resource. The above
policy means that only the users with a role of ‘manager’ or ‘administrator’ can access the web pages
‘./usermanager’ and ‘./groupmanager.jsp’.

Additionally, the configuration for the login method needs to be defined in the file ‘web.xml’ for
authentication. The following is an example of how to configure a login method:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login/login-form.jsp</form-login-page>
 <form-error-page>/login/login-error.jsp</form-error-page>
 </form-login-config>
</login-config>

The value of the ‘auth-method’ can be ‘BASIC’ (browser-specific popup window), ‘FORM’ (for based
authentication using a login page specified by <form-login-page> and the user is redirected to an error
page specified by <form-error-page> on unsuccessful logins), ‘DIGEST’ (MD5 digest based
authentication), or ‘CLIENT_CERT’ (Client-side SSL certificate based authentication).

8.2 Java DataBase Connectivity

Java Database Connectivity is a standard library for accessing databases. It can establish a connection
to database, and allows an application to initiate a query or update statements to the database.
Additionally, the statements can be parameterized so that duplicate statements can be avoided. The
result will be stored in a table as metadata. Figure 11 shows the architecture of JDBC. [34]

Figure 11: JDBC Architecture [34]

JDBC consists of two key parts: the JDBC API and a JDBC Driver Manager. [35]
JDBC API it provides programmatic access to the relational data from Java. Using the JDBC

AIP, the applications can access the database, execute the SQL statements, and retrieve
results and so on.

JDBC Driver Manager it defines the objects which can connect the application to a JDBC
driver. So the application can communicate with vendor-specific driver which perform the
real communication with the database. The driver translates the JDBC statements to the
vendor-specific format so that the database server does not need to change anything.

Additionally, there is an alternative way to connect an application to the JDBC driver: DataSource. [36]
A DataSource object represents a data source which can be a database or a file. Compared to the JDBC
Driver Manager, a data object works with a Java Naming and Directory Interface (JNDI) naming
service and is created, deployed, and managed separately from the application. Thus a DataSource can
be shared by a number of different applications, thus the configuration has to be performed for JBoss
rather than for a specific application. Normally, a driver vendor provides a class implementing the
DataSource interface as part of JDBC. The following is an example of a specification for a DataSource:

<datasources>
 <local-tx-datasource>
 <jndi-name>OptiCallMySqlDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/exampledatabasename</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>root</user-name>
 <password>XXX</password>

<exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSort
er</exception-sorter-class-name>
 <metadata>
 <type-mapping>mySQL</type-mapping>

31

32

 </metadata>
 </local-tx-datasource>
</datasources>

In the DataSource configuration, the value of the ‘jndi-name’ is the name for this data source. The
application needs to identify the DataSource by a name, in the declaration in the authentication
configuration in the file ‘login-config.xml. A MySQL server was used in the above example, so the
JDBC MySQL driver and metadata type mapping need to be set to MySQL.

33

9. AT Commands and SMSLib
9.1 AT Command

AT commands are also known as the Hayes command set [37]. These commands are sent from data
terminal equipment (such as PC) to a modem (a type of data communications equipment) while the
modem is in a command state. It is a de facto standard language for controlling modems. Most modems
implement a standard set of AT commands. Using AT commands the data terminal equipment can issue
commands for dialing, hanging up, changing parameters of the connection, etc.

For GSM modems, such as a GSM gateway and mobile phones, AT commands can be used to dial a
call, send SMS/MMS messages, and change the device's PIN code, and so on. Below is the example for
showing how to send an SMS message using AT commands from a PC:

AT
OK
AT+CMGF=1
OK
AT+CMGS="1234567"<CR>SMS example.<Ctrl+z>
OK

The ‘bold’ characters are the response string from the GSM modem. The first AT command tests and
synchronizes the connection between the PC and the modem. The command "AT" stands for
"Attention". The second AT command is to set the modem to SMS text mode. The third AT command is
sends the SMS message by defining the recipient’s phone number and the SMS message’s content.
<Ctrl+z> ends the message body for this command.

9.2 SMSLib

SMSLib is a Java library which enables users to send and receive SMS messages via a GMS modem or
GSM phone. [38] It uses AT commands to communicate with the modem or phone (acting like a
modem), so it is compatible with most GSM modems and GSM phones. Additionally, it supports
several bulk SMS operators for outbound messaging. In this project, the provisioning server uses the
SMSLib API to send the provisioning SMS message.

The following features of SMSLib were relevant to selecting it for use in this project:
 Supports communication with most GSM modems and phones via serial port interfaces.
 Supports simple and multipart inbound and outbound text messages.
 Supports sending SMS in PDU and TEXT mode.
 Supports 7 bit, 8 bit, and Unicode message encoding.
 Supports Outbound WAP PUSH SI messages.
 Supports Status (Delivery) Report messages.
 Supports fetching basic GSM information.
 Supports encrypting the SMS messages and other information.

34

There are six steps to required send a normal SMS message using SMSLib. These steps are
1. Construct a SerialModemGateway object which represents a GSM modem or phone

connected via a serial port. The object id, the serial port number, the baudrate, and the SIM
card PIN need to be set. Note that this is necessary even in the case of GSM phone, where
there is no serial port being used - but the logical connection used by the software is as if it
were using a serial port.

2. Construct a Service object which is the object of the main library class and add the
SerialModemGateway object initiated in the previous step by calling the method
Service.addGateway().

3. Start the Service by invoking the method Service.startService().
4. Construct an OutboundMessage object which represents an outbound SMS message. The

recipient's phone number and the SMS content need to be set.
5. Send the SMS message by invoking the method Service.sendMessage().
6. Stop the service by calling the method Service.stopService().

However, SMSLib has some drawbacks:
1. Once started the connection cannot be disconnected before the service is stopped. Otherwise,

the application will keep printing ‘WaitCommEvent: Error 31’ in console. The only way to
stop it is restarting the application. This is the hardware problem. In this project, we keep the
connection as stable as possible.

2. After the service is started, if the GSM modem or the GSM phone receives an incoming call,
the application will keep throwing exception to the console. In some cases, the PC will even
crash. This is a fatal problem when SMSLib is used in the provisioning system. Fortunately,
this problem can be gone around in this project (see Section 11.4.2).

35

10. OptiCaller
The OptiCaller application is the client side of the DoD solution. Opticaller is designed as a cost saving
calling application. It has been developed for Symbian based mobile phones. It supplies the user with
alternative ways for cost effective calling, specifically via Call Back and Call Through. Additionally, as
mentioned before, unlike the Web interface client and the old Java client, the OptiCaller supports the
concept of a Mobile Extension as well as avoiding the user having to change their behavior.

10.1 Development Profile

OptiCaller is an application designed for running on a Symbian S60 mobile phone. Table 6 shows the
OptiCaller development profile.

Table 6: OptiCaller Development Profile

UI platform S60
SDK S60 3rd Edition, Future Pack 1 (Symbian 9.2)
IDE Carbide.c++
Debug Tool CodeScanner, Error Reader
Test Module Nokia E61, Nokia E51, Nokia E66, Nokia E71, Nokia N95

As introduced in Section 5.1, there are two main UI platforms for the Symiban OS: S60 and UIQ.
OptiCaller is designed for the S60 platform, i.e., Nokia mobile phones and some mobile phone
(modules) produced by Panasonic, Samsung, and others.

The software development kit (SDK) that was used is Symbian S60 3rd Edition, Future Pack 1. The
operating System supporting this SDK is Symbian 9.2. However, in testing the OptiCaller application
also works well on mobile phones based on Symbian 9.1 which utilized the Symbian S60 3rd Edition.

Carbide.c++ is a family of interactive development environments (IDEs) for the creation of C++ and C
applications for Symbian OS devices. [39] This IDE is based on the Eclipse IDE and the C/C++
development tools from the Eclipse C/C++ Development Toolkit (CDT) Project. [41] It is based on
Eclipse IDE Version 3 with the plug-ins which make Eclipse IDE understand how to handle Symbian
C++ source files and build Symbian projects. [42]. The plug-ins can be classified into the CDT (which
enables Carbide.c++ to manage and build C/C++ projects), Symbian Plug-ins (which make
Carbide.c++ capable of supporting Symbian OS SDKs), and Nokia Plug-ins (which provide further
support for Symbian OS SDKs). Figure 12 shows the interface of Carbide.c++ IDE. As should be clear
from the figure, Carbide.c++ IDE is very similar to the Eclipse IDE.

Figure 12: Carbide.c++ Interface

CodeScanner is a static source code analysis tool for Symbian OS programs written in Symbian C++. It
delves deep into the Symbian C++ code by examining it line by line for the sources of defects. It is able
to identify C++ coding convention deviations, incorrect descriptor usage, cleanup stack errors, and
many other subtle problems that would be hard to track down. It is very useful for avoiding potential
memory leaks. As described in Section 3.3.1, calling a leaving method in a non-leaving method could
cause a memory leak, however, by using CodeScanner, this potential problem can be easily detected
and avoided.

It is hard to debug a Symbian application. The normal way to debug an application is using an emulator
running on a desktop or laptop computer. Unfortunately, the emulator does not support advanced APIs,
such as the Telephony API unfortunately. Although Carbide.c++ provides on-device debugging, it is too
slow for a mobile device to debug a complicated application. Therefore, the only way to develop such
applications is to build the project, download the application to the mobile phone, then run the
application to see if it works correctly. However, if the application crashes without any notification of
something being wrong, then the developer must example a file called ‘ErrRd’ located in the
‘c:\resource\’ directory of the mobile phone. When an application crashes, the mobile phone should
display extended error information instead of terminating the application without any notification. The
useful information includes the exact reason and the error code. For released applications this could be
distracting for the end-user, but is very helpful for the developer. However, it is no longer possible to
create the ‘ErrRd’ file in the resource-directory manually - as this directory is not accessible for
end-users. Fortunately, Error Reader is a small application which will create the ‘ErrRd’ file on the
device in the appropriate directory. This application is available from
‘http://symbianresources.com/cgi-bin/schlabo/dl.pl?ErrRd’. The application can also be used to display
error messages that have been written to this file. Figure 13 shows an example error notification as
displayed by the Error Reader. Table 7 indicates the SDKs supported by the tested mobile phone
modules. [43]

36

Figure 13: Error Reader Notification

Table 7: Tested Modules

Module SDK version
Nokia E61 Symbian S60 3rd Edition (Symbian 9.1)

Nokia E51, E66, E71, Nokia N95 Symbian S60 3rd Edition, Future Pack 1(Symbian 9.2)

10.2 OptiCaller Overview

OptiCaller is designed to allow users to make a low cost call instead of a normal call without requiring
that the user change their calling behavior. Figure 14 shows the interface of to OptiCaller when running
on a Nokia E66 phone.

Figure 14: OptiCaller Interface

When the user makes a call with the OptiCaller running on the background, OptiCaller will intercept
the dialed number, i.e., the callee’s number, then the application will make a call to the cost-saving call
service provider, such as DoD server. (This operation is done by using Telephony Services, as
described earlier in Section 7.2.1) Thus from the caller's point of view only three steps to make a call
using OptiCaller:

1. Dial the callee’s number
2. Select an alternative way for making this call
3. Wait for the call to be established

The only extra step when making an alternative type of call is selecting the calling method that the user
would like to use. In some cases, this step can be skipped by setting the configuration of the OptiCaller
application.

37

There are three ways to make a call using OptiCaller: Direct Call, Call Back, and Call Through. In
Direct Call, the call will be made as a normal call. The other two ways are cost-saving calling methods
which will be discussed in the following sections.

The Figure 15 shows the user selecting the configuration for the calling method. In addition, to these
three methods, there is one more option called ‘Always Ask’. If ‘Always Ask’ is set in the
configuration of the application, then the user will be prompted to choosing the calling method for each
call. Figure 16 shows the user being prompted to select the calling method for this call. If one of the
other three options is selected, then the calling procedure will skip the extra step, so that the user makes
a call as normally, but the call will set up using the selected alternative method. Note that some calls
should always be made directly (i.e., 112, 911, etc.). For legal and safety reasons these calls will always
be made using the direct method irrespective of the current setting of the Opticaller application. The list
of numbers that receive this special treatment are built-into the application..

Figure 15: Call Method Setting Interface

Figure 16: Selection Call Method during Call

For reminding the user that the OptiCaller application is running in the background and which calling
method has been selected, OptiCaller shows an indicator at the middle bottom of the screen. Figure 17
shows the mobile phone’s desktop when OptiCall is running in the background, here ‘AA’ stands for
‘Always Ask’, ‘DC’ stands for ‘Direct Call’, ‘CB’ stands for ‘Call Back’, and ‘CT’ stands for ‘Call
Through’.

38

Figure 17: OptiCaller on the background

10.3 Call Back Implementation

10.3.1 Introduction to Call Back

In telecommunications, a call-back occurs when the originator of a call is called back immediately by a
second call in response to their call. Normally, the call-back service provider has a unique number
which must be first dialed in order to trigger a return call. A caller first dials a call to the service
provider’s number. On detecting an incoming call, the call will be rejected on the service provider’s
side. However, the incoming call provided enough information for the service provider to make a call
to the caller. On receiving this call back, the caller should answer the call and provide the callee’s
number to the service provider's system. Given the callee's phone number the service provider makes a
call to the callee and bridges the two calls (the call between the service provider and the caller and the
call between the service provider and the callee). A common means for implementing this form of
call-back is called DTMF (Dual-Tone Multi-Frequency) call-back because the callee's number is sent
using DTMF signaling. However, the concept of call-back is not limited to DTMF call-back.

The DoD solution utilizes another communication channel to send the service provider the required
number (i.e., the callee's phone number) by using the data link instead of DTMF over the voice link.
Figure 18 illustrates the procedure used to make a call-back call using the DoD solution. Figure 19
shows the call-back procedure as implemented by OptiCaller. Assume that ‘Call Back’ has been
selected as the calling method. The user’s initial dialing of the callee is skipped in the figure.

39

Figure 18: Call Back Procedure

Figure 19: Call Back Procedure on the OptiCaller

In summary, the following steps are needed to make a call-back call:
1. OptiCaller intercepts the outgoing call, and stores the callee’s number.
2. OptiCaller sends a request to the call-back server (the DoD server). This request could

include authentication information (such as a username and password in the DoD solution),
the call-back number to which the return call should be make, and the callee’s number.

3. The user waits for the incoming call-back call.
4. OptiCaller answers the incoming return call automatically.

In DoD solution, users are allowed to initiate a call-back to a third-party’s phone. This is designed to
support some special (but useful) cases:

1. Assume the user both a roaming mobile phone and a local fixed phone. In this case the user
can use their mobile phone to send a call-back request, but by providing the local fixed
phone's number as the call-back number the user can use the local fixed phone to answer the
call-back call.

2. The user can make a call for a third party, such as the colleague in the office, so that the
colleague does not have to get the callee’s number from the user and make the call by
himself/herself. This second approach might be used by a call center manager to distribute

40

calls over a number of staff members, each of whom is to contact customers who have
indicated that they want to be called (for example, this might be used with a web based
customer support center to all the customer to click on a web page to get a call from the
customer support center). In this second approach it is important that the information about
this upcoming call also be provided to the colleague - so that they can properly handle the
call (since they did not initiate it).

OptiCaller can use two different kinds of data-links to send the call-back request: HTTP/HTTPS and
SMS (see Section 10.3.4). Both methods are supported by the DoD server. Thus in the DoD solution,
users can select any suitable way to initiate a call-back - this might depend upon the user's
circumstance for example, if GPRS is available, or which method is cheaper (with help from the
provisioning system, see future work in Section 13.2.2). Additionally, OptiCaller is not the only
application tailored for the DoD solution. Allowing alternative ways to initiate a call-back makes this
solution compatible with other products. For instance, the users of 2N Netstar-Virtual PBX [44] can
make a SMS call-back using the OptiCaller.

10.3.2 Call Back Configurations

Figure 20 shows the partial user interface for setting call-back configuration in OptiCaller. Table 8
shows the configurations for ‘Call Back’. Some of the values are mandatory for specific configurations.
The columns of ‘HTTP’ and ‘SMS’ indicate the mandatory configurations for the HTTP and SMS
call-backs. One of ‘Call Back 1’ and ‘Call Back 2’ has to be set. And if the ‘User Name’ and ‘Password’
are mandatory depends on the solution requirement. If any necessary configuration is missed, the user
will be prompt for setting the lacking configuration.

Figure 20: Call Back Setting User Interface

41

Table 8: Call Back Configurations

Configuration Value Description HTTP SMS
Call Back 1 (phone number) The call-back number option 1
Call Back 2 (phone number) The call-back number option 2

Active Call Back

 Call Back 1
 Call Back 2

(default: Call Back 1)

Either ‘Call Back 1’ or ‘Call Back
2’.
The selected one’s number is set as
the call-back number in the
request.

Call Back
Method

 HTTP/HTTPS
 SMS

(default: HTTP/HTTPS)

Either ‘HTTP/HTTPS’ or ‘SMS’.
The selected one is set as the
method to send the call-back
request

Server IP Address (IP address) The call-back server IP address
Server Port

Number
(Port number) The call-back server port number

SMS Call Back
Access Number

(GSM modem number) The number of GSM modem used
to receiving the SMS call-back
request

SMS Format
(described in Section
10.3.4)

The format of SMS call-back
request

User Name (User name) User name for authentication
Password (Password) Password for authentication

10.3.3 HTTP/HTTPS Call Back

OptiCaller uses Network Services (see Section 7.2.2) and the HTTP framework (see Section 6.1) to
send an HTTP/HTTPS call-back request to the DoD server. As described in Section 7.2.2 Network
Services, when the application uses the Connection handler to connect to the IP network, it first needs
to connect to the Access Point (AP) provided by the provider. If there is no specific AP defined before
it connects to the IP network, then the user will be prompted to choose an AP. Therefore, proper AP
management is important to avoid annoying the user for each and every call. This consists of two parts:
1. testing the AP, and 2. storing an AP that has been used successfully. Figure 21 shows the procedure
for making an HTTP/HTTPS Call Back call.

Figure 21: HTTP/HTTPS Call Back Call Procedure

42

43

As mentioned in Section 7.2.2 Network Services, the provider may supply several AP for users,
including an AP for connecting to the Internet, an AP for streaming, an AP for MMS, and so on.
Sometimes different services can share the same AP, for instance, the AP called ‘Telia Surfport’
provided by Swedish Operator ‘Telia’ [45] can be used both for connecting to the Internet and sending
MMS. However, in most cases, the operators utilize different APs for different services. A user-friendly
application should notify the user if the selected AP is suitable. To do this, OptiCaller provides an AP
test function. When the user selects an AP for connecting to the Internet, OptiCaller tries to send a
‘GET’ request to the IP address of google website , as this is one of the most stable websites in the
world, before sending a request to the DoD server. If the test gets successful response, this means that
the selected AP is an Internet AP, thus the application should send its request to the DoD server via this
AP. Otherwise, the user will be notified that the selected AP is not an Internet AP, then the user needs to
select another AP.

There is a hidden setting which cannot be configured by human called ‘Previous AP’. It is used for
storing the AP ID in the cell phone’s communication database. The ID of the most recently AP which
was used for sending a request successfully is stored as the ‘Previous AP’. If this AP is available, the
user does not have to select an AP every time when they need to connect to the Internet. However,
when the ‘Previous AP’ is unavailable, then the user must select another AP again. Although the setting
is hidden, users can clear the ‘Previous AP’ setting by cancelling the request operation before the
‘Waiting Callback’ phase in Figure 21.

When OptiCaller tries to connect to the Internet, it first checks if the ‘Previous AP’ is available. If it is
available, then OptiCaller uses this AP to connect to the Internet without requiring any human
interaction. It is worth mentioning that before using the ‘Previous AP’, there is no testing of the AP,
which reduces the cost a little, at the cost of sometimes being wrong about what AP should be selected.
When necessary OptiCaller prompts the user to select an AP, then tests the selected AP before using it.

10.3.4 SMS Call Back

SMS is another way to send a call-back request using OptiCaller. OptiCaller uses the Message services
(see Section 7.2.3) to sending an SMS Call Back request. In addition to the DoD solution, several other
solutions support SMS based Call Back. The difference between SMS Call Back in these different
solutions is the request format. In order to be compatible with multiple solutions, OptiCaller allows
configuration for the ‘SMS Format’ message that is to be used.

This ‘SMS Format’ consists of characters which can be constant or variable. It includes special
combinations of characters for inserting dynamic information. Table 9 shows these special
combinations of characters.

When an SMS Call Back request needs to be formatted, OptiCaller will replace the special character
combinations with the corresponding content. If any content is missed, the user will be prompt for the
missing information. After formatting the request, OptiCaller sends the request to the number in the
‘SMS Call Back Access Number’ field.

For instance, an SMS Call Back request in the DoD solution consists of the action (which is
‘smscallback’), the caller’s number, the callee’s number, the user name, and the password. The ‘action’

44

field is used by the DoD server to determine what this SMS request is for. The ‘SMS Format’ is set as:
‘action=smscallback&num1=/*N1*/&num2=/*N2*/&username=/*U*/&password=/*P*/’

When OptiCaller formats an SMS Call Back request, it replaces the special characters with the
corresponding value and retains the other characters.

As mentioned before, an SMS Call Back request for the 2N Netstar-Virtual PBX consists of only the
callee’s number. For use with this PBX the ‘SMS Format’ is set as ‘/*N2*/’.

Table 9: Special Characters in SMS Format

Character Combinations Description

/*N1*/
Need to be replaced by the number of the caller
(also could be replaced by the number of the
third-party)

/*N2*/ Need to be replace by the number of the callee

/*U*/
Need to be replaced by the user name for
authentication

/*P*/
Need to be replaced by the password for
authentication

10.4 Call Through Implementation

10.4.1 Call Through Introduction

Call Through is another service for making cheap international calls which is provided by many
telecommunications companies. [46] Figure 22 illustrates the call through procedure. First, the caller
needs to dial the access number to initiate the Call Through service (normally this is a local phone
number for the caller). Once this connection is established, the caller dials the callee’s number
(including ‘00’ and the country code). Given this information the service provider will make a call to
the callee and bridge the two calls. For the caller, only the local calling fee (to the callee) is charged
(although the caller may also have to pay for a call-through subscription).

Figure 22: Call Through Procedure

However, this service needs more user interaction than making a normal call. OptiCaller enables the
user to make a Call Through call just as a normal call. When the caller wants to make a Call Through
call, he/she only needs to dial the callee’s number and press the dial (i.e., ‘green’) button. OptiCaller
will do the transactions between the caller and the service provider. The following steps are performed
by OptiCaller:

1. OptiCaller intercepts the outgoing call, and stores the callee’s number.
2. OptiCaller makes a call to the access number for the Call Through service, rather than

directly calling the callee.
3. Once the call is established, OptiCaller sends the callee’s number in DTMF tones to the

service provider. (The DTMF tones may include the additional information such as a PIN
code for authentication)

10.4.2 Call Through Configurations

Figure 23 shows the partial user interface for setting call-through configuration in OptiCaller. Table 10
shows the configurations for Call Through in OptiCaller. Except for the ‘Access Number’, the ‘Dial
Plan’, and the ‘Pause’, other configuration fields are optional depend the value of the ‘Dial Plan’.

Figure 23: Call Through Setting User Interface

45

46

Table 10: Call Through Configurations

Configuration Value Description
Access Number (phone number) The access number for the Call

Through service
PIN code (PIN code) The code for the authentication.

It consists of the digits, ‘*’, ‘#’,
and other characters can be sent
by the DTMF tones such as ‘p’
(which means the pulse).

Trunk Access Number (TAN) (digit) (describe in Section 10.4.3)
TAN Threshold (digit) (describe in Section 10.4.3)
Dial Plan None

 PIN Only
 TAN Only
 PIN and then TAN

(default: None)

(describe in Section 10.4.3)

Pause Null
 1 Second
 2 Seconds

(default: Null)

The pause before each set of
DTMF tones, such as the
callee’s number and the PIN
code.

10.4.3 Call Through Dial Plan

OptiCaller was not designed for a specific Call Through service. It introduces a configuration called
‘Dial Plan’ to support different Call Through service providers (or Call Through PBXs). With different
values of the ‘Dial Plan’, the DTMF tones are assembled in different ways. There are three
configurations associated with the ‘Dial Plan’: the ‘PIN code’, the ‘Trunk Access Number’ (TAN), the
‘TAN Threshold’.

‘PIN code’ The code for the authentication.
‘Trunk Access Number’ The trunk prefix is different from the trunk number to be dialed for a

domestic call. The TAN determines which trunk the call should go through. For instance, if a
person needs to make a call from an internal hotel phone to an external phone, he/she has to
dial the trunk number (such as ‘9’) to inform the PBX that the call is to an external number,
this number is dialed before the actual number.

‘TAN Threshold’ Normally, the internal number has fewer digits than the external number.
This threshold is used to determine if the call is to an internal number or an external number.

As mentioned before, there are four options for the ‘Dial Plan’: ‘None’, ‘PIN Only’, ‘TAN Only', and
‘PIN followed by TAN’. Each option leads different DTMF tone combinations being sent from the
caller to the Call Through service provider. Table 11 shows the different operations of different dial
plans.

47

Table 11: Dial Plan Operations

Dial Plan Operations
Null Send callee’s number directly
PIN Only 1. Send PIN cods first

2. Send callee’s number
TAN Only 1. Check the length of callee’s number

a) If it is shorter than TAN Threshold, it is an internal call
b) Otherwise, it is an external call

2. Add Trunk Access Number ahead of external callee’s number
3. Send the modified number

PIN followed by TAN Combination of ‘PIN Only’ and ‘TAN Only’

10.5 Mobile Extension Implementation

As described earlier, Mobile Extension (MEX) allows users to use their mobile phones in the same
ways as they would use their fixed office phone. OptiCaller supports several MEX functions, making it
better than the Web user interface and the old Java DoD client.

10.5.1 Call Through

Depending on the configuration of the PBX, Call Through can be regarded as a MEX function. By
modifying the setting of the ‘Dial Plan’ to Call Through (see Section 10.4.3), users can use their mobile
phones to make internal calls. In the DoD solution, each user’s mobile phone will be associated with a
fixed office phone (i.e., there is a mapping between a fixed office phone number and a given mobile
phone number, and vice versa). When the user makes a call, the Caller ID will be set to be the number
of the fixed office phone. The callee will see the internal number of the fixed office phone if the call is
delivered as an internal call, or the external number of the fixed office phone if it is an external call).
[6] Thus the call always seems like it is from a fixed office phone on the callee’s side.

10.5.2 Three Lists – Presence, MEX, and Call Service

Today many PBXs support MEX functions such as setting presence status, login/logout groups,
transferring calls, and so on. For instance, by setting presence status as ‘Lunch Before 2 o’clock’, the
calls to the users before 2 o’clock will be blocked by the PBX (the PBX may notify the caller that the
user is having lunch until 2 o’clock) so that the user will not be interrupted during their lunch.
Alternatively, these calls could be redirected to another user who is responsible for answering phone
calls during the other user's lunch break.

The PBX maintains table mapping different codes to different services. Using MEX functions is similar
to making a Call Through call from the user’s point of view. The user simply dials the access number
of the MEX server and enters a code to indicate the function that they want to invoke.

However, some MEX services can only be used during an ongoing call, such as transferring calls. In
these cases, the user does not need to call the MEX access number before sending a MEX code, but
instead the solution takes advantage of the ability of the client to send data using a data link - even
while the user might be using the voice link for a call. Instead OptiCaller maintains three lists for

different MEX services: ‘Presence List’, ‘MEX List’, and ‘Call Service List’. Each element of a list
consists of two parts: the name (for user viewing) and the code (indicating the actual command). Figure
24 shows an example of a ‘Presence List’.

 ‘Presence List’: because there may be a lot of presence options, the OptiCaller uses a single
list to store the presence options. The users can use the commands in this list to modify
his/her presence status as seen by the PBX.

 ‘MEX List’: MEX services which require the user to call the MEX access number first are
kept in this list; these include ‘Login Group’, ‘Logout Group’, ‘Do Not Disturb’, and so on.

 ‘Call Service List’: all the MEX services which are only used during an ongoing call are kept
in this list; this set of commands includes ‘transferring calls’. In the case of the user issuing
one of these commands, OptiCaller sends the service code to the PBX without dialing a call
to the MEX access number.

Figure 24: Presence List

Each MEX service code consists of a static code and dynamic code. A static code indicates what MEX
service the user wants to use. While the dynamic code provides additional information that the MEX
service needs. OptiCaller utilizes a set of special characters to symbolize the dynamic information.
Table 12 indicates the special characters of a MEX function code for OptiCaller. Before sending the
MEX service code, OptiCaller will consider the selected item code, an if necessary solicit input from
the user. Opticaller will replace the special characters with the user input.

For instance, assuming that the ‘Lunch’ presence code is *23* followed the expected ending time of the
lunch. Additionally, we will assume that each of the commands ends with a ‘#’ symbol. If a user want
to set their presence as ‘Lunch Until 2 o’clock’, without OptiCaller, he/she needs to dial the MEX
access number, and press ‘*23*1400#’ manually after the call is established. However, using OptiCaller,
the user simply places an item called ‘Lunch’ whose code is ‘*23*t#’ in the ‘Presence List’. When the
user actually was to set their ‘Lunch’ presence status, he/she only needs to select the ‘Lunch’ item, and
input the expected ending time (‘1400’ in this example). OptiCaller will send the request from the
mobile phone to the PBX.

48

49

Table 12: Special Characters in Lists

Special Character Description

‘t’ or ‘T’
This character should be replaced by the time the user input. The
input format is HHmm. For instance, ‘1400’ means ’14:00’.

‘d’ or ‘D’
This character should be replaced by the date the user inputted. The
input format is YYMMDD. For instance, ‘091011’ means ‘11st,
September 2009’.

‘n’ or ‘N’
This character should be replaced by the phone number the user
input. Only digits are accepted.

The ‘Call Service List’ is different from the other two lists. As mentioned before, the first reason is that
to use the services in this list, OptiCaller sends the code to the PBX directly without dialing a call to the
MEX access number. So there is a limitation for the services in the ‘Call Service List’ that the call has
to go through the PBX which provides these services.

Additionally, one more special character is introduced into the ‘Call Service List’: ‘+’. In the case of
the other two lists, OptiCaller collects all the dynamic information before sending DTMF tones, which
may lead to problems for the ‘Call Service List’. For instance, the code for the service ‘Transferring
Calls’ is ‘*25*n#’. Before sending the code, OptiCaller needs the user to input the transferring
destination number to replace the character ‘n’. However, since the call is still active this means the
other party of the call will hear the DTMF tones when the user enters the number. This is very annoyed,
thus OptiCaller introduces the character ‘+’ to avoid this problem. When OptiCaller formats the service
code, if it finds the character ‘+’, it will send the partial code which is ahead of the ‘+’ to the PBX, then
continue formatting the rest code after the ‘+’. Therefore a service such as ‘Transfer Call’ can be
modified into ‘*5#+*25*n#’ (assuming that ‘*5#’ is the code for a ‘Hold Calls’ service). In this case,
OptiCaller will send ‘*5’ to the PBX to place the call between the PBX and the other party on hold first,
then continue formatting the rest of the code so that when the user inputs the destination number, the
other party will not hear the DTMF tones.

10.6 Implementing Provisioning

OptiCaller implements alternative ways for allowing the user to make low cost calls without changing
the user’s calling behavior. Additionally, OptiCaller was designed to be compatible with several
different PBX solutions. However, a result is that the configurations of OptiCaller are complicated. As
OptiCaller should be an application used by end-users, its usage should be as simple as possible. So a
provisioning system was developed to help users avoid dealing with complicated configurations.

10.6.1 Overview of Provisioning

The provisioning system consists of two parts: a provisioning server, a provisioning client (this is built
into OptiCaller). Figure 25 illustrates the provisioning transactions between the provisioning server and
OptiCaller. When there is configuration update for OptiCaller, the provisioning server will send a SMS
message to the mobile phone on which OptiCaller runs. This SMS message starts with a specific
sequence of characters and includes the IP address and port number of the provisioning server. After
receiving such provisioning SMS message, OptiCaller will send its authentication information

(including the username and password) via an HTTPS POST request to the provisioning server. If the
user is successfully authenticated, then the provisioning server will return the latest configuration
information for this user's OptiCaller client in a response. This section focuses on the provisioning
system from the client side. The provisioning functions in OptiCaller consist of three parts:
configuration handling, waiting for a notification, and updating the application's configuration. Note
that SMS is being used to send the provisioning message to the mobile phone, because many cellular
operators block incoming data traffic, but do allow incoming SMS traffic. An alternative solution
would be to have the clients check for updates at some pseudo random interval, but it will cause extra
cost.

Figure 25: Provisioning Procedure

10.6.2 Provisioning Configurations

Table 13 shows the information needed for the provisioning procedure in OptiCaller. The first two are
sent in the SMS message and the last two are either solicited from the user. They are stored in the local
configuration information of the application.

Table 13: Provisioning Configurations

Configuration Value Description
Provisioning Server IP Address (IP address) The provisioning server IP address
Provisioning Server Port Number (port number) The provisioning server port number
Provisioning User Name (user name) User name for authentication
Provisioning Password (password) Password for authentication

10.6.3 Configuration Handling

The provisioning configuration of OptiCaller is stored in two files: ‘Configuraion.txt’ and ‘Private.dat’.
The file ‘Configuration.txt’ stores the general configurations such as the current ‘Call Method’, the
‘Server IP Address’ for Call Back, the ‘Access Number’ for Call Through, and so on. This file is human
accessible in the phone’s file manager. The file ‘Private.dat’ stores the user’s specific information, such
as the username and password for Call Back, the username and password for the provisioning system.
It also contains the background configuration such as the ‘Previous AP’ for the AP management (see
Section 10.3.3). The content of the "Private.dat" file is specific for each user whichcannot be with other

50

users. It is in the OptiCaller application’s private directory and is not human accessible. When
OptiCaller is uninstalled, its private directory will also be deleted too -- thus private settings will be
deleted, while the general information will continue to exist. Thus if and when OptiCaller is re-installed,
the old general configuration will be available. Figure 26 shows part of the general configuration file
on a Nokia E66 phone.

Figure 26: Partial Configuration on a Nokia E66

There are other two configuration files stored in the application’s private directory (they are both
inaccessible to the human user): ‘DefaultConf.txt’ and ‘FormatConf.txt’. The file ‘DefaultConf.txt’
stores the application's default configuration. If the user selects the menu item ’Restore Default Set’ the
application's settings will be restored this default configuration. The file ‘FormatConf.txt’ is a template
for the general configuration file ‘Configuration.txt’. It is used by the application to rewrite the general
configuration file.

OptiCaller loads its configurations from the files ‘Configuration.txt’ and ‘Private.dat’ when the
application is launched. After successfully starting it writes the general configuration back to the file
‘Configuraion.txt’. If there is an error in the ‘Configuraion.txt’ file the application will replace the
contents of this file with the contents of the file ‘FormatConf.txt’, and write a new ‘Configuration.txt’
file. If any configuration value/setting is modified, the corresponding file is modified. OptiCaller will
copy the ‘DefaultConf.txt’ to the directory, then rename it to ‘Configuraion.txt’ when the general
configuration file is missing.

10.6.4 Waiting for an Update Notification

When OptiCaller is running, it monitors the incoming SMS message using the Messaging services (see
Section 7.2.3). OptiCaller checks if the incoming SMS message is a provisioning SMS message by
checking if the incoming SMS starts with the special sequence of characters ‘*OptiCallerProvision*’.
If the provisioning SMS message is received, then OptiCaller will intercept the SMS message, read the
provisioning server’s IP address and port number from it, then save the provisioning server’s
information in the corresponding configuration field. Subsequently OptiCaller informs the user that
there is an update available from the provisioning server, asking of the user wants to update their
configuration now or at a later time. If the user chooses to update now, OptiCaller will start the
updating procedure (see Section 10.6.1). Otherwise, OptiCaller will not start the procedure until the
user actives the update operation by selecting the menu item ‘Update Set’.

If that the provisioning SMS message is received when OptiCaller is not running on the user’s mobile
phone, then the contents of the provisioning SMS message includes information asking the user to
leave the message for OptiCaller. When the OptiCaller is launched next time, it first scans the SMS

51

52

message in the ‘Inbox’ in order from the latest to the oldest. If it finds a provisioning SMS message, it
extracts the provisioning server’s information from the SMS message, saves this information, and
deletes the SMS message. It also deletes any duplicate provisioning SMS message in the ‘Inbox’. Only
the information from latest provisioning SMS message is used. The user will be asked if they want to
update now or later.

10.6.5 Updating the Application's Configuration

The updating process will start when the user chooses ‘Update Immediately’, on receiving an update
notification, or when the user presses the menu item ‘Update Set’. As shown in Figure 25, in each of
these cases OptiCaller sends an HTTPS request to the provisioning server and the server returns the
latest configurations in response. The provisioning function shares the AP management mechanism (see
Section 10.3.3) with the Call Back function, thus the user can update the application's configuration
without any human interaction.

After receiving the latest configuration, OptiCaller stores the configuration into the file
‘DefaultConf.txt’, generates a new template file ‘FormatConf.txt’, and finally restores the general
configurations based upon this new default configuration. The configuration correction check is
maintained as the future work (see Section 13.2.1).

10.7 Other Functions

There is a list called ‘White List’ in OptiCaller. This list stores the numbers that the user does not want
OptiCaller to make using an alternative calling method, these numbers include the emergency call and
perhaps the cellular operator's voice mail box. All calls to the numbers on the ‘White List’ are always
made directly.

Although the items in the ‘White List’ can be modified by the user OptiCaller is hard-coded to always
make direct calls to emergency numbers, such as ‘911’ (Swedish Police) and ‘112’ (Swedish
Ambulance) as a result these numbers are not shown in the ‘White List’ and these numbers cannot be
modified or deleted by the user.

 11. OptiCaller Provisioning System
As mentioned in the previous chapter, a lot of values need to be configured before OptiCaller can be
used by typical end-users. Furthermore, OptiCaller needs a means to be deployed on the end-user’s
mobile phone. The OptiCaller Provisioning System was developed to handling both remote installation
of the application and updating of the application's configuration.

11.1 OptiCaller Provisioning System Architecture

There are three roles in the OptiCaller Provisioning System: the ‘administrator’, the ‘manager’, and the
‘end-user’, each with different rights. Figure 27 illustrates the architecture of the OptiCaller
Provisioning System. An important concept called ‘group’ in the OptiCaller Provisioning System is
used to define a collection of end-users who share the same configurations. For instance, in a company,
employees in the different departments may have different configurations when they use OptiCaller,
while employees in the same department might share the same configuration. Table 14 explains these
different roles in the OptiCaller Provisioning System.

Figure 27: OptiCaller Provisioning System Architecture

53

54

Table 14: OptiCaller Provisioning System Roles

Role Description Rights

End-user

The direct users of OptiCaller Download and Install the OptiCaller
 Updating their OptiCaller configuration
 Manage their information, such as their

password

Manager

The administrators in the
companies who manage the
company's end-users

 Manage a group, including creating a
group, updating a group, and deleting a
group

 Manage end-users, incl. adding a given
end-user to a specific group and
deleting the end-user from a group

 Remote control, notify the end-users
where OptiCaller can be download
from, or there is update for their copy of
OptiCaller

 Manage information, such as the
end-user's password

Administrator

The super administrator who
manages all the users in the
OptiCaller Provisioning System

 All the power of the ‘manager’
 Manage the ‘managers’, including

adding a given manager to the system
and deleting a given manager from the
system

 Manage the connections between the
server and the GSM modem which is
responsible for sending the provisioning
SMS messages

 Manage the OptiCaller installation file

11.2 OptiCaller Provisioning Procedure

Before introducing the Provisioning Procedure, there are two kinds of provisioning SMS messages that
need to be described: the ‘Installation SMS’ and the ‘Update SMS’.

‘Installation SMS’ An installation SMS informs the end-user that OptiCaller is available to be
downloaded and installed. This SMS message starts with the string
‘*OptiCallerInstallation*’. In addition, to the text for the end-user to read, there is a link in
the SMS indicating where the end-user can download the OptiCaller installation file from.
On a mobile phone that supports OTA installation, the end-user simply opens the link in the
SMS message in their ‘Inbox’, then the download and installation process will start
automatically.

‘Update SMS’ An update SMS informs the existing instance of OptiCaller (or it informs the
end-user when OptiCaller is not running) that there is the configuration update available. As
stated previous this message starts with the string ‘*OptiCallerProvision*’. In addition to the

55

text for the end-user to read, there is information about the OptiCaller Provisioning server,
including its IP address and port number. When OptiCaller runs, it will start the updating
process automatically. If OptiCaller is running, then the end-user will not even notice that the
update SMS arrives- unless they are prompted to ask if the update should be done now or not.
(See Section 10.6.1)

Figure 25 illustrates the Provisioning Procedure (except for the initial deployment of the application).
There are five steps in each provisioning transaction. These steps are

1. The provisioning server sends the two provisioning SMS message to the end-users.
2. The end-users download and install OptiCaller (by opening the link in the ‘Installation SMS’

or in some other way installing the application).
3. OptiCaller sends an updating request, contains the authentication information, to the

provisioning server when it finds an ‘Update SMS’ message.
4. The provisioning server verifies the end-user should be permitted to the access this

configuration, then fetches the configuration for this end-user’s group, and returns this
configuration in its response.

5. The OptiCaller updates its configuration(s).

11.3 Provisioning Server Development Profile

The OptiCaller provisioning server is a web server which provides a platform for the OptiCaller
Provisioning System. Table 15 indicates the profile of the OptiCaller provisioning server development.

Table 15: Provisioning Server Development software

Java Runtime Environment jdk1.6.0_15
Web Container and Server Application JBoss Application Server 5.0.1-GA
IDE Eclipse IDE for Java EE Developers
Database Server MySQL Server 5.1

JBoss is used as the application server, as it makes developing web applications much easier (see
Chapter 8). The database server that we have selected is a MySQL server; because it is very easy to
install and sufficiently powerful for this project. All the transactions between JBoss and MySQL are
done by the JDBC (see Section 8.2). In this project, the provisioning server uses the Java Persistence
API (JPA) [40] to handle the JDBC transactions.

The Eclipse IDE for Java EE Developers is the branch of the Eclipse IDE which wasdesigned for
helping Java EE developers to develop the Java and Java Enterprise Edition applications. [41] It
provides Java editing with incremental compilation, Java EE 5 support, a graphical HTML/JSP editor,
database management tools, and support for most popular application servers (such as Tomcat and
JBoss). Figure 28 shows the interface of the Eclipse IDE for Java EE Developers.

Figure 28: Eclipse IDE for Java EE Developers Interface

11.4 OptiCaller Provisioning Web Site

An OptiCaller provisioning web site is the platform for the OptiCaller Provisioning System activities.
This section will explain the services provided by the OptiCaller provisioning web site for each of the
different user roles. All the web user interface figures are included in Appendix B Figures 37 to 47.

11.4.1 End-User Services

As shown earlier in Table 14, there are three roles. The services for the end-user include downloading
and installing the OptiCaller application, updating the OptiCaller’s configuration, and updating other
information. When downloading the OptiCaller installation file, there is no authentication of the user
needed, thus anyone can download the installation file. However, before updating the configurations or
modifying the end-users’ information, the end-users must be successfully authenticated first (see Figure
37). The profile of each end-user is the username and password, and the mobile phone number (see
Figure 38). The password and the mobile phone number can be modified by the end-users themselves.

11.4.2 Manager Services

Users with the role ‘manager’ can manage groups, including adding/deleting/updating a group profile
and adding/deleting end-users to/from each group. All the resources for managers are placed in a
security domain. Therefore, if the manager is not logged in, the user's requests will be redirected to a
login page (as defined in the ‘web.xml’) (see Figure 39). If the manager is successfully authenticated,
then the manager is allowed to use the resources, then he/she will be able to access the corresponding
page (i.e., the page which provides the operations that the user is allowed to perform). Otherwise, the
HTTP status code 403 will be returned in the response to the manager. More details are given in
Section 8.1. Similar to the end-users, the managers can modify their password on the provisioning web
page (see Figure 40).

The page ‘Add Group’ (see Figure 41) is used by managers to add a new group. To add a new group,

56

57

the manager simply enters the group’s name, which must be unique in the groups managed by the
manager. Additionally, the manager may set the default configuration for a new group. This
configuration can be modified later. The configuration items are the same as the configuration of
OptiCaller (see Sections 10.3, 10.4, and 10.5).

The page ‘Update Group’ (see Figure 42) is used by managers to update a group’s profile, including
modifying the group’s name, the default configuration, and adding/updating/deleting end-users
to/in/from the group, and deleting the group. When a manager selects an existing group from the list of
all the groups managed by this manager, the browser will send a request to the server to retrieve the
group’s profile and display it.

After updating the group's profile, the manager can click the ‘Deploy Group’ button to reach the
‘Deploy’ page (see Figure 43). There are two lists shown on this page: the left one is a list of all the
end-user related information in this group (including the username, the latest deployed time, and the
user's phone number); while the right list contain the list of the end-users that need to be deployed at
this time. The manager can move the end-users from the left list to the right list. After selecting the
deployed end-users, the manager can send an ‘Update SMS’ message to these end-users simply by click
the ‘Deploy’ button. Additionally, the manager can send an ‘Installation SMS’ message to the end-users
at the same time by choosing the option ‘Deploy OptiCaller’. The provisioning server uses the
‘SMSLib’ library to sending the relevant SMS (see Section 9.2). The second drawback of the ‘SMSLib’
library is a fatal bug in the provisioning system. In this project, we used call diverting/forwarding
service [47] to overcome this problem. A ‘Deploy Result’ page (see Figure 44) will be presented after
the SMS messages have been sent.

11.4.3 Administrator Services

The super administrator has all the abilities of any of the managers; hence he/she can do anything on
behalf of a manager. The administrator has the ability to add/delete managers (see Figure 45).

There is a page for the administrator to manage the serial connection between the web server and the
GSM modem which is used to send the provisioning SMS messages (see Figure 46). The configuration
includes the com port number, the baudrate, and the SIM card PIN code.

The administrator also manages the OptiCaller installation file (see Figure 47). When a new OptiCaller
release is ready for use by end-users, the administrator needs to upload the installation file to the
provisioning server so that the end-users can download it. The OptiCaller provisioning server uses the
‘Commons FileUpload API’ [48] to provide this upload file service. The provisioning server uses some
standardized information, such as the file extension and the file size, to verify the correct file has been
successfully uploaded.

58

12. Evaluation
This project included the design and development of the OptiCaller application based on a Symbian
mobile phone and the designing and implementation of the OptiCaller Provisioning System. To be
released as a commercial product, in addition to testing that the functions being offered work,
establishing the quality of the OptiCaller application and the OptiCaller Provisioning System are also
important. This chapter illustrates the evaluation of the performance of the OptiCaller and the OptiCaller
provisioning server according to a set of metrics that were chosen for each of these different subsystems.
Additionally, drawbacks of current solution have been found which suggest future work for the project
(see section 13.2).

12.1 OptiCaller Evaluation

As described in previous chapter, OptiCaller offers users several alternative ways to make an outgoing
call. In this chapter we describe the evaluation of this application; both in terms of functional tests and the
performance of OptiCaller with respect to two metrics call performance in terms of time to establish a
call and the power consumption of running the application in the background. The first metric is
important to the user as if the delay is too long when using one of the alternatives in comparison to a
direct call, then the user is likely to avoid these alternatives and simply make direct calls. The second
metric is important, since if the power consumption of running the application is too high, then the
users will not run the application!

12.1.1 Test Equipments

The two tests are done on two Nokia S60 smart phones, models N95 and E61. The technical profiles of
these two models are [43]:

 N95:
 Operating Frequency: GSM850, GSM900, GSM1800, GSM1900, UMTS2100
 Operating System: Symbian 9.2 S60 3rd Edition, Feature Pack 3.1
 Battery Capacity: 970mAh
 Talk time: up to 4 hours (2G), up to 2.5 hours (3G)
 Stand-by time: up to 8 days (2G), up to 9 days (3G)

 E61:
 Operating Frequency: GSM850, GSM900, GSM1800, GSM1900, UMTS2100
 Operating System: Symbian 9.1 S60 3rd Edition
 Battery Capacity: 1500mAh
 Talk time: up to 5 hours (2G), or up to 3 hours (3G)
 Stand-by time: up to 13 days (3G and 2G)

The network connection used for all tests was the ‘Telia SurPort’ Access Point. The tests were conducted
in Kista, Sweden (as suburb of Stockholm). As a result the only operating frequencies that these devices
could use were: GSM900 and GSM1800 for 2G service and UMTS2100 for 3G service. The phone was
set to only use 3G service.

12.1.2 Call performance

There are three phases for users to make an outgoing call: 1. dial number, 2. wait for the call to be
established, and 3. speak to the other party. The first phase was described in previous chapter. The critical
requirement was that users can make a call without changing the dialing behavior -- as this is one of the
most important advantages of OptiCaller. In the third phase, the voice quality is the most important
aspect of the on-going call to the user, however this voice quality is out of the scope of the OptiCaller
application as this depends on the performance of the mobile phone, the quality of the operator's service,
and so on (note that the performance of the PBX must also be considered). As the time to dial a number is
independent of whether the user is making a direct call or using OptiCaller, our measurements of call
performance for OptiCaller focuses on the second phase, specifically the time to establish a call given the
number of the callee. OptiCaller will be compared to direct dialing and the new Java client which
supports call-through instead of the old Java client.

12.1.2.1 Test Scenario

Figure 29 illustrates the test scenario. It consists of two mobile phones: Mobile A and Mobile B. Mobile
A is the caller which is installed the OptiCaller and Test Application 1-A, and Mobile B is the callee
which is installed the Test Application 1-B. The test application 1-A records the time when Mobile A
starts to make an outgoing call and the time when the outgoing call is answered by the other party. The
test application 1-B answers all incoming call automatically. There are five tests:

 Mobile A calls Mobile B without running OptiCaller (i.e., a direct call).
 Mobile A calls Mobile B by Call Back with OptiCaller.
 Mobile A calls Mobile B by Call Through with OptiCaller
 Mobile A calls Mobile B by Call Back with the Java client.
 Mobile A calls Mobile B by Call Through with the Java client.

Figure 29: Call Performance Test Scenario

During the tests two to four, the configuration for the calling method in OptiCaller and the Java client are
preset to the corresponding call method so that the time required for users to select the call method is zero,
since this process is skipped in both cases.

Each test is repeated 20 times on both the Nokia N95 and Nokia E61.

12.1.2.2 Test Results

The goal of this test is to measure the delay due to using OptiCaller comparing to normally establishing a
call with a mobile phone and compared to the time required to establish the call using the Java client. For
each test, the call started time and the call answered time are one record. The difference between these
two times is the delay for establishing call. Table 16 shows the results in terms of the average value of 20

59

60

repetitions for each test. According to Table 16, the variances are less than 1 second. This means the 20
repetitions are enough for the test. The complete test results are included in Table 20 in Appendix A.

Table 16: Call Establishment Test Results

Calling Method
Average Time to Establish a Call (second)

Direct Call Call Back Call Through
Mobile Phone

 OptiCaller Java OptiCaller Java

Nokia N95 6.8±0.9 23.6±1.0 17.5±0.8 18.5±0.9 19.4±0.7

Nokia E61 6.7±0.5 16.5±0.8 11.0±1.0 18.6±0.5 20.5±0.8

12.1.2.3 Analysis of test results

In these tests the average direct call establish times for both the Nokia N95 and Nokia E61 are
approximately 7.0 seconds, establishing the baseline for the other calling methods.

The Call Back call establishment time using the OptiCaller application on Nokia N95 is 23.6 seconds,
while the Call Back call establishment time using the Java client on Nokia N95 is 17.5. Thus OptiCaller
required around 6.0 seconds more than the Java client. The difference between the OptiCaller Call Back
call establish time and the Java client Call Back call establish using the Nokia E61 are roughly 5.5
seconds. The major reason for this difference is that the OptiCaller application connects to the Access
Point every time before sending the call-back request to the DoD server, then closes the connection after
finishing the transaction; while the Java client only connects to the Access Point when the Call Back
function is used for first time and does not close the connection until the application is closed. This was
verified using another test application to measure the time taken to connect to the Access Point.
According to this sub test, the Symbian application took approximately 5.0 seconds to connect to the
Access Point (see Table 21 in Appendix A), hence the difference between the OptiCaller and the Java
client results is reasonable. If rather than simply reporting the averages you had looked at the time for the
first call versus the times for the subsequent calls you would have see that the first call took longer for the
Java client, but ~5.0 seconds less for all the subsequent calls! The time for OptiCaller to intercept the
outgoing call, extract the callee’s number adds only a small delay to the Call Back, this process and delay
is not relevant to the Java client as the user has to input the callee's number directly into the Java client.

The Call Back call establish time includes the time required for connecting to the Internet (by the
OptiCaller application), the time for the transaction between OptiCaller and the DoD server, and the call
establish time for two calls from the IP-PBX on the server side (one for the call back to the caller, and the
other for the call to the callee). According to the first test, the time to establish a call is around 7.0 seconds.
However, the IP-PBX actually takes less time than the mobile phone to establish a call since it goes
through the IP trunk. And the time for the transaction between OptiCaller and the DoD server may be
different if another data connection, such as WLAN, were used. Note that we have excluded the time for
the transaction between the DoD server and the IP-PBX because it is very small.

The Call Through call establishment time using OptiCaller is a little shorter than the Call Through call
establishment time using the Java client both on the Nokia N95 and Nokia E61. This delay includes the

61

time for establishing two calls (one from the caller to the IP-PBX, and the other from the IP-PBX to the
callee), and the time for transmitting the DTMF and decoding tones. The Call Through call establishment
time difference between the OptiCaller and the Java client is due to the difference in the time that it takes
each of the application to send the DTMF tones. (This time also depends on the specific mobile phone is
used.) The time for sending the DTMF tones is approximately 5.5 to 6.0 seconds. (The sub test results
are included in Table 22 in Appendix A). This seems to be a key bottleneck for establishing a call via
Call Through.

12.1.3 Power Consumption

The OptiCaller application is mostly running as a background application to intercept the outgoing calls
and to allow users to make calls using an alternative calling method. This means that the application is
running all of the time in order to monitor the telephony status. Additionally, the OptiCaller application
needs to monitor the incoming SMS messages looking for provisioning. They may lead excessive power
consumption causing a noticeable reduction in talk and/or standby time for the user. Therefore, it was
necessary to measure the battery life effects due to running the OptiCaller application.

12.1.3.1 Test Scenario

The test scenario consists of one mobile phone into which we have installed Test Application 2. This test
application is used to learn the battery power costs of different operations. The available battery power
level is divided into seven steps (which is a standard feature of Symbian OS based mobile phones).
When the available battery power level changes, the kernel will publish a notification. Applications
subscribing to this notification will be notified. This test application is such an application. When the test
application receives one of these notifications it records the current time.

As a background application, we have focused on the effects on the battery life caused by the OptiCaller
during the stand by time. As this time is much longer than the talk time and the energy consumed by the
application was expect to be much less than the power consumed when talking. Two tests were done: 1.
record the battery life of the mobile phone with OptiCaller installed and running, and 2. record the
battery life of the mobile phone without OptiCaller. Both tests are started when the battery of the mobile
phone fully charged (i.e., at level 7).

12.1.3.2 Test Results and Analysis

Table 17 illustrates the stand by time for each battery level of the Nokia N95 with and without OptiCaller
running. The duration for each level was calculated from the time of the start of the next lower level
minus the time of start of the higher level. However, as mentioned before, the battery level has seven
steps, hence the test data does not include the duration for level 1 since end time of level 1 is also the start
time of level 0. Unfortunately, once the battery level reduces to level 0, the mobile phone will shutdown
automatically. Thus the exact start time of level 0 cannot be obtained. Fortunately, the data from level 7 to
2 is sufficient to estimate the power used by the OptiCaller application.

Table 17: Nokia N95 Battery Life

Battery Level 7 6 5 4 3 2 Sum
With 58h 15h38m 17h53m 17h49 20h45 4h49 134h54m

Without 58h55m 15h13m 18h32m 17h50 20h52 5h14 136h36m

According to Table 17, when OptiCaller is running its power consumption is roughly equivalent to 2
hours of standby time. Figure 30 shows the decrease in battery level on a Nokia N95 with the elapsed
time. The horizontal axis is the elapsed time, which is from 0 to 8400 minutes (which is 140 hours), while
the vertical axis is the battery level (from 7 to 1). Using this figure and the previous table we can see that
the battery life difference is equivalent to 2 hours of standby time and is less than 2% of the whole battery
capacity. Therefore the effect of running the OptiCaller application in the background is small, in fact
sufficiently small that few users will notice the effect in practice.

Figure 30: Nokia N95 Battery Level

A similar test was done for E61 module. Table 18 illustrates the stand by time for each battery level of
Nokia E61 module with and without OptiCaller running. Figure 31 shows the battery level of Nokia E61
as a function of the elapsed time from 0 to 9900 minutes (which is 165 hours). According to these results,
the battery life difference is also roughly about 2 hours of standby time on a Nokia E61. This is similar to
that of the Nokia N95. In conclusion we can see that in neither case is the power consumption of the
application significant.

Table 18: Nokia E61 Battery Life

Battery
Level

7 6 5 4 3 2 Sum

With 68h12m 21h48m 20h32m 21h47m 19h41m 6h58m 158h58m
Without 68h56m 22h17m 21h5m 21h28m 20h13m 7h11m 161h10m

62

Figure 31: Nokia E61 Battery Level

12.1.3.3 Limitations

What is noticeable is that the stand-by times measured in the tests are very different from those stated in
the device's profile. The information specified in the datasheet concerns the battery life for a new mobile
phone. However, the two phones that were used in the test had been used for more than two years. With
use, the battery lifetime of a mobile phone deceases. Further experiment utilized AT commands [37] to
query the battery level. For the two phones used in the test, the percentage of battery capacity reported
when the phone claimed to be fully charged were only 90% as reported by the AT command query,
indicating that the battery could not be fully charged.

There is a risk of error in this approach of connecting the phone to a PC via a USB cable and sending the
phone an AT command to determine the battery charge level, this is because when the phone is connected
to the USB master it will attempt to use the USB master's power to recharge the phone's battery.

However, the test goal was to understand the power consumption of running the OptiCaller application,
thus it does not matter if the battery life is the same as stated on the datasheet or not. The result is that the
difference in battery lifetime when running OptiCaller is less than 2% of the standby time.

12.1.4 Conclusions From These Two Sets of Tests

According to the first test, normally, users need to wait for approximately 7 seconds to establish a call,
while using OptiCaller takes three times as long to establish a call using Call Back and Call Through.
However, the user does not care whether the additional time is a factor of 3 or 0.3, what they care about
is the value of waiting longer - i.e., a longer waits leads to lower costs, hence the user has to consider
the value of their time. Before we do this we will consider the some additional details of the call setup
delays.

For Call Back, the additional time is due to the time required to connect to the Access Point, the time for
the transaction between the application and the DoD server, and the time required to make the return call

63

64

from the IP-PBX to the caller. As we noted before the performance of OptiCaller is worse than the Java
client, because the Java application keeps the connection alive after the first use of Call Back. We also
noted that the time for connecting to the Internet and to perform the transaction can differ depending on
the mobile phone, the operator, and the type of connection (such as GPRS, 3G, and WLAN) used. To
improve the performance of Call Back, OptiCaller could keep the GPRS connection alive, just as the Java
client does. However, this may incur an extra charge depending on the subscription and the operator.

For Call Through, the additional time due to the time required to transmit transmitting the DTMF tones
and to establish the second call from the IP-PBX to the callee. Here we saw that the performance of the
OptiCaller was better than the Java client, due to the difference in the time required to send the DTMF
tones by the Symbian application versus the Java application. We also saw that the speed of sending the
DTMF tones was the key bottleneck for Call Through when using OptiCaller.

Considering the length of a typical business call, the extra time required for call establishment might
seem acceptable. However, if one does a cost estimate of this time we can see that for some users this
might be acceptable - while for others it might not be. Consider an employee whose total cost to the
company (for salary) is 30,000 SEK per month; then if this employee works 140 hours per month, then
the cost of the employee is ~0.06 SEK/second. So an additional delay of 12 to 17 seconds at 140 calls
per month would be a cost of 100 to 143 SEK. However, if the employee makes 10 calls per hour on
average instead of 1 call per hour then these costs increase by a factor of 10! Even worse is that it is not
simply the cost of the employee's time by the value of this time to the profits of the firm, hence the
effect of this additional delay when multiplied by the number of employees could be completely
unacceptable. Additionally from a human perception of time to complete an operation, the human user
will become frustrated when the delay for something that should take a short period of time is longer
than 2 seconds (consider the wait times that users expect when web surfing). We will return to the issue
of the call establishment delay in the next chapter.

Unlike the results of the call establishment tests, the measurements of the power consumption of the
OptiCaller application would appear to indicate that the additional power consumption by this
application will not be noticeable by a typical user. We will also return to this issue in the next chapter.

12.2 Provisioning Server Evaluation

Chapter 11 introduced the OptiCaller Provisioning System. As a commercial product, the performance of
the system needs to be evaluated in addition to its functionality. The performance test for the
provisioning system focuses on the server side, since the server has to support the aggregated load caused
by each of the clients. We will consider the costs to the individual clients in Section 12.2.3.

‘Load testing’ is one of the most important tests for a server, especially for web servers. [49] In ‘load
testing’, the server is tested while being accessed by multiple users concurrently. Based upon the results
of this testing the capacity of the server can be estimated. In this project, the capability of the OptiCaller
provisioning server was tested; in order to estimate the number of users that can be supported by the
server simultaneously.

As previous chapter explained, there are three types of users of the OptiCaller Provisioning System: 1.
administrator, 2. manager, and 3. end user. The administrator and the managers perform administrative

65

operations such as add/update/delete groups. The ‘add’ and ‘delete’ group operations by either of these
types of users will not lead to too much load (as these are basically simple database operations local to the
server). However, once a group configuration is updated, the server will send an SMS message to each of
the end users in this group indicating that there is an update - hence all the end users in this group will
send requests to fetch the updated configuration. Normally, there are hundreds of end users per group,
which means that compared to the load caused by the administrator and the managers, the load caused by
the end users fetching configurations will be the greatest load for the provisioning system. Therefore in
the following tests, only the performance due of the end users fetching the configuration is tested. The
load caused by end users downloading the OptiCaller application has not been considered because it
only depends on the JBoss server and the hardware of the test machine rather than the web application
quality. It remains for future work.

12.2.1 Test Equipment

To test the provisioning system we have used two machines, with one acting as the OptiCaller
Provisioning System server (Test Machine A) and the other (Test Machine B) acting as one or more
clients. The details of these two machines and the software that we have used are given below.

 Test Machine A
 Module: Dell System PowerEdge SC420
 CPU: Intel Celeron 2.53GHz
 Memory: 1GB
 Hard Disk Drive: Hitachi Deskstar 7K400 400GB (SATA 1.5Gb/s)
 Operating System: Fedora 9 Kernel Linux 2.6.27

 Test Machine B
 Module: Dell System 8400
 CPU: Intel Pentium 2.8GHz
 Memory: 1GB
 Hard Disk Drive: Hitachi Deskstar 7K250 80GB (SATA 1.5Gb/s)
 Operating System: Windows XP Professional Service Pack 3

 Test Tools
 HP LoadRunner 8.1 Feature Patch 4
 Apache JMeter 2.3.4

 NAT Router: Linksys® RV082 10/100 8-Port VPN Router
 Internet Service Provider (ISP): Tele2

12.2.2 Test Tool Introduction

12.2.2.1 LoadRunner

LoadRunner is a testing product developed by HP. [50] It is used for examining system behavior and
performance by generating actual load on a system. This software can emulate hundreds of concurrent
users who access the application simultaneously, just as in real-life. These test results will be analyzed to
understand the system's behavior.

LoadRunner consists of three parts: ‘Virtual User Generator’, ‘Controller’ and ‘Analysis’.
Virtual User Generator A tester records the actions against the application to be tested as a script,

66

then verifies the script. Additionally, this software allows the tester to make modifications to
the scripts to address, Error Handling, Correlation, and Parameterization of the script.

Controller The controller is the actual load generator. Testers can use the controller to emulate
hundreds or thousands users simultaneously using the script generated by Virtual User
Generator. Scenario settings need to be done; these describe what script will run, when it will
run, and how many virtual-users will run, and so on. The controller has various monitors to
show the performance of different aspect of the system, such as the number of virtual-users,
the number of connections, the average response time, and so on. The specific settings for our
testing will be described in Section 12.2.3.1.

Analysis The completed test scenario results can be viewed using the analysis part of LoadRunner.
This includes generating suitable graphics and various means of processing the raw data.

12.2.2.2 Apache JMeter

Apache JMeter is an open source Java program designed to load test and measure performance of web
servers. [51] It was originally designed for testing Web applications, but it supports other tests, such
testing JDBC database connections, LDAP, and Mail - POP3(S) and IMAP(S), and so on. It supports a
variety of reports for helping analyze the server's performance.

There are several components available for testing: ‘Threads Groups’, ‘Configuration Elements’,
‘Samplers’, ‘Listeners’, ‘Logic Controllers’, ‘Assertions’, ‘Timers’, ‘Pre Processors’, ‘Post Processors’,
‘Miscellaneous Features’, and ‘Reports’. Only the first four components were used in our testing. A brief
description of these four components is given below.

Threads Group A thread group is a collection of threads. Each thread can be regarded as an
end-user. The other components run in a thread (consider as a scope in Jmeter).

Samplers Samplers performs the actual work of JMeter. Each sampler generates one or more
sample results. These sample results have various attributes, such as success/fail, elapsed time,
data size, and so on. These samples can be viewed using the various ‘Listeners’. The list of
existing samples includes ‘JDBC Request’, ‘LDAP (Lightweight Directory Access Protocol)
Request’, ‘HTTP Request’, and so on.

Configuration Elements Configuration elements can be used to set up configuraions and variables
for later use by samplers. These configuration elements are processed at the start of the scope,
before any samplers in the same scope for example. It includes ‘JDBC Connection
Configuration’, ‘LDAP Request Defaults’, and ‘HTTP Request Defaults’ and so on.

Listeners Listeners are used for ‘listening’ to the test results. Listeners also support viewing,
saving, and reading saved result files. The results can be saved in XML format. These results are
processed at the end of the scope. Available listeners include ‘Aggregate Report’, ‘Graphic
Results’, ‘Summary Report’, and so on.

12.2.3 Web Server Test

As the OptiCaller provisioning server is implemented as a web service, we will test it as one might test
any other web service.

12.2.3.1 Test Scenario

Figure 32 shows the test scenario. The OptiCaller provisioning server runs on the Test Machine A. Test
Machine A is connected to Internet with a public IP address. The LoadRunner is used as the ‘load testing’
tool which runs on the Test Machine B. Test Machine B is behind a NAT router on a private IP network.
The NAT router is connected to the same Internet Service Provider (ISP) network as Test Machine A is
connected to (see Section 12.2.1).

Figure 32: Provisioning Server Test Scenario

First, a test script is recorded based on a single end user accessing the provisioning server. The content of
script will later be used to emulate an end user sending a request to the server for updating. This script
needs to be verified to ensure that the script will be suitable for subsequent use. After script verification,
the LoadRunner Controller can use this script to simulate end user behavior by any number of end users.

There are four settings for the LoadRunner:
Quantity The quantity is the number of virtual-users the LoadRunner will emulate.
Initialize all Vusers before Run LoadRunner will initialize all virtual-users based upon this

setting before starting to run the first virtual-user.
Ramp Up - Load all Vusers simultaneously LoadRunner will load and initialize all of the

virtual-users and run the script for them simultaneously.
Duration The duration setting determines how long the scenario continues running after

finishing the ramp up. The duration can be ‘Run until completion’ (run the script once for each
virtual-user), ‘Run for’ a specific time, or ‘Run indefinitely’.

During the test, we started with ‘Quantity’ set to 100, and increase this value by 100 for each round of
testing. Once the number of virtual users exceeds the capacity of server, the virtual-users number will be
decreased by 50 to estimate the actual capacity of the server. The ‘Duration’ was set to 1 minute 30
seconds as this generates enough data to calculate the performance of the server with different numbers
of virtual-users. The other two options were set to cause the number of virtual-users and server to reach a
steady state quickly. To avoid the effects of database caching, the username and password are gotten from
a parameter table in the LoadRunner.

67

68

In addition to configuring the settings for LoadRunner, there are some other settings that need to be
adjusted for the test. Some of these settings concern the configuration of the operating system and some
of them concern the configuration of the JBoss server itself. First we will consider the OS configuration
changes, then the JBoss server changes.

Firstly we must increase the number of file descriptors that can be open simultaneously. In the Linux
operating system, file descriptors can refer to files, directories, sockets, and so on. If we attempt to open
more sockets than the file descriptor limit, then the web request will fail and the server will throw the
exception ‘java.net.SocketException: Too many open files’. The default file descriptor number limitation
is 1024. The command ‘ulimit –n’ can be used to get and set this value. We set the value to 1000 for
testing.

Secondly, the number of threads the JBoss server processes is too limited. The setting for this value in
JBoss is defined in the file ‘server.xml’. There are three parameters that need to be adjusted:
‘maxThreads’, ‘maxSpareThreads’, and ‘minSpareThreads’. [33]

maxThreads This parameter limits the maximum number of request processing threads that can
be created. This value determines the maximum number of simultaneous requests that can be
handled. The default value is 200.

minSpareThreads This is the number of request processing threads that will be created when the
server starts. The default value is 4.

maxSpareThreads Once the number of threads excesses the ‘minSpareThreads’, the server
always keeps ‘maxSpareThreads’ waiting idle. However, the number of threads cannot exceed
the ‘maxThreads’ value. The default value is 20.

Each of the above settings affects the performance of the server. Normally, the ‘maxThreads’ is 25%
more than the maximum expected load (i.e., the maximum number of concurrent requests), the
‘minSpareThreads’ should be slightly more than the normal load, and the ‘maxSpareThreads’ should be a
little more than the peak load. In our tests these settings were adjusted according to the different test
cases.

Another setting is ‘acceptCount’ which is the maximum queue length for incoming connection requests
when all possible request processing threads are in use. This parameter is also set in ‘server.xml’.
Requests received when the queue is full will be refused, in which case, the LoadRunner will get the error:
‘Connection refused’. The default value is 10. In all test cases, the value for ‘acceptCount’ was set to
1000 so that the queue length would not be the performance bottleneck.

As a web database application, the configurations for the connection with the database also need to be
adjusted. In this project, the database server is MySQL server. There are three configurations parameters
relevant to connection with the MySQL server: ‘max-pool-size’, ‘min-pool-size’, ‘idle-timeout-minutes’,
and ‘max-connections’.

The first three settings are particularly relevant for the JBoss connection pool. The ‘max-pool-size’ is the
maximum number of connections that can be maintained to the database – the default value is 20, while
‘the min-pool-size’ is the minimum number of connections maintained to the database - the default value
is 0. If a connection is not used after the time defined as the ‘idle-timeout-minutes’, then the connection
will be closed and removed. The default value is 0 - meaning that the idle-timeout is infinite, i.e., idle

connections are never closed. These settings are configured in the file ‘mysql-ds.xml’.

The ‘max-connections’ parameter is a setting for the MySQL server, this sets the maximum number of
connections that this instance of the MySQL server can accepted. The default value is 100. This can be
modified by using the command ‘set GLOBAL max_connections=1000’ to set the parameter to 1000.

All of the above settings affect the performance of the connections between the JBoss and the MySQL
server. The settings for the JBoss connection-pool size are adjusted depending on the test cases; while the
‘max-connections’ for the MySQL server was set to a fixed value of 1000. The value of 1000 was chosen
as it is greater that the total number of virtual users that we will consider.

12.2.3.2 Test Results

As mentioned in previous section, the test starts with 100 virtual-users. Figure 33 shows the number of
virtual-users as a function of time. According to the figure, the number of simultaneous virtual-users
reaches 100 at 2 seconds after the start of test scenario, this number of virtual users remains at 100, by
starts to fall after 1 minute and 22 seconds (i.e., 1:32). This is exactly as expected, since we set the
duration of the testing to be one minute and thirty seconds after the ramp up (which took 2 seconds).

Figure 33: Number of Runing Virtual Users

However, simply looking at the number of virtual-users as a function of time does not indicate the load
generated by LoadRunner on the server. Instead, we will examine the number of simultaneous
connection to understand the load. Figure 34 shows the number of connections as a function of the
elapsed time. We can see that the number of connections reaches a peak after 6 seconds, and remains at
100 connections, then starts to reduce at 01:32. There is a small reduction from 100 to 99 at approximate
00:45 which can be safely ignored (as a sampling error of the emulation - i.e., there were a sampling time
when there was an available connection that had not been assigned to a virtual user's request).

69

Figure 34: Number of Connections

Figure 35 illustrates the number of the new connections and the number of closed connections per second.
This figure more clearly shows the connection status. The red curve represents the new connections
while the green curve represents the closed connections. It is clear that after 6 seconds, the red curve and
the green curve merge to the same curve, which means that the number of the new connections equals to
that of the closed connections, until 01:30. During this period, the number of connections remains steady
at 100 connections as shown in Figure 34. We can see that just before 00:45, there is a small gap between
the red curve and the green curve, which leads the small fluctuation on the curve shown in Figure 34.

Figure 35: Number of Connections Per Second (The red (upper curve at the start) show the number of new

connections during the last second and the green curve shows the number of closed connection during the last

second.)

The goal of this testing is calculating the average respond time of a transaction at full load, so only the
period during which the maximum number of connections are in use (we refer to this as the ‘used period’)
are of interest to us. In the case of 100 virtual-users, the ‘used period’ was from 00:10 to 01:30.

The same test was repeated for 200, 300, 400, 500, and 600 virtual-users. Because it takes LoadRunner
different amounts of time to initiates the maximum number of connections, the start time of the ‘used

70

71

period’ will be different ; however, the ending time will always be one minute and thirty seconds after the
system load has ramped up - as this specified as a parameter to the test runs. To standardize and simplify
our analysis test cases, the ‘used period’ was defined as the 1 minute following when the maximum
number connections are established. Additionally, during the ‘used period’, the number of connections
was not allowed to fluctuate by more than 1%. If the fluctuation was greater than this we repeated the test
run. Fortunately, we did not repeat the test for this reason during the testing.

From the user's point of view, the system's performance is how long the user needs to wait for each
request before getting a response. According to reference [52], the response time for a Web page should
not be more than 3 seconds on average, and never more than 5 seconds. Thus, we assumes that if the
response time for pages is within 2 seconds, then the user's perception is that the system is perfect,
between 2 and 5 seconds is considered normal, but having to wait more than 5 seconds is bad. Table 19
illustrates the test results from 100 to 500 virtual-users. These results include the average response time
for all the transactions during the ‘used period’, and the percentages of the transactions about which the
users feel pleased, normal, and bad.

Table 19: Provisioning Server Test Result

User Number Average Time Perfect Normal Bad
100 0.837 89.50% 9.50% 1.00%
200 1.670 69.30% 27.70% 3.00%
300 2.482 43.00% 50.70% 6.30%
400 3.360 33.70% 56.10% 10.20%
450 3.869 30.60% 53.70% 15.70%
500 4.407 21.60% 53.20% 25.30%

12.2.3.3 Analysis of the Test Results

According to the Table 19, with an increasing number of users, the average response time increase and
the percentage of perfect transactions decrease, while the percentage of less than perfect transactions
increases. The average time is always acceptable even when the number of users is 500, as 4.4 seconds is
still in the range of ‘normal’. However, this average is very misleading as can be seen by the fact that only
21% of the users would be getting 2 second or less response, while more than 25% of users would be
experiencing excessively long delays.

As we can see in the table, when the number of users increases from 400 to 500, the percentage of ‘bad’
transactions rises dramatically from 10.20% to 25.30% while the percentage of ‘perfect’ transactions
decreases from 33.70% to 21.60% which is less than that of ‘bad’ transactions. It means the server's
performance is becoming unstable even though the average response time is acceptable. This indicates
that the maximum number of users that the system can support is less than 500. Hence we made another
test run with 450 virtual-users. We chose this value as it is the middle between the case of 400
virtual-users and that of 500 virtual-users. With 450 users we can see that the percentage of ‘perfect’
transactions is double the percentage of ‘bad’ transactions. However, at this point we can see that the
system is coming under pressure since the percentage of perfect experiences decrease by ~3%, but the
percentage of bad experiences increased by ~5.5% in comparison the performance with 400 users. It is
interesting to note that the percentage of normal experiences also decreased by 2.4%.

72

Based upon these tests we estimate that the web server can support between 400 to 450 users with an
acceptable performance, while actually supporting 100 users simultaneously.

12.2.4 JDBC & MySQL Test

In the provisioning system, there are a lot of database operations, such as querying the database to
validate users (administrator, managers, and end-users), storing the group configuration into the database,
and so on. The provisioning server uses JDBC to communicate with the database. We ran a number of
tests when using JDBC to access the MySQL database to see if these lead to the performance bottleneck
of the provisioning server.

12.2.4.1 Test Scenario

The MySQL database server runs on the same machine as the provisioning server. So this test uses only
Test Machine A. Since LoadRunner 8.1 does not support testing MySQL, JMeter was used for this test
instead of LoadRunner.

For the MySQL server, the ‘max-connections’ parameter was set to 1000 as this was viewed as being
safely above the number of simultaneous connections required to serve the maximum number of users
that we were concerned with.

In JMeter, a ‘Thread Group’ needs to be added to the ‘Test Plan’ first. There three settings relevant to the
‘Thread Group’: ‘Number of Threads’, ‘Ramp-Up Period’, and ‘Loop Count’. The ‘Number of Threads’
is similar to the number of virtual-users in the LoadRunner. According to the previous section, the
provisioning server can support 400 to 450 simultaneous users. So the ‘Number of Threads’ was set to
450 in this test. The ‘Ramp-Up Period’ is the length of period the JMeter to open the threads. This was set
to 30 seconds. However, unlike LoadRunner, JMeter cannot initiate all the threads before using them to
during the test. Instead it opens new threads while the previously opened threads are sending test requests
to the database, which means the JMeter will take longer time to open all the threads than LoadRunner
took. The ‘Loop Count’ is the number of operations loop iterations that each thread will do. It is set to
‘Forever’, hence the test must be stopped manually. The reason for setting the Loop Counter to this value
is that once the thread finishes its operation, it will be closed. In this test, we wanted to make sure that no
threads were closed before all the threads are opened.

Next an element called ‘JDBC Connection Configuration’ needs to be added in the ‘Thread Group’. The
setting for the ‘JDBC Connection Configuration’ is similar to the setting for the JBoss connection pool in
the file ‘mysql-ds.xml’, including the ‘Database URL’, ‘JDBC Driver class’, ‘Username’, ‘Password’,
and ‘Max Number of Connections’ (which were set to the same as the ‘max-pool-size’ for JBoss
connection pool). The ‘Max Number of Connections’ was set as 500, while the other settings are set to
the same values as the settings for the JBoss connection pool.

Finally, an element called ‘JDBC Request’ is added in the ‘Thread Group’. The test SQL query
statements are set in this element. In this test, the database operations include verifying the username and
password and fetching the corresponding configurations.

Additionally, various ‘Listener’s are added to get collect and analyze the results, these included
‘Summary Report’, ‘Aggregate Table’, and ‘Result Table’. To avoid database caching, the pair of the
username and password is fetched from the parameter table ‘User Defined Variables’.

12.2.4.2 Test Results

Figure 36 indicates the number of threads started as a function of the elapsed time. According to this
figure, it takes two minutes for the JMeter to open all the threads (450). Then the 450 threads keep
sending a query to database simultaneously. This full load lasts for about two and half minutes. We
considered only transactions during the full load situation. In the end JMeter takes 15 seconds to stop all
the threads.

According to the summary report generated by the JMeter, there were 41862 requests sent from the
JMeter to the database during the entire test period. All of these requests got the successful responses.
The average response time for the all requests was 0.383 seconds with a variance of 1.427 seconds. Of
these requests, approximately 26525 requests were sent from JMeter to the database during the full load
period. The average response time of the requests during the full load period with 450 threads was 0.473
seconds with a variance of 1.156 seconds.

Figure 36: Number of Threads as a function of Time

12.2.4.3 Analysis of Results

As mentioned before, JMeter cannot initiate all the threads before starting to send the requests. Thus
roughly 15337 requests (41862-26525) were completed before all the threads are started. In our analysis
only the 26525 requests sent after all the threads were started are used.

As stated in the prior section the average response time of the requests during the full load period is
0.473±0.407 seconds. The time for the communication between JBoss and the database (the MySQL
server) using JDBC only occupies 12.23% of the total time consumed by all of the server operations.
Hence JDBC (and the MySQL database) is not a major performance bottleneck for the provisioning
server.

73

74

12.2.5 Conclusions

According to our test the current OptiCaller provisioning server can supports between 400 to 450 users.
The peak load will happen when there is a configuration update for a group of end-users. Normally, in the
DoD solution, each group includes at most 300 to 400 end-users. Additionally, it may take some time for
all end-users to receive the provisioning SMS, thus further spreading the load over time. Thus it seems
that the OptiCaller provisioning server will be capable of handling the load caused by an update to a
single group of less than 450 users using a server comparable to Test Machine A. However, the system
administrator and managers should be aware that this is the maximum performance (for this platform),
thus they should rate limit their updates to the provisioning system to stay below this bound.

As a web server, the performance of the OptiCaller provisioning server is determined by the application
code efficiency, the database capacity, the network status, and the hardware of machine on which the
application runs. Further work should investigate what happens if there are changes in some of these
parameters, especially a change in the configuration of the hardware of the server.

According to the second test results, the time consumed by communication between the application and
the database, JDBC and the MySQL server are not the key performance bottleneck for the provisioning
server.

Currently, the OptiCaller provisioning server runs on the simple desktop computer as a test server.
Upgrading the hardware or running the application on a server c class machine could improve the
server’s performance. However, quantifying such an improvement remains for future work.

Building the OptiCaller Provisioning System as a distributed system is another way to improve the
provisioning system’s performance. Using a load balance mechanism could potentially increase the
system’s capacity. However, quantifying this also remains for future work.

75

13. Conclusions and Future Work
After summarizing all the work done in this project, including the research and the development done,
this chapter presents some conclusions. Following this a summary of future work is presented.

13.1 Conclusions

The conclusions can be divided into several parts. Conclusions about OptiCaller as an application and
conclusions about the provisioning system

13.1.1 OptiCaller

A mobile extension application running on Symbian OS based mobile phones, called ‘OptiCaller’, was
designed, implemented, and evaluated in this project. OptiCaller has the following features (except for
the HTTP/HTTPS call-back function, these are new functions as compared to the earlier Java DoD
client):

 It supports two cost-saving call methods: call-back, and call-through.
 It supplies two ways to initiate the call-back service: HTTP/HTTPS and SMS.
 It provides the user with an alternative means to initiate calls without requiring a change in the

user’s dialing behavior.
 It supports several Mobile Extension (MEX) functions, such as setting presence status, joining

groups, transferring calls, and so on.
 It is compatible with most of PBX solutions; using dynamic configurations for each function.
 It is the OptiCaller Provisioning System client side which supports the function to keep

updating with the OptiCaller provisioning server.

OptiCaller was evaluated with respect to the time required to establish a call and the power consumption
of the applications.

OptiCaller takes about three times as long to establish an alternative call as a direct (normal) call.
Compared to the new Java client, it takes about five more seconds for OptiCaller to make a call-back call
because OptiCaller does not maintain a data connection. While OptiCaller takes slightly less time than
the Java client to make a call-through call. However, comparing the performance of these two alternative
ways of establishing a call to the normal direct approach with regard to the total duration of an average
business call, the extra delay in call establishment time seems acceptable. However, we noted in the
previous chapter that a deeper analysis of costs and benefits needs to be made - as it is not clear that the
extra delay would be acceptable if the user makes many short calls. Such an economic analysis lies
outside the scope of this report.

With regard to the power consumption caused by running this application, OptiCaller only reduced the
test mobile phone’s battery life by about two hours (in terms of standby time). Considering that these
mobile phones can stand by for several days, the difference in battery life is not of practical importance.

76

13.1.2 OptiCaller Provisioning System

The configurations for the OptiCaller are complicated because it is designed to work with several
different PBX solutions. To handling the deployment and configuration updates for the OptiCaller
application, a provisioning system, called ‘OptiCaller Provisioning System’, was designed, implemented,
and evaluated in this project. This provisioning system provides the administrators (including the super
administrator and managers) a platform to manage the OptiCaller application as deployed on the
end-users’ mobile phones.

The OptiCaller provisioning server was tested in order to estimate its load capacity. According to our test,
the server can support between 400 to 450 end-users for an update. The scaling of this system seems to
be sufficient to support the typical number of end users in a group using a desktop computer as a server.
Further work is needed to understand what the proper configuration of such a server should be.

13.2 Future Work

13.2.1 OptiCaller

OptiCaller attempts to be user friendly, but there are some improvements needed, both for Call Back and
Call Through.

For Call Back, the call establishment time is three times the normal direct call establishment time. One
component of this delay that could be improved is to reduce the call-back call establishment time. One
method of doing this is to like the new Java client keep the data connection active after the first use, thus
subsequent call-back calls only take double time of the normal direct call. However, there are several
potential drawbacks to this solution: (1) increased costs due to maintaining the data connection, (2)
increased battery power consumption due to keeping this connection active, and (3) concerns of the user
that their device is connected to the Internet for a longer period of time - especially when they do not have
any active data communications (that they are consciously aware of).

For Call Through, the call establishment time is triple that of a normal direct call establishment. Currently,
OptiCaller uses the Symbian Telephony Services (see Section 7.2.1) to send the DTMF tones. The speed
for transmitting the DTMF is very slow (about two tones per second), and this speed is not adjustable.
There is an API called CTonePlayer [53] in the Symbian OS Library, this could be used for sending
DTMF tones, and the speed can be adjusted. The speed can be raised to more than two tones per second.
However, the DTMF tones need to be decoded at the PBX. There may be some DTMF speed limitations
on some PBX solutions. To avoid a conflict, a new configuration field can be introduced so the
OptiCaller users can adjust the speed by themselves. Since MEX functions are also invoked by sending
DTMF tones, the optimization of the speed of sending DTMF tones can be enjoyed by the MEX
functions too. However, my thesis examiner has suggested several alternative methods of reducing this
delay, by eliminating DTMF tones altogether; potentially eliminating this element of the delay. For
instance, one could send the extra digits in the call to the IP-PBX using direct inward dialing (also
known as direct dial-in) - thus avoiding any extra time to send these digits (if the total number of digits
is below the limit for the country's maximum number of digits - the maximum number of digits for
E.164 is 15 digits for international numbers). Thus if you dial a local number of ~10 digits, you could
pass 5 digits to the IP-PBX. This could potentially decrease the additional delay of Dial Through time
to simply the extra time required for the second call.

77

Evaluations for the SMS call-back remains to be done. It was not done during this project due to limited
time and other resources. And evaluations for the DoD server and the IP-PBX (Asterisk in this project)
remains to be done, such as the transaction time between DoD server and IP-PBX and the time for
establishing call between IP-PBX and mobile phones. It will help to understand more about the call
establishment delay by using OptiCaller. Additionally, it would be interesting to compare the
performance when OptiCaller works with different solusions.

OptiCaller needs to provide more functions to be compatible with other PBX solutions and improve the
performance, such as:

 Encryption on SMS call-back request. It would be better to send the SMS call-back request,
which might contain the username and password, in a secure way.

 A DTMF call-back function, as this is the traditional way to make a call-back call.
 SMS MEX functions. Currently, the only way to use the MEX services is by sending the code

as the DTMF tones. It would be better to provide alternative way to use these services. The
DoD solution plans to implement MEX services whose code can be sent by both the DTMF
tones and SMS. (Additional, methods should also be considered - see the DTMF discussion
above.)

 Check configuration correction function. It would be better to check the correction and
integrity of the configuration returned from the provisioning server, for example by using
hash value.

 Web third party calls supporting. [54] Web third party call is the service provided by most
VoIP providers which give the user ability to make a call via their web sites. It is similar to
HTTP Call Back in DoD solution. The advantage is that the call is made by the VoIP
provider directly. So the limitation of the software IP-PBX (Asterisk) [6] in the DoD solution
can be avoided and OptiCaller could be used more widely.

13.2.2 OptiCaller Provisioning System

Based upon our evaluation, the OptiCaller provisioning server can supports between 400 to 450
end-users. However, it remains several interesting test:

The test for load from the user’s downloading application installation file is skipped in this project. As
mentioned before, it more depends on the JBoss server and the hardware class. It would be better to test
the downloading load to understand the provisioning server better. Additionally, testing the
performance difference when using different hardware class on the server machine remains as the
future work.

The provisioning system could be improved both with respect to the code aspect and with respect to the
system implementation, specifically:

 Enterprise JavaBeans (EJB) [32] is supported by the JBoss application server. EJB enables rapid
and simplified development of distributed, transactional, secure, and portable applications based on
Java technology. [32] The performance of the provisioning server can be improved if it were to use
EJB. For instance, although the current provisioning server uses JPA to handle the JDBC
transactions, the server needs to manage the entities by itself. However, by using EJB, the entities
are managed by the EJB container in a more sophisticated way.

78

 Load balancing is another way to optimize the OptiCaller Provisioning System performance. The
provisioning system could also be built as a distributed system instead of a single centralized server.
In this way the total load could be distributed over several different servers potentially improving
the system’s capacity and avoiding a single point of failure.

 Using Internet based SMS messaging solutions makes sending the SMS provisioning messages
much quicker and more stable. Additionally, it can avoid the problem introduced by the SMSLib
library.

To make the provisioning system more useful and sophisticated, several functions are needed to be
implemented in the future:

 It would be better to support the provisioning of the Java client. So the provisioning of the
OptiCaller and the Java client can share the same provisioning platform.

 The algorithm for checking the integrity of the uploaded file needs to be introduced to the
provisioning system, such as Message-Digest algorithm 5.

 Calling method selecting function would be very useful to users. It would be better that the
provisioning server can calculate the cost depending on user’s operator and subscription, and
deploy the cheapest calling method for users. It needs to collect more users’ information and
various operators’ information.

79

References
[1] OptiCall Solutions AB, September 2007, available at http://www.opticall.se

[2] Nortel Solution: Mobile Extension, 2008, available on
http://www.nortel.com/solutions/cablemso/collateral/nn123798.pdf

[3] Sun Microsystems, Introduction to OTA Application Provisioning, November 2002, available at
http://developers.sun.com/mobility/midp/articles/ota/

[4] Max Weltz, Dial over Data solution, Master’s Thesis, Royal Institute of Technology (KTH),
School of Information and Communication Technology, COS/CCS 2008-2, February 21 2008,
available at
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080221-MaxWeltz_ExjobbReport-
with-cover.pdf

[5] Sun Microsystems, J2ME Mobile Information Device Profile (MIDP); JSR 37, JSR 118 Overview,
November 2003, available at http://java.sun.com/products/midp/overview.html

[6] Zhang Li, Service Improvements for a VoIP Provider, Master’s thesis, Royal Institute of
Technology, School of Information and Communication Technology, TRITA-ICT-EX-2009:104,
August 2009, available at
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090829-Zhang-Li-with-cover.pdf

[7] Ioannis Metaxas, not available yet

[8] The OnState Team, Skype PBX, June 2009, available at
http://www.on-state.com/skype-pbx.html?_kk=skype%20gateways&_kt=5ef5e2da-727f-4248-8a8
7-c18a04d90297&gclid=CMaX9f-puZsCFdMWzAodE23wBg

[9] The Onstate Team, June 2009, available at http://www.on-state.com/

[10] Telepo, June 2009, available at http://www.telepo.com/home/

[11] Telepo Mobile+, June 2009, available at
http://www.telepo.com/product-architecture/telepo-mobile-plus-/

[12] Richard Harrison and Mark Shackman, Symbian OS C++ for Mobile Phones, John Wiley & Sons
Ltd., August 2007

[13] Andreas Jakl, Symbian OS Memory Management, May 2008, available at
http://symbianresources.com/cgi-bin/schlabo/dl.pl?MemoryManagement

[14] Jo Stichbury, Symbian OS Explained - Effective C++ Programming For Smartphones, John Wiley
& Sons Ltd., 2005

[15] Ben Morris, CActive and Friends, June 2008, available at
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.p
df

http://www.opticall.se/
http://www.nortel.com/solutions/cablemso/collateral/nn123798.pdf
http://developers.sun.com/mobility/midp/articles/ota/
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080221-MaxWeltz_ExjobbReport-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080221-MaxWeltz_ExjobbReport-with-cover.pdf
http://java.sun.com/products/midp/overview.html
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/090829-Zhang-Li-with-cover.pdf
http://www.on-state.com/skype-pbx.html?_kk=skype%20gateways&_kt=5ef5e2da-727f-4248-8a87-c18a04d90297&gclid=CMaX9f-puZsCFdMWzAodE23wBg
http://www.on-state.com/skype-pbx.html?_kk=skype%20gateways&_kt=5ef5e2da-727f-4248-8a87-c18a04d90297&gclid=CMaX9f-puZsCFdMWzAodE23wBg
http://www.on-state.com/
http://www.telepo.com/home/
http://www.telepo.com/product-architecture/telepo-mobile-plus-/
http://symbianresources.com/cgi-bin/schlabo/dl.pl?MemoryManagement
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf

80

[16] Aapo Haapanen, Active objects in Symbian OS, Master’s Thesis, Department of Computer
Sciences, University of Tampere, April 2008, available at
http://www.cs.uta.fi/research/theses/masters/Haapanen_Aapo.pdf

[17] Andreas Jakl, Symbian OS Client-Server Framework, May 2008, available at
http://symbianresources.com/cgi-bin/schlabo/dl.pl?ClientServer

[18] Ben Morris, The Symbian OS Architecture Sourcebook – Design and Evolution of a Mobile
Phone OS, John Wiley & Sons Ltd., 2007

[19] Andreas Jakl, Symbian OS GUI Architectures, May 2008, available at
http://symbianresources.com/cgi-bin/schlabo/dl.pl?Gui

[20] Nokia Corporation, Symbian OS View Architecture, July 2005, available at
http://sw.nokia.com/id/3cab67ad-db01-400a-9467-91b8be7ccbba/Symbian_OS_View_Architectur
e_v1_1_en.pdf

[21] Nokia Corporation, C++ Developer's Library 1.4, 2008, available at
http://www.forum.nokia.com/document/Cpp_Developers_Library

[22] Iain Campbell, Symbian OS Communications Programming, John Wiley & Sons Ltd., 2007

[23] Ben Morris, Platform Security and Symbian Signed: Foundation for a Secure Platform, Symbian
Software Ltd, January 2008

[24] VeriSign, September 2009, available at http://www.verisign.com

[25] TrustCenter, September 2009, available at http://www.trustcenter.de/en/index.htm

[26] Symbian Software Ltd, A developer’s guide to Symbian Signed, September 2005, available at
https://www.symbiansigned.com/developerguidetoSymbianSigned.pdf

[27] ETel Core in C++ API reference, 2007, available at
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/reference/cpp/ETelCore/index.
html

[28] Symbian Software Ltd, Symbian OS v9.2 library, 2006, available at
http://developer.symbian.com/main/documentation/sdl/symbian92

[29] Sun Microsystems, Java SE at a Glance, September 2009, available at http://java.sun.com/javase

[30] Douglas K. Barry, Service-oriented architecture (SOA) definition, September 2009, available at
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_defi
nition.html

[31] Sun Microsystems, Java EE at a Glance, September 2009, available at http://java.sun.com/javaee

[32] Sun Microsystems, Enterprise JavaBeans Technology/, September 2009, available at
http://java.sun.com/products/ejb

[33] Marc Fluery, JBoss Admin Development Guide, September 2009, available at
http://docs.jboss.org/jbossas/admindevel326/html/index.html

http://www.cs.uta.fi/research/theses/masters/Haapanen_Aapo.pdf
http://symbianresources.com/cgi-bin/schlabo/dl.pl?ClientServer
http://symbianresources.com/cgi-bin/schlabo/dl.pl?Gui
http://sw.nokia.com/id/3cab67ad-db01-400a-9467-91b8be7ccbba/Symbian_OS_View_Architecture_v1_1_en.pdf
http://sw.nokia.com/id/3cab67ad-db01-400a-9467-91b8be7ccbba/Symbian_OS_View_Architecture_v1_1_en.pdf
http://www.forum.nokia.com/document/Cpp_Developers_Library
http://www.verisign.com/
http://www.trustcenter.de/en/index.htm
https://www.symbiansigned.com/developerguidetoSymbianSigned.pdf
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/reference/cpp/ETelCore/index.html
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/reference/cpp/ETelCore/index.html
http://developer.symbian.com/main/documentation/sdl/symbian92
http://java.sun.com/javase
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://java.sun.com/javaee
http://java.sun.com/products/ejb
http://docs.jboss.org/jbossas/admindevel326/html/index.html

81

[34] Addison Wesley, Database Access with JDBC, July 2001, available at
http://www.informit.com/articles/article.aspx?p=167843

[35] Sun Microsystems, Java SE Technologies - Database, September 2009, available at
http://java.sun.com/javase/technologies/database/

[36] Sun Microsystems, DataSource, 2001, available at
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/datasource.html

[37] Wikipedia, Hayes command set, September 2009, available at
http://en.wikipedia.org/wiki/Hayes_command_set

[38] T.Delenikas, SMSLib, September 2009, available at http://code.google.com/p/smslib/

[39] Nokia Corporation, Carbide.c++, September 2009, available at
http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/IDEs/Carbide.c++

[40] Sun Microsystems, Java Persistence API, September 2009, available at
http://java.sun.com/javaee/technologies/persistence.jsp

[41] The Eclipse Foundation, Eclipse homepage, September 2009, available at http://www.eclipse.org/

[42] Symbian Software Ltd, Introduction to Carbide.c++, September 2009, available at
http://developer.symbian.com/main/downloads/papers/Carbide/Introduction_to_Carbide.pdf

[43] Nokia Corporation, Productions, September 2009, available at
http://www.nokia.se/hitta-produkter/produkter

[44] 2N Telecommunications, 2N Netstar-Virtual PBX, September 2009, available at
http://www.2n.cz/products/pbx/voip-virtual-system.html

[45] Telia, Telia homepage, September 2009, available at http://www.telia.se/

[46] Wikipedia, Call-through telecom, September 2009, available at
http://en.wikipedia.org/wiki/Call-through_telecom

[47] Wikipedia, Call forwarding, September 2009, available at
http://en.wikipedia.org/wiki/Call_forwarding

[48] Apache Jakarta Commons FileUpload, September 2009, available at
http://commons.apache.org/fileupload/

[49] Wikipedia, Load testing, September 2009, available at http://en.wikipedia.org/wiki/Load_testing

[50] HP Corporate, HP LoadRunner software Data sheet, September 2009, available at
https://h10078.www1.hp.com/cda/hpdc/display/main/download_pdf_unprotected.jsp?zn=bto&cp
=54_4000_100

[51] Apache JMeter, September 2009, available at http://jakarta.apache.org/jmeter/

[52] Ingenieurbuero David Fischer GmbH, A Guide to Getting Started with Successful Load Testing,
2007, available at http://www.proxy-sniffer.com/en/doc/LoadTestKnowHowEN.pdf

http://www.informit.com/articles/article.aspx?p=167843
http://java.sun.com/javase/technologies/database/
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/datasource.html
http://en.wikipedia.org/wiki/Hayes_command_set
http://code.google.com/p/smslib/
http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/IDEs/Carbide.c++
http://java.sun.com/javaee/technologies/persistence.jsp
http://www.eclipse.org/
http://developer.symbian.com/main/downloads/papers/Carbide/Introduction_to_Carbide.pdf
http://www.nokia.se/hitta-produkter/produkter
http://www.2n.cz/products/pbx/voip-virtual-system.html
http://www.telia.se/
http://en.wikipedia.org/wiki/Call-through_telecom
http://en.wikipedia.org/wiki/Call_forwarding
http://commons.apache.org/fileupload/
http://en.wikipedia.org/wiki/Load_testing
https://h10078.www1.hp.com/cda/hpdc/display/main/download_pdf_unprotected.jsp?zn=bto&cp=54_4000_100
https://h10078.www1.hp.com/cda/hpdc/display/main/download_pdf_unprotected.jsp?zn=bto&cp=54_4000_100
http://jakarta.apache.org/jmeter/
http://www.proxy-sniffer.com/en/doc/LoadTestKnowHowEN.pdf

82

[53] Nokia Forum, Playing audio tones, December 2007, available at
http://wiki.forum.nokia.com/index.php/Playing_audio_tones

[54] Shanbo Li, Web Call Example Application, August 2009, Master’s thesis, Royal Institute of
Technology, August 2009, available at
http://shanbohomepage.googlecode.com/hg/master_thesis/master_thesis.pdf

http://wiki.forum.nokia.com/index.php/Playing_audio_tones
http://shanbohomepage.googlecode.com/hg/master_thesis/master_thesis.pdf

83

Appendix A Test Results
Table 20: Call Establishment Delay Test Results

Calling Method Direct Call Call Back Call Through
Application OptiCaller Java OptiCaller Java

Mobile Phone N95 E61 N95 E61 N95 E61 N95 E61 N95 E61

7 7 24 17 17 12 18 18 18 20
6 6 23 16 17 12 19 19 18 20
7 8 25 18 15 10 19 19 19 19
6 8 24 16 18 11 16 18 18 21
8 7 22 16 17 11 17 18 18 21
8 8 24 17 17 11 20 19 19 22
7 6 23 18 17 11 18 18 20 20
7 6 24 16 18 11 19 19 18 21
6 7 24 16 19 13 17 19 19 19
7 6 23 16 18 11 18 18 18 21
8 7 25 19 17 11 19 20 19 22
7 6 24 15 18 12 19 18 17 21
7 6 25 16 16 10 18 18 18 21
7 7 21 16 18 11 20 18 18 20
7 6 23 16 17 10 19 19 20 19
6 7 22 16 17 10 19 20 19 20
5 7 23 16 18 10 18 18 17 22
6 6 25 16 19 10 20 18 19 21
6 7 24 16 18 10 18 18 18 21

Call Establishment Time
(seconds)

7 8 23 17 18 13 18 19 18 19
Average Time 6.8 6.7 23.6 16.5 17.5 11.0 18.5 18.6 19.4 20.5

Variance 0.9 0.5 1.0 0.8 0.8 1.0 0.9 0.5 0.7 0.8

84

Table 21: Access Point Connecting Delay Test Results

Mobile Phone Nokia N95 Nokia E61

5 5
6 5
5 4
6 5
5 6
5 5
5 4
5 5
7 4
6 5
5 4
6 6
5 5
5 4
5 5
5 5
5 4
7 5
5 5

AP Connecting Delay
(seconds)

5 6
Average Time 5.4 4.9

Variance 0.7 0.7

85

Table 22: DTMF tones (10 digits) Transmission Delay Test Results

Mobile Phone Nokia N95 Nokia E61

6 6
5 5
6 5
5 6
6 5
6 5
5 5
5 6
6 5
6 6
6 6
6 6
6 5
5 6
6 6
6 5
5 5
6 6
6 5

AP Connecting Delay
(seconds)

6 5
Average Time 5.7 5.5

Variance 0.5 0.5

 Appendix B Provisioning System Web Interface

Figure 37: End Users Login Page

Figure 38: End Users Update Profile Page

Figure 39: Managers and Manager Login Page

Figure 40: Managers and Administrator Update Profile Page

86

Figure 41: Managers and Administrator Add Group Page

87

Figure 42: Managers and Administrator Update Group Page

88

Figure 43: Managers and Administrator Deploy Page

Figure 44: Managers and Administrator Deploy Result Page

Figure 45: Administrator Manage Manager Page

89

Figure 46: Administrator Upload File Page

Figure 47: Administrator Serial Control Page

90

www.kth.se

TRITA-ICT-EX-2009:177

	Abstract
	Sammanfattning
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1. Introduction
	2. Related Work
	3. Symbian OS C++
	3.1 Basic Types
	3.2 Naming Convention
	3.3 Exception Handle
	3.3.1 Leaving Function
	3.3.2 CleanupStack and TRAP/TRAPD
	3.3.3 Two-phase Construction

	3.4 Active Objects
	3.5 Client-Server Model
	4. Symbian Architecture Overview

	4.1 User Interface Framework Layer
	4.2 Application Services Layer
	4.3 OS Services Layer
	4.4 Base Services Layer and Kernel Services & Hardware Interface Layer
	5. User Interface Framework layer

	5.1 User Interface Platforms
	5.2 User Interface Framework Layer
	5.2.1 The Control Environment
	5.2.2 The Uikon Framework
	5.2.3 The S60 View Architecture
	5.2.4 The Front-End Processor framework
	6. Application Services Layer

	6.1 HTTP Framework
	7. OS Services Layer

	7.1 Generic OS Services
	7.1.1 Task Scheduler
	7.1.2 Event Logger
	7.1.3 Certificate and Key Management Framework
	7.1.4 C Standard Library

	7.2 Communications Services
	7.2.1 Telephony Services
	7.2.2 Networking Services
	7.2.3 Messaging Services
	7.2.3.1 Sending an SMS
	7.2.3.2 Receiving an SMS
	8. Java Platform, Enterprise Edition

	8.1 Security in JBoss
	8.2 Java DataBase Connectivity
	9. AT Commands and SMSLib

	9.1 AT Command
	9.2 SMSLib
	10. OptiCaller

	10.1 Development Profile
	10.2 OptiCaller Overview
	10.3 Call Back Implementation
	10.3.1 Introduction to Call Back

	10.3.3 HTTP/HTTPS Call Back
	10.3.4 SMS Call Back
	10.4 Call Through Implementation
	10.4.1 Call Through Introduction
	10.4.2 Call Through Configurations
	10.4.3 Call Through Dial Plan

	10.5 Mobile Extension Implementation
	10.5.1 Call Through
	10.5.2 Three Lists – Presence, MEX, and Call Service

	10.6 Implementing Provisioning
	10.6.1 Overview of Provisioning
	10.6.2 Provisioning Configurations
	10.6.3 Configuration Handling
	10.6.4 Waiting for an Update Notification
	10.6.5 Updating the Application's Configuration

	10.7 Other Functions
	11. OptiCaller Provisioning System

	11.1 OptiCaller Provisioning System Architecture
	11.2 OptiCaller Provisioning Procedure
	11.3 Provisioning Server Development Profile
	11.4 OptiCaller Provisioning Web Site
	11.4.1 End-User Services
	11.4.2 Manager Services
	11.4.3 Administrator Services
	12. Evaluation

	12.1 OptiCaller Evaluation
	12.1.1 Test Equipments
	12.1.2 Call performance
	12.1.2.1 Test Scenario
	12.1.2.2 Test Results
	12.1.2.3 Analysis of test results

	12.1.3 Power Consumption
	12.1.3.1 Test Scenario
	12.1.3.2 Test Results and Analysis
	12.1.3.3 Limitations

	12.1.4 Conclusions From These Two Sets of Tests

	12.2 Provisioning Server Evaluation
	12.2.1 Test Equipment
	12.2.2 Test Tool Introduction
	12.2.2.1 LoadRunner
	12.2.2.2 Apache JMeter

	12.2.3 Web Server Test
	12.2.3.1 Test Scenario
	12.2.3.2 Test Results
	12.2.3.3 Analysis of the Test Results

	12.2.4 JDBC & MySQL Test
	12.2.4.1 Test Scenario
	12.2.4.2 Test Results
	12.2.4.3 Analysis of Results

	12.2.5 Conclusions
	13. Conclusions and Future Work

	13.1 Conclusions
	13.1.1 OptiCaller
	13.1.2 OptiCaller Provisioning System

	13.2 Future Work
	13.2.1 OptiCaller
	13.2.2 OptiCaller Provisioning System
	References
	Appendix A Test Results
	Appendix B Provisioning System Web Interface

