
Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-24

X U E L I A N G R E N

A Meeting Detector
to Provide Context

to a SIP Proxy

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A Meeting Detector to

Provide Context to a SIP Proxy

Xueliang Ren

Oct. 25, 2008

Supervisor & Examiner

Professor Gerald Q. Maguire Jr.

Submitted in partial fulfillment of

the requirements for the degree of

Master of Science (Information Technology)

Department of Communication Systems
School of Information and Communication Technology

Royal Institute of Technology
Stockholm, Sweden

i

Abstract

As sensing technology develops, it plays an important role in context-aware systems.
Using context information improves the user experience of ubiquitous computing.
One use of sensed information is to detect a meeting in progress in an office or a
conference room. In our system, sensors gather context information from an office
environment and act as a presence user agent to update a presence server with context
changes. These context changes can be utilized by context-aware services. The
presence messaging uses the SIP for Instant Messaging and Presence Leveraging
Extensions (SIMPLE) protocol and the presence information is described in
eXtensible Makeup Language (XML) format.

In this thesis we present a context-sensing component that recognizes meetings in a
typical office environment. A context-aware system is able to use this occupancy
information to infer that the room is empty, an individual is alone in the room, or a
meeting is taking place in the meeting room. Context-aware services might utilize this
environmental information to automatically forward a user's incoming calls to their
voice mail server. This and other example applications were developed to show the
usefulness of this context information.

ii

Sammanfattning

Så som sensor tekniken utvecklas, spelar de en viktig roll i kontextmedvetna system.
Genom att använda kontextuell information förbättras användarupplevelsen av
'ubiquitous computing'. Ett användningsområde för sensorinsamlad information är att
upptäcka ett möte som pågår i ett kontor eller konferenslokal. I vårt system samlar
sensorer information från en kontorsmiljö och uppdaterar en närvaroserver med
kontextuella förändringar. Dessa förändringar kan sedan utnyttjas av kontextmedvetna
tjänster. För att förmedla den närvarostatusen använder närvaroservern SIP
och ’Presence Leveraging Extensions’ (SIMPLE) protokoll. Närvaro information
levereras i 'eXtensible Makeup Language' (XML) format.

I denna avhandling presenterar vi en kontextsensorkomponent som känner av möten i
en typisk kontorsmiljö. Ett kontextmedvetet system kan använda denna komponent
för att dra slutsatsen att lokalen är tom, en person är ensam i lokalen, eller ett möte
äger rum i lokalen. Kontextmedvetna tjänster kan utnyttja denna information för att
automatiskt vidarebefordra en användares inkommande samtal till deras röstbrevlåda.
Detta och andra exempel, har utvecklats för att visa nyttan av denna kontextuella
information.

iii

Acknowledgments

I would like to express sincere gratitude to my supervisor and examiner, Professor
Gerald Q. "Chip" Maguire Jr. with his kind help and encouragement to help me
complete this thesis project. The valuable comments and suggestions from his
feedback did a great help for my report. All of his academic achievements,
educational philosophy, and gentle attitude impressed me a lot. I really had a
rewarding experience at Wireless@KTH with the kind guidance from him.

My thanks also come to all my friends and colleagues who supported me through this
period at school.

Finally, and as always, I would like to thank my beloved parents for their endless
support and encouragement during my life.

iv

 Table of Contents

Abstract ... i

Sammanfattning ... ii

Acknowledgments .. iii

Table of Contents ... iv

List of Figures .. vi

List of Tables .. vii

1. INTRODUCTION .. 1

1.1 PROBLEM STATEMENT ... 1
1.2 OBJECTIVES .. 1
1.3 ORGANIZATION OF THIS THESIS ... 3

2. BACKGROUND AND RELATED WORK .. 4

2.1 CONTEXT AND CONTEXT AWARENESS... 4
2.1.1 What is a Context? ... 4
2.1.2 Definition of Context Awareness ... 5

2.2 CONTEXT-AWARE SYSTEM ... 6
2.2.1 Context-aware System Applications .. 6
2.2.2 Scenarios of Context-aware Systems in a Smart Meeting Room Environment.... 6
2.2.3 Context-aware System Architectures Based on Acquisition Methods 7

2.3 SENSOR SYSTEM ... 10
2.3.1 Sensors ... 10
2.3.2 Sensor System Architecture ... 11
2.3.3 Occupancy Sensor as a Presence User Agent ... 12

2.4 RELATED TECHNOLOGIES .. 13
2.4.1 XML ... 13
2.4.2 SIP ... 13

2.4.2.1 What is SIP .. 13
2.4.2.2 SIP Architecture... 14
2.4.2.3 SIP Messages and Process ... 16

2.4.3 SIP Express Router .. 17
2.4.4 SIMPLE ... 17
2.4.5 PIDF .. 18
2.4.6 CPL .. 18

2.5 RELATED RESEARCH .. 20
2.5.1 A Conference Room Application.. 20
2.5.2 Room Occupancy Detection with Power Line Positioning 21
2.5.3 A Large Scale Context-aware System: A Context-aware Building 21
2.5.4 A Smart Meeting Room with Pervasive Computing Technologies 23

v

3. GOALS AND IMPLEMENTATION .. 24

3.1 GOALS AND METHODS ... 24
3.2 PROTOTYPE DESIGN AND IMPLEMENTATION ... 26

3.2.1 Sensor System Setup .. 26
3.2.1.1 Hardware Description .. 26
3.2.1.2 Software Setup ... 30

3.2.2 Detection Approach ... 34
3.2.2.1 Interaction between Physical and Logical Sensor Entities 34
3.2.2.2 Detection Algorithm/Methodology .. 37

3.2.3 Publish Context Information to a SIP Proxy ... 40
3.2.3.1 Installation and Configuration of SER ... 40
3.2.3.2 Implementation of SER Modules to Handle Occupancy Event 43
3.2.3.3 Debugging the SER modules ... 45

4 TESTING AND ANALYSIS ... 46

4.1 TEST METHODOLOGY ... 46
4.2 TEST CASES .. 47

4.2.1 Single Detector Mode .. 47
4.2.2 Multiple Detectors Mode ... 49

4.3 DATA ANALYSIS ... 51
4.3.1 UDP Packets between Physical and Logical Entities 51
4.3.2 Detection Algorithm Analysis .. 54
4.3.3 SIP messages between Logical Entity and Context Server 55

4.4 EVALUATION .. 57
4.4.1 System Evaluation .. 57

4.4.1.1 Accuracy .. 57
4.4.1.2 Robustness ... 59
4.4.1.3 Scalability .. 59

4.4.2 Achievement of the Goals .. 60

5 CONCLUSIONS AND FUTURE WORK ... 61

5.1 CONCLUSIONS ... 61
5.2 FUTURE WORK ... 63

5.2.1 Accuracy Improvement in a Live Open Environment .. 63
5.2.2 Sensor Software Development ... 63
5.2.3 Extension to Multiple Areas ... 64
5.2.4 Security Mechanism ... 64
5.2.5 A More Integrated Physical Sensor ... 64

References .. 65

Appendix A: K8055 Test Program .. 70
Appendix B: Physical Sensor Code ... 75
Appendix C: Logical Sensor Code .. 79
Appendix D: Header File for Main Program .. 99
Appendix E: SER Configuration File .. 100

vi

List of Figures

Figure 1.1 Context-aware System Overview .. 2

Figure 2.1 Middleware Architecture ... 8

Figure 2.2 Sensor Entities ... 10

Figure 2.3 Generic Sensor System as a Process .. 11

Figure 2.4 Sensor Detector .. 11

Figure 2.5 Sensor System Layered Conceptual Architecture 12

Figure 2.6 Presence User Agent .. 12

Figure 2.7 SIP Architecture and Operations ... 15

Figure 2.8 Presence and Instant Messaging Model ... 17

Figure 2.9 Call Processing... 19

Figure 2.10 Conference Room Motion Sensor Node and Reservation Status
Indicator ... 20

Figure 2.11 Web Page Showing Live Conference Room Occupancy and
Network Topology in the Building .. 21

Figure 2.12 A Context-aware Building ... 22

Figure 3.1 Project Management Process ... 24

Figure 3.2 System Architecture ... 26

Figure 3.3 Velleman K8055 Interface Board .. 27

Figure 3.5 Sensor Placement ... 29

Figure 3.4 Sensor System Hardware Setup ... 29

Figure 3.6 K8055 USB Interface Board Demo ... 31

Figure 3.7 Physical and Logical Sensor Software Structure 34

Figure 3.8 State based Detection Framework ... 37

Figure 4.1 System Setup with Single Detector.. 47

Figure 4.2 System Setup with Two Detectors ... 49

Figure 4.3 UDP Packets from Physical Sensor ... 51

Figure 4.4 A Data Frame with a Session Size of 16 bytes. 52

Figure 4.5 UDP Packets with a Session Size of 32 bytes................................ 52

Figure 4.6 A Data Frame with a Session Size of 32 bytes 53

Figure 4.7 Received UDP Packets with Multiple Detectors 53

Figure 4.8 A Data Frame from a Second Detector .. 53

Figure 4.9 SIP PUBLISH Messages.. 55

vii

 List of Tables

Table 3.1 Address Selection ... 30
Table 3.2 User Datagram Header Format .. 35
Table 3.3 Room Status Definition .. 39
Table 3.4 SER Presence Modules .. 44
Table 4.1 Accuracy Determination .. 57
Table 4.2 Detection Accuracy in MINT .. 58
Table 4.3 Detection Accuracy in OpenArea .. 58

1

Chapter 1

1. Introduction

1.1 Problem Statement

Nowadays, modern sensing technologies are more and more connected with social
demands and commercial use. It is increasingly viable to sense context in a variety of
environments. This can be used to enable context-aware services, which are highly
desirable as people wish to find new ways to make life easier. In fact, they expect that
life should become easier and easier with improved technology.

The need for context is even greater when we move into non-traditional,
off-the-desktop computing environments. From our own experiences on the campus,
it is easy to see many potential uses for context. Whether to organize a group meeting
or to find a place for a couple hours of academic study on the campus, unoccupied
meeting & project rooms are always in demand. Similar needs can also occur in
corporate buildings or even in hotels. The difficulties in trying to find an available
study area or meeting room on campus initially motivated our work to design a
system that could facilitate the search, saving both time and aggravation. While it
might seem that a simple scheduling system would be sufficient for our needs, we
observed that quite frequently rooms where reserved but not utilized for the entire
period for which they were reserved. To be able to detect that a room might be
reserved, but not currently utilized suggested that sensors be used to determine room
occupancy. This leads to the realization that room or area status information could be
used in other context-aware services. Therefore the idea of connecting a meeting
detector with a room scheduling system came about naturally. This is not a new
thought, it was a goal of the earlier Adaptive and Context Aware Systems project
(ACAS) at KTH; but the necessary technology did not exist. This thesis project is
another step towards establishing the required technology.

1.2 Objectives

In this thesis, we are interested in detecting a meeting (i.e., detecting that a room is in
use for a meeting) in an office environment. We expect this to be useful for two
classes of applications: (1) applications that help the user to control devices in the
room, such as projector, lighting, heating, cooling, and fresh air circulation; as well as
programming the user's phone (or telephone proxy) to send incoming calls to
voicemail; and (2) applications that help a central room scheduling system to monitor
the occupancy status of every room in order to facilitate users making bookings via a

2

room reservation service. A third class of applications concerning management of
rooms (in terms of long term planning, security, and safety) are outside of this thesis
project; but could be topics of future projects.

The main objective of our work is to develop, evaluate, and improve meeting detector
based occupancy sensing in conjunction with a room scheduling context-aware
system.

Many context-aware systems have been developed in the research community using
various sensors and acting on different sources of context information. In this masters
thesis, we wish to implement a meeting detector system at the KTH Center for
Wireless Systems (Wireless@KTH). The whole system should consist of independent
nodes (wireless sensors), a presence server, and some example applications.

The room occupancy information is gathered by the sensor nodes and sent to a central
receiver (the presence server). Daniel Hübinette developed a prototype of the
occupancy sensor system in his masters thesis project in 2007 [1]. In parallel with this,
detailed research on the presence server was done by Mohammad Z. Eslami and
described in his thesis "A Presence server for Context-aware applications" [2]. There
are also some applications implemented by earlier students, with more being
implemented today by other students. In this context-aware system, the room status
information may be processed and displayed directly on a user's display, as suggested
in the thesis by Yu Sun [3]. In addition to providing occupancy data, a room
reservation service can be developed to make it convenient to (re-)book rooms which
are reserved but not in use; leading to a smart meeting room system.

Publish
messages

Subscribe/notify
messages

Location Sensing
(WLAN signal strength)

Context Server

(SIP Express
Router)

Meeting Detector
(Occupancy Sensor)

Location based
Reminder

Room booking
application

Smart
Projector

 Publish
messages

Subscribe/notify
messages

Figure 1.1 Context-aware System Overview

3

Figure 1.1 shows the complete architecture of our context-aware system. As we can
see, the Meeting Detector and Location Sensing subsystem publishes messages as
inputs to the Context Server, which can send notify messages to applications such as a
Location-based Reminder or Smart Projector. The red highlighted portion of the
figure is our specific part of the overall system.

1.3 Organization of this Thesis

In this thesis, we will present some background information about context-aware
systems, introduce some related technologies, and describe some existing solutions
for room occupancy and meeting status detection in Chapter 2. Following this, in
Chapter 3, we will integrate the meeting detection systems together with a
context-aware infrastructure in order to publish room occupancy and meeting status
information to context-aware services and applications. The testing of the system and
analyses of experimental results will be presented in Chapter 4, as well as an
evaluation and suggested improvements in this meeting detector system. The thesis
will conclude with a summary of our conclusions and suggested future work in
Chapter 5.

4

Chapter 2

2. Background and Related Work

In this chapter, we will introduce background information about context-aware
systems, including the basic context-awareness architecture and examples of sensor
systems. Related technologies and research will also be presented at the end of this
chapter.

Context and context-awareness have been central issues in ubiquitous computing
research for the last decade. In order to get a better understanding of a context-aware
system, some concepts that are commonly used in this area have to be explained first.

2.1 Context and Context Awareness

2.1.1 What is a Context?

With computers being used in such a wide variety of situations, interesting new
problems arise and the need for context is clear: users are trying to obtain different
information from the same services in different situations. Context can be used to help
determine what information or services to make available or to bring to the forefront
for users.

Most researchers have a general idea about what context is and use that general idea
to guide their use of it. However, a vague notion of context is not sufficient; in order
to use context effectively, we must attain a better understanding of what context is.

From a user's context, we potentially get information such as identity, location, time,
temperature, and so on. The use of context is becoming increasingly important in the
fields of handheld and ubiquitous computing, where the user's context may change
rapidly.

In [4], Schilit and Adams introduce three important aspects of context: where the user
is, who the user is with, and what resources are nearby. They define context to be the
constantly changing execution environment. They include the following pieces of the
environment:

a) Computing environment: available processors, devices accessible for user input
and display, network capacity, connectivity, and costs of computing

b) User environment: location, collection of nearby people, and social situation

5

c) Physical environment: lighting and noise level

According to Dey and Abowd's discuss, we have a more clearly understanding, they
define the word "context" as follows:

"Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves. "
[5]

2.1.2 Definition of Context Awareness

Context-awareness is a kind of intelligent computing behavior. The term context-
awareness was introduced by Schilit in 1994 to describe a new class of computer
software application that exploits the changing environment of a mobile computer
user.

Anind K. Dey defines context aware in his doctor thesis "Providing Architectural
Support for Building Context-Aware Applications" [6]

"A system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task.”

In my understanding, for the computing systems, context-awareness is the capability
to provide relevant services and information to the users based on their situational
conditions (i.e., contexts). For example, context-awareness enables a person to follow
an ongoing conversation, and context awareness can help to guide the appropriate
behavior of a student when the student enters a building, a classroom or passes by the
library.

In [5], Gregory D. Abowd and Anind K. Dey mentions three important context
awareness behaviors are the presentation of information and services to a user,
automatic execution of a service, and tagging of context to information for later
retrieval.

The context-aware service in sensor based ubiquitous network consists of a sensor
platform, a context-aware framework and an intelligent agent. The sensor platform
collects raw data for context-aware services, the intelligent platform aware residents
and building context, then triggers intelligent and automatic services according to the
situations related to user, building environments and so on.

6

2.2 Context-aware System

The convergence of cellular telephony, pocket PCs, location information, and other
sensor data have well provided a basis for context-aware solutions. Many different
architectures and middleware systems have been developed to support context-aware
systems over recent years. Let us examine some applications and scenarios in smart
environments before including context-aware system architectures.

2.2.1 Context-aware System Applications

Researchers believe that the use of context can help computing systems to anticipate
our needs and act on our behalf. The growing demand for untethered access within
home, office, and outdoors has provided boundless opportunities for creating new
context-aware systems and services. Location and user identity are commonly used in
context aware systems - such as smart space applications.

In the project Teleporting - Making Applications Mobile [7] at the Olivetti Research
Laboratory (ORL), a call forwarding system uses a person's location information to
decide where the incoming calls to the person should be routed to. They use an
automatically maintained a database of the location of equipment and people within
the building for this context-aware teleporting system.

Asthana et al. describe a shopping assistant system in [8]. In this system, a hand-held
wireless communications device, the Personal Shopping Assistant (PSA), is used to
communicate with the Personal Shopping Server which tracks the shoppers' identities.
The centralized server maintains a customer database and uses each shopper's identity
information to provide services, such as recommending products and helping the
customers to locate shelved items.

2.2.2 Scenarios of Context-aware Systems in a Smart Meeting Room
Environment

Consider some typical scenarios of a context system in a smart meeting room (based
upon the thesis project of Lidan Hu [9]) [10].

a) In the smart context-aware environment, as a speaker enters the room, the
intelligent sensor in the room detects and recognizes her presence and reasons
about her intention. Knowing she is the speaker, the room concludes that her
intention is to give a presentation. The system may greet her by saying
"Welcome" on the display screen in the room. Based on the profile information of
this person, the room informs the projector device of the URL from which the
presentation slides can be fetched (the slides are uploaded to a server before).
After the slides have been downloaded, the projector device sets up the
presentation automatically for the speaker and presents the first slide at the
scheduled time.

7

b) Knowing that her slides are ready, the speaker could press a button on her cellular
phone or PDA to signal the room that she wishes to start her presentation. She
does not even need to use her laptop during the process. At this time, the room
may dim the lighting (if it senses that the lighting condition is too bright for the
audience to easily view the projected presentation).

c) During the presentation, the smart room detects the absence of some people who
previously expressed their interest in the presentation. Knowing that they had
planned to attend, the room utilizes their contact information to inform a meeting
minutes agent to send copies of the recorded presentation and the meeting minutes
to those people. Note that alternatively the users could receive reminders that the
meeting has started (via SMS, e-mail, synthesized phone call, etc.) - this reminder
might even include the SIP URL to be able to remotely join the presentation (as a
multimedia session).

d) As the presentation comes to an end, the speaker leaves the conference room, but
left behind her PDA in the room. The room detects the PDA's presence. Knowing
the device is not co-located with its owner, the room sends a notification to the
speaker via text messaging. The user's SIP proxy forwards this text message to the
user's cellular phone, her desktop SIP user agent, etc. The system can also
automatically return the lights to the appropriate level for the rooms next use (if
any), instruct the presentation system to delete the speakers slides (if they are not
to be retained), terminate the multimedia session if there were any participants,

This is a typical smart meeting environment. It assists users by managing the
scheduling of the meeting, assisting the speakers, and can provide the attendees with
an up to date agenda and updated documents related to the meeting. It can even help
take on some of the responsibilities of the moderator in a standard meeting, freeing
the human moderator to handle the unexpected.

2.2.3 Context-aware System Architectures Based on Acquisition Methods

In a context aware system, there are several processes that should be considered.
Firstly, the system needs to acquire context data via different type of sensors.
Secondly, the context data should be stored and processed for later use. Finally, the
system must distribute the context data to applications that need the information.

Typically context-aware systems acquire contextual information via sensors. We can
categorize sensors based on different architectures. Usually these sensors are
hardware sensors (e.g. thermal sensors, temperature sensors, touch sensors and
audio/video sensors). Context sensors may also be software programs that aggregate
information acquired from the hardware sensors and instrumented software to form
more specialized knowledge. Different context-aware systems have explored different
architectures and methods to acquire context. Normally, the context-aware framework
perceives context based upon raw context information from a sensor platform. An

8

intelligent agent utilizes this data to make inferences, in order to trigger automatic
services based upon the context information from the context-aware framework.

In [10], Harry Chen defines the following three categories of context acquisition
methods: (a) Direct access to sensor, (b) Middleware infrastructure, and (c) Acquire
context from a context server. In the context aware Pocket PC designed by Hinckley
and Jeff Pierce [11], the context-aware system acquires the states and the position of
the device by directly accessing the on-board sensors – proximity range sensors, touch
sensors, and tilt sensors. Anind K. Dey introduced Context Toolkit [12] in his PhD
research, which is a middleware infrastructure for supporting context acquisition.

In this meeting detector system, we decide to use the middleware infrastructure. The
idea is that middleware infrastructures facilitate sensing. This approach introduces a
layered architecture, which supports better scalability, extensibility, and reusability. In
this infrastructure, context aware applications' implementations can focus on how to
use context, rather than how to acquire context.

As we can see in Figure 2.1, there are three levels: sensors, middleware, and
applications. The middleware includes one or more context collectors, processors,
repositories, and distributors. The sensors collect context information from
environment. Then the context information is delivered to higher layers and stored in
a context repository. At the same time, the context information is processed by the
context processor for later distribution. Finally, the context distributor selects and
distributes the context information to applications and their users.

Middleware

Sensor 1

Context
Repository

Context
Collector

Context
Distributer

Context
Processor

Application 1 Application 3

Sensor 2 Sensor 3

Application 2

Figure 2.1 Middleware Architecture [2]

9

In this acquisition approach it trades computation resources for development
convenience. In order to maintain a generic programming interface between the
high-level applications and the low-level sensors, a certain amount of computation &
communication resources (e.g., CPU power, memory, network bandwidths) must be
allocated for the middle-ware's operations. This may lead to problems when there are
some insufficient resources, for example for devices that have limited resources such
as PDAs and cellular phones.

Many modern context aware systems use a middleware infrastructure because the
presence server allows multiple applications to reuse the context data that can be
distributed. This infrastructure was used in Mohammad's thesis project. He also
explained the details of the other schemes in his thesis paper [2]. The communication
between the middleware infrastructure and the sensor system (which collects context
information) is one of main focuses of our work.

10

2.3 Sensor System

A sensor system is used to gather the necessary information about a user's
environment from specific sensors. Information gathering, data corrections and
management are the main objectives of the sensor networking.

2.3.1 Sensors

In a pervasive computing environment, sensors are often used to detect the presence
of people in a building. For example, Radio Frequency Identification (RFID) sensors
can detect the presence of RFID Tags and infer the presence of people who are
expected to be wearing them, and Bluetooth sensors can detect the proximity
(presence) of Bluetooth-enabled personal devices and infer the presence of the device
owners. More details about location sensing system can be found in [13].

In order to detect the occupancy in an area, two approaches can be used. The first
approach is to detect, locate, and track persons or movements within a zone. The other
approach is to record the event when someone passes by a fixed point as they enter or
exit the area.

Context information can be collected from variety of sources. In [14] Baldauf and
Dustdar define three different types of information collecting sensors can do. These
are physical, virtual, and logical sensors. For different purposes, one or more different
physical and virtual sensors can be used to gather data for the context-aware systems.
The sensed information is classified as the base information. The sensor information
manager is in charge of collecting the raw data and managing the collected
information.

A generic process for determining occupancy in a room can be divided into the
following phases: data gathering, data analysis, and data distribution as shown in
Figure 2.3. The data gathering phase is where data is collected and prepared for data
analysis. The data analysis phase is where occupancy is determined with the aid of the
collected data. The data distribution phase is where the result of the analysis is made
available for use in a context-aware system. The three phases have to occur in the
order specified.

Logical Sensor

Physical Sensor Virtual Sensor

Figure 2.2 Sensor Entities

11

In a room occupancy system, a physical sensor may be used to detect the occupancy
of the room, such as a camera or thermal detector. Figure 2.4 (a) shows an AXIS
NetEye digital camera [15]. It features a built-in web server. With this network
camera, users (and applications) can take and view pictures remotely over the network
with a standard web browser. The data collected by the camera can be analyzed and
used as context information.

(a) NetEye Digital Camera (b) Infrared Intrusion Detector

In Daniel Hübinette's thesis [1], he described three types of sensors. The advantages
and disadvantages off each of the technologies were also explained. After the
comparisons and analyses, he chose thermal detectors for his occupancy sensor
system. He focused on designing and evaluating an occupancy sensor system
prototype. The prototype was designed to detect, determine, and distribute room
occupancy context data. In this case, the context data refers to the occupancy values:
zero, one, or many entities in the room. For the detection hardware, a Velleman
Passive Infrared (PIR) Mini Intrusion Indoor Detector, HAA52, was selected. It
employs a dual element pyroelectric sensor that allows it to be attached to a surface or
corner, between one to five meters above floor level. A picture of this detector is
showed as Figure 2.4 (b). Details of this sensor are provided in his thesis.

2.3.2 Sensor System Architecture

In [14], Baldauf and Dustdar propose a layered conceptual architecture which
separates detecting and using context to improve extensibility and reusability of the
system. The first layer consists of a collection of different sensors. It is notable that
the word "sensor" not only refers to sensing hardware, but also to every data source
which may provide usable context information. The context information may be

Data Gathering Data Analysis Data Distribution

Figure 2.3 Generic Sensor System as a Process

Figure 2.4 Sensor Detector

12

collected by various types of sensors. The second layer, Raw data retrieval layer, is
responsible for the retrieval of raw context data. After receiving the data, Raw data
retrieval layer provides a sensor application programming interface abstraction for the
data preprocessing. The third layer, Preprocessing layer, is responsible for reasoning
and interpreting of the context data from the lower layers. The fourth layer, Storage
and Management layer, organizes the gathered data and offers them via a public
interface to the client. In this layer the context information is stored and managed for
later use. The actual reaction to different events and context states is implemented in a
fifth layer, Application layer. Context-aware applications can be developed based on
the collected and processed data.

2.3.3 Occupancy Sensor as a Presence User Agent

The occupancy information should be sent to entities such as the context server after
the data have been gathered and analyzed. As we can see in Figure 2.6, the context
server works as a Presence Agent (PA) in a context-aware system. At the same time,
the occupancy sensor works as a Presence User Agent (PUA) which is responsible for
transferring the context information to the context server (or PA). The presence
information exchange mechanism and related technologies will be explained in the
following section.

Storage and Management

Preprocessing

Raw data retrieval

Sensors

Application

Occupancy Sensor
(Presence User Agent)

Context Server
(Presence Agent)

Applications
(Watcher)

Figure 2.5 Sensor System Layered Conceptual Architecture

Figure 2.6 Presence User Agent

13

2.4 Related Technologies

In context-aware systems, the presence information needs to be detected, described,
stored, and exchanged in a way that can be understood and processed by different
types of systems. Some of the commonly used technologies in this process are
described in the subsections below.

2.4.1 XML

XML [16], short for eXtensible Markup Language, is a generic markup language for
data representation. It is a simple, very flexible text format. It started as a simplified
subset of the Standard Generalized Markup Language (SGML) [17], and is designed
to be human-readable and meet the needs of large-scale electronic publishing. XML
became a W3C Recommendation in February 1998 [18].

XML is designed to make parsing easy to implement. It is a markup language unlike
HTML (which is interpreted by a browser to display data from a webpage - as HTML
contains not only the content but also describes the web page layout). XML is
designed to structure, store, transport, and encode information. A variety of
application languages can be implemented in XML by adding semantic constraints,
these include: XHTML, RSS, MathML, GraphML, Scalable Vector Graphics,
MusicXML, and thousands of others [16].

XML is a markup language for documents containing structured information. It plays
an important role in the exchange of a variety of data on the Internet. Today, XML is
the most common data exchange format and is used in many aspects of web
development.

An extension of XML is used in the Markup Scheme Model [19] which is commonly
used for context modeling. This allows new context information to be easily utilized.
To facilitate the future development of context-aware applications, users should
define extensible tags in an XML Document Type Definition (DTD) file to describe
the context information. Having a formal description in a DTD file enables programs
to check the XML grammatical correctness of a document using this DTD.

2.4.2 SIP

2.4.2.1 What is SIP

The Session Initiation Protocol (SIP) [20] is a signaling protocol for Internet
conferencing, telephony, presence, event notification, and instant messaging. The
Session Initiation Protocol (SIP) working group is chartered to maintain and continue
the development of SIP, currently specified as a proposed standard in RFC 3261 [21],
and its family of extensions. SIP can establish sessions for video conference,
interactive gaming, and call forwarding over IP networks. While SIP was desired to

14

be used for multimedia call session setup and control over IP networks. Today, SIP is
also widely used (for many different types of applications) since it is very easy to find
a SIP stack to develop the applications desired - while leveraging the power features
of SIP (such as user and device mobility) and leveraging the increasingly common
SIP infrastructure.

In [22], Ubiquity Software Corporation presents an overview of SIP. A detailed and
technically informed introduction to SIP ecosystem is described by Sinnreich and
Johnston in [23]. A list of SIP's major features are:

a) SIP is a text-based protocol for initiating interactive communication sessions
between end users. This makes SIP both flexible and readily extensible. SIP is the
first protocol to enable multi-user sessions regardless of media content.

b) SIP is designed to be independent of the lower-layer transport protocol, which
allows it to take advantage of new transport protocols.

c) SIP is a request-response protocol that closely resembles two other Internet
protocols, the web’s Hyper Text Transfer Protocol (HTTP) formatting protocol
and the Simple Mail Transfer Protocol (SMTP) email protocol; consequently, SIP
fits comfortably alongside other Internet applications and leverage user familiarity
with URLs, email addresses, client-server protocols, etc. Using SIP, telephony
becomes another network application and can be easily integrated with other
Internet services.

d) SIP is flexible, extensible, and open, and it is galvanizing the power of the Internet
and fixed and mobile IP networks to create a new generation of services.

e) SIP is analogous to HTTP in the way it constructs messages, so developers can
easily and quickly create applications using popular programming languages such
as Java.

Based upon these features, SIP readily supports: (a) Notion of presence and user
location mechanisms; (b) Application-layer routing (including forking) and message
processing (e.g., CPL - see section 2.4.6). These two characteristics make SIP very
suitable for our context-aware system - as we do not have to worry about user or
device mobility (as SIP takes care of this for us) - and we can easily extend CPL to
make decisions about forwarding calls based upon occupancy context information.

2.4.2.2 SIP Architecture

SIP is a signaling and control protocol for multimedia sessions. The SIP architecture
provides personal, terminal, and session mobility with a readily available
infrastructure.

From an architecture standpoint, the basic components of a SIP network can be
grouped into two categories: the SIP user agents and the SIP network servers. The

15

user agent is the end system component for the session (such as a voice over IP (VoIP)
call) and the SIP server is the network device that handles the signaling associated
with multiple sessions. The user agent itself has a client element, the User Agent
Client (UAC) and a server element, the User Agent Server (UAS). The UAC initiates
requests, and the UAS generates responses to received requests. This allows
peer-to-peer sessions to be created using a client-server protocol. Figure 2.7 shows the
basic architecture and operations of SIP. We explain the components of this
architecture following this figure.

User Agent Client A logical function that creates a request, then as a client sends
this request

User Agent Server The logical function that generates a response to a SIP request

SIP Proxy An intermediary that forwards or proxies the request from a
UA or proxy to another location

Redirect Server A server that redirects a request to a user agent for direct
routing to complete this request

Registrar Server A server that receives SIP registration requests and updates
the UA's information into a location server or other database

Registrar Server Location Server

 Database

 SIP Proxy

 SIP Proxy

 SIP Proxy

Redirect Server

 UA a

 UA b

i

ii

iii

iv

1

12

2 3

4

11

5 6

7

8 9

10

Figure 2.7 SIP Architecture and Operations (Adapted from [24])

16

In [24], ChenXin Zhang introduces other advanced servers, including:

Presence Server Exploits the users’ presence information to facilitate any type
of Internet or telecommunication application

Location server A SIP/SIMPLE server to maintain location information for
currently registered SIP user agents

The main function of the SIP servers is to provide name resolution; maintain
knowledge of the user agent’s location, since the caller is unlikely to know the current
IP address or host name of the called party; and to pass on SIP messages to other
servers using next hop routing protocols. The steps from i to iv in Figure 2.7 show
how a SIP entity registers it location with a SIP Registrar.. The detailed process of
SIP signaling to set up a session between two users is illustrated in steps 1-12 in
Figure 2.7; in this case the SIP messages traverse from UAa to UAb via several SIP
proxy servers.

2.4.2.3 SIP Messages and Process

SIP communication occurs through two types of messages: requests or responses. The
UAC makes requests and the UAS returns responses to client requests. The six main
types (methods) of requests are [25]:

INVITE Indicates a user or service is being invited to participate in a session

ACK Confirms that the client has received a final response to an INVITE
request

BYE Terminates a session and can be sent by either the caller or the callee

CANCEL Cancels any pending searches but does not terminate a session that has
already been accepted

OPTIONS Queries for the options and capabilities of a server

REGISTER Registers the UA with the SIP registration, which updates its location in
the location server

SIP uses requests and responses to establish communication between two or more end
points. An invitation to a session occurs when one SIP end point (user A) invites
another SIP endpoint (user B) to participate in a session. During this process, user A
sends an INVITE message requesting that user B joins a particular conference or to
establish a two-party conversation. If user B wants to join the session, it sends an
affirmative response. Otherwise, it sends a failure response. Upon receiving the
response, user A acknowledges the response with an ACK message. If user A no
longer wants to participate in the session, it sends a BYE message instead of an ACK
message.

17

2.4.3 SIP Express Router

SIP Express Router (SER) is a SIP proxy (router) which was developed by iptel [26]
based upon the SIP standard. SER is an open source SIP server which is free and
highly configurable, as well as high-performance. SER is an extremely scalable and
flexible SIP server. SER is complete and can support SIP according to RFC 3261 over
TCP and UDP. In [27], Jiri Kuthan introduces SIP and SER.

The most important configuration file of SER is "ser.cfg". It may be thought of as the
brains of the SIP router (due to its fourth section). This file is divided into four parts:
Global Configuration, Module Loading, Module-specific Parameter, and Routing
Logic. The second and third parts of the "ser.cfg" configuration file control which
modules should be loaded and defines how these modules should behave by setting
module variables. SER is being used by many SIP device vendors. Using SER helps
us to achieve excellent interoperability.

Mohammad Z. Eslami [2] both introduced SER into our context-aware system and
showed that SER had sufficient performance for use in this system. Therefore, we will
continue to use SER to register users in a database (which acts both as a general
database and as the SIP location server) enabling SIP messages to be routed between
clients, service agents, applications, and sensors.

2.4.4 SIMPLE

The IETF has produced many specifications related to Presence and Instant
Messaging with the Session Initiation Protocol. Collectively, these specifications are
known as SIMPLE, which stands for Session Initiation Protocol for Instant Messaging
and Presence Leveraging Extensions [29]. The protocol suite is based on SIP, so it
enables messages to be exchanged within a SIP session and provides a subscription
based framework for an event notification. SIMPLE is an extension of SIP to deliver
both instant messaging (IM) and presence information. Presence information is much
broader than just IM, and it enables communications using voice and video along with
IM. In [29], M. Day et al. define a Presence Service which accepts presence
information, stores it, and distributes it.

Presence
User

Agent

(PUA)

Presence
Agent

(PA)

Watcher

Publish

Update

Notify

Subscribe

Presentity Presence Service Watcher

Figure 2.8 Presence and Instant Messaging Model

18

Figure 2.8 shows how the presence messages are exchanged according to the SIMPLE
standard. The Presence Service (or Presence Agent (PA)) has two distinct sets of
"clients". One set of clients, called a Presentity or Presence User Agent (PUA),
provides presence information to be stored and distributed. The PUA detects the
context information and updates the PA via a PUBLISH message. The other set,
called Watchers, receives presence information from the service. Two kinds of
watchers are introduced in this model: fetcher and subscriber. The fetcher simply
requests the presence information from the Presence Agent. In contrast, the subscriber
is interested in updates to presence information, so it sends a subscribe message in
order to receive updates from the Presence Agent.

2.4.5 PIDF

In [30], Hiroyasu Sugano et al. define the Presence Information Data Format (PIDF)
as a common presence data format for Common Profile for Presence (CPP) [31] -
compliant presence protocols. It provides a means for presence information to be
transferred across CPP-compliant protocol boundaries without modification. In the
model of Presence and Instant Messaging shown in Figure 2.8, the presence
information is sent by a PUA. This information is in the form of an XML presence
document utilizing the Presence Information Data Format (PIDF).

PIDF encodes presence information in XML. XML is considered as the most
desirable encoding because it has a hierarchical structure and can be readily extended.
A presence payload in XML-encoded presence information data format is expected to
be produced by the Presentity/Presence User Agent (the source of the presence
information) and transported to the Watchers by the presence servers or gateways
without any interpretation or modification.

There are many extensions to PIDF in order to offer richer presence information, see
A Data Model for Presence (RFC 4479 [32]), RPID (RFC 4480 [33]), Timed Presence
Extensions (RFC 4481 [34]), and CIPID (RFC 4482 [35]).

2.4.6 CPL

Call Processing Language (CPL) [36] is a language for user control of Internet
telephony services. It is designed to be implementable on either network servers or
user agent servers. It is not tied to any particular signaling architecture or protocol. It
is based on XML. Implementations of the CPL are expected to be part of both Internet
telephony servers and advanced clients; as both can usefully process and direct users'
calls.

As explained in [27], CPL may be used by both SIP and H.323 servers. In the case of
SIP, CPL scripts can be triggered by SIP messages. CPL scripts define a decision tree
which may result in signaling (proxy, redirect, reject) or non-signaling (mail, log)
action. In our case, the CPL scripts are uploaded to the SIP proxy server, SER. They

19

are stored in an external MySQL database. When an incoming INVITE comes, SER
will execute the appropriate part of the CPL script based on the SIP message. The
CPL script processing determines how these calls will be handled.

In [37], Alisa Devlic describes CPL extensions for context to be used for call
processing services. Context parameters such as context owner, location, task, and
activity are utilized as well as a context-switch which is defined and used to trigger
the context-aware services based on the context information of an end user. Figure 2.9
shows the call processing logic with CPL extension scripts in SER.

Below we show an example of a CPL script. In this script, an incoming call to
Xueliang while he is at a meeting in an office will be switched to his voice mail based
on the meeting status information detected by the occupancy detection functions
leading to a context-aware system.

<?xml version=”1.0” encoding=”UTF-8”?>
<cpl>
<incoming>

<context-switch field="origin" subfield="host">
<location url="sip:xueliang@example.com">

 <context location="Office" activity="Meeting">
<redirect status=”redirect” reason=”I am in a meeting.”/>

</context>
</location>
</context-switch>

</incoming>
</cpl>

Redirect

Reject

Proxy

Voicemail

Accept

Meeting

SER with CPL

Figure 2.9 Call Processing

20

2.5 Related Research

Some prototypes have also been built to detect a meeting in an office environment in
order to implement a smart meeting room system. We will examine the related
research in this area in the following subsections.

2.5.1 A Conference Room Application

In [38], Conner describes a conference room application using Mica2 motes [39] to
relay room occupancy data from motion sensors built into the rooms at Intel
headquarters. This system utilizes in-room sensors connected to motion sensors which
monitor the room occupancy status, a gateway node acts as a bridge between these
sensor nodes and wireless networks, and a web application provides room occupancy
information to users. This web interface allows both fixed and mobile users to view
the occupancy status of the various rooms.

Figure 2.10 Conference Room Motion Sensor Node and Reservation Status Indicator (These
figures appear here with permission from W. Steven Conner, the author of [38])

Figure 2.10 shows the motion detector nodes at the entrance to each conference room
as well as a reservation status indicator which indicates current/future reservation
status of the room. With this indicator, the conference room application can also
provide a room reservation service through Microsoft's Outlook®. A display (at each
room) shows the room's status. Communication protocols for this system consist of
sensing and actuation. The sensing part delivers the occupancy information to a web
server. While the actuation part provides room reservation information to the indicator
attached to nodes outside of each room. A web application provides live occupancy
information for all the rooms on a given building floor, as shown in Figure 2.11. A
room scheduling system can also be deployed which utilizes the room occupancy
information.

21

Figure 2.11 Web Page Showing Live Conference Room Occupancy and Network Topology in
the Building (This figure appears here with permission from W. Steven Conner, the author of

[38])

2.5.2 Room Occupancy Detection with Power Line Positioning

In [40], Chris Chan and Michael Onorato present a room occupancy detection system
that can determine the location of the sensors nodes in a building with room-level
accuracy. Their system is based on a method called "Power Line Positioning" (PLP),
originally proposed in a paper by Patel, Truong, and Abowd [41]. They design their
own proprietary circuits for injecting and sensing signals via the power lines. Using
Panasonic ZigBee wireless communication modules [42], they obtain human presence
information and send both pieces of information wirelessly to a central user interface.
Another ZigBee module connected via serial port to a personal computer is used to
display information through a graphical user interface.

2.5.3 A Large Scale Context-aware System: A Context-aware Building

In [43], Yoosoo Oh introduces a prototype of a large scale context-aware system. The
prototype is a context-aware building including a number of real and simulated
sensors as well as actuators. The implementation is based on three different sensors: a
wearable activity sensor, environment based status sensors, and an identity, Personal
Information Management (PIM) and interaction sensor on a mobile device. The
wearable activity sensor as shown in Figure 2.12 (c) detects 3 axis acceleration data
for a user's activity and posture. An environmental sensor, shown in Figure 2.12 (b),
senses environmental data, such as sound, force, temperature, and light. They also
implement an application that runs on a PC and uses the user's login and Skype states
as input for an environment based status sensor. Apart from these, an application on
the mobile phone acts as an identity sensor and personal information management
sensor (shown in Figure 2.12 (e)). The mobile phone application also offers device

22

controls. The sensor information can be communicated via Bluetooth from the
environment to the system.

(a) The output simulator for a large building implemented in Flash(ubiBuilding)

(b)
A environment

sensor

(c)
A wearable

activity sensor

(d)
An extended Skype
messenger acting as

a status sensor

(e)
A mobile phone

running the ubiMobile
application

Figure 2.12 A Context-aware Building (These figures appear here with permission from
Yoosoo Oh, the author of [43])

For each type of physical sensor they implement a simulated counterpart that offers
the same interfaces as the real sensor and has the same function. These virtual sensors
create context by clicking buttons in a graphical user interface (GUI), instead of
collecting context from data detected by physical sensors. They stated that was very
helpful to use these virtual sensors in the prototype period, because several physical
sensor components were not yet implemented. In their prototype, the "ubiBuilding
Simulator" is a simulator which can be driven by virtual or physical sensors. This
output simulator is a building simulation system implemented in Macromedia Flash,
see Figure 2.12 (a).

23

2.5.4 A Smart Meeting Room with Pervasive Computing Technologies

J. Wang et al. [44] implement a prototype in a typical office environment that detects
the meeting's start and end by combining outputs from pressure and motion sensors
installed on the chairs. The hardware and software are reasonably simple and portable.
They have addressed the detection of a meeting, but they only considered pressure
and motion as factors to determine if a meeting is in progress. Sometimes their system
may reach an incorrect conclusion, for example assuming that two persons sitting in
chairs in the library reading room for individual study are in a meeting.

In [45], Shameem Ahmed et al. present a design of a smart meeting room that not
only determines the start and ending time of the meeting, but also classifies it
appropriately to help make meetings more efficient and effective. They define a
meeting as an activity having specific start and end times that are scheduled in time
slots in the user's agenda. Some characteristics of a meeting introduced in [45] are:

a) At least two people present in the meeting
b) Most of the people occupy the chairs
c) A speaker conducts the meeting
d) Some verbal communication among people occurs
e) The silent period within a meeting does not exceed a pre-specified threshold

value.

They categorize meetings into two main classes based on the conversation time. The
sensing is performed by using sensors and existing software for speaker recognition.
In their approach a meeting starts when some people occupy the chairs, there are
some movements, and the main speaker starts to speak; a meeting ends when the
meeting room is quiet and there are no movements or pressure on the chairs. They
also built a simulating tool to show the results of their detection algorithm. Their
approach plays a vital role not only for meeting detection, but also other closely
related applications of pervasive computing.

24

Chapter 3

3. Goals and Implementation

In this chapter, we will explain goals of this thesis and methodology for the first part.
System design and implementations are also included in this chapter.

3.1 Goals and Methods

As explained in section 1.2, our aim was to design, develop, and deploy a meeting
detector system in an office environment. Apart from the design and implementation,
system testing and data analysis were performed. An evaluation based on
measurements and suggested improvements was done after implementation phase. For
details of the measurements and analysis see the next chapter.

The meeting detector system should provide the following functions:

a) A physical sensor entity that detects the activities of a defined space.
b) A logical sensor entity that communicates with a physical sensor and performs

data gathering and processing.
c) A Presence User Agent (PUA) that distributes context data to a context server.

Furthermore the meeting detector system may be used as an input to the Meeting
Room Booking System (MRBS) for later use by store the context information in a
database. Therefore we should consider the interaction with other applications while
designing and implementing the meeting detector system.

Using a typical project management process, the project consisted of the following
phases: Product requirement specification, Design, Implementation, Testing and
evaluation.

At the beginning of this thesis project, several meetings with both the examiner and
supervisor were held. In this phase, the requirements of this meeting detector system
were discussed and defined by both the examiner and myself. After gaining a clear
understanding of the project, I collected information and studied related technologies.

Requirement
Specification Design Implementation Testing and

Evaluation

Figure 3.1 Project Management Process

25

A literature study completed this phase and laid the foundations for the system design
and implementation.

After the problem formulation process, the requirements were mapped into technical
specifications. A prototype design was implemented and evaluated by iterative testing.
This testing was conducted in a lab environment (using one small conference room
and the hallway leading to a large open lab). The detailed hardware and software
design is described in Section 3.2.

An important part of this thesis project was the evaluation of the prototype based upon
system testing and data analysis. However, before discussing the evaluation further,
we begin examining the design considerations with respect to the sensor system.
Since the sensor provide the essential input to all of the subsequent processing. Based
on the system evaluation, some improvements with regard to the system were
suggested for future work.

26

3.2 Prototype Design and Implementation

In our prototype the meeting detector system has to detect the occupancy status of a
defined zone and distribute the resulting context data to a context server. We integrate
an occupancy sensor system with a SIP Express Router (SER) based context-aware
architecture. An overview of this system is shown in Figure 3.2. The occupancy
sensor system generates context information as input to SIP Express Router which
works as a context server.

We will describe the design of prototype specifically in the sections which follow. We
start with the sensor itself, as the characteristics of this data source affect all of the
subsequent parts of the system.

3.2.1 Sensor System Setup

In this section, we will explain the setup and configuration of our sensor system on
both hardware and software.

3.2.1.1 Hardware Description

(a) Velleman PIM Intrusion Indoor Detector, HAA52

For the sensor hardware, we choose the Velleman PIR Intrusion Detector [46],
HAA52, which is a thermal detector as explained in Section 2.3.1. The HAA52 is a
reliable low-cost detector designed for general use.

It has the following features and specifications:

• Dual-element pyroelectric sensor
• Programmable pulse counter
• 12° vertical angle adjustment
• RFI protection

SIP Express Router

Presence Agent

Occupancy Sensor System

Presence User Agent

Occupancy Information

Figure 3.2 System Architecture

27

• Wide operating input voltage range: DC 8-16V
• Suitable for surface and corner mounting
• Detection pattern: wide angle, 90° horizontal, maximum 42 beams in 3 layers
• LED indicator: walk-test indication ON or OFF (this can be enabled or

disabled)
• Alarm activation delay: 2 to 3 seconds

Based on these features, it seems very suitable for our sensor system. It can be placed
at the boundary of an area to monitor the movements across the border. In our
prototype we plan to deploy the HAA52 detector at the entrance door of a meeting
room in order to monitor the entrance and exit activities - as this will enable us to
compute the occupancy status of the area. Note that an essential feature of this sensor
is the dual-element pyroelectric sensor, as this enables us to determine if someone is
entering or leaving the room.

(b) Velleman USB Experiment Interface Board, K8055

For data collection, we choose the Velleman USB Experiment Interface Board [47],
K8055. It is a small USB attached board with several I/O ports. It is powered via the
USB interface. A picture of this interface board is shown in Figure 3.3.

Figure 3.3 Velleman K8055 Interface Board
USB connection

Analog inputs

28

Below is a summary of the features and specifications of the Velleman K8055
interface board:

• Power supply through USB: approx. 70mA
• 5 digital input channels (0=ground, 1=open), and test buttons are provided on

board
• 8 digital output channels
• 2 analog inputs with 8 bit resolution & attenuation with optional

amplification (internal test +5V provided)
• 2 analog outputs with 8 bit resolution

o 0 to 5V, output resistance 1K5
o PWM 0 to 100% open collector outputs: maximum 100mA/40V (on

board LED indication)
• 2 hardware counters connected to the 2 first digital inputs with customizable

debounce times
• Diagnostic software and communication Dynamic Link Library for the

Microsoft Windows platform
• General conversation time: 20ms per command
• The numbers of inputs/outputs can be further expanded by connecting more

(up to maximum of four) cards to the PC's USB connectors

While this board is overkill for our application, it provides all the features necessary
to collect data from two HAA52 detectors. There is an illustrated assembly manual
available at [48]. This K8055 Interface board is easy to use and there existed C source
code for use on a Linux platform (see section 3.2.1.2).

Actually we intended to use a SmartBadge at the begging of this project. It was
designed by Mark T. Smith. More information about this badge can be found in [49].
It could fulfill the implementation for us with some programming on it. However,
after some investigation and comparison, we found the K8055 interface board
matched our requirements very much – it has 2 anolog inputs with 8 bit resolution for
sampling which is enough for us and it is easy to be deployed with the physical sensor
entity. So we decided to buy and use this board for our system.

(c) Dell OptiPlex GX620 Desktop PC

For data processing and programming, we use a Dell OptiPlex GX620 desktop PC.
The specifications of this OptiPlex GX620 PC we used are:

• Intel® Pentium® D Processor with Dual Core Technology with 2.8GHz CPU
• 2GB of Dual Channel DDR2 memory
• 250GB of Serial ATA II (SATA II) hard drive
• ATI Radeon X600 with 256MB of memory
• Dual VGA displays
• Dual Operating Systems: openSUSE Linux and Microsoft's Windows XP

29

In this thesis, we used this OptiPlex GX620 PC as the main development and
operating platform. The hardware system is configured as Figure 3.4.

The HAA52 detector is attached to a pillar at the entrance door to the meeting room
(See Figure 3.5) and connected with a K8055 interface board. At the same time, the
K8055 interface board is connected to the Dell GX620 PC via USB cable. So the
sensor data from the sensor is gathered and converted by the K8055 interface board
and finally transmitted to the PC.

(a) Sensor1 for MINT

(b) Sensor2 for OpenArea

 Figure 3.5 Sensor Placement

USB Cable
HAA52
Intrusion
Detector

K8055
Interface

Board

Dell
OptiPlex
GX620
Desktop

Figure 3.4 Sensor System Hardware Setup

30

For testing we placed one HAA52 detector in a meeting room "MINT" for initial
testing and measurement. Then another HAA52 detector was deployed in the corridor
to monitor the "OpenArea" (See figure 3.5). These two detectors were both connected
to the K8055 interface board as input 1 and input 2. Later on more detectors and
interface boards could be deployed for the other conference rooms in our environment.

3.2.1.2 Software Setup

For the K8055 interface board, Velleman provides a Dynamic-link library (DLL)
which contains all the routines needed to write your own programs to control this
interface board. The functions provided by the DLL are pretty straight forward and
self-explanatory. The library itself is based on the DLL developed for the Windows
platform. Sample PC software is provided in the folder K8055_VM110 USB board on
the Velleman software CD. We intend to install the demonstration software on a
Windows machine for initial functional testing of the K8055 interface board.

The included demonstration software makes it easy to experiment. The jumpers SK5
and SK6 are used for address selection (open = 1, closed = 0). In other words, we can
choose the interface board number by jumpering. Up to four boards can be connected
at the same time. In our case, we jumpered SK5 and SK6 in order to select address 0
for this K8055 interface board. The address selection details are shown in Table 3.1.

Table 3.1 Address Selection

SK5 SK6 Address

ON ON 0

OFF ON 1

ON OFF 2

OFF OFF 3

Then we followed the test procedures in the manual as follows:

• Connect the USB cable to the board
• LED LD3 "Power" lights up if the board is properly connected
• After startup LD8 (output 8) will flash momentarily to indicate that the circuit

works as it should
• Start the program "K8055_Demo.exe"
• The software displays a graphical user interface as shown in figure 3.6.
• Press the "connect" button to connect the K8055 with the PC
• The message "Card 0 connected" is displayed to indicate the connection is

successful. See Figure 3.6.

31

Now we can generate some binary inputs by pushing the 5 digital input buttons. Input
is generally "high" (1), while connection to GND makes the input "low" (0). We can
also use the internal analog voltage to provide an input via potentiometers RV1 &
RV2 on the board. In our application, the analog inputs are used to attach to our
sensor, which may be from a temperature sensor, a potentiometer, thermal
detector, … .

Figure 3.6 K8055 USB Interface Board Demo

Here we connect the pyroelectric HAA52 detector to the K8055 interface board.
Details of how to connect directly to the pyroelectric sensors are contained in Daniel
Hübinette's earlier thesis [1]. The connecting two of these detectors to the board
results in the display shown in Figure 3.6. The scroll bars AD1 & AD2 on the screen
show the digital value (0 - 255) from the analog to digital converter. To convert this
value to an actual voltage, we have to connected a know voltage source to the device
and set the scaling appropriately (using a potentiometer). Then it is possible to
translate each value to a voltage. However, we are not really concerned with exact
voltages, but rather the change in voltage as someone walks by this sensor. This
simple testing enabled us to see that the interface board was working and that it might
provide the interface to the sensor which we desired. The next step was to write a
program that could make some measurements to see if we could sample the analog
signal from the sensor at an adequate sampling rate.

Before developing our own application program, we looked to see if there was an
existing library that could be used with Linux (thus we could develop all of the
software and run it on a Linux system). Our preference was to find an open source
driver for this board for Linux, because we could then integrate this application with
other Linux programs. With this thought in mind, we searched for a Velleman K8055
device driver for Linux. After some searching, testing, and comparison, a Linux

32

K8055 library provided by Sven Lindberg was chosen. This software is available at
[50]. It is under GPL license which suited our requirements for an open source
solution. A command line tool and a manual page are included with this software.
Lindberg developed his library to replace all other half-complete software for the
K8055 board under Linux. We used it to get control of the K8055 interface board. It
should be noted that it has the same functions as described in Velleman’s DLL user
manual, thus it is easy for a user to port programs between Windows and Linux (at
least with respect to controlling this interface board). For example, we can use this
library to read all the inputs, set digital/analogue outputs, or set debounce time.

We also have noted that a Linux version of Graphical User Interface (GUI) based
library is being developed [51]. It is a C/C++ program based on libk8055 USB board
library and wxWidgets GUI library. This could have been used to test the hardware
(much as we did with the demonstration applications provided by the hardware
vendor). In this thesis project, we did not use this GUI program, but it might be useful
for others.

For the development platform we mainly used openSUSE 10.3 Linux OS in this thesis
project. OpenSUSE 10.3 was released with Linux kernel version 2.6.22.5 and GNU
Compiler Collection (GCC) version 4.2.1. We updated the Linux kernel to version
2.6.22.17 for more stable use.

The software environment we used consists of:

• openSUSE 10.3 with kernel 2.6.22.17
• GCC 4.2.1

o a set of compilers produced for various programming languages (C,
C++, Java, Fortran …) by the GNU Project

• libusb 0.1.12
o an open source library that allows you to communicate with USB

devices from user space regardless of OS
• Linux K8055 library

o a Linux library with functions for Velleman K8055 interface board

The Linux K8055 library is available at [50] with the file name "libk8055.0.2.tar.gz".
We downloaded it and installed it following the instructions:

Extract it to the folder in path: /usr/src/k8055

Then execute these commands to compile and install (where "ccsmoto" is the local
host name)

ccsmoto:/usr/src/k8055 # make all
ccsmoto:/usr/src/k8055 # make install

The default installed paths are:

33

/usr/local/bin, /usr/local/lib, /usr/local/include, and /usr/local/man/man1/

Note that there is a manual page which can be read by invoking

ccsmoto:/usr/src/k8055 # man k8055

Our own program (readsignal.c) can use the k8055 library with this argument:

ccsmoto:/usr/src/k8055 # gcc -Wall -lusb -L/usr/lib -lm -lk8055 readsignal.c

We developed our own program to read signals from the Velleman K8055 interface
board using the include file k8055.h and the k8055 library. This program reads the
context data from the board and sends the sensor values to another logical entity
(implemented on this same PC - but it could be placed elsewhere on the network) via
a UDP socket. The processing is purposely split in this way to facilitate the
implementation later of a network attached sensor (i.e., a pyroelectric sensor node
could be designed and built as an Ethernet attached device - getting its power via
Power over Ethernet).The "logical.c" program takes charge of the context data
processing and provides this data to the context server (SIP Express Router).

The Linux K8055 library also comes with a command line application that can be
used for testing.

Syntax: k8055 [-p:(number)] [-d:(value)] [-a1:(value)] [-a2:(value)] [-num:(number)
[-delay:(number)]] [-dbt1:(value)] [-dbt2:(value)] [-reset1] [-reset2] [-debug]

This k8055 command can be run by root or any other user with permission to use the
USB. A more detailed description of these options can be found in manual page for
the k8055. There are some bugs with k8055 library. The 0 - 7450 ms is split along an
exponential scale in 255 sections according to Lindberg's report. The debounce timer
values are not accurate by the millisecond despite Lindberg stating that it works
within +-4% accuracy of the actual set time. However, it is more precise than
Velleman's DLL

The main.c program in the source file of libk8055 implements the above k8055
command. Initially we adapted this program (with a new file name "readtest.c") and
used it to collect some analog data from channel 1 (input 1) and to write this data to a
log file for some initial testing. This program proved the driver worked correctly with
this K8055 interface board. This test program also allowed us to understand the
maximum rate at which we could sample the analog data. The successful results of
this testing enabled us to conclude that we could continue our implementation of the
occupancy detector. The readtest.c program listing can be found in Appendix A.

34

3.2.2 Detection Approach

3.2.2.1 Interaction between Physical and Logical Sensor Entities

We need to collect the sensor data for the logical sensor. This process begins by
reading the value from the analog channel on the K8055 interface board. Then the
sensor data should be sent to the logical entity to do movement detection and analysis.
A structure for the interaction between physical and logical sensor entities is shown as
Figure 3.7.

In our work, the physical and logical sensor entities reside in the same computer
which is running openSUSE Linux. A client-server model between the physical and
logical sensor entities can be made to transmit sensor data. The system has a startup
phase to do initialization of the hardware and software system. The software both for
the physical sensor and logical sensor is written in the C programming language. The
physical sensor entity reads the signal waveform data from the sensor and sends it to
the logical sensor entity via a UDP client/server program. The logical sensor entity
receives the stream of data and executes a detection algorithm to compare the data
with the earlier state in order to indicate whether movement past the detector occurred.
If so, then the occupancy status will change. This context information can be sent to
the intended entity as a publish message.

As we indicated before, a UDP socket for client/server communication is used. Using
UDP, programs on networked computers can send short messages sometimes known
as datagrams (using Datagram Sockets) to one another. Sensor data are sent from the
physical sensor entity to the logical sensor entity as UDP packets. The generic UDP
packet structure [52] is shown as Table 3.2.

Logical Sensor (Server)

Physical Sensor (Client)

Send Data Read Signal

Receive Data Detect

Count

Publish

Figure 3.7 Physical and Logical Sensor Software Structure

35

Table 3.2 User Datagram Header Format

Bit 0 - 16 16 - 32

Source Port Destination Port

Length Checksum

Data

UDP provides two services that are not provided by the IP layer. It provides port
numbers to multiplex & de-multiplex packets and, optionally, a checksum capability
to verify that the data have arrived intact. The source Port indicates the UDP port of
the sending process. The destination is used to determine the process to which the
UDP datagram should be delivered at the destination. The 16-bit checksum field is
used for error-checking of both the header and data. A 16-bit length field that
specifies the length in bytes of the entire datagram: header and data. The minimum
length is 8 bytes since that is the length of the header. The field size sets a theoretical
upper limit of 65535 bytes for the data carried by a single UDP datagram.

There is a relation between payload size and packetization delay of the sensor's
samples. A larger UDP payload size results in the greater packetization delay.
Another issue to be considered is the rate at which user data is generated in the
physical sensor entity. This data rate is related to the numbers of bytes read from the
interface board per command. Reading a larger number of samples per command
reduces the time needed to collect data for placing in the payload and results in the
lower packetization delay. In the prototype the maximum raw data sample rate is
much lower than the capacity of the network. Actually we were using a USB
connection between the sensor hardware and the physical entity. So the bottleneck
was not the network traffic problem.

UDP ports enable application-to-application communication. The port field is a 16 bit
value, allowing for port numbers to range between 0 and 65535. The private ports are
those from 49152 to 65535. We choose 49152 as a static UDP port as the destination
port for the logical entity. It is statically defined in the "address.h" header file (See
Appendix D) which contains some other server addresses and ports.

A small sample of the source code to read data from the K8055 interface board is
shown below. It reads an analog voltage separately from channel 1 and channel 2. The
sample data can be printed for testing and debugging (if necessary). Two buffers are
used for temporary storage.

for (i=0; i < Number_of_Bytes_to_read; i++) {
 sample=ReadAnalogChannel(1L);
 sample2=ReadAnalogChannel(2L);
 bigBuffer[i]=(unsigned int)(sample & 0xff);
 bigBuffer2[i]=(unsigned int)(sample2 & 0xff);

36

 }
 bigBuffer[Number_of_Bytes_to_read]=0;
 bigBuffer[Number_of_Bytes_to_read+1]=0;
 bigBuffer2[Number_of_Bytes_to_read]=1;
 bigBuffer2[Number_of_Bytes_to_read+1]=0;

In order to distinguish the two buffers for the logical entity, we add a two byte value
into the buffer to indicate which sensor the data was read from. In this way multiple
detectors could be used and easily identified based on these bytes.

A UDP client socket is created in the physical sensor program to send data to the
logical sensor entity. The following lines show parts of the socket code on client side.

 if ((sendto(client_socket_fd,
 bigBuffer,
 Number_of_Bytes_to_read+2,
 sendto_flags,
 (struct sockaddr*)&server_addr,
 sizeof(server_addr)
)
) == -1) {
 perror("Unable to send to socket");
 close(client_socket_fd);
 exit(1);
 }

The full program for the physical entity is named "readsignal.c" and can be found in
Appendix B. The physical entity code can be compiled by invoking

ccsmoto:/usr/src/k8055 # gcc -o readsignal -lusb -L/usr/lib -lm -lk8055 readsignal.c

Then an executable file readsignal will be created. To manually run this program you
can simply type

ccsmoto:/usr/src/k8055 # ./readsignal

When the program is executed the Velleman interface board is found and sensor data
sent to the logical entity via a UDP socket. When the program starts, the following
output will be generated by the library routines:

Velleman Device Found @ Address 011 Vendor 0x010cf Product ID 0x05500
Got driver name: usbfs
Disconnected OS driver: No error
Found interface 0
Took over the device

37

3.2.2.2 Detection Algorithm/Methodology

The purpose of the detection algorithm is to know the occupancy status of an area.
This section describes how to process the raw data received from the physical entity
in order to determine the area occupancy status. The sensor raw data is collected from
the physical entity via a UDP server socket. Two approaches can be used to analyze
and process the data. We mainly use the same algorithms as Daniel did in his earlier
thesis project. One is voltage threshold state based and the other is correlation based
detection algorithm.

a. State based model

As we know from the testing, the voltage output from the detector changes when
someone passing by the detector as shown in Figure 3.8. Examining the analog
voltage waveform of the detector with an oscilloscope, it has a voltage range between
zero and two volts approximately. Five zones are defined: Top Zone, Middle of Top
Zone, Normal Zone, Middle of Bottom Zone, and Bottom Zone. The zone boundaries
can be measured and determined from analysis of the sensor raw data.

The signal waveform can be divided into different states based upon the signal
crossing the boundaries. A set of state transitions indicate the detection of a change in
occupancy using a state based detection algorithm. The voltage range near one volt is
defined as state 0. When the voltage goes across the threshold (either higher or lower),
it changes to the next state. Once the states from 0 to 5 have been traversed in a
particular order, a detection of entry or exit is made. Then the occupancy status of the
area is changed accordingly. Note that a timer is used to reset the state to 0 if a
defined time period is exceeded without a state change being triggered. So the stable
state is state 0. States 0 to 5 correspond to the states of receiving data, detecting, and
comparing. State S before 0 stands for the Startup state for initializing to receive data.

2V

1V

0 t t 0

Top Zone

Middle of Top Zone

Normal Zone

Middle of Bottom Zone

Bottom Zone

Top Zone

Middle of Top Zone

Normal Zone

Middle of Bottom Zone

Bottom Zone

(a) Left to Right Waveform (Entry) (b) Right to Left Waveform (Exit)

0

1

2

3

4

5

0

1

2

3

4

5

1V

2V

Figure 3.8 State based Detection Framework

38

State C after 5 corresponds to the count state to update the count of people in the area.
This can be considered as a state machine.

This state based detection algorithm can only detect one person passing through the
boundary at a time. The algorithm state can be reset when the numbers of entries or
exits exceed a predefined value. The detailed state based detection algorithm is
described in the logical sensor code, which can be found in Appendix C.

b. Correlation based model

A correlation based detection approach can be used for data processing and detection
computing. In [53], correlation is introduced as it indicates the strength and direction
of a linear relationship between two random variables in probability theory and
statistics. The main result of a correlation is called the correlation coefficient (denoted
by r). The best known linear correlation coefficient is sometimes referred to as the
Pearson product moment correlation coefficient. This is computed by dividing the
covariance of the two variables by the product of their standard deviations.

The mathematical formula for computing r is:

()()
() ()∑ ∑∑ ∑

∑∑ ∑
−−

−
=

⋅
=

2222

var

YYnXXn

YXXYn
stdevYstdevX
XYCor

Where n is the number of pairs of data.

The correlation value ranges between -1 and 1(-1 ≤ r ≤ +1). The + and – signs are
used for positive correlation and negative correlation, respectively. The closer the
coefficient is to either -1 or 1, the stronger the correlation (or in the negative case, the
anti-correlation) between the variables.

Positive correlation: If the correlation value r is positive, this means that as
one variable gets larger the other gets larger as well. If X and Y have a strong positive
correlation, r is close to +1. An r value of exactly 1 indicates a perfect positive fit.

Negative correlation: If r is negative it means that as values for X increase,
values for Y decrease (usually called "inverse" correlation). If X and Y have a strong
negative correlation, r is close to -1.

No correlation: If r is close to 0, this means there is no relationship
between the two variables.

Note that a correlation with r greater than 0.8 is generally described as strong,
whereas a correlation less than 0.5 is generally described as weak.

Basically, we can use correlation to get the similarity between two series of data. In
other words, we can compare the real time sensor data (Y) with a template sensor data
(X). In the correlation based detection system, template sensor data is collected and

39

chosen in advance. It is reversed in time and is compared with the incoming real time
sensor data (the reversal in time is to facilitate the incremental computation of the
correlation). Then we compute the correlation coefficient as each sample (or group of
samples) arrives to learn the relationship between the real time sensor data and
template sensor data. The correlation coefficient r is computed at each discrete time
step. A threshold level is set to indicate when the real time sensor data is close enough
to the chosen template data to trigger an entrance or exit detection. The threshold of
correlation coefficient r should be determined based on sufficient measurements of
detection in order to guarantee the desired accuracy. In this thesis project, the
threshold was set at r = 0.8.

Correlation based detection is widely used since it is very suitable when dealing with
irregular waveforms. It offers greater accuracy than a state based algorithm. For
multiple detectors, we can use the same template sensor data if the room environment
is similar. Otherwise we can also have multiple series of template data for multiple
detectors. In our detection program, a correlation based algorithm is used to monitor
the room occupancy status and notify the context server via publish messages when
the occupancy status changes. The code for correlation based detection is described in
Appendix C.

In this project, both detection algorithms are written in the same logical code. Thus
they can execute at the same time. The program can be compiled by this command:

ccsmoto:/usr/src/k8055 # gcc -o logical -lusb -L/usr/lib -lm -lk8055 logical.c

Then an executable file can be used to receive the sensor data, compute detection, and
publish the occupancy information to context server.

ccsmoto:/usr/src/k8055 # ./logical

In this program, the specific numbers of persons in the area can be calculated based
on the detections of the number of entries and exits. Then the occupancy status (the
number of persons in the area) can be obtained. Therefore we can infer whether there
is a meeting in progress or not. The room status is quantized as defined as Table 3.3.

Table 3.3 Room Status Definition

Persons in the area Room status

0 Empty

1 Individual

≥ 2 Meeting

Furthermore, meetings can be categorized according to the numbers of people in the
area. For example, a small meeting (2-3 persons), medium sized meeting (3-4

40

persons), and large meeting (more than 5 persons). This information may be later used
in the room scheduling system to monitor the meeting room utilization (i.e., to
understand if small meetings are taking place in large rooms or not).

The room occupancy information is distributed to a SIP proxy server using the
SIP/SIMPLE protocol. The context information is encoded as a PIDF formatted
document. These protocols and standards were described in Sections 2.4.3, 2.4.4, and
2.4.5.

3.2.3 Publish Context Information to a SIP Proxy

The room occupancy information can be used by our context server. For the context
server, we use the SIP Express Router (SER) as a SIP proxy server. The context
module in SER should be able to handle publish, subscribe, and notify messages. In
our case, it needs to receive the publish messages from the logical sensor entity and
parse them to extract the relevant context data from these messages and store it in
database for other context applications use. Mohammad Z. Eslami implemented a
presence server in Ubuntu Linux using a under development version of SER with the
PA module in his thesis project in 2007. The source code he used was ser-0.10.99-
dev35-pa-4.2_src.tar.gz from the "iptel.org" website. He modified the source code and
added some new modules to handle different kinds of events, such as location.
However, we decided to start from the latest SER source code and adapt it for our use.

3.2.3.1 Installation and Configuration of SER

In order to handle the occupancy information from our meeting detector system, I
decide to implement my own context server based on SER. An openSUSE Linux
(with the host name "ccsleft") has been used as the platform. The configuration of this
machine is roughly the same as the machine described earlier in section 3.2.1.1.

SER is under continuous development and many new features have been added since
the earlier thesis project. SER 2.0 [54] has been thoroughly tested and has been
available since August 6, 2008 from iptel.org's FTP server. It appears to be a stable
release with the source code file name ser-2.0.0_src.tar.gz. For this project I decided
to use SER 2.0 which includes a PA module.

In order to build SER from its sources, we need the following:

• GCC: version 3.1 or higher recommended (we use gcc 4.2.1)
• bison: GNU Project parser generator (we use GNU Bison 2.3)
• GNU make: version 3.79 or newer (we use GNU Make 3.81)
• GNU tar
• GNU installs

Some additional packages may be needed to build all the modules:

41

• libmysqlclient & libz (zlib) for MySQL support (the mysql module)
• libexpat for jabber gateway support (the jabber module)
• libxml2 for the cpl-c (CPL support), pa (presence) and xmlrpc modules
• libradiusclient-ng (> 5.0) for radius support (the acc_radius, auth_radius,

avp_radius, and uri_radius modules)s
• libssl for SSL/TLS support (TLS module)

Since most of the software and libraries are included in openSUSE 10.3 Linux in its
default installation, it is not too complicated to install SER. However, configuration of
this software to suit our purpose and debugging each of the trial configurations
required a lot of time.

We downloaded the source code from iptel.org's website and installed it following the
instructions below:

Download it and unpack it to the directory: /usr/src/

ccsleft:/usr/src/ # tar xzf ser-2.0.0_src.tar.gz

Then cd to the main directory of ser: /usr/src/ser-2.0.0

ccsleft:/usr/src/ # cd ser-2.0.0

To compile core and the basic set of modules (standard modules), we can just execute:

ccsleft:/usr/src/ser-2.0.0 # make all

By default modules that require external libraries or that are considered to be
"experimental" will not be built. However, we can choose to include specific modules
when compiling from the source package.

To compile standard and standard-dep modules with dependencies that must be
satisfied for compilation, the command line shown below should be used:

ccsleft:/usr/src/ser-2.0.0 # make group_include="standard standard-dep" all

This will add the standard modules with dependencies (this requires installing the
mysql, mysql-devel, libcurl, libcurl-devel, libxml2, and libxml2-devel packages). The
command "make print-modules" shows which modules are build by default. Here all
modules that will be in included and excluded will be listed.

Then execute (Make sure you use the same group_include here as compilation):

ccsleft:/usr/src/ser-2.0.0 # make group_include="standard standard-dep" install

Finally SER is successfully installed in /usr/local (its default location). See the
INSTALL file in the main directory of SER for detailed information on installation
notes.

42

After installation of SER, it needs to be configured up and running. A configuration
file is used. Usually it is located in the directory /usr/local/etc/ser with the name
"ser.cfg". In this directory some sample configuration files are provided for a variety
of uses. One can create a new configuration file or modify the default ser.cfg. As we
want to load some specific modules and create a specific configuration, we modified
the default "ser.cfg" file for our purposes. An example of a ser.cfg we used can be
found in Appendix E.

To start SER, we can use:

ccsleft: # /usr/local/sbin/ser –E

It may be necessary to set LD_LIBRARY_PATH before startup by this command:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/ser/modules:/usr/local/lib/ser

For persistent data storage, SER can be configured to support MySQL. We used this
command to create an initial MySQL database:

ccsleft: # /usr/src/ser-2.0.0/scripts/mysql/ser_mysql.sh create

Note that a new occupancy table was added in the database. Thus the my_create.sql
file was edited to add this support for occupancy information. The SQL code to create
the additional table is:

INSERT INTO version (table_name, table_version) values
('presentity_occupancy','5');
CREATE TABLE presentity_occupancy (
 sensorid INT(3) NOT NULL,
 pres_id VARCHAR(64) NOT NULL,
 basic VARCHAR(64) NOT NULL,

occupancy VARCHAR(64) NOT NULL,
note VARCHAR(64) NOT NULL,

 contact VARCHAR(64) NOT NULL,
 tupleid VARCHAR(64) NOT NULL,
 UNIQUE KEY presid_index (pres_id, tupleid)
);

Another command can be used to convert the SER database to support the new
structures (if SER was previously installed):

ccsleft: # /usr/src/ser-2.0.0/scripts/mysql/ser_mysql.sh reinstall

In addition to modifying the configuration of the MySQL database to support the SER
database and tables, the ser.cfg file must also be edited to support the modified
database. After creating the database we need to specify a domain name and a user
name in the system for applications use. It is recommended in the SER documentation
to use the Serctl command line interface [55] for controlling SER. Serctl is a

43

command line utility for SER administration. To install Serctl, requires some
additional packages (python, python-mysqldb). After the installation of Serctl, we
used it to control SER.

First we add a domain name (in this case we use the IP address of this SER server as
the domain name):

$ ser_domain add 130.237.15.238 ser

Then we add a user "xueliang" with password "heslo" using the following three steps.
First, we add the user, then assign one or more URIs to this user, and finally add
credentials so that the user can register.

$ ser_user add xueliang
$ ser_uri add xueliang xueliang@ser
$ ser_cred add xueliang xueliang 130.237.15.238 ser helso

At this point, SER will be up and running with database support. For our context
server, we needed to adapt the PA module for our occupancy information since the
presence event is supported by default. Unless this adaptation is made, publishing any
other event type simply generates an "unsupported event message". The details of this
are described in the next section.

3.2.3.2 Implementation of SER Modules to Handle Occupancy Event

We introduced SER in section 2.4.3. In order to extend SER to support our new
events required understanding the SER architecture and configuration file in depth.
SER is built around a processing core that receives SIP messages and provides the
basic functionality need for handling SIP messages [56]. SER has a modular
architecture and most of the functionality is provided through SER modules. The
ser.cfg file controls which of these modules are loaded and module specific variables
are defined to control the configuration and behavior of each of these modules.

44

Several modules are basic parts of "presence" support. These modules are: [57]

Table 3.4 SER Presence Modules

PA The PA module allows SER to act as a presence server. Its
main function is to process subscriptions to presence state of
standalone users and to process presence state publications for
them.

RLS The resource list server gets presence information for
standalone users from internal queries to PA module or remote
presence server queries and builds them together into list
notifications.

Presence_b2b This module can be used to subscribe to presence state on
remote server.

XCAP This module provides the functions needed for querying an
XCAP server.

Dialog This module is a helper module used by other presence modules
to perform some dialog operations.

The PA module allows the user to use PUBLISH requests to publish presence
information. It can handle PUBLISH requests and SUBSCRIBE requests. The PA
understands only basic PIDF, but it can handle PIDF extensions such as RPID.
Supported document formats in PUBLISH consist of PIDF, CPIM-PIDF, and PIDF
extensions (e.g., RPID). Since RPID is a PIDF XML document, it uses the content
type application/pidf+xml. We choose to use a PIDF extension as the document
format to carry the occupancy information.

In order to identify occupancy information, some new tags have been added for this
context information. For example, <area> and <occupancy>. We define a new XML
schema in the file "pidf.c". This file is used to parse the tags specified in the PIDF
standard. These new tags are created within the <status> element. The <area> tag
shows the area name, for example, MINT or OpenArea. The <occupancy> tag shows
the occupancy status of this area, for example, Empty, Individual, or Meeting.
Additionally, the specific number of persons in the area can be included via the
<note> tag. A new schema for occupancy information has been defined and an
example of the PIDF in a publish message is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
entity="sip:xueliang@130.237.15.238">
<tuple id="6sJ8J0">

http://www.iptel.org/~vku/presence_handbook/ar01s05.html�
http://www.iptel.org/~vku/presence_handbook/ar01s06.html�
http://www.iptel.org/~vku/presence_handbook/ar01s07.html�
http://www.iptel.org/~vku/presence_handbook/ar01s08.html�

45

<status>
<basic>open</basic>
<area>MINT</area>
<occupancy>Empty</occupancy>

</status>
<note> 0 </note>
<contact priority="0.8">ccsmoto</contact>
</tuple>
</presence>

The main file within the PA module for handling publishes is "publish.c". The code in
this file is responsible for parsing and storing the required fields in the event values.
The "handle_publish" function processes the PUBLISH request and generates a
response to it. This takes the form of a SIP transaction, comprising a SIP request
message followed by one or more SIP response messages. The route logic in the SER
configuration file invokes the handle_publish function to handle the PUBLISH
method. For details of the modified source code and some other components in PA
module refer to Mohammad Z. Eslami's thesis [2].

3.2.3.3 Debugging the SER modules

During the configuration and adaptation of SER to handle occupancy, there was a
need to debug the modified code and the configuration file. There are a number of
techniques available to debug SER. According to [56], the main types of SER
debugging fall into two categories: (a). Capture the SIP messages and (b). Generate
debug information.

We used Wireshark [58] to capture the SIP messages and analyze them. A network
interface for communication was chosen and the specific communication protocol or
port number used to limit the traffic which was monitored. As a result Wireshark
displays all packets sent and received from this specific interface and port.

The second method relies on the debugging support built into SER itself. SER has the
ability to generate a vast amount of information that can be used for debugging. The
"stderr" file can be redirected to a file to capture this data. Once the data is captured,
the level of detail can be varied by increasing (or decreasing) the debug level in the
ser.cfg file. A larger value for the debugging level generates more details. Most of the
time we used debug level 9.

Finally we can add even more information by inserting into the ser.cfg the command
"xlog" at appropriate points where additional debugging information is desired. Please
refer to the README file in the xlog module for details.

After the system was implemented, we performed additional system testing and
analysis. We utilized the debugging information in this process.

46

Chapter 4

4 Testing and Analysis

This section describes the meeting detector system level testing and data analysis. The
chapter describes a set of tests that were used to validate the meeting detector system
and also to obtain feedback to suggest further improvements. Data analysis and
system analysis based on the testing process are also described.

4.1 Test Methodology

In order to ensure that all the requirements of the system are met, test methodologies
are used to guide the whole test process and to define test cases. In our test process,
function tests and system integration tests were carried out. The function tests consist
of physical sensor tests, tests of the detection in logical sensor, and finally tests of
correctly publishing occupancy information to SER. The system integration tests were
performed in order to determine the system's flexibility, scalability, and robustness.
The accuracy of the occupancy detection will also be measured based on statistical
analysis. The tests were organized in the following manner:

Description A description section introduces and specifies the particular test.

Purpose The purpose section states the objectives of a particular test.

Test Setup The test setup section shows an overview of the device setup
and the system configuration.

Procedure The procedure section describes how to carry out the test and
lists all the steps needed to perform a specific test. This is an
operational guide as to how to perform a given test. The steps
describe activities such as enabling and configuring certain
devices or network connections. It also provides references to
related setups whenever they are required.

Expected Results The expected results section lists the results that the tester
should observe while executing a particular test. The expected
results could be compared with the actual results later for
analysis.

Actual Results This section describes the outcome of the specific test. Some
analysis could also be included in this section.

47

4.2 Test Cases

A test case is a sequence of steps to test the correct behavior of functionalities of a
system. The purpose of a test case is to describe how you intend to empirically verify
that the system being developed conforms to the specifications. In other words, the
goal is to show that the system can correctly carry out its intended functions.

A lot of function tests were conducted in conjunction with implementation of the
system. Additionally, tests regarding to the beams field of view and waveforms of the
HAA52 detector were conducted by Daniel Hübinette and documented in his masters
thesis [1]. In this section, we present the meeting detector system testing as a whole.

4.2.1 Single Detector Mode

Initially the system utilized a single detector. Thus testing begins with a single
physical sensor.

Description

The single detector senses an infrared heat source. We examine the raw data from the
physical sensor which reveals the waveform of the sensor's output. The collected raw
data are sent to the logical sensor through a UDP socket in order to perform the
detection. The occupancy information obtained from detection is published to the
context server (a SIP proxy) using the SIMPLE protocol.

Purpose

Testing of a single detector was performed to validate that the entire meeting detector
prototype system works well with a single detector, i.e., that the basic functions
operate as designed.

Test Setup

The hardware system is configured as Figure 4.1.

The HAA52 detector is powered with an AC adapter and connected to the K8055
interface board with two wires. One is for the analog signal, and the other is a ground

Figure 4.1 System Setup with Single Detector

HAA52 detector K8055 interface board
Logical sensor entity connected
with SIP proxy server via LAN

48

wire. The K8055 interface board is also connected to a PC (ccsmoto). The board is
powered by this USB connection. This computer acts as both a physical sensor entity
and a logical sensor entity. In addition to this, another PC (ccsleft) is configured as a
context server (running as a SIP proxy server) and connected with the logical entity
via a Local Area Network (LAN) connection (specifically via a 100 Mbps Ethernet
connection).

Note that the detector is deployed on a pillar beside the entrance door to a small
meeting room (MINT). An optimum placement of the sensor was determined based
on earlier tests. The electrical signal changes when a person walks through the door,
either in or out.

Procedure

1. Make sure the system has been setup as Figure 4.1 and all elements are powered
on.

2. Start up the physical sensor program to collect the signal from the USB attached
interface board and send it to the logical sensor.

3. Start up the logical sensor program to receive the sensor data and perform the
detection calculations.

4. A number of entries and exits are made to gather sensor data. This data was
collected based upon one person walking through the door at a normal walking
pace.

5. The sensor data is processed in the logical sensor program to determine the
number of entries and exits. As a result the number of persons in the room will be
calculated.

6. The logical sensor program publishes occupancy information to the context server
if the occupancy status changes.

Expected Results

The electrical signal is based on a voltage change due to a person walking in or out
the door. The entry and exit waveforms can be differentiated. The signal from the
physical sensor was correctly digitized by the interface board, set over the
successfully collected by the physical entity and sent to logical entity in UDP packets.
These packets were monitored by running Wireshark in the system and listening to
the loop back interface on the listening port of the logical entity. The logical entity
correctly receives the UDP data and processes the sensor data. The occupancy
information is correctly calculated by logical program and sent to the SIP proxy
server. A 200 OK message is sent by the context server in response to the PUBLISH
message. Wireshark also monitors the network traffic send to and received from the
context server.

49

Actual Results

The waveforms changes when there is an entry or exit. These signals corresponded to
those shown in Figure 3.8. The logical entity receives the data and obtains the
occupancy information after processing. The context server also sends a 200 OK
message in response to the PUBLISH message from the logical entity.

A detailed data analysis based upon these results can be found in Section 4.3.1.

4.2.2 Multiple Detectors Mode

Since the single meeting detector was successfully implemented and verified, we are
ready to deploy the meeting detector system in different areas with multiple detectors.
This section describes the system testing based on multiple detectors.

Description

Multiple detectors can be connected to the same K8055 interface board. We may
collect the sensor data from the two detectors simultaneously. The collected raw data
are sent to the logical sensor through the same UDP socket program in order to do
detection calculation. The physical and logical sensor codes need to be adapted for
multiple detectors. Then the occupancy information obtained from detection is
published to the context server (a SIP proxy) using the SIMPLE protocol whenever
the occupancy status changes (in either of the areas).

Purpose

The testing of multiple detectors mode aims to validate that the meeting detector
prototype system can be expanded for multiple room, thus it is ready to be deployed
in an office environment.

Test Setup

The hardware configuration of the system with two detectors is shown in Figure 4.2.

 Figure 4.2 System Setup with Two Detectors

50

Procedure

1. Make sure the system has been setup as shown in Figure 4.2 and all elements are
powered on.

2. Start up the physical sensor program and the logical sensor program in order.

3. A number of entries and exits are made to gather the sensor data.

a) Enter each one area and then exit
b) Enter both areas at the same time and exit respectively

4. The logical program processes the sensor data and obtains the occupancy
information based on the entries and exits.

5. Monitor the occupancy information changes and whether it is published to the
context server whenever an occupancy status changes.

Expected Results

The sensor data from both detectors are successfully collected by the physical entity
and sent to logical entity with UDP packets. We monitor the traffic with Wireshark.
The logical entity correctly receives the UDP data and processes the sensor data for
both detectors respectively. The occupancy information for both areas are correctly
calculated by logical program and sent to SIP proxy server. The context server
successfully handles the published information.

Actual Results

The physical entity can collect the sensor data for multiple detectors simultaneously.
The logical entity receives the sensor data and obtains the occupancy information for
multiple areas. The logical program makes publish messages to the context server
whenever there is an occupancy information changes for either of the areas. The
context server also sends a 200 OK message in response to both PUBLISH messages
from the logical entity.

A detailed data analysis based upon the results of multiple detectors can be found in
Section 4.3.1.

From the iterative testing, we also found that a desirable waveform for detection
calculating could be achieved by limiting the viewpoint of PIR detector. We could use
two side panels to protect the detector againt abnormal influences since the HAA52
detector had a too wide detection angle of 90o in horizon when someone passes by the
detector.

51

4.3 Data Analysis

In order to evaluate and improve the meeting detector system, we perform data and
system analysis based on the results of system testing described in Section 4.2.

4.3.1 UDP Packets between Physical and Logical Entities

As described in Section 3.2.2.1, UDP packets are used to carry the sensor data from a
physical sensor entity to the logical entity. The traffic between the physical and
logical sensor entities can be captured using Wireshark for detailed analysis.

An example of collected UDP packets is shown as Figure 4.3.

Figure 4.3 UDP Packets from Physical Sensor

As we use the same PC for the physical and logical sensor, the source and destination
addresses of the UDP packets are the same IP address (i.e., one of ccsmoto's Ethernet
interface IP addresses, in this case the system was configured to use 130.237.15.238 -
note that although this interface's address is used, the actual interface which is used by

52

the network stack is the loopback interface - hence the packets are never actually sent
via a physical interface, rather there is simply a set of updates to pointers in the
networking stack). The destination port is defined as 49152 and the source port is a
random port number. Frame 8 is shown in detail in Figure 4.3. The time difference
from the previously captured frame is 0.1280078000 seconds (note that not all of
these digits are significant).

Figure 4.4 A Data Frame with a Session Size of 16 bytes.

Figure 4.4 shows a data frame from the physical entity. The digitized sensor readings
are highlighted. The offset from the start of the frame is shown in the left hand
column in octal; the values of each of the bytes in the frame are shown in the middle
two columns, while the right hand column shows the ASCII equivalents of each of the
bytes in the frame. The sensor data of this frame is from a single detector with an
initial session size of 16 bytes. As we noted in the earlier description of the physical
sensor code, we added another two bytes at the end to indicate the sensor's ID (in this
case channel 1. which is assigned the ID 0). So the data field is 18 bytes in length. As
long as we can know the area where the data is from, additional detectors can be
identified using this information.

Another example of UDP packets, captured with an initial session size of 32 bytes are
shown in Figure 4.5.

Figure 4.5 UDP Packets with a Session Size of 32 bytes

As we can see from above figure, the interval time between two contiguous captured
frames is about 0.256013000 seconds which is approximately twice as long as for
packets of 16 bytes. This interframe delay is due to the fact that the physical sensor is
being sampled 125 times per second (i.e., every 8 ms) and each sample is digitized as
an 8 bit value. This rate is the fastest rate which data can be read from the interface
board using the ReadAnalogChannel() call.

53

Figure 4.6 A Data Frame with a Session Size of 32 bytes

Figure 4.6 shows a data frame with a session size of 32 bytes. Another two bytes are
also added to this frame.

We also performed tests with multiple detectors sending UDP packets simultaneously
as shown in Figure 4.7.

Figure 4.7 Received UDP Packets with Multiple Detectors

The UDP packets from multiple detectors are alternating transmission. The interval
time is stable. Each packet has an initial session size of 16 bytes and 2 additional
bytes for differentiation. A packet from a second detector is shown in Figure 4.8. The
last two bytes of "01 00" indicate a sensor id apart from "00 00".

Figure 4.8 A Data Frame from a Second Detector

“01 00”
indicates
sensor 1

54

4.3.2 Detection Algorithm Analysis

a. State based detection algorithm

For state based detection, the threshold values are set in the logical sensor code
according to the voltage level as shown in Figure 3.7. The threshold variables are:
topzone, midtop, midbot, and botzone. These values were defined in advance based
on the waveform observed on an oscilloscope. These variables can be adjusted later to
increase accuracy. This adjustment was done in conjunction with the testing phase in
real environment.

b. Correlation based detection algorithm

For correlation based detection, a series of correlation template data are collected by
having a person walk past the detector in each direction. The correlated data
represents a sample waveform. The correlation data both for entry and exit was
collected. As described in Section 3.2.2.2, a threshold value for correlation coefficient
must be chosen correctly in order to achieve good accuracy. However, the sensor
system is not 100% accurate in detecting the actual entries and exits.

While using measurements to determine a reasonable threshold value, we found that
correlating the entry and exit data against a single correlation template data as Daniel
Hübinette did in his thesis project did not produce the expected high correlation that
we desired. So we chose two series of correlation template data, one for entry, and the
other for exit. Both of them were used to search for a positive correlation. For double
detectors, we did the same thing. Thus two series of data are used to calculate the
correlation coefficient for each detector. The correlation based detection algorithm in
the logical sensor code is capable of dealing with two detectors and can easy to be
adapted to work with more than two detectors. Note that the two different HAA52
detectors were found to differ somewhat, but no systematic study was performed to
understand the variance between HAA52 detectors. However, such a study should be
carried out if a mass produced integrated detector was to be produced to understand if
it is possible to avoid having to collect training data for each individual detector. It
might also be possible to accommodate the difference between individual detectors by
post processing the data collected from each detector - however as this was not the
focus of this work, this was not done either.

Another issue to be noted is that we programmed the logical sensor code to send
PUBLISH messages to the context server whenever there was a change of occupancy
information. So the number of persons in an area could be monitored by the context
server in (near) real-time. The overall delay between a person passing the IR detector
and the SIP Publish message being set is described in section 4.3.3.

55

4.3.3 SIP messages between Logical Entity and Context Server

The SIMPLE protocol is used to distribute context information to a context server. In
the meeting detector system, the logical sensor entity sends SIP PUBLISH messages
to the SER server. The SER server replies a 200 OK message in response to a
successful PUBLISH message. A series of SIP messages captured by Wireshark are
shown in Figure 4.9.

Figure 4.9 SIP PUBLISH Messages

As we can see, the PUBLISH message has a source address of 130.237.15.252 and a
destination address of 130.237.15.238 which means it is sent from logical entity
(ccsmoto) to the context server (ccsleft). A captured PUBLISH message is shown
below:

Session Initiation Protocol
 Request-Line: PUBLISH sip:xueliang@130.237.15.238 SIP/2.0
 Method: PUBLISH
 Message Header
 Via: SIP/2.0/UDP 130.237.15.252:5060;branch=z9hG4bK6sJ8J0y
 Transport: UDP
 Sent-by Address: 130.237.15.252
 Sent-by port: 5060
 Branch: z9hG4bK6sJ8J0y
 To: <sip:ccsleft@130.237.15.238>
 SIP to address: sip:ccsleft@130.237.15.238
 From: <sip:ccsmoto@130.237.15.252>;tag=6sJ8
 SIP from address: sip:ccsmoto@130.237.15.252
 SIP tag: 6sJ8
 Call-ID: 288@130.237.15.252
 CSeq: 1 PUBLISH
 Max-Forwards: 10
 Expires: 5
 Event: occupancy

56

 Content-Type: application/pidf+xml
 Content-Length: 358

The occupancy information is carried in the message body in PIDF format. The
corresponding content is shown below:

 Message body
 eXtensible Markup Language
 <?xml version="1.0" encoding="UTF-8" ?>
 <presence

xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:ccsleft@130.237.15.238">
 <tuple id="6sJ8J0">
 <status>
 <basic> open </basic>
 <area> MINT </area>
 <occupancy> Individual </occupancy>
 </status>
 <note> 1 </note>
 <contact priority="0.8"> ccsmoto </contact>
 </tuple>
 </presence>

The occupancy information is contained within the <status> tag. The message above
shows that the room MINT is occupied by 1 person. The PIDF extension format was
described in Section 3.2.3.2.

In response to the PUBLISH message, a 200 OK message is sent by the SER server,
this message was also captured by Wireshark. We notice that there is a delay between
the PUBLISH message and 200 OK message. Ten groups of PUBLISH & 200 OK
messages were chosen from the data collected Wireshark and the delay between the
PUBLISH and the corresponding 200 OK has a mean value of 0.002378 seconds.
This represents the mean time required by the context server to handle the PUBLISH
message and the 200 OK response message. Note that these measurements were made
when the computers involved were only doing typical background processing of other
tasks; thus these values represent lower bounds on the expected response time - which
may not be representative of the delay for a highly loaded context server. Apart from
the processing time for context server, the detection mechanism also takes couples of
seconds to perform correlation based detection since the number of correlation
samples needs to correlate the waveform change when a person passes by. So the
main delay of the system is caused by the sample rate and correlation, basically the
waveform itself. In comparison with the detection delay, the delay on context server
can be ignored.

57

4.4 Evaluation

This section describes the evaluation of the meeting detector system. We will evaluate
and determine the accuracy and efficiency of the system. Some discussion about
achievements and improvements with regard to the original goals are included in this
section.

4.4.1 System Evaluation

System evaluation is based on some evaluation criteria. For this meeting detector
system, we mainly focus in the evaluation on accuracy, robustness, and scalability of
the system.

4.4.1.1 Accuracy

At the beginning of this thesis project, we intended to implement the system and
deploy it in an office environment on a large scale. In order to justify this minimum
accuracy must be achieved.

A statistical model can be established to determine the accuracy of the detection. We
define the conditions: an area is occupied (with the correct number of persons in the
area) or empty; the occupied status is detected or not. There are four outcomes: True
Positive, False Positive, False Negative, and True Negative. From Table 4.1 we can
see that the desired values correspond to the correct results: True Positive and True
negative.

Table 4.1 Accuracy Determination

 Detected Not Detected

Occupied True Positive False Negative

Empty False Positive True Negative

The test results can be sorted using this model to calculate the accuracy of the system.
From our analysis, we find the state based detection is reliable with a simple fixed
waveform, such as a sine wave or cosine wave, but does not work well for this
application. However, the correlation based detection is reliable with most of
waveforms; since it does not care about classifying the measured signal voltage into
one of a small range of values. In the correlation based detection, we easily use
multiple templates to detect the entry and exit separately. While the statistical
accuracy increases with the correlation based detection method, so does the CPU load.
However, the effort required to compute the correlation is not significant, as the
number of processor cycles and the frequency with which it must compute the

58

correlation leads to a rather small load as compared to other applications running on
the PC.

Note that the detection for the detector deployed for the OpenArea does not perform
as well as the one in the room MINT since the waveform from the detection of
persons entering and exiting this open environment is sometimes abnormal. The
accuracy for the small conference room (MINT) detector is shown in Table 4.2 and
for the OpenArea in Table 4.3.

Table 4.2 Detection Accuracy in MINT

 Table 4.3 Detection Accuracy in OpenArea

Threshold True False Accuracy

0.60 10 10 0.50

0.65 9 11 0.45

0.70 11 9 0.55

0.75 14 6 0.70

0.80 15 5 0.75

0.85 15 5 0.75

0.90 11 9 0.55

0.95 8 12 0.40

1.00 0 20 0

Threshold True False Accuracy

0.60 9 11 0.45

0.65 9 11 0.45

0.70 11 9 0.55

0.75 10 10 0.50

0.80 12 8 0.60

0.85 12 8 0.60

0.90 8 12 0.40

0.95 5 15 0.25

1.00 0 20 0

59

According to the accuracy testing results, we can see that the detector in the meeting
room MINT has a better accuracy than the one for OpenArea. Apart from this, the
better accuracy comes with the threshold around 0.80 for correlation detection method.

4.4.1.2 Robustness

The system seems to be very stable. The HAA52 PIR detector with the K8055
interface board worked well for more than one week without a break. The physical
and logical sensor program was running on the openSUSE Linux and calculating the
occupancy status correctly. However, the accuracy over a long period of operation can
not be guaranteed because of some anomaly in the waveform always happens in the
lab environment. This anomaly occurs very infrequently and we have not been able to
understand exactly what causes it - as it occurs too infrequently. For this reason we
reset the room occupancy for each room to zero late at night (after there has been no
change in room occupancy for 5 hours).

4.4.1.3 Scalability

The meeting detector system can be easily extended with multiple detectors. Multiple
Velleman K8055 interface boards can be connected to a USB hub. Using a USB
connection to the computer has both advantages and disadvantages. On one hand, the
USB cable can power supply the board and provides high speed communication. On
the other hand, it is not practical to deploy long USB cables, as using a long cable
required installing USB hub (hence limiting the practical distance between the
computer and the Velleman K8055 board to ~5 meters. However, the cable between
the interface board and the HAA52 sensor can be several meters long. Due to
practical limitation, we have not measured the signal loss over long cables. This
remains for future testing.

The physical sensor program can read signals from multiple detectors with a simple
modification to the program. The logical sensor code can also be programmed to
handle multiple detectors and interface boards (note that as this program receives
packets, the physical sensor nodes could be located elsewhere on the network). Sensor
data can be simultaneously calculated to obtain the occupancy information. The SIP
proxy server also receives the PUBLISH messages via the network, so the physical
location of the physical sensor is not an issue. A practical limitation is that the k8055
library only supports 4 boards (the number of boards which can have unique ID
numbers), thus connecting more than 8 sensors to a single computer would require
modifications to this library to enable it to use the USB bus addresses to distinguish
more than 4 K8055 boards. This approach is probably leading in the wrong direction,
since as noted earlier it would be better to make an integrated HAA52 with perhaps
some local signal processing as an Ethernet power and connected device. This would
facilitate installation of the devices at distance of up ~100m from the power over
Ethernet switch. Using a network attached physical sensor node would require that

60

there be some configuration file to map the MAC address/IP address of each device to
a room ID. Potentially this could either be done by a suitable naming convention, a
configuration file, or with DNS resource records. However, the design and evaluation
of such a system remains for future work. While the design of the system scales well,
the use of the Velleman K8055 is not a scalable solution, given the cost of each
interface board (599 SEK pre-built or 399 SEK as a kit) versus the 279 SEK for the
HAA52 IR motion detector plus ~140 SEK for a AC to DC adaptor to power the
HAA52.

4.4.2 Achievement of the Goals

As described in Section 1.2, our aim was to design, develop, evaluate, and improve a
meeting detector system based on occupancy sensing. Currently, a working prototype
is deployed in a lab environment at Wireless@KTH. The meeting detector system
successfully collects sensor data from the area, uses this data to perform detection,
and provides the context information to a SIP proxy server. We have also completed
the testing and basic data analysis.

Based on this, we can see some improvements compared with the previous project by
Daniel Hübinette. First, I have designed the meeting detector system with a simple
and effective hardware setup. Second, I have developed the detection program to
handle multiple detectors. The accuracy for the detector algorithm has also been
improved by using two series of correlation templates data. Third, Daniel did the
basic sensor detection, but he did not make publish messages actually. I have
followed up to explore the publish messages with a SIP proxy server. The context
information could be published to a context server which has been implemented to
handle the publish messages (occupancy information). The logical sensor entity has
also been improved to make a publish message whenever there is an occupancy status
change – it means whenever someone passes by the detector. Fourth, I have deployed
the meeting detector system in a lab environment. The prototype seems to be a ready-
to-use system, although some improvements may be needed before deploying it for a
more extensive field trial. Therefore we have achieved most of the goals of this thesis
project and we are going to conclude it in the next chapter.

61

Chapter 5

5 Conclusions and Future Work

In this chapter, we would conclude this masters thesis and propose some suggestions
for the enhancement of this system along with other suggestions for future work.

5.1 Conclusions

In this thesis, we have successfully designed, implemented, deployed, and evaluated a
prototype of a meeting detector system to provide additional context information to a
SIP proxy server (SER). Through the literature study of existing sensing technology,
we realized that it was possible to design a meeting detector system that could
monitor the boundaries of an area to determine the occupancy of this area. This
context information could be used by a variety of context-aware systems. A prototype
of the meeting detector system was designed and implemented using a Velleman
HAA52 PIR detector, a Velleman K8055 interface board, and a PC to create both a
physical sensor entity and a logical entity. Another PC running SER was used as a
context server.

During this thesis project, we have also tested the system and evaluated this prototype
in an experimental setup. First the detection function in the system was tested and
shown to operate correctly. Then a series of tests were conducted to guide
improvements. These tests were based on data collected in a lab environment. The
accuracy of two different detection algorithms was measured and some improvements
were suggested based upon the analysis phase. We concluded that using a correlation
based algorithm gave the greater accuracy and that separate templates should be used
for recognizing a user entering and a user leaving the monitored area. However, some
unfinished analysis remains for future work (specifically to isolate the cause for the
rare anomalies in detection and to evaluate the long term (longer than 1 week)
operating accuracy of the system).

For context information distribution, we used a SER with its presence module as a
SIP proxy server. The occupancy information obtained from detection process was
sent to the SIP proxy server using SIP/SIMPLE protocol in PIDF format and the
context information was stored in a MySQL database in this context server. No
significant bottlenecks were observed in this system, which is not surprising given the
very low rate of changes in a room's occupancy. While no systemic study has been
made with regard to what the actual scaling of this part of the system is, the earlier
work by Mohammad Z. Eslami suggests that this context processing is highly scalable.

62

Evaluation of the system revealed that the meeting detector system had reasonable
accuracy, high scalability, and sufficient robustness to operate continuously for one
week. Thus the objectives of this thesis project were mostly achieved. However, in
order to fulfill the specific requirements for the proposed architecture in Figure 1.1,
we would like to improve the accuracy further and make use of the occupancy
information as part of a complete context-aware system.

In the next section, some suggestions for future work are given - should anyone wish
to continue this project.

63

5.2 Future Work

Several suggestions with regard to future work are described in this section. The
emphasis is on near-term activities, but with hints for longer term efforts.

5.2.1 Accuracy Improvement in a Live Open Environment (Rather than a Lab
Environment)

The most important aspect of the meeting detector system is its accuracy. While the
system was reliable and accurate in a controlled laboratory environment, it did not
perform very well in a live open environment. Therefore, the detection algorithm
should be optimized to better handle the greater variance in the signal. Moreover
optimum placement of the detector should also be determined by repeated testing and
analysis. Additionally, multiple detectors might be used to monitor the same area in
order to improve the accuracy. For example, two sequential sensors could be used to
perform detection if more persons pass through the area boundaries at the same time.
As suggested in section 5.2.5 perhaps those motion detectors could be augmented by
additional sensors.

5.2.2 Sensor Software Development

As we have integrated the physical and logical entities within the same computer
running Linux, the two programs might be merged into a single program and ported to
a low cost embedded environment (such as described in section 5.2.5) which could
save the cost for extension use.

Furthermore, the PUBLISH refresh, modify, and remove messages could be
implemented to handle information exchange between context entities. For example,
the logical sensor entity should send a PUBLISH modify message to change the
occupancy information on SIP proxy server if it observes that the last publish message
was wrong. The retransmission of the publish messages should also be considered if
there is no 200 OK message within a defined time period.

While we have used command line interfaces for the application, a version without
any user interface should be developed if the devices are to be replicated and installed
in many locations. In conjunction with this an analysis needs to be made of judging
how much administrative time is needed to incorporate each sensor node into a large
system (for example, for a deployment to monitor the 5 conference rooms and
meeting areas in the department or the much large number of such rooms and project
rooms in an academic building).

64

5.2.3 Extension to Multiple Areas

In our work two detectors for two areas have been deployed in a lab environment.
More detectors could be deployed using additional interface boards connected to a
USB hub. But there are limitations on this interface board (four boards at most, two
channels for each one). As described in section 4.4.1.3, using such USB attached
boards does not seem to scale well for large use. We intend to consider some more
integrated physical sensors as described in section 5.2.5.

5.2.4 Security Mechanism

Some steps to implement a security mechanism for the communication between
context distribution entities may be needed for commercial deployment. For example,
an authentication between a logical sensor entity and a SIP proxy server is needed. In
addition, it will be important to protect the data coming from the physical sensor to
the logical sensor. This might utilize SRTP or some other mechanism. Additionally, a
suitable key exchange mechanism needs to be utilized. One simple method might be
to include a key at the time of manufacturing of the device, either in the form of a
public/private key pair or by a fixed key which could be printed on the back of the
device or included along with the device when it is manufactured. There are quite a
number of issues regarding how to cost effectively enter these keys into a more
complete occupancy detector system which was deployed on a large scale.

5.2.5 A More Integrated Physical Sensor

As noted in section 4.4.1.3 a highly integrated IR motion detector and physical sensor
that would be Ethernet power and connected could reduce the cost of monitoring
multiple rooms. This is an obvious area for future development and is probably the
next required step in the evolution of a room occupancy system. An obvious question
which arises is what other sensors should be integrated with this, to enable
environmental monitoring for a low incremental costs. For example, it would be
possible to measure the room temperature, the amount of oxygen and CO2, humidity,
etc. Some of these measurements could be provided to a building management system
to provide better (and more energy efficient) building operations. Additionally, some
of these sensors' values could be used to improve the accuracy of the room occupancy
system. There are some other uses for the sensor data including safety and security
applications. Anyway, it clearly offers a rich set of issues for a future project to
explore.

65

References

[1] Daniel Hübinette, “Occupancy Sensor System: For Context-aware Computing”,
Master thesis, Communication Systems, Royal Institute of Technology (KTH),
Stockholm, Sweden, December 2007

[2] Mohammad Z. Eslami, “A Presence server for Context-aware applications”,
Master thesis, Communication Systems, Royal Institute of Technology (KTH),
Stockholm, Sweden, December 2007

[3] Yu Sun, “Context-aware applications for a Pocket PC”, Master thesis,
Communication Systems, Royal Institute of Technology (KTH), Stockholm,
Sweden, December 2007

[4] Bill N. Schilit, Norman I. Adams, and Roy Want, “Context-Aware Computing
Applications”, In Proceedings of the Workshop on Mobile Computing Systems
and Applications, pages 85-90, Santa Cruz, CA, December 1994

[5] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and
Context-Awareness”, In the Workshop on The What, Who, Where, When, and
How of Context-Awareness, as part of the 2000 Conference on Human Factors
in Computing Systems (CHI 2000), April 2000

[6] A. K. Dey, “Providing Architectural Support for Building Context-Aware
Applications”, Ph. D. Dissertation, College of Computing, Georgia Institute of
Technology, December 2000

[7] Frazer Bennett, Tristan Richardson, and Andy Harter, “Teleporting - Making
Applications Mobile”, In Proceedings of 1994 Workshop on Mobile Computing
Systems and Applications, pages 82-84, Santa Cruz, December 1994

[8] Abhaya Asthana, Mark Cravatts, and Paul Krzyzanowski, “An indoor wireless
system for personalized shopping assistance”, In IEEE Workshop on Mobile
Computing Systems and Applications, pages 69-74, Santa Cruz, December
1994

[9] Lidan Hu, “Personal Video: An Intelligent Presentation System”, Master thesis,
Communication Systems, Royal Institute of Technology (KTH), Stockholm,
Sweden, December 2008

[10] Harry Chen, “An Intelligent Broker Architecture for Context-Aware Systems”,
Ph.D. Dissertation, University of Maryland, Baltimore County, December 2004

66

[11] Ken Hinckley et al., “Sensing Techniques for Mobile Interaction”, Proceedings
of the 13th Annual ACM Symposium on User Interface Software and
Technology, pages 91-100, San Diego, California, United States, 2000

[12] The Context Toolkit, available at: http://www.cs.cmu.edu/~anind/context.html,
last visited March 2008

[13] Haruumi Shiode, “In-building Location Sensing Based on WLAN Signal
Strength”, Master thesis, Communication Systems, Royal Institute of
Technology (KTH), Stockholm, Sweden, March 2008.

[14] Matthias Baldauf and Schahram Dustdar, “A survey on context-aware systems”,
International Journal of Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4,
pages 263-277, June 2007

[15] AXIS NetEye 200+ Support, available at:
 http://www.axis.com/techsup/cam_servers/cam_200p/s, last visited April 2008

[16] XML, available at: http://en.wikipedia.org/wiki/XML, last visited March 2008

[17] SGML, available at:
 http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language, last
visited March 2008

[18] XML Tutorial in W3C, available at: http://www.w3schools.com/xml/default.asp,
last visited March2008

[19] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” First
International Workshop on Advanced Context Modelling, Reasoning and
Management as Part of UbiComp 2004, the 6th International Conference on
Ubiquitous Computing, pages 33-40, September 2004

[20] Session Initiation Protocol (SIP), available at:
 http://en.wikipedia.org/wiki/Session_Initiation_Protocol, last visited March
2008

[21] J. Rosenberg et al., “SIP: Session Initiation Protocol,” RFC 3261, IETF, June
2002, available at: http://www.ietf.org/rfc/rfc3261.txt, last visited March 2008

[22] Ubiquity Software Corporation Plc (now part of Avaya), “Understanding SIP -
Today's Hottest Communications Protocol”, White Paper, September 2004,
available at:
 http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$FILE/Ubiquity_SIP_
Overview.pdf, last visited March 2008

[23] Henry Sinnreich and Alan B. Johnston, “Internet Communications Using SIP:
Delivering VoIP and Multimedia Services with Session Initiation Protocol”, 2nd
Edition, Wiley, August 2006, ISBN: 0-471-77657-2

http://www.cs.cmu.edu/~anind/context.html�
http://www.axis.com/techsup/cam_servers/cam_200p/s�
http://en.wikipedia.org/wiki/XML�
http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language�
http://www.w3schools.com/xml/default.asp�
http://en.wikipedia.org/wiki/Session_Initiation_Protocol�
http://www.ietf.org/rfc/rfc3261.txt�
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$FILE/Ubiquity_SIP_Overview.pdf�
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$FILE/Ubiquity_SIP_Overview.pdf�
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$FILE/Ubiquity_SIP_Overview.pdf�

67

[24] ChenXin Zhang, “SIP and Application Internetworking”, Telecommunication
Software and Multimedia Lab, Helsinki University of Technology, spring 2003

[25] Session Initiation Protocol Gateway Call Flows and Compliance Information,
Cisco Carrier Sensitive Routing User Guide, Cisco Systems Inc., available at:
 http://www.cisco.com/application/pdf/en/us/guest/products/ps4032/c2001/ccm
igration_09186a00800c4bb1.pdf, last visited March 2008

[26] SER, iptel, available at: http://www.iptel.org, last visited March 2008

[27] Jiri Kuthan, “SIP and SER: More Than You Ever Wanted to Know About”,
September 2003, available at:
 http://voip.internet2.edu/meetings/slides/200310/SIP_Express_Router.pdf, last
visited March 2008

[28] SIP for Instant Messaging and Presence Leveraging Extensions, available at:
 http://www.ietf.org/html.charters/simple-charter.html, last visited March 2008

[29] M. Day, J. Rosenberg, and H. Sugano, “A Model for Presence and Instant
Messaging”, RFC 2778, IETF, February 2000, available at:
 http://www.ietf.org/rfc/rfc2778.txt , last visited March 2008

[30] H. Sugano et al., “Presence Information Data Format (PIDF)”, RFC 3863,, IETF,
August 2004, available at: http://www.ietf.org/rfc/rfc3863.txt, last visited March
2008

[31] J. Peterson, “Common Profile for Presence (CPP)”, RFC 3859, IETF, August
2004, available at: http://www.rfc-editor.org/rfc/rfc3859.txt, last visited March
2008

[32] J. Rosenberg, “A Data Model for Presence”, RFC 4479, IETF, July 2006,
available at: http://www.ietf.org/rfc/rfc4479.txt, last visited March 2008

[33] H. Schulzrinne. et al., “RPID: Rich Presence Extensions to the Presence
Information Data Format (PIDF)”, RFC 4480, IETF, July 2006, available at:
 http://www.ietf.org/rfc/rfc4480.txt, last visited March 2008

[34] H. Schulzrinne, “Timed Presence Extensions to the Presence Information Data
Format (PIDF) to Indicate Status Information for Past and Future Time
Intervals”, RFC 4481, IETF, July 2006, available at:
 http://www.ietf.org/rfc/rfc4481.txt, last visited March 2008

[35] H. Schulzrinne, “CIPID: Contact Information for the Presence Information Data
Format”, RFC 4482, IETF, July 2006, available at:
 http://www.ietf.org/rfc/rfc4482.txt, last visited March 2008

http://www.cisco.com/application/pdf/en/us/guest/products/ps4032/c2001/ccmigration_09186a00800c4bb1.pdf�
http://www.cisco.com/application/pdf/en/us/guest/products/ps4032/c2001/ccmigration_09186a00800c4bb1.pdf�
http://www.cisco.com/application/pdf/en/us/guest/products/ps4032/c2001/ccmigration_09186a00800c4bb1.pdf�
http://www.iptel.org/�
http://voip.internet2.edu/meetings/slides/200310/SIP_Express_Router.pdf�
http://www.ietf.org/html.charters/simple-charter.html�
http://www.ietf.org/rfc/rfc2778.txt�
http://www.ietf.org/rfc/rfc3863.txt�
http://www.rfc-editor.org/rfc/rfc3859.txt�
http://www.ietf.org/rfc/rfc4479.txt�
http://www.ietf.org/rfc/rfc4480.txt�
http://www.ietf.org/rfc/rfc4481.txt�
http://www.ietf.org/rfc/rfc4482.txt�

68

[36] J.Lennox, X.Wu, and H.Schulzrinne. “CPL: A Language for User Control of
Internet Telephony Services”, RFC 3880, IETF, October 2004, available at:
 http://www.ietf.org/rfc/rfc3880.txt, last visited March 2008

[37] Alisa Devlic, “Extending CPL with context ontology”, In Mobile Human
Computer Interaction (Mobile HCI 2006) Conference Workshop on Innovative
Mobile Applications of Context (IMAC), Espoo, Finland, September 2006

[38] W. Steven Conner, John Heidemann, Lakshman Krishnamurthy, Xi Wang, and
Mark Yarvis, “Workplace Applications of Sensor Networks”, Technical Report
ISI-TR-2004-591, USC/Information Sciences Institute, July, 2004. To appear as
a chapter in Wireless Sensor Networks: A Systems Perspective, Nirupama
Bulusu and Sanjay Jha, editors; Artech House, publisher (2004)

[39] MICA2 Mote, a third generation mote module, available at:
 http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Data
sheet.pdf, last visited March 2008

[40] Chris Chan and Michael Onorato, “Room Occupancy Detection with Power
Line Positioning in a Wireless Sensor Network”, Final project paper in COS479
Pervasive Information Systems, Princeton University, May 2007

[41] Shwetak N. Patel, Khai N. Truong, and Gregory D. Abowd, “Power Line
Positioning: A Practical Sub-Room-Level Indoor Location System for Domestic
Use”, In the proceedings of Ubicomp 2006, pages 441-458, September 2006

[42] Panasonic ZigBee wireless communication module, available at:
 http://www.panasonic.com/industrial/components/modules/mod_rfm.html, last
visited March 2008

[43] Yoosoo Oh, Albrecht Schmidt, and Woontack Woo, “Designing, Developing,
and Evaluating Context-Aware Systems”, 2007 International Conference on
Multimedia and Ubiquitous Engineering (MUE'07), pages 1158-1163, April
2007

[44] Jue Wang, Guanling Chen, and David Kotz, “A Sensor-fusion Approach for
Meeting Detection”, In Workshop on Context Awareness at the Second
International Conference on Mobile Systems, Applications, and Services
(MobiSys 2004), Boston, MA, June 2004

[45] Shameem Ahmed, Moushumi Sharmin, and Sheikh I. Ahamed, “A Smart
Meeting Room with Pervasive Computing Technologies”, Proceedings of the
Sixth International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing and First ACIS International
Workshop on Self-Assembling Wireless Networks, pages 366-371, May 2005

http://www.ietf.org/rfc/rfc3880.txt�
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf�
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf�
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf�
http://www.panasonic.com/industrial/components/modules/mod_rfm.html�

69

[46] PIR Intrusion Detector, HA552, Velleman Components N.V., available at:
 http://www.vellemanusa.com/us/enu/product/view/?id=351031, last visited
September 2008

[47] USB Experiment Interface Board, K8055, Velleman Components N.V.,
available at: http://www.vellemanusa.com/us/enu/product/view/?id=500349,
last visited September 2008

[48] Illustrated Assembly Manual, Velleman Components N.V., available at:
 http://www.vellemanusa.com/downloads/0/illustrated/illustrated_assembly_m
anual_k8055_uk_rev3.pdf, last visited September 2008

[49] Mark T. Smith and Gerald Q. Maguire Jr., SmartBadge/BadgePad version 4, HP
Labs and Royal Institute of Technology (KTH), available at:
 http://www.it.kth.se/~maguire/badge4.html, last visited September 2008

[50] Linux K8055 library for Velleman USB interface board, Sven Lindberg,
available at: http://prdownloads.sourceforge.net/libk8055/libk8055.0.2.tar.gz,
last visited September 2008

[51] Linux Graphical Interface for K8055 interface board, available at:
 http://vellemank8055.googlepages.com/, last visited September 2008

[52] User Datagram Protocol, available at:
 http://en.wikipedia.org/wiki/User_Datagram_Protocol, last visited September
2008

[53] Correlation, available at: http://en.wikipedia.org/wiki/Correlation, last visited
September 2008

[54] SIP Express Router Source Code version 2.0, iptel.org, available at:
 http://ftp.iptel.org/pub/ser/2.0.0/src/ser-2.0.0_src.tar.gz, last visited September
2008

[55] SERCTL, iptel.org, available at: http://ftp.iptel.org/pub/serctl/, last visited
September 2008

[56] Paul Hazlett, Simon Miles, and Greger V. Teigre, “SER - Getting Started”,
available at: http://siprouter.teigre.com/doc/gettingstarted/ch04.html, last visited
September 2008

[57] Vaclav Kubart, “SER presence handbook”, available at:
 http://www.iptel.org/~vku/presence_handbook/, last visited September 2008

[58] Wireshark, a network protocol analyzer, available at: http://www.wireshark.org/,
last visited September 2008

http://www.vellemanusa.com/us/enu/product/view/?id=351031�
http://www.vellemanusa.com/us/enu/product/view/?id=500349�
http://www.vellemanusa.com/downloads/0/illustrated/illustrated_assembly_manual_k8055_uk_rev3.pdf�
http://www.vellemanusa.com/downloads/0/illustrated/illustrated_assembly_manual_k8055_uk_rev3.pdf�
http://www.vellemanusa.com/downloads/0/illustrated/illustrated_assembly_manual_k8055_uk_rev3.pdf�
http://www.it.kth.se/~maguire/badge4.html�
http://prdownloads.sourceforge.net/libk8055/libk8055.0.2.tar.gz�
http://vellemank8055.googlepages.com/�
http://en.wikipedia.org/wiki/User_Datagram_Protocol�
http://en.wikipedia.org/wiki/Correlation�
http://ftp.iptel.org/pub/ser/2.0.0/src/ser-2.0.0_src.tar.gz�
http://ftp.iptel.org/pub/serctl/�
http://siprouter.teigre.com/doc/gettingstarted/ch04.html�
http://www.iptel.org/~vku/presence_handbook�
http://www.wireshark.org/�

70

Appendix A: K8055 Test Program

/*
This code was modified by G. Q. Maguire Jr. and Xueliang Ren to collect some
analog data from channel 1 and write it to a file.

//Command to compile this test program
gcc -o readtest -lusb -L/usr/lib -lm -lk8055 readtest.c
*/

#include <string.h>
#include <stdio.h>
#include <usb.h>
#include <assert.h>
#include <sys/time.h>
#include "k8055.h"

/* The IP address and port number for the sensor system */
#include "address.h"

#define STR_BUFF 256
#define false 0
#define true 1

extern int DEBUG;

int ia1 = -1;
int ia2 = -1;
int id8 = -1;
int ipid = 0;

int numread = 1;

int debug = 0;

int dbt1 = -1; // (-1 => not to set)
int dbt2 = -1; // (-1 => not to set)

int resetcnt1 = false;

int delay = 0;

/*
 Convert a string on n chars to an integer
 Return 1 on sucess
 0 on failure (non number)
*/

71

int Convert_StringToInt(char *text, int *i)
{
 return sscanf(text, "%d", i);
}

/*
 Write help to standart output
*/
void display_help (char *params[]) {

 printf("K8055 version 0.4 MrBrain Build\n");
 printf("Copyright (C) 2004 by Nicolas Sutre\n");
 printf("Copyright (C) 2005 by Bob Dempsey\n");
 printf("Copyright (C) 2005 by Julien Etelain and Edward Nys\n");
 printf("Copyleft (L) 2005 by Sven Lindberg\n");
 printf("\n");
 printf("Syntax : %s [-p:(number)] [-d:(value)] [-a1:(value)] [-
a2:(value)]\n",params[0]);
 printf(" [-num:(number) [-delay:(number)] [-dbt1:(value)]\n");
 printf(" [-dbt2:(value)] [-reset1] [-debug]\n");
 printf(" -p:(number) Set board number\n");
 printf(" -a1:(value) Set analog output 1 value (0-255)\n");
 printf(" -a2:(value) Set analog output 2 value (0-255)\n");
 printf(" -num:(number) Set number of measures\n");
 printf(" -delay:(number) Set delay between two measure (in msec)\n");

 printf(" -dbt1:(value) Set debounce time for counter 1 (in msec)\n");

 printf(" -dbt2:(value) Set debounce time for counter 2 (in msec)\n");

 printf(" -reset1 Reset counter 1\n");
 printf(" -debug Activate debug mode\n");
 printf("Example : %s -p:1 -d:147 -a1:25 -a2:203\n",params[0]);
 printf("\n");
 printf("Output : (timestamp);(digital);(analog 1);(analog 2);(counter
1);(counter 2)\n");
 printf("Note : timestamp is the number of msec when data is read since
program start\n");
 printf("Example : 499;16;128;230;9;8\n");
 printf("499 : Measure done 499 msec after program start\n");

}

/*
 Read arguments, and store values
 Return true if arguments are valid
 else return false
*/
int read_param(int argc,char *params[])

72

{
 int erreurParam = false;
 int i;

 ipid = 0;

 for (i=1; i<argc;i++)
 {
 if (!strncmp(params[i],"-p:",3) &&
 !Convert_StringToInt(params[i]+3,&ipid)) erreurParam = true;
 else
 if (!strncmp(params[i],"-a1:",4) &&
 !Convert_StringToInt(params[i]+4,&ia1)) erreurParam = true;
 else
 if (!strncmp(params[i],"-a2:",4) &&
 !Convert_StringToInt(params[i]+4,&ia2)) erreurParam = true;
 else
 if (!strncmp(params[i],"-d:",3) &&
 !Convert_StringToInt(params[i]+3,&id8)) erreurParam = true;
 else
 if (!strncmp(params[i],"-num:",5) &&
 !Convert_StringToInt(params[i]+5,&numread)) erreurParam =
true;
 else
 if (!strncmp(params[i],"-delay:",7) &&
 !Convert_StringToInt(params[i]+7,&delay)) erreurParam = true;

 else
 if (!strncmp(params[i],"-dbt1:",6) &&
 !Convert_StringToInt(params[i]+6,&dbt1)) erreurParam = true;

 else
 if (!strncmp(params[i],"-dbt2:",6) &&
 !Convert_StringToInt(params[i]+6,&dbt2)) erreurParam = true;

 else
 if (!strcmp(params[i],"-debug")){
 debug = true;
 DEBUG = true;
 }
 else
 if (!strcmp(params[i],"-reset1")) resetcnt1 = true;
 else
 if (!strcmp(params[i],"--help")) {
 display_help(params);
 return false;
 }

 }

73

 /*
 Send parameters to standart error
 */
 if (debug)
 fprintf(stderr,"Parameters : Card=%d Analog1=%d Analog2=%d
Digital=%d\n",ipid,ia1,ia2,id8);

 if (ipid<0 || ipid>3){
 printf("Invalid board address!\n");
 return -1;
 }

 if (erreurParam)
 {

 printf("Invalid or incomplete options\n");

 display_help(params);
 return false;
 }

 return true;
}

/*
 Give current timestamp in miliseconds
*/
inline unsigned long int time_msec (void) {
 struct timeval t; struct timezone tz;
 gettimeofday (&t,&tz);
 return (1000*t.tv_sec)+(t.tv_usec/1000);
}

int main (int argc,char *params[])
{
 int i,result[3];
 unsigned char d=0;
 long a1=0,a2=0;
 unsigned short c1=0, c2=0;
 unsigned long int start,mstart=0,lastcall=0;

 start = time_msec();

 /*
 Load parameters
 If parameters are valid continue

74

 */

 if (read_param(argc,params))
 {
 /*
 Initialise USB system
 and enable debug mode

 if (debug)
 usb_set_debug(2);
 */
 /*
 Search the device
 */
 if (OpenDevice(ipid)<0) {
 printf("Could not open the k8055 (port:%d)\nPlease ensure that
the device is correctly connected.\n",ipid);
 return (-1);

 } else {

 if (resetcnt1)
 ResetCounter(1);

 if (debug && ((ia1!=-1)||(ia2!=-1)||(id8!=-1))) printf("Set ");

 mstart = time_msec(); // Measure start
 for (i=0; i<numread; i++) {

 if (delay) {
 // Wait until next measure
 while (time_msec()-mstart < i*delay);
 }
/* ReadAllAnalog(&a1,&a2); */
 a1=ReadAnalogChannel(1L);

 lastcall = time_msec();
 printf("%d, %d\n", (int)(lastcall-start), (int)a1);
 }

 CloseDevice();
 }
 }
 return 0;
}

75

Appendix B: Physical Sensor Code

/*
This code is developed for the physical sensor in the meeting detector system.

It is used to read the signal from Velleman k8055 interface board and send data to
logical entity via a UDP socket. It is based on the Linux k8055 library from Sven
Lindberg, the UDP client code from Professor G. Q. Maguire Jr. and physical sensor
code from Daniel Hübinette.

Last updated: July 30, 2008

//Command to compile this program
gcc -o readsignal -lusb -L/usr/lib -lm -lk8055 readsignal.c
*/

/* Includes */
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <ctype.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

/* Function for reading from the K8055 board */
#include "k8055.h"

/* IP addresses and ports for the sensor system */
#include "address.h"

#define Maximum_Number_of_Bytes_to_read 10240

int ipid = 0;

int main(int argc, char *argv[]){

 int running = 1;

 /* Number of Bytes to read */

76

 int Number_of_Bytes_to_read = 16;
 /* Set how long to sleep before sampling, this is correlated to the data rate.
 Default = 3000000
 */
 long int sleepratetimeout = 3000000;

 /* Set when to sample(sleeprate = sleepratetimeout = sample straight away)
 Default = 3000000
 */
 long int sleeprate = 3000000;

 /* Client UDP port setup variables */
 int client_socket_fd; /* Socket to client, server */
 struct sockaddr_in server_addr ;/* server's address */

 int sendto_flags = 0;

 int count;
 int i; /* Counter for FOR loop */
 int coi; /* Counter for arg for loop */

 unsigned char bigBuffer[Maximum_Number_of_Bytes_to_read+2];
 unsigned char bigBuffer2[Maximum_Number_of_Bytes_to_read+2];
 long sample = 0;
 long sample2 = 0;

 /* Read commandline arguments to set session size
 (only between 1 and Maximum_Number_of_Bytes_to_read), else a default is set
*/
 if (argc == 2){
 if ((atoi(argv[1]) >= 1) && (atoi(argv[1]) <=
Maximum_Number_of_Bytes_to_read)){
 Number_of_Bytes_to_read = atoi(argv[1]);
 printf("new session size set = %d\n",atoi(argv[1]));
 }
 else{
 printf("session size = %d\n",Number_of_Bytes_to_read);
 }
 }

 if (argc == 3){
 if ((atoi(argv[1]) >= 1) && (atoi(argv[1]) <= 200)){
 Number_of_Bytes_to_read = atoi(argv[1]);
 printf("new session size set = %d\n",atoi(argv[1]));
 sleeprate = (long int)atoi(argv[2]);
 sleepratetimeout = sleeprate;
 }
 else{
 printf("session size = %d\n",Number_of_Bytes_to_read);
 }

77

 }

 /* Setup the UDP client port */
 /* Create a UDP socket */
 if ((client_socket_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)
{
 perror("Unable to open socket");
 exit(1);
 };

 /* Initialize the server address structure */
 memset((char*)&server_addr, 0, sizeof(server_addr));
 server_addr.sin_family=AF_INET;
 server_addr.sin_port=htons(destination_host_port);
 if (inet_aton(destination_host,
 (struct sockaddr*)&server_addr.sin_addr
) == 0){
 fprintf(stderr, "could not get an address for: %s", destination_host);
 exit(1);
 }

 /* Initialise USB system and enable debug mode
 if (debug)
 usb_set_debug(2);
 */

 /*
 Search the k8055 interface device
 */
 if (OpenDevice(ipid)<0) {
 printf("Could not open the k8055 (port:%d)\nPlease ensure that the device is
correctly connected.\n",ipid);
 return (-1);
 }

 while (running)
 {
 sleeprate++;
 if (sleeprate >= sleepratetimeout) {

 /* Read from board */
 for (i=0; i < Number_of_Bytes_to_read; i++) {
 sample=ReadAnalogChannel(1L); /* sample from Channel 1 */
 sample2=ReadAnalogChannel(2L); /* sample from Channel 2 */
 /* fprintf(stdout, "read[%d]:%lu %lu\n", i,sample,sample2); */
 bigBuffer[i]=(unsigned int)(sample & 0xff);
 bigBuffer2[i]=(unsigned int)(sample2 & 0xff);
 }

78

 /* Send data to logical entity */
 /* for Channel 1 */
 bigBuffer[Number_of_Bytes_to_read]=0;
 bigBuffer[Number_of_Bytes_to_read+1]=0;
 if ((sendto(client_socket_fd,
 bigBuffer,
 Number_of_Bytes_to_read+2,
 sendto_flags,
 (struct sockaddr*)&server_addr,
 sizeof(server_addr)
)
) == -1) {
 perror("Unable to send to socket");
 close(client_socket_fd);
 exit(1);
 }
 /* for Channel 2 */
 bigBuffer2[Number_of_Bytes_to_read]=1;
 bigBuffer2[Number_of_Bytes_to_read+1]=0;
 if ((sendto(client_socket_fd,
 bigBuffer2,
 Number_of_Bytes_to_read+2,
 sendto_flags,
 (struct sockaddr*)&server_addr,
 sizeof(server_addr)
)
) == -1) {
 perror("Unable to send to socket");
 close(client_socket_fd);
 exit(1);
 }

 sleeprate=0;
 } /* End IF SLEEP RATE */

 } /* End WHILE */

 close(client_socket_fd); /* close the socket */

} /* End MAIN */

79

Appendix C: Logical Sensor Code

/*
This code is developed for the logical sensor in the meeting detector context-aware
system. It is based on the server socket code from Professor G. Q. Maguire Jr. and
logical sensor code in occupancy system from Daniel Hubinette.

Last updated: October 13, 2008

//Command to compile this program
gcc -o logical -lusb -L/usr/lib -lm -lk8055 logical.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/select.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <math.h>
#include "address.h"

#define UDP_SIZE 2000

/* Definitions for the PUBLISH message */
#define Branch_label "z9hG4bK6sJ8J0y"
#define Tag_label "6sJ8"
#define Call_ID "288"
#define Max_Forwards 10
#define Expire_time 5
#define Publish_Content_Type "application/pidf+xml"
#define PIDF_Tuple_ID "6sJ8J0"
#define Fixed_PIDF_Content2 ""
#define PIDF_event_type "occupancy"

/* Numbers of sensors used in the system */
#define Number_of_Areas 2

#define Nx 30 /* N for X */
#define Ny 30
#define Nz 30

80

/* Clear a buffer */
void ClearBuffer(char *msg, int size)
{ int j;
 for(j=0; j<size; j++)
 {
 msg[j]=0;
 }
}

int main(int argc, char *argv[]){

 /* INITIALIZATION VALUES */

 /* SERVER SOCKET to RECEIVE RAW DATA */
 int other_addr_len;
 /* Socket to client, server */
 int client_socket_fd;
 /* client's address */
 struct sockaddr_in client_addr;
 /* other party's address */
 struct sockaddr_in other_addr;
 /* Read buffer for received UDP packet */
 char bigBuffer[bigBufferSize];
 int sendto_flags = 0;

 /* CLIENT SOCKET to SEND PUBLISH */
 int client_socket_fd2; /* Socket to client, server */
 struct sockaddr_in server_addr2 ; /* server's address */
 char bigBuffer_publish[bigBufferSize]; /* Buffer for publish*/
 int sendto_flags2 = 0;

 /*SELECT STUFF*/
 fd_set selset; /* Socket file descriptors we want to wake up for, using
select() */
 struct timeval timeout; /* Timeout for select */
 int selreturn; /* Stores return value from Select */

 /* FILE STUFF */
 FILE *fp_file, *fp_file2;
 /* IF WE WANT TO LOG RAW DATA TO FILE SET TO 1 for YES, 0 for NO */
 int filelogging = 0;
 /* IF WE WANT TO LOG VOLTAGE DATA AND VARIANCE TO DATALOG 1 for
YES */
 int datalogging = 0;
 /* RESET EVERY 10 TIMES, USED FOR FLUSH TO FILE */
 int fcounter = 0;

81

 /* FIRST LINE IN LOGFILE TELLS THE NUMBER OF SAMPLES PER UDP
PACKET */
 int firsttime = 1;

 /* STATISTICS STUFF */
 int temp; /* TEMP Variable for STATISTICS for loop */
 int prec = 2; /* Specification of the FLOAT precision displayed in the text */
 int prec2 = 6;
 int intval[Number_of_Areas]; /* Sample Value between 0-255 */
 int n, nm1 = 0; /* Number of samples*/
 int i, j; /* Index for iteration */
 int bytes_read; /* Number of bytes read from the socket */

 int corrdatacount[Number_of_Areas];
 float voltage[Number_of_Areas]; /* VOLTAGE of one sample */
 float sumvol[Number_of_Areas]; /* The sum of the voltage samples =
(i=1:n)Sum(Xi) */
 float sumvol2[Number_of_Areas]; /* The sum^2 of the voltage samples =
(i=1:n)Sum(Xi^2) */
 /* The average voltage of the RAW DATA SAMPLE = 1/n*(i=1:n)Sum(Xi) */
 float sumave[Number_of_Areas];
 /* The average voltage of the RAW DATA SAMPLE = 1/n*(((i=1:n)Sum(Xi))^2) */
 float sum2ave[Number_of_Areas];
 float variance[Number_of_Areas]; /* The variance */
 float deviance[Number_of_Areas]; /* The deviance */
 float dv[Number_of_Areas],v1[Number_of_Areas],v2[Number_of_Areas];
 float maxval[Number_of_Areas]; /* Maximum RAW DATA Value Seen */
 float minval[Number_of_Areas]; /* Minimum RAW DATA Value Seen */
 float sumy[Number_of_Areas]; /* SUMY */
 float sumy2[Number_of_Areas]; /* SUMYCUBE */
 float cubesumy[Number_of_Areas]; /* CUBED SUM */
 float corrdata[Number_of_Areas][Nx] = {0}; /* Initialization of corrdata */
 float corr2data[Number_of_Areas][Nx] = {0};
 float sensordata[Number_of_Areas][Nx];
 float sumx[Number_of_Areas];
 float sumx2[Number_of_Areas];
 float cubesumx[Number_of_Areas];
 float threshold = 0.8; /* Threshold for correlation detection */
 float rho[Number_of_Areas];
 float rho2[Number_of_Areas];
 float sumxiyi[Number_of_Areas];
 float sumxizi[Number_of_Areas];
 float sumxsumydnx[Number_of_Areas];
 float sumxsumzdnx[Number_of_Areas];
 float deviancey[Number_of_Areas];
 float deviancex[Number_of_Areas];
 float deviancez[Number_of_Areas];
 float sumz[Number_of_Areas];
 float sumz2[Number_of_Areas];
 float cubesumz[Number_of_Areas];

82

 /* DETECTION STUFF */

 /* Definitions of boundaries for state based detection */
 float topzone = 28;
 float midtop = 23;
 float midbot = 16;
 float botzone = 10;

 /* Count for state based detection */
 int comefromright[Number_of_Areas];
 int comefromleft[Number_of_Areas];

 /* Count for correlation based detection */
 int personsinarea[Number_of_Areas];
 int corrpersons[Number_of_Areas];
 int prevcorr[Number_of_Areas];

 int current_area; /* Change for area */

 /* Reset if exceeds */
 int rightresetcount[Number_of_Areas];
 int leftresetcount[Number_of_Areas];
 int detectreset= 15;

 double convertvar = 0;

 /* NOTIFY CONTEXT SERVER */
 int notify = 0;
 int corrnote = 0;

 int coi;
 int foi;

 char pidf_core[UDP_SIZE*sizeof(char)];
 char * PIDF_Note;
 char * sensor_id;
 char * Destination_Machine_Address = destination_host;
 int SIP_Default_Port_Number = presence_server_host_port;

 /* Initialization of values */
 for (i=0; i < Number_of_Areas; i++) {
 personsinarea[Number_of_Areas]=0;
 corrpersons[Number_of_Areas]=0;
 prevcorr[Number_of_Areas]=0;
 corrdatacount[Number_of_Areas] = 0;
 voltage[Number_of_Areas] = 0;
 sumvol[Number_of_Areas] = 0;
 sumvol2[Number_of_Areas] = 0;
 sumave[Number_of_Areas] = 0;

83

 sum2ave[Number_of_Areas] = 0;
 deviance[Number_of_Areas] = 0;
 deviance[Number_of_Areas] = 0;
 dv[Number_of_Areas],v1[Number_of_Areas],v2[Number_of_Areas] = 0;
 maxval[Number_of_Areas] = 0;
 minval[Number_of_Areas] = 2;
 comefromright[Number_of_Areas] = 0;
 comefromleft[Number_of_Areas] = 0;
 rightresetcount[Number_of_Areas] = 0;
 leftresetcount[Number_of_Areas] = 0;

 }

 /* START OF LOGIC CODE */
 sendto_flags=0;

 for(coi = 0; coi < argc; coi++){
 printf("arg %d: %s\n", coi, argv[coi]);
 }

 if (argc == 2){
 if ((strtod(argv[1],NULL) >= -1) && (strtod(argv[1],NULL) <= 1)){
 convertvar = strtod(argv[1],NULL);
 threshold = convertvar;
 printf("new threshold set = %f\n",threshold);

 }
 else{
 printf("threshold size = %f\n",threshold);
 }
 }

 /* Correlation based detection for sensor 0 */

 /* Correlation Data 1 for exit */
 corrdata[0][0] = 16.56;
 corrdata[0][1] = 18.56;
 corrdata[0][2] = 26.94;
 corrdata[0][3] = 33.88;
 corrdata[0][4] = 33.31;
 corrdata[0][5] = 7.38;
 corrdata[0][6] = 0.00;
 corrdata[0][7] = 0.00;
 corrdata[0][8] = 0.00;
 corrdata[0][9] = 11.00;
 corrdata[0][10] = 25.62;
 corrdata[0][11] = 31.06;
 corrdata[0][12] = 32.12;
 corrdata[0][13] = 28.88;

84

 corrdata[0][14] = 26.88;
 corrdata[0][15] = 24.50;
 corrdata[0][16] = 22.81;
 corrdata[0][17] = 20.38;
 corrdata[0][18] = 18.69;
 corrdata[0][19] = 19.06;
 corrdata[0][20] = 18.38;
 corrdata[0][21] = 17.44;
 corrdata[0][22] = 16.75;
 corrdata[0][23] = 16.81;
 corrdata[0][24] = 16.31;
 corrdata[0][25] = 16.38;
 corrdata[0][26] = 16.62;
 corrdata[0][27] = 16.25;
 corrdata[0][28] = 16.56;
 corrdata[0][29] = 16.12;

 /* Correlation Data 2 for entry */
 corr2data[0][0] = 18.69;
 corr2data[0][1] = 18.19;
 corr2data[0][2] = 18.50;
 corr2data[0][3] = 17.12;
 corr2data[0][4] = 16.19;
 corr2data[0][5] = 14.75;
 corr2data[0][6] = 14.06;
 corr2data[0][7] = 0.69;
 corr2data[0][8] = 0.00;
 corr2data[0][9] = 0.00;
 corr2data[0][10] = 15.31;
 corr2data[0][11] = 34.25;
 corr2data[0][12] = 33.31;
 corr2data[0][13] = 34.19;
 corr2data[0][14] = 33.19;
 corr2data[0][15] = 33.31;
 corr2data[0][16] = 22.25;
 corr2data[0][17] = 15.12;
 corr2data[0][18] = 7.25;
 corr2data[0][19] = 3.00;
 corr2data[0][20] = 6.12;
 corr2data[0][21] = 9.12;
 corr2data[0][22] = 13.50;
 corr2data[0][23] = 16.00;
 corr2data[0][24] = 18.00;
 corr2data[0][25] = 19.25;
 corr2data[0][26] = 20.06;
 corr2data[0][27] = 20.44;
 corr2data[0][28] = 20.25;
 corr2data[0][29] = 20.62;

 /* Correlation based detection for sensor 1 */

85

 /* Correlation Data 1 for exit */
 corrdata[1][0] = 18.900000;
 corrdata[1][1] = 19.366667;
 corrdata[1][2] = 20.533333;
 corrdata[1][3] = 22.333334;
 corrdata[1][4] = 28.833334;
 corrdata[1][5] = 35.466667;
 corrdata[1][6] = 35.366665;
 corrdata[1][7] = 35.166668;
 corrdata[1][8] = 27.333334;
 corrdata[1][9] = 0.000000;
 corrdata[1][10] = 1.000000;
 corrdata[1][11] = 0.000000;
 corrdata[1][12] = 1.000000;
 corrdata[1][13] = 18.333333;
 corrdata[1][14] = 25.866667;
 corrdata[1][15] = 23.433334;
 corrdata[1][16] = 21.566668;
 corrdata[1][17] = 18.700001;
 corrdata[1][18] = 15.833334;
 corrdata[1][19] = 13.966666;
 corrdata[1][20] = 14.566667;
 corrdata[1][21] = 14.400000;
 corrdata[1][22] = 15.066667;
 corrdata[1][23] = 15.233334;
 corrdata[1][24] = 16.366667;
 corrdata[1][25] = 16.433332;
 corrdata[1][26] = 17.166666;
 corrdata[1][27] = 18.000000;
 corrdata[1][28] = 19.733334;
 corrdata[1][29] = 20.033333;

 /* Correlation Data 2 for entry */
 corr2data[1][0] = 18.799999;
 corr2data[1][1] = 19.200001;
 corr2data[1][2] = 18.833334;
 corr2data[1][3] = 13.833333;
 corr2data[1][4] = 0.000000;
 corr2data[1][5] = 0.000000;
 corr2data[1][6] = 0.000000;
 corr2data[1][7] = 0.000000;
 corr2data[1][8] = 35.466667;
 corr2data[1][9] = 35.599998;
 corr2data[1][10] = 35.500000;
 corr2data[1][11] = 35.090000;
 corr2data[1][12] = 35.060000;
 corr2data[1][13] = 22.866668;
 corr2data[1][14] = 7.366666;

86

 corr2data[1][15] = 2.000000;
 corr2data[1][16] = 0.000000;
 corr2data[1][17] = 2.533333;
 corr2data[1][18] = 5.066667;
 corr2data[1][19] = 8.233334;
 corr2data[1][20] = 12.166666;
 corr2data[1][21] = 15.300000;
 corr2data[1][22] = 18.433333;
 corr2data[1][23] = 20.066666;
 corr2data[1][24] = 21.366667;
 corr2data[1][25] = 22.333333;
 corr2data[1][26] = 22.800000;
 corr2data[1][27] = 23.366667;
 corr2data[1][28] = 23.600000;
 corr2data[1][29] = 23.533333;

 printf("Setting up the Correlation 1 Dataset\n");

 for (current_area=0; current_area < Number_of_Areas; current_area++){

 for(foi = 0; foi < Ny; foi++){
 printf("%f\n",corrdata[current_area][foi]);
 sumy[current_area] = sumy[current_area] +
corrdata[current_area][foi];
 sumy2[current_area] = sumy2[current_area] +
(corrdata[current_area][foi] * corrdata[current_area][foi]);
 cubesumy[current_area] = (sumy2[current_area] *
sumy2[current_area]);
 }

/* printf("sumy[%d]=%f\n", current_area, sumy[current_area]);
 printf("sumy2[%d]=%f\n", current_area, sumy2[current_area]);
*/
 printf("Setting up the Correlation 2 Dataset\n");
 for(foi = 0; foi < Ny; foi++){
 printf("%f\n",corr2data[current_area][foi]);
 sumz[current_area] = sumz[current_area] +
corr2data[current_area][foi];
 sumz2[current_area] = sumz2[current_area] +
(corr2data[current_area][foi] * corr2data[current_area][foi]);
 cubesumz[current_area] = (sumz2[current_area] *
sumz2[current_area]);
 }

/* printf("sumz[%d]=%f\n", current_area, sumz[current_area]);
 printf("sumz2[%d]=%f\n", current_area, sumz2[current_area]);
*/
 for (j=0; j < Nx; j++) {
 sensordata[current_area][j] = 0.0;

87

 }

 }

 /* Create a UDP server socket */

 client_socket_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 /* printf("%d : FD SOCKET",client_socket_fd); */
 if (client_socket_fd == -1) {
 perror("Unable to open socket");
 exit(1);
 };

 /* Initialize the server address structure */
 memset((char*)& client_addr, 0, sizeof(client_addr));
 client_addr.sin_family=AF_INET;
 client_addr.sin_port=htons(destination_host_port);
 client_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(client_socket_fd,
 (struct sockaddr*)&client_addr,
 sizeof(client_addr))==-1) {
 close(client_socket_fd);
 exit(1);
 }

 /* CREATE A CLIENT UDP SOCKET FOR PUBLISH */

 /* SETUP THE UDP CLIENT PUBLISH PORT */

 /* Create a UDP socket */
 if ((client_socket_fd2 = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -
1) {
 perror("Unable to open socket");
 exit(1);

 };

 /* Initialize the server address structure */
 memset((char*)&server_addr2, 0, sizeof(server_addr2));
 server_addr2.sin_family=AF_INET;
 server_addr2.sin_port=htons(presence_server_host_port);

 if (inet_aton(presence_server_host,
 (struct in_addr*)&server_addr2.sin_addr) == 0) {
 fprintf(stderr, "could not get an address for: %s", presence_server_host);
 exit(1);

88

 }

 /* CHECK IF WE WANT TO LOG */
 if (filelogging == 1) {
 /* OPEN LOG FILE FOR RAW DATA */
 if((fp_file=fopen("rawdatastream", "a"))==NULL) {
 printf("Cannot open file. Will not log data\n");
 filelogging=0;
 }
 }

 if (datalogging == 1) {
 /* OPEN LOG FILE FOR RAW DATA */
 if((fp_file2=fopen("datalog", "a"))==NULL) {
 printf("Cannot open file. Will not log data\n");
 datalogging=0;
 }
 }

 /* READ DATA INDEFINATELY */
 while(1)
 {

 /* SELECT STUFF*/
 /* FD_ZERO() clears out the fd_set called selset, so that
 it doesn't contain any file descriptors. */
 FD_ZERO(&selset);

 /* FD_SET() adds the file descriptor "client_socket_fd" to the fd_set,
 so that select() will return if a connection comes in
 on that socket (which means you have to do accept(), etc. */
 FD_SET(client_socket_fd, &selset);

 /* Timeout specification */
 /* This must be reset every time select() is called */
 timeout.tv_sec = 1; /* timeout (secs.) */
 timeout.tv_usec = 0; /* 0 microseconds */

 /* CHECK FDs ATT REGULAR INTERVALS */

 selreturn = select(client_socket_fd+1,
 &selset,NULL,NULL, &timeout);

 /* IF NO FDs DATA IS RECEIVED */
 if (selreturn == 0) {
 printf("No data being received from sensor!\n");
 continue; /* Go around the outer while loop once again */
 }

89

 /* IF DATA IS RECEIVED */
 if (selreturn>0){

 bytes_read = recvfrom(client_socket_fd,
 bigBuffer,
 bigBufferSize,
 sendto_flags,
 (struct sockaddr*)&other_addr,
 &other_addr_len);
 if (bytes_read == -1) {
 perror("Unable to receive from socket");
 close(client_socket_fd);
 exit(1);
 }

 /* Get the area id from the buffer data */
 current_area = bigBuffer[bytes_read-2];

 fprintf(stderr, "The current area is [%d]----------------------\n", current_area);

 /* WRITE OUT RAW DATA WITH INTERESTING FACTS ABOUT DATA
SOURCE */

 /*printf("Received packet from %s:%d\nData: %s\nString length=%d\n",
 inet_ntoa(other_addr.sin_addr),
 ntohs(other_addr.sin_port),
 bigBuffer,
 strlen(bigBuffer));
 */

 /* PRINT OUT INTERESTING FACTS ABOUT DATA SOURCE */

 /*printf("Received packet from %s:%d\nlength=%d\n",
 inet_ntoa(other_addr.sin_addr),
 ntohs(other_addr.sin_port),
 strlen(bigBuffer));
 */

 /* GET NUMBER OF BYTES FOR FILE LOG */
 /*if ((filelogging == 1) &&(firsttime == 1)){

 fprintf(fp_file,"SAMPLES %d \n", strlen(bigBuffer));
 firsttime = 0;
 }*/

 /* STATISTICS: DO STUFF WITH RETRIEVED DATA */

 /* RESET TEMPORARY STATISTICAL DATA */

90

 sumave[current_area] = 0;
 sumvol[current_area] = 0;
 sumvol2[current_area] = 0;
 sum2ave[current_area] = 0;
 variance[current_area] = 0;
 deviance[current_area] = 0;
 sumx[current_area] = 0;
 sumxiyi[current_area] = 0;
 sumxizi[current_area] = 0;
 sumx2[current_area] = 0;
 cubesumx[current_area] = 0;

 /* Calculate the average voltage & voltage^2 from group of samples */
 for(temp = 0; temp < (bytes_read-2); temp++){
 intval[current_area] = (int)(unsigned char) bigBuffer[temp];

 if (filelogging == 1){

 fprintf(fp_file,"%d ", intval[current_area]);

 /* FLUSH EVERY 8 WRITES TO MAKE SURE DATA IS WRITTEN TO
FILE */
 fcounter++;
 if (fcounter > 8) {
 fflush(fp_file);
 fcounter = 0;
 }
 }

 voltage[current_area] = intval[current_area];

 /* GET THE SUM OF VOLTAGES */
 sumvol[current_area] = sumvol[current_area] + voltage[current_area];

 /* GET THE SUM VOLTAGES^2 */
 sumvol2[current_area] = sumvol2[current_area] + (voltage[current_area]
* voltage[current_area]);

 } /* END FOR LOOP */

 /* Write NEWLINE TO LOG FILE AFTER EVERY N Number of SAMPLES */
 if (filelogging == 1)
 {
 fprintf(fp_file,"\n");

 }
 n = bytes_read-2;
 nm1 = n-1;

91

 /* MAKE SURE WE DON'T DIVIDE BY ZERO WHEN GETTING THE SUM
AVERAGE */
 if ((n != 0) && (nm1 != 0)){
 sumave[current_area] = sumvol[current_area]/n;
 sum2ave[current_area] = (sumvol[current_area] *
sumvol[current_area])/n;
 variance[current_area] = (sumvol2[current_area] -
sum2ave[current_area])/nm1;
 deviance[current_area] = sqrtf(variance[current_area]);
 }

 v2[current_area] = sumave[current_area];
 dv[current_area] = v2[current_area] - v1[current_area];
 v1[current_area] = v2[current_area];

 /* SAVE THE MAX VALUE SEEN */
 if (sumave[current_area] > maxval[current_area])
 maxval[current_area] = sumave[current_area];

 /* SAVE THE MIN VALUE SEEN */
 if (sumave[current_area] < minval[current_area]) {
 minval[current_area] = sumave[current_area];
 if (minval[current_area] < 0)
 minval[current_area]=0;
 }

 /* PRINT OUT FACTS TO SCREEN */
 /* printf("Bytes per Packet = %d\n",n);
 printf("Mean value = %.*f \n",prec,sumave[current_area]);
 printf("Variance value = %.*f \n",prec2,variance[current_area]);
 printf("Deviance value = %.*f \n",prec,deviance[current_area]);
 printf("dvdt = %.*f \n",prec,dv[current_area]);
 printf("Minimum value = %.*f \n",prec,minval[current_area]);
 printf("Maximum value = %.*f \n",prec,maxval[current_area]);
 */

 /* PRINT OUT FACTS TO DATALOG */

 if (datalogging == 1)
 {
 fprintf(fp_file2,"%f,%f \n",sumave[current_area],
variance[current_area]);
 fflush(fp_file2);
 }

 /* DETECTION START */

 /* CORRELATION DETECTION START */
 /* Shift Data and store latest value */

92

 sensordata[current_area][0] = sensordata[current_area][1];
 sensordata[current_area][1] = sensordata[current_area][2];
 sensordata[current_area][2] = sensordata[current_area][3];
 sensordata[current_area][3] = sensordata[current_area][4];
 sensordata[current_area][4] = sensordata[current_area][5];
 sensordata[current_area][5] = sensordata[current_area][6];
 sensordata[current_area][6] = sensordata[current_area][7];
 sensordata[current_area][7] = sensordata[current_area][8];
 sensordata[current_area][8] = sensordata[current_area][9];
 sensordata[current_area][9] = sensordata[current_area][10];
 sensordata[current_area][10] = sensordata[current_area][11];
 sensordata[current_area][11] = sensordata[current_area][12];
 sensordata[current_area][12] = sensordata[current_area][13];
 sensordata[current_area][13] = sensordata[current_area][14];
 sensordata[current_area][14] = sensordata[current_area][15];
 sensordata[current_area][15] = sensordata[current_area][16];
 sensordata[current_area][16] = sensordata[current_area][17];
 sensordata[current_area][17] = sensordata[current_area][18];
 sensordata[current_area][18] = sensordata[current_area][19];
 sensordata[current_area][19] = sensordata[current_area][20];
 sensordata[current_area][20] = sensordata[current_area][21];
 sensordata[current_area][21] = sensordata[current_area][22];
 sensordata[current_area][22] = sensordata[current_area][23];
 sensordata[current_area][23] = sensordata[current_area][24];
 sensordata[current_area][24] = sensordata[current_area][25];
 sensordata[current_area][25] = sensordata[current_area][26];
 sensordata[current_area][26] = sensordata[current_area][27];
 sensordata[current_area][27] = sensordata[current_area][28];
 sensordata[current_area][28] = sensordata[current_area][29];
 sensordata[current_area][29] = sumave[current_area];

 if (corrdatacount[current_area] == 30) {printf("Sensor Data Populated\n");
 }
 if (corrdatacount[current_area] < 30) {
 corrdatacount[current_area] = corrdatacount[current_area] +1;
 printf("Populating Sensor Data\n");
 }

 /* SUMXiYi */
 for (coi = 0; coi < Nx; coi++){
 printf("Sensor[%d] Data = %.*f : Correlation Data = %.*f : Correlation
Data2 = %.*f\n",
 current_area,
 prec,sensordata[current_area][coi],
 prec,corrdata[current_area][coi],
 prec,corr2data[current_area][coi]);
 sumxiyi[current_area] = sumxiyi[current_area] +
(sensordata[current_area][coi] * corrdata[current_area][coi]);

93

 sumxizi[current_area] = sumxizi[current_area] +
(sensordata[current_area][coi] * corr2data[current_area][coi]);
 sumx[current_area] = sumx[current_area] +
sensordata[current_area][coi];
 sumx2[current_area] = sumx2[current_area] +
(sensordata[current_area][coi] * sensordata[current_area][coi]);
 cubesumx[current_area] = (sumx2[current_area] * sumx2[current_area]);

 }

 sumxsumydnx[current_area] = ((sumx[current_area]
*sumy[current_area])/Nx);
 sumxsumzdnx[current_area] = ((sumx[current_area]
*sumz[current_area])/Nx);

 deviancex[current_area] = sqrt(sumx2[current_area] -
((sumx[current_area]*sumx[current_area])/Nx));
 deviancey[current_area] = sqrt(sumy2[current_area] -
((sumy[current_area]*sumy[current_area])/Ny));
 deviancez[current_area] = sqrt(sumz2[current_area] -
((sumz[current_area]*sumz[current_area])/Nz));

 rho[current_area] = (sumxiyi[current_area] -
sumxsumydnx[current_area])/(deviancex[current_area]*deviancey[current_area]);
 rho2[current_area] = (sumxizi[current_area] -
sumxsumzdnx[current_area])/(deviancex[current_area]*deviancez[current_area]);

 /* printf("Sumxiyi = %f\n",sumxiyi[current_area]);
 printf("Sumxizi = %f\n",sumxizi[current_area]);
 printf("Sumx = %f\n",sumx[current_area]);
 printf("Sumx2 = %f\n",sumx2[current_area]);
 printf("Cubesumx = %f\n",cubesumx[current_area]);
 printf("Sumy = %f\n",sumy[current_area]);
 printf("Sumy2 = %f\n",sumy2[current_area]);
 printf("Cubesumy = %f\n",cubesumy[current_area]);
 printf("Sumz = %f\n",sumz[current_area]);
 printf("Sumz2 = %f\n",sumz2[current_area]);
 printf("Cubesumz = %f\n",cubesumz[current_area]);
 printf("Nx = %d\n",Nx);
 printf("Ny = %d\n",Ny);
 printf("Nz = %d\n",Nz);
 printf("DevianceX= %f\n",deviancex[current_area]);
 printf("DevianceY= %f\n",deviancey[current_area]);
 printf("DevianceZ= %f\n",deviancez[current_area]);
 printf("Rho = %f\n",rho[current_area]);
 printf("Rho2 = %f\n",rho2[current_area]);
 */

 /* Correlation coefficient comparison for exit */
 if (rho[current_area] >= threshold) {

94

 printf("RIGHT TO LEFT DETECTED\n");
 if (corrpersons[current_area] >= 1) {
 corrpersons[current_area] = corrpersons[current_area] - 1;
 corrnote = 1;
 }
 }

 /* Correlation coefficient comparison for entry */
 if (rho2[current_area] >= threshold){
 printf("LEFT TO RIGHT DETECTED 2\n");
 corrpersons[current_area] = corrpersons[current_area] + 1;
 corrnote = 1;

 }

 /* STATE BASED DETECTION */
 if ((comefromleft[current_area]==0) && (comefromright[current_area] ==
0)) {
 printf("STATE 0 \n");
 if ((sumave[current_area] >= midtop) &&
(personsinarea[current_area] > 0)) {
 comefromright[current_area]=1; /* SET STATE 1 - PASS TOPZONE */
 }
 if (sumave[current_area] <= midbot) {
 comefromleft[current_area]=1; /* SET STATE 1 - PASS BOTZONE */
 }

 }

 if (comefromright[current_area] == 1) {
 printf("STATE 1 \n");
 if (sumave[current_area] >= topzone) {
 comefromright[current_area] = 2; /* SET STATE 2 - PASS MIDTOP */
 printf("PERSON COMING FROM THE RIGHT SIDE <-----------\n");
 rightresetcount[current_area] =0;
 }
 rightresetcount[current_area]++;
 }

 else if (comefromleft[current_area] == 1) {
 printf("STATE 1 \n");
 if (sumave[current_area] <= botzone) {
 comefromleft[current_area] = 2; /* SET STATE 2 - PASS MIDBOT */
 printf("PERSON COMING FROM THE LEFT SIDE ------------>\n");
 leftresetcount[current_area] = 0;
 }
 leftresetcount[current_area]++;
 }

 if (comefromright[current_area] == 2) {

95

 printf("STATE 2 \n");
 if (sumave[current_area] <= midtop) {
 comefromright[current_area] = 3; /* SET STATE 3 - PASS MIDBOT */
 rightresetcount[current_area] =0;
 }
 rightresetcount[current_area]++;
 }

 else if (comefromleft[current_area] == 2) {
 printf("STATE 2 \n");

 if (sumave[current_area] >= midbot) {
 comefromleft[current_area] = 3; /* SET STATE 3 - PASS MIDTOP */
 leftresetcount[current_area] = 0;
 }
 leftresetcount[current_area]++;
 }

 if (comefromright[current_area] == 3) {
 printf("STATE 3 \n");

 if (sumave[current_area] <= midbot) {
 comefromright[current_area] = 4; /* SET STATE 4 - PASS BOTZONE */
 rightresetcount[current_area] =0;
 }
 rightresetcount[current_area]++;
 }

 else if (comefromleft[current_area] == 3) {
 printf("STATE 3 \n");

 if (sumave[current_area] >= midtop) {
 comefromleft[current_area] = 4; /* SET STATE 4 - PASS TOPZONE */
 leftresetcount[current_area] = 0;
 }
 leftresetcount[current_area]++;
 }

 if (comefromright[current_area] == 4) {
 printf("STATE 4 \n");

 if (sumave[current_area] <= botzone) {
 comefromright[current_area] = 5; /* SET STATE 5 - PASS MIDBOT */
 rightresetcount[current_area] =0;
 }
 rightresetcount[current_area]++;
 }

 else if (comefromleft[current_area] == 4) {
 printf("STATE 4 \n");

96

 if (sumave[current_area] >= topzone) {
 comefromleft[current_area] = 5; /* SET STATE 5 - PASS MIDTOP */
 leftresetcount[current_area] = 0;
 }
 leftresetcount[current_area]++;
 }

 if (comefromright[current_area] == 5) {
 printf("STATE 5 \n");

 if (sumave[current_area] >= midbot) {
 printf("EXIT DETECTED\n");
 personsinarea[current_area]--;
 notify = 1;
 comefromright[current_area] = 0; /* SET STATE 0 */
 }
 rightresetcount[current_area]=0;
 }

 else if (comefromleft[current_area] == 5) {
 printf("STATE 5 \n");

 if (sumave[current_area] <= midtop) {
 printf("ENTRY DETECTED\n");
 personsinarea[current_area]++;
 comefromleft[current_area] = 0; /* SET STATE 0 */
 notify = 1;
 }
 leftresetcount[current_area]=0;
 }

 /* TIMEOUTS */
 if (rightresetcount[current_area] > detectreset)
comefromright[current_area]=0;
 if (leftresetcount[current_area] > detectreset) comefromleft[current_area] =
0;

 /* NOTIFY CONTEXT SERVER OF UPDATE using correlation based
detection */
 if (corrpersons[current_area] == 0) printf("Correlation : Empty in area\n");
 if (corrpersons[current_area] == 1) printf("Correlation : Individual in
area\n");
 if (corrpersons[current_area] > 1) {
 printf("Correlation : Meeting (%d) in area\n", corrpersons[current_area]);
 }

 /* NOTIFY CONTEXT SERVER OF UPDATE using state based detection */
 /* if (personsinarea[current_area] == 0) printf("State Based : Area is
EMPTY\n");

97

 if (personsinarea[current_area] == 1) printf("State Based : ONE person
in area\n");
 if (personsinarea[current_area] > 1){
 printf("State Based : MANY (%d) people in area\n",
 personsinarea[current_area]);
 }
 */
 if ((corrnote == 1) && (prevcorr[current_area] !=
corrpersons[current_area])){
 notify = 0;
 corrnote = 0;
 prevcorr[current_area] = corrpersons[current_area];
 if (corrpersons[current_area] == 0) PIDF_Note = "Empty";
 if (corrpersons[current_area] == 1) PIDF_Note = "Individual";
 if (corrpersons[current_area] > 1) PIDF_Note = "Meeting";

 printf("Now there are %d persons in this area!\n",
personsinarea[current_area]);

 switch (current_area)
 {
 case 0: sensor_id = "OpenArea";
 break;
 case 1: sensor_id = "MINT";
 break;
 }

 sprintf(pidf_core,
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?><presence
xmlns=\"urn:ietf:params:xml:ns:pidf\"entity=\"sip:%s@%s\"><tuple
id=\"%s\"><status><basic>open</basic><area>%s</area><occupancy>%s</oc
cupancy></status><note>%d</note><contact
priority=\"0.8\">ccsmoto</contact></tuple></presence>\r\n",
 Source_Machine_Name,
 presence_server_host,
 PIDF_Tuple_ID,
 sensor_id,
 PIDF_Note,
 corrpersons[current_area]);

 sprintf(bigBuffer_publish,
 "PUBLISH sip:%s@%s SIP/2.0\r\nVia:
SIP/2.0/UDP %s:%d;branch=%s\r\nTo: <sip:%s@%s>\r\nFrom:
<sip:%s@%s>;tag=%s\r\nCall-ID: %s@%s\r\nCSeq: 1 PUBLISH\r\nMax-
Forwards: %d\r\nExpires: %d\r\nEvent: %s\r\nContent-Type: %s\r\nContent-
Length: %d\r\n\r\n%s",
 User_name,
 presence_server_host,
 Destination_Machine_Address,
 SIP_Default_Port_Number,

98

 Branch_label,
 Source_Machine_Name,
 presence_server_host,
 Publish_Machine_Name,
 Destination_Machine_Address,
 Tag_label,
 Call_ID,
 Destination_Machine_Address,
 Max_Forwards,
 Expire_time,
 PIDF_event_type,
 Publish_Content_Type,
 (int)strlen(pidf_core), pidf_core);

 /* Make a PUBLISH if occupancy information changes */

 if ((sendto(client_socket_fd2,
 bigBuffer_publish,
 strlen(bigBuffer_publish),
 sendto_flags2,
 (struct sockaddr*)&server_addr2,
 sizeof(server_addr2))) == -1) {

 perror("Error Sending PUBLISH message. \n");
 close(client_socket_fd2);
 exit(1);
 }

 ClearBuffer(bigBuffer_publish,strlen(bigBuffer_publish));

 }

 } /* END IF SELECT */

 } /* END WHILE */

 close(client_socket_fd); /* Close the socket */
 close(client_socket_fd2);
 /* IF FILE HAS BEEN OPENED */
 if (filelogging == 1) {
 fclose(fp_file); /* Close the logfile */
 }
 if (datalogging == 1) {
 fclose(fp_file2); /* Close the logfile */
 }

 return 0;
 exit(0);
}

99

Appendix D: Header File for Main Program

This is the header file for physical and logical sensor code.

#define bigBufferSize 8192

#define destination_host "130.237.15.252"

#define destination_host_port 49152

#define Source_Machine_Name "ccsleft"

#define Publish_Machine_Name "ccsmoto"

#define User_name "xueliang"

#define presence_server_host "130.237.15.238"

#define presence_server_host_port 5060

100

Appendix E: SER Configuration File

This is the ser.cfg file for SER configuration with presence module.

debug=9 # debug level (cmd line: -dddddddddd)
check_via=no # (cmd. line: -v)
dns=no # (cmd. line: -r)
rev_dns=no # (cmd. line: -R)
port=5060
children=2
#alias="wireless.kth.se"
mhomed=yes # usefull for multihomed hosts, small performance penalty
#tcp_accept_aliases=yes # accepts the tcp alias via option (see NEWS)
#tcp_poll_method="sigio_rt"

------------------ module loading ----------------------------------

loadmodule "/usr/local/lib/ser/modules/sl.so"
loadmodule "/usr/local/lib/ser/modules/avp.so"
loadmodule "/usr/local/lib/ser/modules/avpops.so"
loadmodule "/usr/local/lib/ser/modules/tm.so"
loadmodule "/usr/local/lib/ser/modules/rr.so"
loadmodule "/usr/local/lib/ser/modules/maxfwd.so"
loadmodule "/usr/local/lib/ser/modules/usrloc.so"
loadmodule "/usr/local/lib/ser/modules/registrar.so"
loadmodule "/usr/local/lib/ser/modules/textops.so"
loadmodule "/usr/local/lib/ser/modules/mysql.so"
loadmodule "/usr/local/lib/ser/modules/dialog.so"
loadmodule "/usr/local/lib/ser/modules/rls.so"
loadmodule "/usr/local/lib/ser/modules/pa.so"
loadmodule "/usr/local/lib/ser/modules/presence_b2b.so"
loadmodule "/usr/local/lib/ser/modules/uri.so"
loadmodule "/usr/local/lib/ser/modules/uri_db.so"
loadmodule "/usr/local/lib/ser/modules/domain.so"
loadmodule "/usr/local/lib/ser/modules/fifo.so"
loadmodule "/usr/local/lib/ser/modules/xmlrpc.so"
loadmodule "/usr/local/lib/ser/modules/xlog.so"
loadmodule "/usr/local/lib/ser/modules/msilo.so"
loadmodule "/usr/local/lib/ser/modules/xcap.so"
#loadmodule "/usr/local/lib/ser/modules/cpl-c.so"
#loadmodule "/usr/lib/ser/modules/unixsock.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "/usr/local/lib/ser/modules/auth.so"
loadmodule "/usr/local/lib/ser/modules/auth_db.so"

101

----------------- setting module-specific parameters ---------------

modparam("msilo","registrar","sip:registrar@test-domain.com")
modparam("msilo","use_contact",0)
modparam("msilo","expire_time",7200)

-- usrloc params --

-- auth params --
Uncomment if you are using auth module

modparam("auth_db", "calculate_ha1", yes)

If you set "calculate_ha1" parameter to yes (which true in this config),
uncomment also the following parameter)

modparam("auth_db", "password_column", "password")

-- rr params --
add value to ;lr param to make some broken UAs happy
modparam("rr", "enable_full_lr", 1)

modparam("rls", "min_expiration", 200)
modparam("rls", "max_expiration", 300)
modparam("rls", "default_expiration", 300)
modparam("rls", "auth", "none")
#modparam("rls", "xcap_root", "http://localhost/xcap")
modparam("rls", "reduce_xcap_needs", 1)
modparam("rls", "db_mode", 0)
modparam("rls", "db_url", "mysql://root:helso@localhost:3306/ser")

modparam("pa", "use_db", 0)
allow storing authorization requests for offline users into database
modparam("pa", "use_offline_winfo", 1)
how often try to remove old stored authorization requests
modparam("pa", "offline_winfo_timer", 600)
how long stored authorization requests live
modparam("pa", "offline_winfo_expiration", 600)
modparam("pa", "db_url", "mysql://root:helso@localhost:3306/ser")
mode of PA authorization: none, implicit or xcap
#modparam("pa", "auth", "xcap")
#modparam("pa", "auth_xcap_root", "http://localhost/xcap")
do not authorize watcherinfo subscriptions
modparam("pa", "winfo_auth", "none")
use only published information if set to 0
modparam("pa", "use_callbacks", 1)
don't accept internal subscriptions from RLS, ...
modparam("pa", "accept_internal_subscriptions", 0)
maximum value of Expires for subscriptions

102

modparam("pa", "max_subscription_expiration", 600)
maximum value of Expires for publications
modparam("pa", "max_publish_expiration", 120)
how often test if something changes and send NOTIFY
modparam("pa", "timer_interval", 10)

route for generated SUBSCRIBE requests for presence
modparam("presence_b2b", "presence_route", "<sip:127.0.0.1;transport=tcp;lr>")
waiting time from error to new attepmt about SUBSCRIBE
modparam("presence_b2b", "on_error_retry_time", 60)
how long wait for NOTIFY with Subscription-Status=terminated after unsubscribe
modparam("presence_b2b", "wait_for_term_notify", 33)
how long before expiration send renewal SUBSCRIBE request
modparam("presence_b2b", "resubscribe_delta", 30)
minimal time to send renewal SUBSCRIBE request from receiving previous
response
modparam("presence_b2b", "min_resubscribe_time", 60)
default expiration timeout
modparam("presence_b2b", "default_expiration", 3600)
process internal subscriptions to presence events
modparam("presence_b2b", "handle_presence_subscriptions", 1)

modparam("usrloc", "db_mode", 0)
modparam("domain", "db_mode", 1)
modparam("domain|uri_db|acc|auth_db|usrloc|msilo", "db_url",
"mysql://root:helso@localhost:3306/ser")

modparam("fifo", "fifo_file", "/tmp/ser_fifo")
modparam("xcap", "xcap_root", "http://localhost/xcap")

------------------------- request routing logic -------------------

main routing logic

route{
 # XML RPC
 if (method == "POST" || method == "GET") {
 # create_via();
 dispatch_rpc();
 break;
 }

 # initial sanity checks -- messages with
 # max_forwards==0, or excessively long requests
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 break;
 };
 if (msg:len >= max_len) {

103

 sl_send_reply("513", "Message too big");
 break;
 };

 # we record-route all messages -- to make sure that
 # subsequent messages will go through our proxy; that's
 # particularly good if upstream and downstream entities
 # use different transport protocol
 if (!method=="REGISTER") record_route();

 # subsequent messages withing a dialog should take the
 # path determined by record-routing
 if (loose_route()) {
 # mark routing logic in request
 append_hf("P-hint: rr-enforced\r\n");
 route(1);
 break;
 };

 # if the request is for other domain use UsrLoc
 # (in case, it does not work, use the following command
 # with proper names and addresses in it)

 if (uri=~"130.237.15.238") {

 #if (!lookup_domain("To")) {
 if (lookup_domain("$fd","@from.uri.host")) {
 xlog("L_ERR", "Unknown domain to: %tu from: %fu\n");
 route(1);
 break;
 }

 if (method=="REGISTER") {

 # Uncomment this if you want to use digest authentication
 #if (!www_authorize("130.237.15.238", "subscriber")) {
 # www_challenge("130.237.15.238", "0");
 #break;
 #};

 save("location");

 # dump stored messages - route it through myself (otherwise
routed via DNS!)
 if (m_dump("sip:127.0.0.1")) {
 xlog("L_ERR", "MSILO: offline messages for %fu
dumped\n");
 }
 break;

104

 };

 if (method=="SUBSCRIBE") {
 if (!t_newtran()) {
 sl_reply_error();
 break;
 };

 if (@to.tag=="") {
 # only for new subscriptions (with empty to tag)

 if (lookup_user("To")) {
 # existing user -> it is subscription to PA
 if (handle_subscription("registrar")) {
 if ((@msg.event=~"presence\.winfo")) {
 # new watcher info subscription
 # sends one watcher info NOTIFY
message with all saved authorization requests
 xlog("L_ERR", "dumping stored
winfo to %fu\n");
 dump_stored_winfo("registrar",
"presence");
 }
 else {
 # new presence subscription
 if ((@msg.event=~"presence")
&& (%subscription_status=="pending")) {
 # if offline user and new
pending subscription
 if
(!target_online("registrar")) {

 #%subscription_status="waiting"; # store it as waiting subscription
 xlog("L_ERR",
"storing 'pending' winfo to: %tu, from: %fu\n");

 store_winfo("registrar");
 }
 }
 }
 }
 break;
 }

 if ((@msg.supported=~"eventlist")) {
 # such user doesn't exist and Supported header field
 # -> probably RLS subscription

 if (lookup_domain("$td","@ruri.host")) {

105

 if (lookup_user("From")) {
 if (is_simple_rls_target("$uid-list")) {
 # log(1, "it is simple subscription!\n");
 # takes From UID and makes XCAP query for user's
 # list named "default"
 if (!query_resource_list("default"))
{
 t_reply("404", "No such user list");
 break;
 }
 }
 }
 }

 if (!have_flat_list()) {
 # query_resource_list failed or was not called
 # do standard RLS query acording to To/AOR
 if (!query_rls_services()) {
 log(1, "XCAP query failed\n");
 t_reply("404", "No such list URI");
 break;
 }
 }

 handle_rls_subscription("1");
 }
 else {
 # not resource list subscription -> invalid user
 xlog("L_ERR", "subscription to invalid
user %tu\n");
 t_reply("404", "User not found");
 }

 break;
 }
 else {
 # renewal subscriptions - try to handle it as RLS and if
failed, handle it as PA subscription
 # FIXME: better will be test like
existing_rls_subscription()
 # and existing_subscription("registrar")
 if (!handle_rls_subscription("0")) {
 handle_subscription("registrar");
 }
 break;
 }
 };

 if (method=="PUBLISH") {
 if (!t_newtran()) {

106

log(1, "newtran error\n");
 sl_reply_error();
 break;
 };
 handle_publish("registrar");

 # deliver messages to online user
 # TODO: only if user goes from offline to online?
 if (target_online("registrar")) {
 # log(1, "Dumping stored messages\n");
 # dump stored messages - route it through myself
(otherwise routed via DNS!)
 if (m_dump("sip:127.0.0.1")) {
 xlog("L_ERR", "MSILO: offline messages
for %fu dumped\n");
 }
 }

 break;
 };

 if (method=="NOTIFY") {
 if (!t_newtran()) {
 log(1, "newtran error\n");
 sl_reply_error();
 break;
 };
 # handle notification sent in internal subscriptions
(presence_b2b)
 if (!handle_notify()) {
 t_reply("481", "Unable to handle notification");
 }
 break;
 };

 if (method=="MESSAGE") {

 if (authorize_message("http://localhost/xcap")) {

 # use usrloc for delivery
 if (lookup("location")) {

 log(1, "Delivering MESSAGE using usrloc\n");
 t_on_failure("1");
 if (!t_relay()) {
 sl_reply_error();
 }

 break;
 }

107

 else {
 # store messages for offline user
 xlog("L_ERR", "MSILO: storing MESSAGE
for %tu\n");

 if (!t_newtran()) {
 log(1, "newtran error\n");
 sl_reply_error();
 break;
 };

 # store only text messages NOT isComposing... !
 if (search("^(Content-Type|c):.*application/im-
iscomposing\+xml.*")) {
 log(1, "it is only isComposing message -
ignored\n");
 t_reply("202", "Ignored");
 break;
 }

 if (m_store("0", "sip:127.0.0.1")) {
 # log(1, "MSILO: offline message stored\n");
 if (!t_reply("202", "Accepted")) {
 sl_reply_error();
 };
 } else {
 log(1, "MSILO: error storing offline
message\n");
 if (!t_reply("503", "Service Unavailable"))
{
 sl_reply_error();
 };
 };
 break;
 }
 break;
 }
 else {
 # log(1, "unauthorized message\n");
 sl_reply("403", "Forbidden");
 }
 break;
 }

 lookup("aliases");
 if (!uri==myself) {
 append_hf("P-hint: outbound alias\r\n");
 route(1);
 break;
 };

108

 # native SIP destinations are handled using our USRLOC DB
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 break;
 };
 };
append_hf("P-hint: usrloc applied\r\n");
 route(1);
}

route[1]
{
 # send it out now; use stateful forwarding as it works reliably
 # even for UDP2TCP
 if (!t_relay()) {
 sl_reply_error();
 };
}

failure_route[1] {
 # forwarding failed -- check if the request was a MESSAGE
 if (!method=="MESSAGE") { break; };
 log(1, "MSILO: MESSAGE forward failed - storing it\n");

 # we have changed the R-URI with the contact address, ignore it now
 if (m_store("0", "")) {
 t_reply("202", "Accepted");
 } else {
 log(1, "MSILO: offline message NOT stored\n");
 t_reply("503", "Service Unavailable");
 };
}

www.kth.se

COS/CCS 2008-24

	Abstract
	Sammanfattning
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objectives
	Organization of this Thesis

	Background and Related Work
	Context and Context Awareness
	What is a Context?
	Definition of Context Awareness

	Context-aware System
	Context-aware System Applications
	Scenarios of Context-aware Systems in a Smart Meeting Room Environment
	Context-aware System Architectures Based on Acquisition Methods

	Sensor System
	Sensors
	Sensor System Architecture
	Occupancy Sensor as a Presence User Agent

	Related Technologies
	XML
	SIP
	What is SIP
	SIP Architecture
	SIP Messages and Process

	SIP Express Router
	SIMPLE
	PIDF
	CPL

	Related Research
	A Conference Room Application
	Room Occupancy Detection with Power Line Positioning
	A Large Scale Context-aware System: A Context-aware Building
	A Smart Meeting Room with Pervasive Computing Technologies

	Goals and Implementation
	Goals and Methods
	Prototype Design and Implementation
	Sensor System Setup
	Hardware Description
	Software Setup

	Detection Approach
	Interaction between Physical and Logical Sensor Entities
	Detection Algorithm/Methodology

	Publish Context Information to a SIP Proxy
	Installation and Configuration of SER
	Implementation of SER Modules to Handle Occupancy Event
	Debugging the SER modules

	Testing and Analysis
	Test Methodology
	Test Cases
	Single Detector Mode
	Multiple Detectors Mode

	Data Analysis
	UDP Packets between Physical and Logical Entities
	Detection Algorithm Analysis
	SIP messages between Logical Entity and Context Server

	Evaluation
	System Evaluation
	Accuracy
	Robustness
	Scalability

	Achievement of the Goals

	Conclusions and Future Work
	Conclusions
	Future Work
	Accuracy Improvement in a Live Open Environment (Rather than a Lab Environment)
	Sensor Software Development
	Extension to Multiple Areas
	Security Mechanism
	A More Integrated Physical Sensor

	References
	Appendix A: K8055 Test Program
	Appendix B: Physical Sensor Code
	Appendix C: Logical Sensor Code
	Appendix D: Header File for Main Program
	Appendix E: SER Configuration File

