
Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-17

S H A N L U N J I N

Under Windows™

Implementation and Analyses of the
Mobile-IP Protocol

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

27 August 2008
Implementationand
Analyses of the
Mobile-IP Protocol

Under Windows™

Shaulun Jin
nt of
mn

its
er
col
Abstract

This report is the result of a masters degree project conducted at the Departme
Teleinformatics at the Royal Institute of Technology starting from the autu
1996. The area investigated is the Mobile Internet Protocol, especially
implementation under Windows NT environment. Network driver writing und
Windows NT was practised. Recent development in improving Mobile IP proto
to support micro-mobility have also been investigated.

Status:Final
1

List of Acronyms and abbreviations

ACM Association for Computing Machinery

AMOS Accumulated Mean Opinion Score

API Application Programming Interface

ARP Address Resolution Protocol

CCOA Co-located Care of Address

CDFS CD File System

CN Correspondent Node

COA Care of Address

DDK Driver Development Kits

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

DLL Dynamically Loaded Library

DMSP Designated Multicast Service Provider

DVMRP Distance Vector Multicast Routing Protocol

FA Foreign Agent

FCoA

FCOA

Foreign Agent Care of Address

FSDs File System Drivers

GFA Gateway Foreign Agent

HA Home Agent

HAL Hardware Abstraction Layer

HMRSVP Hierarchical Mobile Resource ReSerVation Protocol

HPFS High Performance File System

ICMP Internet Control Message Protocol

IDT Interrupt Dispatch Tables

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IMHP Internet Mobile Host Protocol

IntServ Integrated Services

I/O Input/Output

ioctl

IOCTL

Input/Output Control

IP Internet Protocol

IP V6 Internet Protocol Version 6

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IP-in-IP or IP-IN-IP IP in IP encapsulation (a method of tunneling)

ipintr a user space routine

IRP I/O Request Packets
Implementation and Analyses of the Mobile-IP Protocol 2

IRQL Interrupt ReQuest Level

LAN Local Area Network

LGHS Low-latency Guarantee Handoff Scheme

MASR Mobility Agent with SIP Registrar

MH Mobile Host

MIP Mobile-IP

MN Mobile Network

MoM Mobile Multicast

MOS Mean Opinion Score

MOSPF Multicast Open Shortest Path First protocol

MPLS Multi Protocol Label Switching

MSDN Microsoft Development Network

MS-DOS Microsoft Disk Operating System

NAT Network Address Translation

NDIS Network Device Interface Specification

NetBEUI NETBIOS Extended User Interface

NIC Network Interface Card

NTFS New Technology File System

OID NDIS object identifiers

OS Operating System

OSI Open System Interconnection

PC Personal Computer

PIM Protocol Independent Multicast

QoS Quality of Service

RSVP Resource ReSerVation Protocol

RSVP-MP Resource ReSerVation Protocol-Mobile Proxy

SDK Software Development Kits

SIP Session Initiation Protocol

SQPS Scalable QoS Provisioning Scheme

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TOS Type of Service

TTL Time To Live

UDP User Datagram Protocol

VDDs Virtual DOS Drivers

VtoolsD Development tool produced by Vireo Software, Inc.

Win32 Windows 32 bits system

Win95 Windows 95 operating system

WindowsNT Windows NT operating system

WinMIP Windows Mobile Internet Protocol
Implementation and Analyses of the Mobile-IP Protocol 3

WWW World Wide Web

XP Windows XP operating system
Implementation and Analyses of the Mobile-IP Protocol 4

Background

ates,
the

ing
k to
ch a
rk to

int
le IP
n of
rs and
for

rof.
ort.

et
er to

IP

alled
ile

ork
r the
a

and
l to

ress
ork
ign

o its
e
the
ith a

eader
ling

pon
livers
.

ust

ill
ation
1. Background

Today as powerful notebook computers and wireless communications prolifer
more and more data communication users require continuous connectivity to
Internet while they are moving around. However, present day internetwork
protocols behave awkwardly when dealing with host migration from one networ
another. These protocols makes an implicit assumption that the point at whi
computer attaches to the Internet is fixed and its IP address identifies the netwo
which it is attached.

The development of Mobile IP [1, 2, 3, 4, 5] is to solve this problem. At the po
when I started my thesis work, there had been several implementations of Mobi
on SunOS or UNIX based systems. However, as we foresaw the proliferatio
Windows operating systems based Personal Computers (PCs) both as serve
workstations, it made a lot of sense that Mobile IP should be implemented
systems running Microsoft’s Windows operating systems.

Most of the work was done in the laboratory of and under the supervision of P
Dr. Gerald Q. Maguire Jr. . Ericsson Radio System AB provided financial supp

1.1 Mobile Internet Protocol (Mobile-IP)

Mobile-IP [1, 2, 3, 4, 5] developed by Mobile IP working group of the Intern
Engineering Task Force (IETF) is an enhancement to IP which allows a comput
roam freely over different local networks while being reachable at the same
address.

The Mobile-IP architecture, as proposed by the IETF, defines special entities c
the Home Agent (HA) and Foreign Agent (FA) which co-operate to allow a Mob
Host (MH) to move without changing its IP address.

Each MH is associated with a unique home network as indicated by the netw
portion of its permanent IP address. IP routing always delivers packets meant fo
MH to this (home) network. When a MH is away form this (home) network,
specially designated host (HA) on this network is responsible for intercepting
forwarding packets to the mobile. The MH uses a special registration protoco
keep its HA informed about its current network attachment point (i.e., the add
that the HA should send packets to). Whenever a MH moves from its home netw
to a foreign network, or from one foreign network to another, it chooses a Fore
Agent (FA) on the new network and uses it to forward a registration message t
HA. After a successful registration, packets arriving for the MH on its hom
network are encapsulated by its HA and sent to its FA. Encapsulation refers to
process of enclosing the original datagram as data inside another datagram w
new IP header. The source and destination addresses fields in the outer h
correspond to the HA and FA, respectively. This mechanism is also called tunne
since intermediate routers remain oblivious of the inner (original) IP header. U
receiving the encapsulated datagram, the FA strips off the outer header and de
the newly exposed datagram to the appropriate MH visiting on its local network

Mobile-IP also allows a MH to do its own decapsulation. In this case, the MH m
acquire a temporary IP address on the foreign network (e.g. usingDynamic Host
Configuration Protocol(DHCP)) to be used for forwarding. Of course, it should st
accept packets meant for its permanent IP address as this will be the destin
address of packets following the decapsulation process.
Implementation and Analyses of the Mobile-IP Protocol 5

Background

rks
and
ell
is

re
will

ting
other
were
ing:

by
ion
t, as
icly

user
d
el

t. The

llows:
Overall Mobile IP supports mobile nodes moving between different netwo
without changing their IP address, thus allowing the upper level applications
users to be totally unaware of this roaming. However, while Mobile IP is w
designed to support macro-level mobility, or so called “inter-domain” mobility, it
relatively poorly suited for micro-level (Intra-domain) mobility support, whe
applications can suffer due to packet loss and long latency during handoff. This
be discussed in detail in Chapter 9 of this thesis.

1.2 Previous Implementations

The simplest starting point seemed to be porting code from an exis
implementations - even though this code might have been designed for an
operating system and platform. At the time this thesis project began, there
several implementations of Mobile-IP on different operating systems, includ
SunOS™, Solaris™, and Linux. The implementation that I studied was written
Anders Klemets for SunOS™. At that time, this was the only implementat
whose source code was publicly available. This public availability was importan
one of the goals of this project was also to make the implementation publ
available - so that it could be used for research & development by others.

As Figure 1shows, Anders Klemet’s code for SunOS consists of two parts. A
space daemon calledmipd that implements the Mobile Host, Foreign Agent, an
Home Agent functions of the Mobile-IP protocol[1]. In addition, there is a kern
pseudo device driver which appears as network interface “mip0”. This driver is
needed on computers that are going to act as a Foreign Agent or a Home Agen
user application communicates with the driver through Input Output Control (ioctl)
messages.

FIGURE 1. Anders Klemets’s implementaion of Mobile IP for SunOS

The driver is used to encapsulate or deencapsulate packets and it works as fo

User
Space

Kernel
Space

mip0

TCP/IP Stack ipintr()

mipd

Routing Table.

Other Network
Drivers

IO
C

T
L

New IP packets

Regular packets

Transport/
network

Link

Session

Regular Packets

Packets for MH

User
Space

Kernel
Space

mip0mip0

TCP/IP Stack ipintr()

mipdmipd

Routing Table.

Other Network
Drivers

IO
C

T
L

New IP packets

Regular packets

Transport/
network

Link

Session

Regular Packets

Packets for MH
Implementation and Analyses of the Mobile-IP Protocol 6

Background

l

will
this

P
ram

The

be
ld be
for

ed.
lting

here
the
, and

he
ding

stem
h the

de
an

or
hether
P/IP

HA.
ese
them
all
uld be
the IP

rom

™
re of
• When acting as a Home Agent, ifmipd wants to establish a new tunnel, it wil
signal this to the device driver.Mipd will install a host route in the IP routing
table for the mobile host whose packets will be tunneled. The host route
indicate thatmip0 is the destination interface for datagrams addressed to
Mobile Host. Thus when a datagram destined to this MH is received, theipintr ()
routine will pass it to the device driver. The driver will perform either IP-IN-I
[2] or Minimal encapsulation[3], as appropriate, and put the resulting datag
back into the IP input queue.

• Tunnel deencapsulation at a Foreign Agent is performed in a similar fashion.
device driver receives the incoming IP packets. Themipd program tells the
driver that encapsulated datagrams for a particular MH should
deencapsulated, and indicates which interface the resulting datagrams shou
forwarded to. As a result, the driver adds a host route in the IP routing table
this MH that points to the network interface on which it can be locally reach
After deencapsulating an incoming datagram, the driver puts the resu
datagram back in the IP input queue, where it will be taken care of byipintr() and
forwarded in accordance with the host route.

1.3 This Project

Despite several existing implementations, at the time of the start of this project t
was no implementation for Microsoft’s Windows™ operating system (which is
predominant operating system for PCs). This project was to design, implement
evaluate Mobile-IP on Windows™ system.

1.3.1 General Plan

After studying Klemets’ code, I made a plan of how to port it to Windows™. T
ported code would also consist of two parts, an user application part correspon
to themipd program, and a kernel mode driver part equivalent to the “mip0” driver.

Porting the user part of the code seemed quite straightforward. Although sy
calls such as those used for accessing IP routing table and communicating wit
driver would be somewhat different, no other major changes should be made.

Porting the driver would be much trickier, since writing a Windows™ kernel mo
driver is not something lots of people have experience with. However, I made
outline of how my driver should work. It would be quite similar tomip0 in terms of
functionality, i.e. intercepting incoming IP packets, encapsulating
deencapsulating the packets of interests depending on the circumstances (w
the host acts as a HA or a FA) and forwarding the processed packets to the TC
layer in the system.

However, I thought about the way the packets destined to MH are handled in a
As the driver is able to intercept all the incoming IP packets, why not grab th
packets already at this stage, rather than let IP receive them first and forward
back to the driver later on? I thought my driver would probably be simpler: grab
the packets of interests (both those that should be encapsulated and those sho
deencapsulated) and do the processing and put processed datagrams back into
input/output queue. Thus my driver would not need to receive datagrams f
TCP/IP, which would be good.

1.3.2 Information Search

To begin with, I searched the WWW for information about the Windows
operating system in general and in particular: device drivers and the architectu
Implementation and Analyses of the Mobile-IP Protocol 7

Background

nd

ork

e
lists

’s
el
s a
ce
e

rite
NT
e I
Cs

eir

are
logs
the network stack. However, the information I found was mostly very limited a
not helpful for writing a functioning network driver.

At same time, I began to participate in different mailing lists concerning netw

programming and device driver development1. This provided access to expertis
and experience in this area, that was unavailable elsewhere. These mailing
functioned as a help desk throughout the project.

A tip I got from one of the mailing lists at that time was to look into Microsoft
Driver Development Kits (DDK) which is included in the professional lev
subscription to the Microsoft Development Network (MSDN). An alternative wa
development tool called VtoolsD produced by Vireo Software, Inc. Sin
Windows™ is a Microsoft™ product, I opted for Microsoft’s DDK, and it was th
major development platform and information source for the whole project.

The Microsoft DDK provides some sample drivers so people don not have to w
drivers from scratch. However, the samples were only available for Windows
and developing drivers in NT was recommended by Microsoft™. Therefor
decided to do the implementation on NT. Another reason for doing that is P
running as HA or FA would very likely be stationary servers using NT as th
operating system. For more detail, see Appendix A.

1. I did not record the names of these mailing lists at that time; however, today there
many other similar information sources, such as BBS and Blogs. One of the b
specializing in Windows driver writing that I go to a lot is:
 http://blogs.msdn.com/iliast/default.aspx
Implementation and Analyses of the Mobile-IP Protocol 8

Understanding the Windows NT Drivers

rs:
®

tem’s

the
ode

is
NT
well
ed
y the

ture

cal
hen

ss

or

or
on

ese
tem
ard

iver.
uch

ion,
re
2. Understanding the Windows NT Drivers

Within the Windows NT operating system, there are two basic kinds of drive
User-mode drivers, such as Win32 multimedia drivers, VDDs for MS-DOS
applications with application-dedicated devices, or another protected subsys
drivers; Kernel-mode drivers for logical, virtual, or physical devices.

In order to process network packets quickly, my driver had to be implemented in
kernel. So in the rest of this section, we are going to discuss only Kernel-m
drivers.

Windows NT Kernel-mode drivers are part of the Windows NT executive, which
the underlying, “new technology” microkernel-based operating system. Like
itself, NT drivers are implemented as discrete, modular components with a
defined set of required functionality. All NT drivers have a set of system-defin
standard driver routines and some number of internal routines as determined b
driver writer.

2.1 Types of NT Drivers

There are three basic types of NT drivers. Each type has a slightly different struc
and quite different functionality:

Device drivers, such as a keyboard or disk driver that directly controls a physi
device. Device drivers are sometimes called lowest-level drivers, particularly w
such a driver is the lowest driver in a chain of layered NT drivers.

Intermediate drivers, such as a virtual disk, mirror, or device-type-specific cla
driver, that depend on support from underlying device drivers

File system drivers (FSDs),such as the system-supplied FAT, HPFS, NTFS,
CDFS drivers, that also depend on support from underlying lower-level drivers.

While a particular NT file system driver might or might not get support from one
more intermediate drivers, every NT file system driver ultimately depends
support from one or more device drivers.

2.2 NT Network Driver

Theoretically any Windows NT network driver can be classified as one of th
types of drivers. For example, an NT server or redirector is a specialized file sys
driver, a transport driver is a type of intermediate NT driver, and a physical netc
(sometimes called a media access controller) driver is an NT device dr
However, NT provides specialized interfaces and support for network drivers, s
as NDIS 3.0 (Network Device Interface Specification, Version 3.0). In next sect
we look at Windows NT network architecture, network drivers and NDIS in mo
detail.
Implementation and Analyses of the Mobile-IP Protocol 9

Understanding Windows NT Network Architecture

. It
used
ribed

en
lows
this
an

ides

ice

ce
NIC
his
over
ing

in
d of

andle
ded
3. Understanding Windows NT Network
Architecture

Figure 2 below gives an overview of the Windows NT networking components
also shows how they fit into the OSI reference model, and which protocols are
between layers. Components which are used in this implementation are desc
later in this section.

FIGURE 2. Windows NT networking components

3.1 NDIS Environment and Network Drivers

Network Interface Cards (NICs) come with NIC drivers, which in the past oft
implemented a specific network protocol, such as IP. Because Windows NT al
many different protocol drivers to be loaded, each network card vendor using
approach would need to rewrite its drivers to support multiple protocols -- not
ideal strategy. To help vendors avoid this unnecessary work, Windows NT prov
an interface and an environment calledNetwork Driver Interface Specification
(NDIS), which shields NIC drivers from the details of various protocols and v
versa. Figure 3 on the next page illustrates this.

Instead of writing a protocol-specific driver for Windows NT, network interfa
card vendors provide an NDIS interface as the uppermost layer of a single
driver. By doing so any protocol driver can direct its network requests to t
network interface card by calling this interface. Thus, a user can communicate
a TCP/IP network and NetBEUI (or DECnet, NetWare, and so forth) network us
one network interface card and a single NIC driver.

The NDIS interface was first available in LAN Manager, but was updated
Windows NT to NDIS version 3.0. Version 3.0. uses 32-bits addresses instea
16-bit addresses, and is multiprocessor enabled. Like earlier versions, it can h
multiple independent network connections and multiple, simultaneously loa
network protocols.

File I/O, Named Pipes or Mailslots

Enviroment System

Provider Interface

TDI

Redirector

NDIS Interface

NDIS Enviroment & Drivers

 TCP/IPNetBEUI

NetBIOS Win sock

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical
Ethernet, TokenRing, or Others
Implementation and Analyses of the Mobile-IP Protocol 10

Understanding Windows NT Network Architecture

r its
half
tes
DIS
e, it

leted

age
NDIS
and
iver

OSI
level
ol
a

vide
opies

the
FIGURE 3. Network Driver Interface Specification as a wrapper

3.2 Types of Network Drivers

Each NDIS network driver is responsible for sending and receiving packets ove
network connection and managing the physical card directly or indirectly on be
of the operating system. At its lowest boundary, the NDIS driver communica
directly with the card(s) it services, using NDIS routines to access them. The N
driver starts I/O on the card(s) and receive interrupts from them. At its upper edg
calls upward to indicate that it has received data and to notify when it has comp
an outbound data transfer.

Windows NT supports basically three types of network drivers:

3.2.1 Network Interface Card (NIC) drivers

These implement the Data Link Layer of the OSI model. They directly man
network interface cards at their lower edge and at their upper edge present an
interface to allow upper layers to send packets via this interface to the network
to set the operational characteristic of the driver. This is also called a miniport dr
interface.

3.2.2 Intermediate protocol drivers

These implement both the Network Layer and the Transport Layer of the
model. As the name suggests, they sit between the NIC drivers and upper
drivers. To the NIC drivers they look like protocol drivers, exporting a protoc
driver interface. To the upper drivers they look like NIC drivers, exporting
miniport interface. One such driver can be layered on top of the another.

3.2.3 Upper level protocol drivers

These implement an application-specific interface at its upper-edge to pro
services to users of the network. Such a driver allocates buffers for packets, c
data from the sending application into the packet from at the upper edge of

Redirectors and Servers

TDI

NetBEUI

STREAMS

TCP/IP Others

NIDS Wrapper DLL

 NIC 1 NIC 2

NDIS interface

card x card y
Implementation and Analyses of the Mobile-IP Protocol 11

Understanding Windows NT Network Architecture

o or
.

s and

ns
NT
ry

essful

IC

. For
as

te
driver. At their lower edge, they provide a protocol interface to send or receive t
from the next lower level driver which is always an intermediate protocol driver

Windows NT uses drivers at one or more network layers to pass data packet
make the protocol translation necessary for error-free communication.

The relationship between these three types of drivers is shown in Figure 4.

FIGURE 4. Relationship between the protocol, intermediate, and NIC drivers

3.3 NDIS Environment

NDIS defines three sets of functions: upper-edge functions, lower-edge functio
and library functions, along with various objects and structures. Windows
network drivers implement the former two sets of functions, call the libra
functions, and use the NDIS-defined objects and structures to accomplish succ
transfer of data between user-applications and the physical link.

3.3.1 NDIS Upper-Edge Functions

NDIS upper_edge functions (MiniportXxx) are system-defined functions
implemented in and exported by NIC drivers and intermediate drivers. NDIS N
drivers should export all definedMiniportXxx functions while intermediate drivers
export a subset of these functions at their upper edges, as shown in Figure 4
example, an intermediate driver does not have to have functions such
MiniportISR or MiniportTimer, that a NIC driver must have to use to communica
with and control its NIC.

MiniportXxx - MediaX

ProtocolXxx - MediaY

ProtocolXxx - MediaX

MiniportXxx - MediaY

N
D

IS
Protocol
Driver

Intermediate
 Driver

NIC
Driver

NIC
Implementation and Analyses of the Mobile-IP Protocol 12

Understanding Windows NT Network Architecture

any

ers
ding.
em,

to

pect

NT
the

ct
iver
ting
ther
hat
an
rary

orm
pe
e

S
us.

h
ing

e.
ivers

he

der
ing
on

.
of
3.3.2 NDIS Lower-Edge Functions

NDIS lower-edge functions (ProtocolXxx) are system-defined functions
implemented in and exported by NDIS drivers layered immediately above
driver that exports a set of NDIS upper-edge (MiniportXxx) functions. Both NDIS
protocol drivers and intermediate drivers export a set of theseProtocolXxx
functions at their lower edges.

Intermediate NDIS drivers appear to be NIC miniports to higher-level NDIS driv
that layered themselves above such an intermediate driver by establishing a bin
Intermediate NDIS drivers appear to be protocols to the NDIS drivers below th
including NIC drivers. To the NDIS library, such an intermediate driver appears
be both a protocol and a miniport driver. See Figure 4 on the previous page.

3.3.3 DriverEntry Function
NDIS-defined driver functions can have any name the driver writers chooses, ex
for the DriverEntry function. The initial entry point of any Windows NT
kernel-mode driver must have the explicit nameDriverEntry in order to be loaded
automatically by the system. The next section gives an introduction to Windows
kernel-mode driver and in Section 6 there is more detailed information about
general requirements and functionality of theDriverEntry routine.

3.3.4 NDIS Library Functions
NDIS library is a Dynamically Loaded Library (DLL) containing a set of abstra
functions that interface between protocol driver functions, intermediate dr
functions, and NIC driver functions. It is used to submit a request to the opera
system or cause a local action that does not require communication with o
software functions. The main purpose of the NDIS library is to form a wrapper t
allows network drivers to send and receive packets on a LAN or WAN in
operating system-independent manner. All the functions provided by the lib
have the namesNdisXxx.

3.3.5 NDIS Object Identifiers
NDIS object identifiers (OID) are a set of system-defined constants of the f
OID_XXX, that are used by higher level NDIS drivers in an NDIS_REQUEST-ty
structure for their calls toNdisRequest. Each request is classified as one of th
following:

• A query is a call to retrieve information from or about the underlying NDI
driver, usually about the driver’s or NIC’s overall capabilities or current stat
An NDIS protocol driver setsNdisRequestQueryInformation for the
RequestTypeparameter toNdisRequest when it makes global queries. Suc
requests are handled by the MiniportQueryInformation functions of underly
NIC drivers.

• A statistic queryis a call to retrieve information about network performanc
Such a request always originates in a user-mode application. Protocol dr
never setNdisRequestQueryStatistics for the RequestTypeparameter to
NdisRequest. Such requests are handled either by NDIS or by t
MiniportQueryInformation functions of underlying NIC drivers.

• A setis a call with directions for the underlying NDIS driver, such as the hea
format the protocol wants to use for receive indications when the underly
drivers offers a choice or which optional features the miniport should enable
its NIC. An NDIS protocol driver setsNdisRequestSetInformation for the
RequestTypeparameter toNdisRequest when it makes this type of request
Such requests are handled by the MiniportSetInformation functions
underlying NIC drivers.
Implementation and Analyses of the Mobile-IP Protocol 13

Understanding Windows NT Network Architecture

ing
n
en

e

ters.
one
Many system-defined OIDs are valid with more than one of the proceed
NdisRequestXxx values. Associated with each NDIS object identified by a
OID_XXX is a data buffer, which varies in size and format depending on the giv
OID. The caller ofNdisRequest supplies a pointer to this data buffer in th
InformationBuffer member of the NDIS_REQUEST structure.

3.3.6 Structure Used by NDIS Drivers
The NDIS-defined structures are multifunction or alternative structure parame
That is, either pointers to these structures are passed in calls to more than
NdisXxx, MiniportXxx, and/orProtocolXxx function or a pointer to more than one
of these structures can be passed in calls to the same function.
Implementation and Analyses of the Mobile-IP Protocol 14

Defining Driver Type

ets.
ust
f

tage.
the

d three

(see
s)’
r the
ve
s of
s the
the

ich
the
ilar.

that
the

For IP
fter
4. Defining Driver Type

As I mentioned earlier, my driver wants to have a peek at all incoming raw pack
So it could be either a NIC driver or an intermediate driver or a protocol driver, j
layering on top of a NIC driver. Writing a NIC driver would involve knowledge o
the hardware and make it hardware specific, which is an obvious disadvan
Having excluded writing a NIC driver, there are still several means to achieve
result. Each approach has its advantages and disadvantages. I have examine
different options:

4.1 An Intermediate Driver

This driver sits between NIC driver(s) and the TCP/IP stack in the system.
Figure 5) When acting as a HA, it grabs all the IP packets with the NIC(
hardware address(es) as its destination. Since the HA is doing a Proxy ARP fo
mobile (which is away from the home network) packets destined for MH will ha
HA’s link layer (hardware) address. The HA checks the IP destination addres
each such packet. If it is the IP address of one of registered MHs, it encapsulate
packet and sends the resulting packet to the TCP/IP stack. After checking
routing table, TCP/IP will send the packet back to the driver, also indicating wh
network interface the packet should be sent to. The driver simply forwards
packet to the indicated interface. When acting as a FA, the situation is very sim

FIGURE 5. An intermediate Driver

4.2 A Parallel Driver Interacting with TCP/IP

This driver sits parallel with the TCP/IP, as shown in Figure 6, which means
both the driver and TCP/IP are bound to the same NIC(s). It accepts all
incoming packets and processes each packets according to its IP destination.
packet belonging to one of registered MHs, the driver transmits it to NDIS a

is NIC’s addr?

is MH’s addr?
no

discard

encapsulate or
deencapsulate

TCP/IP

 NIC

no

yes

yes

 forw
ard

all the packets

Driver
 My

 Network

NDIS
Implementation and Analyses of the Mobile-IP Protocol 15

Defining Driver Type

from
rect
ding.

the
as the
MP
ding

om
2 in
ets to
ulting
via

can
sing
cket

any
having it encapsulated or deencapsulated. The TCP/IP stack will then detect
NDIS that there is a IP packet, and picks it up to eventually forward it to the cor
network via a NIC. This assumes of course that the host is set up to do forwar

This approach requires however, that HAmust not proxy ARP messages. If it did,
then the IP stack would also receive the packets destined to MHs. Since
hardware address and IP address in each such packet does not match (i.e., it h
HA’s hardware address, but the MH’s IP address), then IP would send an IC
error message to the sender, which would prevent the sender from sen
additional packets!

FIGURE 6. A Parallel Driver Interacting with TCP/IP

4.3 A Stand-alone Driver

This driver also sits in parallel with TCP/IP, but doesn’t use any service fr
TCP/IP (see Figure 7). It differs from the previous driver described in Section 4.
the way it sends processed packets. Instead of forwarding these “bare” IP pack
TCP/IP via NDIS, it adds an Ethernet header to each packet and sends the res
ethernet frame to the NIC(s), which in turn will transmits the packet directly to
the network interface.

This requires that the driver maintains an IP routing table from where the driver
get the hardware address and network interface for each IP destination. By u
this information, the driver is able to add an Ethernet header to each pa
correctly and send them to the appropriate NIC(s).

For the same reasons as explained in Section 4.2, the driver MUST NOT send
Proxy ARP messages when acting as a HA.

NDIS

TCP/IP

 NIC

My Driver

Encapsulates
 or

Deencapsulates

MHs’ IP addr?
yes
no

discards

all packets
ne

w
 IP

 p
ac

ke
ts

pa
ck

et
s

fr
om

 b
ot

h
 n

ic
 &

 m
y

dr
iv

er
Implementation and Analyses of the Mobile-IP Protocol 16

Defining Driver Type

t. It
in

wer
its

sn’t
kets.
ve to
pts
tion
isely

the
t and

such
like
al

.5).

n 3.
s of
e a

s on
nging

as a

ing
FIGURE 7. A Stand-alone Driver

4.4 Comparison of these three options

From an implementation complexity point of view, the second choice is the bes
only has lower edge interface towards NIC, while writing a driver as described
Section 4.1 would involve both sides of the interfaces. Option 3 also has only lo
edge interface, but it has to maintain its own IP routing table, which adds to
complexity.

However from a performance point of view, option 3 should be the best. It doe
involve the IP stack, and hence would certainly speed up the process of pac
However, one of the drawbacks for both options 2 and 3 are that both drivers ha
accept almost all the incoming IP packets, while in option 1 the driver only acce
those with the host’s hardware address. When acting as a HA, a little optimiza
could be done by discarding those packets destined to the local host, prec
opposite to what a bound TCP/IP stack does. This is possible, because in
absence of this host doing a Proxy ARP, these packets are only for the local hos
hence are certainly not destined any MH.

Another advantage of adopting option 3 is that driver can be used in a system,
as Windows 95 where the normal TCP/IP stack doesn’t support IP routing. Un
Windows NT which does support routing. Actually by putting some addition
functionality into this driver, it could turn the host into a router (see Section 5.2

4.5 A Protocol Driver - WinMIP

After considering all the advantages and disadvantages, I selected optio
Option 3 had a clear advantage compared to the first 2 options in term
performance; as it does not involve the built-in TCP/IP stack. This proved to b
correct decision, as a later implementation done by three Nokia engineer
Windows 2000 system showed that TCP/IP related operations, such as cha
routing table are very time consuming. (See Section 9.2).

Therefore, the driver was designed to be a minimal protocol driver that only h
lower edge interface implementing NDISprotocol xxxxfunctions. Also necessary
were functions for loading, unloading, configuring the driver, some signal

NDIS

exams the
ncoming packetsi

as previous figure

IP encapsulation or
 deencapsultaion

 IP
routing
 table

Ehternet encapsulation

E
th

er
ne

t p
ac

ke
ts

 NIC
Implementation and Analyses of the Mobile-IP Protocol 17

Defining Driver Type

. In
in

are
between the user application and the driver, etc. I named this driver WinMIP
Chapter 5 I will describe the major phases of implementing this driver, and
Chapters 6 and 7 more technical details about writing a NT protocol driver
presented.
Implementation and Analyses of the Mobile-IP Protocol 18

Implementing the Driver in Windows NT

my

.0.
e in

the

n a
bal

ment

ser
ages

I/O
tion

API.

32
de C
only

NT

t of

lar
om
ent to
For
bug
ourse

ns
n. It
t all

so
5. Implementing the Driver in Windows NT

5.1 Tools and platform

I used Microsoft Windows NT 4.0 for Workstation as the operating system to do
development and used the tools:

• DDK for Windows NT 4.0,

• Win32 SDK, and

• Virtual C++ 4.0 Beta

I based my driver on the “Packet” sample code from DDK for Windows NT 4
The sections below will describe this DDK environment and the sample cod
more detail.

5.1.1 The DDK Environment
The DDK provides two versions of the Windows NT operating system, called
free buildand thechecked build. Thefree buildof Windows NT is the retail version
that end users buy. Free binaries are built with full optimization and contai
minimal set of debugging symbols, such as function entry points and glo
variables. Thechecked buildis shipped only with the DDK; it is used in debugging
drivers and other system code. Checked binaries provide error checking, argu
verification, and system debugging code not present in the free binaries.

A device driver is a trusted part of the NT kernel. In between the kernel and u
programs is the Win 32 subsystem which implements the Win 32 API and man
the screen, keyboard, mouse, parallel port, etc. Drivers are controlled by the
Manager and talk to the underlying electronics using NT's Hardware Abstrac
Layer (HAL).

Device drivers are therefore not Win 32 programs so they can not use Win 32
An NT driver can’t link with the C runtime library, as linking would significantly
bloat the driver’s load image with a set of functions specific to the Win
programming environment. For the same reason, NT drivers can’t call user-mo
runtime routines such as printf() from kernel mode, since these routines are
designed to be called in user mode. Instead drivers would need to call various
kernel routines in order to control, send I/O request to hardware devices.

Therefore, DDK supplies an alternative set of system routines and a se
kernel-mode C runtime routines declared inntddk.hrespectiventdef.h, which an NT
driver can call. For example, DDK provides DbgPrint routine which is very simi
to the regular printf routine, the difference being that it can only be called fr
kernel mode. The debug messages, instead of displaying on the screen, are s
the kernel debugger (usually WinDbg), assuming that one is attached.
debugging purposes it is common for drivers to use the DbgPrint to emit de
messages. However it can be easily used for console display, like through the c
of my work.

5.1.2 The Packet Sample

The “packet” sample driver is a typical protocol driver. After being loaded it ope
and binds to an underlying NIC driver upon request from a user level applicatio
also sets the NIC driver into promiscuous mode (i.e., the NIC will then accep
packets) and returns the raw packets from the NIC if the user application
requires.
Implementation and Analyses of the Mobile-IP Protocol 19

Implementing the Driver in Windows NT

of
o the
IC

the
was
tem),
sual.
ply

t all
ers
ded

e to
nt of
er)
hem
le to
ere
ing
the

since
eing
rst,
re
ed
ance
y to
not
mory

he
e for
e-of
-in-IP
lated

will
ven

ived
ven
5.2 Major steps in writing the driver

5.2.1 Modifying Sample
I modified the “packet” sample from DDK, removing the upper level control part
the code. So after being loaded the driver was supposed to open and bind t
underlying NIC and then continuously receive network packets from the N
without any intervention from an upper level application. I also configured
driver so that it should be able to look at all the network packets. The driver
successfully loaded (no error message or warning upon the start-up of the sys
and nothing changed. The system and all the network applications worked as u
This result is actually expected, since whatever packet the driver receives, it sim
puts the packet back. Therefore other protocol stacks should not be affected.

5.2.2 Intercepting IP Packets

In order to continue the implementation, I made a test to let the driver intercep
the IP packets. First I changed the loading order of all the existing network driv
in the system, which are bound to the same NIC as my driver, so my driver is loa
first when the system starts. I thought that in this way, my driver would be abl
receive the packets before the other drivers. If the driver, then altered the conte
all the IP packet’s LookAheadBuffer (similar to the type field in Ethernet head
before putting them back, the TCP/IP stack wouldn’t recognize them and pick t
up again. Consequently all the applications based on TCP/IP would not be ab
work on this host. Unfortunately this was not the case. Initially, I though that th
could be two reasons, either the underlying NIC driver doesn’t inform the incom
packets in a serial manner or the binding with the NIC driver does not depend on
loading order of protocols.

I asked the question to the same news groups in which I had been participating
the beginning of the project. One of the messages there pointed out that b
loaded first doesn’t mean that a driver will be informed of receipt of a packet fi
since NDIS informsall the binding drivers at almost the same time. Or mo
exactly, NDIS dynamically determines the order of informing drivers of a receiv
packet based on the previous packet’s dispatch in order to optimize the perform
of the network code. i.e., if my driver accepts the previous packet, it is most likel
be informed by NDIS of the current packet earlier than a protocol driver that did
accept the packet. This is largely because my driver has already created a me
cache in the NDIS before others.

So the conclusion is that my original thought of having my driver grab all t
packets before others did not work. However, this might not actually be an issu
my implementation. When a mobile node is registered using the FA’s car
address packets destined to mobile node are encapsulated using IP
encapsulation[2], Hence the TCP/IP stack in the FA would receive the encapsu
packets, but it would not recognize the value in theprotocolfield, ‘4’ in this case, in
the IP header, since it is not told to handle IP-in-IP decapsulation. Hence it
most likely discard the packets silently. For the HA, these packets would not e
be seen by TCP/IP since the network interface address does not match.

The result is that the failure to be able to create a driver which operates on rece
packets before other driver, was not a hindrance to my implementation. E
though it did cause some concerns at the time.
Implementation and Analyses of the Mobile-IP Protocol 20

Implementing the Driver in Windows NT

I
t the

all
ome
ed in
ow

ode
sole

allel
kets

ssing
kets

ed it
t, I
y Dr.
s is
n

one
the

move
et is
river
al IP
ce IP
total
cket
5.2.3 A Packet Dump Application on Windows NT
I decided to go head with implementing HA functionality first. Until this point,
had not seen any ‘real’ packets coming in or going out. How could I be sure tha
driver really can receive all the network packets?

As suggested by Dr. Maguire, I wrote a console application which simply dumps
the packets the driver receives to the console window. The program involves s
I/O control between a user application and a driver. Readers who are interest
the program can look into Appendix B for the source code and Section 7 for h
I/O control works in the Windows NT environment. Please note that the driver c
needs to be modified in order to be able to communicate with the con
application. All I/O related routines for the driver are in the fileRawupper.c in
Appendix A.

The dump screen looked like this:

===
Press Ctrl-C To Exit...
Packet No.: 0x0000000000000575 Time: 0x00056152 Length: 60
Destination: 00.C0.6C.33.69.41 Source: 08.00.89.A0.90.66
HexDump: 60 Bytes
000000: 00 C0 6C 33 69 41 08 00: 89 A0 90 66 00 1D AA AA ..l3iA.....f....
000010: 03 08 00 07 80 9B 04 15 : 00 00 04 80 01 47 14 D8 G..
000020: 80 B5 03 C0 FF CA BC 09 : 03 00 02 00 00 00 00 00
000030: 00 00 00 00 00 00 00 00 : 00 00 00 00

Packet No.: 0x0000000000000576 Time: 0x00056159 Length: 60
Destination: 00.C0.6C.33.69.41 Source: 08.00.89.A0.90.66
HexDump: 60 Bytes
000000: 00 C0 6C 33 69 41 08 00 : 89 A0 90 66 00 1D AA AA ..l3iA.....f....
000010: 03 08 00 07 80 9B 04 15 : 00 00 04 80 01 47 14 D8 G..
000020: 80 A5 03 60 FF CA BD 09 : 03 00 03 00 00 00 00 00 ...‘............
000030: 00 00 00 00 00 00 00 00 : 00 00 00 00

===

This screen is similar to that oftcpdump! With some small modifications, i.e. by
having the driver only pick up IP packets on the network, this is actually atcpdump
application on Windows NT.

5.2.4 Adding HA functionalities

As I mentioned in previous section, when a stand-alone driver is running in par
with the TCP/IP stack acts as a HA, it must not send Proxy ARP. Hence the pac
destined to the MN would not have HA’s hardware address. To save the proce
capacity and enhance the performance, I have the driver only pick up IP pac
with a hardware address that is different from its own NIC’s address. I hard-cod
in the driver, which means that if I want to install this driver onto another hos
have to first change the code and rebuild the driver. However, as suggested b
Maguire, I later on found it largely meaningless - since if the link layer addres
that of the HA, the driver can simply ignore it - while if it is for another host, the
the driver will process it to see if it should be for a MH. In any case, my stand-al
driver should be the first one that responds to the MH’s hardware address in
home network when MH is not attached to the home network.

Since these received packets are raw network packets, the driver has to first re
their link layer (Ethernet in this case) header. The next step is check of the pack
for a mobile node which this home agent has an address for - if so then the d
does IP in IP encapsulation[2]. This places a new IP header before the origin
datagram. The new IP header should have the HA’s IP address as its sour
address, the FA’s IP as the destination IP address and with a newly computed
length and header checksum.The calculation of the total length of the new IP pa
is straight-forward, i.e.new total length = header length (usually 20 bytes) +
Implementation and Analyses of the Mobile-IP Protocol 21

Implementing the Driver in Windows NT

the
sum
nce of
sum

the
the

ng in

em,

me
nd
with
river
kets
only

outer
ds
nd to
ress
cket
ilt-in

er
in the

for,
ress,
face.
link
n
for

was
old total length. To recompute the IP checksum for an outgoing datagram,
value of the checksum field is first set to 0. Then the 16-bit one’s complement
of the header is calculated (i.e. the entire header is considered as a seque
16-bit words). The 16-bit one’s complement of this sum is stored in the check
field. When a IP datagram is received, the 16-bit one’s complement sum of
header is calculated. Since the receiver’s calculated checksum contains
checksum stored by the sender, the receiver’s checksum is all one bits if nothi
the header was modified[7]. TheTime To Live (TTL) field should be decremented by
1 if the HA also functions as a router.

5.2.5 An NT Router
It seems that the driver is able to pick up all the network packets and modify th
but how about sending them back to the network?

In order to check this, I did a test, using two Windows NT machines in the sa
LAN, Bob and Spy. I installed the TCP Dump console application on Spy a
configured it so that only IP packet with its own IP as destination address and
Bob’s IP as source address will be dumped to the console. In Bob I loaded the d
which encapsulates all the incoming IP packets with Spy’s IP address. Pac
appeared on the dump screen of Spy, and they are encapsulated which could
happen if Bob was able to encapsulate and forward these packets.

As discussed in the previous section, a stand-alone driver could function as a r
if it maintains its own routing table. This would require using two network car
connected to two separate segments of the network. Then the driver would bi
both NICs. Using a look-up table, the driver could map the destination IP add
into an Ethernet address and network interface. It would then wrap the IP pa
with an Ethernet header and send it to the correct interface. I suspect that the bu
IP routing feature in Windows NT is implemented in a similar way.

5.2.6 Implementing FA Functionality
Adding FA functionalists onto the driver should be pretty simple. Aft
deencapsulating the datagram, the driver examines the destination IP address
original IP packet. If the IP address is for one of the mobile clients it is acting
then it would construct a Ethernet header with the correct network interface add
put it before the IP datagram, and send the resulting frame out the correct inter
Since most of the mobile hosts will be attached to the network via wireless
when visiting a foreign network, FA will mostly likely be dealing with more tha
one network interface. Probably with one interface for the wireless link and one
the fixed connection. In such a case, the FA should decrement the value in theTTL
field in the original IP datagram by 1 before forwarding it.

Due to the time constraint and difficulties with setting up the test environment, I
not able to implement the FA functionality.
Implementation and Analyses of the Mobile-IP Protocol 22

NT Protocol Driver

d
me

be

col

pe
he
the
l be
o the

t of
ion

the

the

the

e or
an

le to
ets

tes
an’t
urces
6. NT Protocol Driver

6.1 Basic structure

My WinMIP driver consists of three blocks of functions: Loading, Network, an
Signalling. These blocks work relatively independently, which made it easy for
to concentrate on writing one block at a time.

6.2 Loading and Binding

As I mentioned in Section 3, a network driver’s initial required entry point must
explicitly namedDriverEntry so that the loader can identify it. ThisDriverEntry
does the following:

6.2.1 Register the Protocol Driver

To set up communications with the NDIS library, a driver registers as a proto
driver by callingNdisRegisterProtocol in theDriverEntry routine.

Before making the call, the DriverEntry zero-initializes a structure of ty
NDIS_PROTOCOL_CHARACTERISTICS, and then stores the addresses of t
mandatory Protocolxxx functions, as well as any optional Protocolxxx functions
driver exports, in the characteristics structure. Some of these functions wil
discussed later, however, for a full list of these functions, readers are referred t
DDK documentations[6].

6.2.2 Opening and Binding an Adapter

Having been registered, the driver does two things:

First, the driver reads the registry information stored during setup to build a lis
names of adapters to which it will bind. The registry contains binding informat
written when the network is configured.DriverEntry reads this information,
including the names of the adapter or adapters to which it can bind, from
HKEY_LOCAL_MACHINES\CurrrentControlSet\Services\ ProtocolCo
mponentName\Linkage key in the registry.

The driver then callsNdisOpenProtocolConfigration to obtain a handle to the
registry key at HKEY_LOCAL_MACHINES \CurrrentControlSet
\Services\ DeviceInstance \Parameters \ProtocolName,where the protocol
driver can store adapter-specific information. Once this handle is obtained,
protocol driver usesNdisReadConfiguration functions to read adapter-specific
information: the name of the NIC driver and the corresponding driver object.

Second, after the protocol driver has retrieved the information it requires from
registry and has registered by callingNdisRegisterProtocol, and before the
protocol can send packets and receive incoming data, it must bind itself to on
more NICs managed by underlying NDIS driver(s). The protocol binds itself to
underlying NIC and the driver that controls it by callingNdisOpenAdapter. NDIS
returns a handle to the protocol driver. The protocol driver passes this hand
NDIS in future calls relating to this binding, such as calls to send pack
(NdisSend or NdisSendPackets).

If the protocol driver can’t successfully bind to an underlying adapter, it dealloca
any resources it previously allocated for the adapter. If the protocol driver c
successfully open any of the possible adapters, it deallocates any global reso
Implementation and Analyses of the Mobile-IP Protocol 23

NT Protocol Driver

this

sfully

The

NIC
trict

t’s an
er

as a
for

d
ll to

ns

lls
ts
lying

t,

t of

the

ginal

le,
g a
ven

il the

ered
sing
re
the protocol has previously allocated and return an appropriate failure status. In
case, the protocol driver will subsequently be unloaded.

6.2.3 Query and Set Operations

After a protocol driver has determined which adapters to open and has succes
bound to one or more, it can callNdisRequest to query the underlying NDIS driver
for its characteristics and to set the protocol’s own operating characteristics.
protocol can also negotiate certain parameters for the binding.

For example, a protocol driver can query the largest packet the underlying
driver can accommodate on the NIC it manages. The protocol driver must res
the size of the packets it subsequently sends to be no larger that this size. I
error for a protocol driver to submit a larger packet to the underlying NIC driv
than the NIC driver has indicated it can support.

DriverEntry also allocates any resources the protocol needs to operate, such
packet pool from which the protocol driver can allocate packet descriptors
receiving and transferring data. IfDriverEntry is unable to allocate the requeste
packet pool, it releases any previously allocated resources, makes a ca
NdisDeregisterProtocol if necessary, and returns an appropriate error status.

6.3 Network

This is the most important part of the driver. It should be fulfill the functio
described in the following sections.

6.3.1 Receiving Incoming Raw Packets

When a packet arrives from the network, a NIC driver ca
NdisMIndicateReceivePacket, passing a pointer(s) to one or more full packe
and relinquishing ownership of the resources for these packets to the over
drivers. NDIS then calls theProtocolReceive function. This function does the
following:

Peek at theLookAheadBuffer provided by NDIS to see if it is a packet of interes
in this case, to see if it is an IP packet. If it is, then it copies theLookAheadBuffer
into an internal buffer. Then it allocates sufficient space for transferring the res
the packet. After that it callsNdisTransferData with the packet descriptor, so the
NIC driver copies the rest of the received data into the protocol‘s buffers (from
packet pool). WhenNdisTransferData returns STATUS_SUCCESS or the
ProtocolTransferDataComplete function is called, thelookahead buffer is
chained to the buffers containing transferred data. Thus it has a copy of the ori
packet which will be processed in theProtocolReceiveComplete function.

The ProtocolReceive function is designed to execute as quickly as possib
because it is holding the ownership of the indicated packet until it returns. Holdin
packet for too long will certainly cause bad performance on the network and or e
loss of coming packets. For this reason, I postpone processing the data unt
ProtocolReceiveComplete function, which will be called after the
ProtocolReceive function has returned.

6.3.2 Sending Packets

A protocol driver can transmit a single packet by callingNdisSend, passing in a
pointer to a packet descriptor with chained buffer descriptors mapping the buff
data to be sent. Alternatively, a protocol driver can transmit several packets u
NdisSendPackets, passing in a pointer to an array of pointers to one or mo
Implementation and Analyses of the Mobile-IP Protocol 24

NT Protocol Driver

own
ling

lying
en
’
ith

ore I

f the
hen
m
alling

since
t
a

vice
in

at
I/O
atch
that
at a
packet descriptors. Which of the two is used, depends on the driver’s
requirements and on the characteristics of the underlying NIC driver. By cal
NdisRequest, with an OID_GEN_MAXIMUM_SEND_PACKETS query, the
driver can determine the maximum number of packets to be sent that the under
driver will accept in a packet array. If NIC driver only supports one at a time, th
the protocol driver should useNdisSend to send packets. Otherwise both drivers
performance will be better if the protocol driver sends an array of packets w
NdisSendPackets.

FIGURE 8. Using NdisSend

I put the sending function code in theProtocolReceiveComplete, after the
datagrams have been processed. NDIS always callsProtocolReceiveComplete
after one or more calls to the driver’sProtocolReceive function, regardless of
whether any particular packet(s) are accepted by the bound protocol. Theref
maintain a sending queue. Every time a packet comes,ProtocolReceive inserts a
preallocated packet descriptor into the queue, and calls NDIS to copy the data o
incoming packet into the space mapped by the packet descriptor. W
ProtocolReceiveComplete is called, the driver picks out packets one by one fro
the sending queue, processes them and sends them away individually by c
NdisSend.

The access to the sending queue is also synchronized by using a SpinLock,
both ProtocolReceive andProtocolReceiveComplete may access the queue a
the same time. (NDIS will callProtocolReceive as soon as a packet arrives,
ProtocolReceive operation maybe in process at that time.)

6.4 Signalling

• I/O Request Packets (IRP) are the basis of all interactions between a de
driver and its corresponding device. Each driver-specific I/O stack location
every IRP has a major function code (IRP_MJ_XXX) that tells the driver wh
operation it or the underlying device driver should carry out to satisfy the
request. Each Windows NT kernel-mode driver must set up one or more disp
entry points for the required subset of system-defined major function codes
are set in the I/O stack location(s) of IRPs. The subset function codes th

3. MacSend

4. NdisQuerySendFlags (optional)

5. NdisCompleteSend (async. only)

1. NdisSetSendFlags (optional)

2. NdisSend

4. ProtocolSendComplete (async. only)

Protocol
 Driver

 NIC
Driver

NDIS

Library
Implementation and Analyses of the Mobile-IP Protocol 25

NT Protocol Driver

s are

t of

ent

a

des
the

ion
rs.
em
put

ion.

ng
sor's
pts
rrent

s its
a
of

y on
, the
the

on
<

lt
at

s

ith
the
n a
etric
device driver must handle depends on the nature of it’s device. (The subset
defined in theKernel-Mode Driver Reference -a Windows NT DDK document.)
However, NT device and intermediate drivers usually handle the following se
basic requests:

• IRP_MJ_CREATE - open the target device object, indicating that it is pres
and available for I/O operations

• IPR_MJ_READ - transfer data from the device

• IPR_MJ_WRITE - transfer data to the device

• IPR_MJ_DEVICE_CONTROL - set up (or reset) the device, according to
system-defined, device-type-specific I/O control code

• IRP_MJ_CLOSE - close the target device object

For more information about the major function codes and device I/O control co
that NT drivers for particular kinds of devices are required to handle, see
Kernel-Mode Driver Referencefrom Windows NT DDK document.

6.4.1 IOCTL Interface

Windows NT (and also Win95) includes a device input and output control (IOCTL)
interface that allows applications developed for the Microsoft Win32 applicat
programming interface (API) to communicate directly with device drive
Applications typically use this interface to carry out selected MS-DOS syst
functions, to obtain information about a device, or to carry out input and out
(I/O) operations that are not available through standard Win32 functions.

Using the IOCTL interface in user applications will be discussed in the next sect
We will also see how it is implemented in WinMIP driver.

6.5 IRQL (Interrupt ReQuest Level)

According to the definition ofKernel-Mode Driver Referencefrom Windows NT
DDK, IRQL is the priority ranking of an interrupt. A processor has an IRQL setti
that threads can raise or lower. Interrupts that occur at or below the proces
IRQL setting are masked and will not interfere with the current operation. Interru
that occur above the processor's IRQL setting take precedence over the cu
operation.

The particular IRQL at which a piece of kernel-mode code executes determine
hardware priority. Kernel-mode code is always interruptible: an interrupt with
higher IRQL value can occur at any time, thereby causing another piece
kernel-mode code with the system-assigned higher IRQL to be run immediatel
that processor. In other words, when a piece of code runs at a given IRQL
Kernel masks off all interrupt vectors with a lesser or equal IRQL value on
microprocessor.

IRQL is a very important issue when writing a network driver. Every driver functi
called by NDIS runs at a system-determined IRQL, one of PASSIVE_LEVEL
DISPATCH_LEVEL < DIRQL. For instance, the initialization function, ha
function, reset function, and sometimes the shutdown function run
PASSIVE_LEVEL. Interrupt code runs at DIRQL. All other NDIS driver function
run at DISPATCH_LEVEL.

Running at IRQL DISPATCH_LEVEL or higher prevents threads (even those w
the highest real-time priority level) from running on the same processor until
current kernel-mode routine lowers IRQL. However, running at raised IRQL o
given processor has no effect on the IRQL of any other processor in a symm
multiprocessor machine.
Implementation and Analyses of the Mobile-IP Protocol 26

NT Protocol Driver

in
at

is,
eck

rupt
ack
L.

essor
, or

aise
sm.

ting
the
rupt
the

QL,
er is
the
by

o the
The IRQL at which a driver runs affects which NDIS functions it can call. Certa
functions can only be called at IRQL PASSIVE_LEVEL. Others can be called
DISPATCH_LEVEL or lower. However, at the beginning, I was not aware of th
and frequently caused system failure. So before you write a NDIS driver, ch
every NDIS function for IRQL restrictions.

When an interrupt occurs, it is handled (serviced) by a function called an Inter
Service Routine (ISR). Data structures called Interrupt Dispatch Tables (IDT) tr
which interrupt service routine(s) will handle the interrupts occurring at each IRQ
A separate IDT is associated with each processor. Because of this, each proc
can potentially associate different interrupt service routines with the same IRQL
one processor can be asked to handle all interrupts.

Any driver function that shares resources with the driver’s ISR must be able to r
its IRQL to DIRQL to prevent race conditions. NDIS provides such a mechani
For example, obtaining aSpin Lockby calling NDISAcquireSpinLock function
would raise the IRQL level of a function to DIRQL.

A device driver associates its interrupt service routine with an IRQL by construc
an Interrupt Objectand passing it to the kernel. The kernel then connects
interrupt object to the appropriate interrupt dispatch table entry. When an inter
occurs at the device's IRQL, the kernel locates the device driver's ISR using
interrupt object. More than one interrupt object can be associated with each IR
so multiple devices could potentially share the same IRQL. When a device driv
unloaded, it simply asks the kernel to disconnect its interrupt objects from
interrupt dispatch table. Interrupt objects increase device driver portability
providing a way to connect and disconnect ISR without needing direct access t
kernel's interrupt dispatch table.
Implementation and Analyses of the Mobile-IP Protocol 27

Device I/O Control in Applications

hat
it is
to

ote,
as

use

ule
. If

tion.

r

me

IP

h of
ot be
od to

ained

py of
from
the
e

7. Device I/O Control in Applications

As I mentioned before, people use the deviceIOCTL interface in an application to
carry out “low-level” operations that are not supported by the Win32 API and t
require direct communication with the driver. In section 6, I have described how
implemented in the WinMIP driver. In this section, I am going to describe how
use this interface in user applications. In the packet dump application I wr
IOCTL is heavily used. I will use some relevant code from this application
examples.

7.1 General

Windows NT implements the interface through theDeviceIoControl function,
which sends commands and accompanying data directly to the given driver. To
this interface, you open the driver by using theCreateFile function, send
commands and data by usingDeviceIoControl, and finally close the driver by using
theCloseHandle function.

7.2 Opening the Driver

You can open a static or dynamically loadable driver by specifying the mod
name, or registry entry identifying the driver in a call to the CreateFile function
the driver exists and it supports the deviceIOCTL interface, the function returns a
device handle that you can use in subsequent calls to the DeviceIoControl func
Otherwise, the function fails and sets the last error value toERROR_NOT
SUPPORTED or ERROR_FILE_NOT_FOUND. You can use the GetLastErro
function to retrieve the error value.

When you open a driver, you must specify a name having the following form:

 \\.\DriverName

DriverNamecan be the module of the driver, the name of the driver file, or the na
of a registry entry that specifies the filename.CreateFile checks for a filename
extension to determine whetherDriverNamespecifies a file. If a filename extension
(such as .SYSin Win NT, .VXD in Win95) is present, the function looks for the file
in the standard search path. IfDriverNamehas no filename extension,CreateFile
checks the registry. If the driver is loaded as a protocol driver such as my WinM
driver, CreateFile will look into HKLM\SYSTEM \CurrentControlSet \ Servicesto
see if the DriverName is one of theDeviceInstances. If theDriverNameis a value
name,CreateFile uses the current value associated with the name as the full pat
the driver file. This method is preferable, because sometimes driver files may n
in the standard search path. The packet dump application also uses this meth
open the MIP driver.

If DriverNamehas no filename extension and is not in the registry,CreateFile
assumes that the name is a driver module and searches the internally maint
device descriptor blocks for an already loaded driver having the given name.

You can open the same driver any number of times.CreateFile provides a unique
handle each time you open a driver, but it makes sure that no more than one co
the driver is loaded into memory. To ensure that the system removes the driver
memory when you close the last instance of the driver, use
FILE_FLAG_DELETE_ON_CLOSE value when opening dynamically loadabl
drivers. A static driver cannot be removed from memory.
Implementation and Analyses of the Mobile-IP Protocol 28

Device I/O Control in Applications

e
rs for
s an
m

use
supply
you
ious

ows
ontrol
ort
in

ode

andle
he
Although CreateFile has several parameters, only thelpName and
fdwAttrsAndFlagsparameters are useful when opening a driver.fdwAttrsAndFlags
can be zero, the FILE_FLAG_DELETE_ON_CLOSE value, or the
FILE_FLAG_OVERLAPPED value. TheFILE_FLAG_OVERLAPPED value is
used for asynchronous operation and is described later in this section.

7.3 Sending Commands

You useDeviceIoControl to send commands to a driver. You must specify th
previously opened device handle, control code, and input and output paramete
the call. The device handle identifies the driver, and the control code specifie
action for the driver to perform. In the following example, which is extracted fro
my packet dump application, theIOCTL_MIP_STOP_RECEPTION control code
directs the given driver to stop receiving data packets.

 Example:

 HANDLE hDevice;
 DWORD nBytesReturned;

 DeviceIoControl(
 hDevice, // the handle to the driver
 IOCTL_MIP_QUERY_LOWER_INFO, // control code
 pSendData, // buffer for input data to the driver
 64, // size of the buffer
 NULL, 0, // no output data from the driver
 &nBytesReturned,
 &Overlapped //for asynchronous operation
);

The input and output parameters ofDeviceIoControl include the addresses and
sizes of any buffers needed to pass data into or out of the driver, Whether you
these parameters depends on how the driver processes the control code. You
an input buffer if the driver requires that you pass it data for processing, and
supply an output buffer if the driver returns the results of processing. In the prev
example, only the input parameters are supplied.

Although the Win32 header files defines a set of standard control codes, Wind
NT does not support these standard codes. Instead the meaning and value of c
codes in Windows NT are specific to each driver. Different drivers may supp
different control codes. All the control codes for the WinMIP driver are defined
the file IOCTL.h in Appendix B.

If you opened a driver using theFILE_FLAG_OVERLAPPED value, you must
also provide anOVERLAPPED structure when calling DeviceIoControl. This
structure contains information that the driver uses to process the control c
asynchronously.

7.4 Closing a Driver

When you have finished using a driver, you can close the associated device h
by using theCloseHandle function, or you can let the operating system close t
handle when the application terminates.
Implementation and Analyses of the Mobile-IP Protocol 29

Device I/O Control in Applications

en a
e

ins a
time

ches
s not

use

rally

an
r the
tion
the
an

en the

the
e
n

tion

he

e

ng a
ding
t of
y are
Closing a driver does not necessarily remove the driver from memory. If you op
dynamically loadable driver, such as my WinMIP driver, using th
FILE_FLAG_DELETE_ON_CLOSE value, CloseHandle also removes the
driver if no other valid handles are present in the system. The system mainta
reference count for dynamically loadable drivers, incrementing the count each
the driver is opened and decrementing when the driver is closed.CloseHandle
checks this count and removes the driver from memory when the count rea
zero. The system does not keep a reference count for static drivers; as it doe
remove these drivers when their corresponding handles are closed.

In rare cases, you may need to use theDeleteFile function to remove a dynamically
loadable driver from memory. For example, you useDeleteFile if another
application has loaded the driver and you simply want to unload it. You also
DeleteFile if you successfully loaded a driver by usingCreateFile, but the driver
provides no handle to close and remove the driver. However, you should gene
avoid usingDeleteFile to remove a driver from memory;CloseHandle is a more
appropriate approach.

7.5 Asynchronous Operations

You can direct a driver to process a control code asynchronously. In
asynchronous operation, the function returns immediately, regardless of whethe
driver has finished processing the control code or not. Asynchronous opera
allows an application to continue while the driver processes the control code in
background. As mentioned in the previous subsections, you request
asynchronous operation by specifying the address of theOVERLAPPED structure
in the DeviceIoControl function. The hDevice member of OVERLAPPED
specifies the handle of an event that the system sets to the signaled state wh
driver has completed the operation

To perform an asynchronous operation, you must specify
FILE_FLAG_OVERLAPPED value when calling CreateFile to obtain a devic
handle. When callingDeviceIoControl, you must specify the address of a
OVERLAPPED structure inlpOverlappedparameters. Additionally, you should
also specify a handle of a manual reset event in thehEventmember of the structure.
The system ignores all other members. This handle is obtained by calling func
CreateEvent.

If DeviceIoControl completes the operation before returning, it returnsTRUE,
otherwise it returnsFALSE. When the operation is finished, the system signals t
manual reset event. You should callGetOverlappedResult when the thread that
calledDeviceIoControl needs to wait (that is, it wishes to stop executing) until th
operation has finished.

Asynchronous operations are useful for lengthy operation, such as formatti
disk. In my packet dump program, I used asynchronous operation for both rea
and writing data packets to the WinMIP driver. Just for fun, I also keep a coun
how many packets received in the application are not in the same order as the
received in the driver, in variableg_nSequenceErrorCount.
Implementation and Analyses of the Mobile-IP Protocol 30

Conclusions

and
ow

rnet

in

the
ly
g in
ve

to

ully
P in
er
t this
t’s
kets

a
her
nal
st be

P
ative
w
of

ware
he
8. Conclusions

8.1 Achieved Objectives

• Deeper understanding of Internet Protocol, particularly its encapsulation
routing mechanism. Through the project, I have realized how powerful, yet h
simple the protocol IP is.

• Further understanding of and hands-on experience with the Mobile Inte
Protocol.

• Thorough understanding of Windows NT network architecture and NDIS
particular.

• Practical knowledge of writing Windows NT kernel-mode driver

8.2 Unfulfilled Objectives

• Due to time constraints and some technical difficulties caused mainly by
limitation of NDIS architecture, none of the Mobile-IP nodes was ful
implemented. Windows is still pretty much a closed system and programmin
Windows OS level is very difficult despite tools, like DDK. NDIS does not ha
enough flexibility and programmer-friendly features to help a beginner like me
write a network driver quickly and easily.

• Due to time constraints and the fact that the none of the nodes was f
implemented, no testing was done to measure the performance of Mobile-I
the Windows NT environment and to compare it with those of oth
environments, such as SunOS or Solaris. However, my qualified guess is tha
implementation should work more efficiently than Anders Kleme
implementation for SunOS, when it comes to processing and routing of pac
in the HA and the FA.The reason is simply that, in this implementation
dedicated protocol driver handles this solely, totally independent of ot
network protocols such as TCP/IP, thus eliminating the need for inter
transmission of packets, thus reducing the number of times the packets mu
copied.

8.3 Further Work

Due to the popularity of Linux (a PC version of Unix), many Mobile-I
implementations have been done using for Linux. Therefore, there is no imper
to implement Mobile IP on Windows. However, it would still be interesting to kno
how a Windows implementation would perform in comparison to one or more
these Linux implementation -- as you could run the systems on the same hard
platform. The possibilities of using a different network driver design for t
Windows version could also be explored.
Implementation and Analyses of the Mobile-IP Protocol 31

Development of Mobile IP Implementations

ork.
the
n
sed

on,
or

he
s it
opics
ant to
ence
s on

ents
the
e of
n in

kia,
h as
ese
an
ted

n

n
ver,
se
ain

een
9. Development of Mobile IP Implementations

Almost 10 years have passed since I finished the main part of this thesis w
During the time, there have been many implementations of Mobile IP on
Microsoft Windows platform. As I am submitting the thesis now, I will give a
overview of these implementations, highlight some key issues and propo
solutions. However, due to limited access to implementation informati
particularly commercial implementation, the overview is far from comprehensive
conclusive. In Section 9.1, I will review the development of MIP in general. T
structure of this section is adapted from a report by Chakchai So-In[35] a
provides a quite thorough overview of the area. I have selected a subset of the t
that this other report presented and will focus here on those that are most relev
this project. Thus while the structure is similar, the sections included here refer
additional research on each topic. In Section 9.2, I will focus on implementation
Microsoft Windows platform in particular.

9.1 Development of Mobile IP

Since the introduction of Mobile IP well over a decade ago, many developm
have occurred concerning the implementation of this protocol, both from
research side and the commercial side. Abdul Sakib Mondal[19] described som
the current Mobile IP implementations and compared their features (as show
Table 1).

On the commercial side, most networking companies (such as Cisco, No
Siemens, Hewlett-Packard, etc.) support Mobile IP. A number of vendors (suc
BirdStep, Secgo, and ipUnplugged) provide Mobile IP clients. Despite all th
successful commercializations of Mobile IP, as of today, we still do not see
adoption of Mobile IP on a large scale in the market. This probably has to attribu
to the problems that Mobile IP is still facing, which I will explain more in detail i
the following sections.

Overall Mobile IP is supports Macro Mobility well, when a MH roams betwee
servicing wide-area wireless data systems (i.e., Inter-Domain mobility). Howe
when it comes to Micro Mobility support, when a MH moves from one ba
station’s coverage area to another within the same network (i.e., Intra-Dom
mobility), MIP has several limitations. Some of the key issues that have b
addressed to overcome these limitations over the last decade include:

TABLE 1. Comparison of several Mobile-IP implementations (based on [19])

Feature Dynamic MosquitoNet Solaris MIP Cellular IP IMHP

Protocol Compability High High Medium Medium Medium

Dependency on Network Support High Low Medium High High

Support for Optimal Routing Average High Above Aver-
age

Low Above
Average

Support for Security High Low Medium Low High

Scalability Highest Above Average Average Lowest Average

Speed of Handoff Fast Average Average Above Aver-
age

Slow

Overheads High Low Below Aver-
age

High Average
Implementation and Analyses of the Mobile-IP Protocol 32

Development of Mobile IP Implementations

n its
sed
se
od

at
her
&
MH
r the
his
ime
more

ion.
ork

TCP
from

did

d by
FA)
he
A

H.
the
h

FA
rives

is
ckets
des
eived
this

on:
and

ssify
by
the

ry (a)
d

1. Smooth Handoff

When a MH roams from one local network to another, a smooth handoff betwee
old and new access point (i.e., with minimal packet loss and minimal increa
latency) is critical to some applications running over Mobile IP, specifically tho
with tight real-time requirements such as VoIP. Thus while MIP provides a go
solution for IP mobility at a global level, this may not be sufficient for mobility
the micro level. If a MH moves very frequently from one access point to anot
within a relatively small area, this will result in a lot of traffic to update the HA
Correspondent Node (CN) with the change of Care Of Address (COA), as the
needs to notify both the HA and CN on each handoff. Since packets destined fo
mobile node are not delivered until registration is completed at the HA, t
interruption may cause a degradation in quality especially when real-t
applications such as audio and video are used. The higher the link speed is, the
packets that might be lost during handoff - although thismay or may nothave an
effect on the receiving application and the perceived quality of the communicat
Further, when TCP is used for data downloading, changing the point of netw
attachment may degrade the throughput of the TCP connection due to
retransmission timeouts (i.e., the TCP connection may appear to be suffering
congestion - when in reality it is simply missing segments because the device
not have network connectivity for some period of time).

• Packet Loss

To avoid packet loss, the Foreign Agent Smooth Handoff proposal describe
Perkins and Johnson in [8] provides a means for the MN’s old foreign agent (o
to be notified of the MN’s new mobility binding, allowing packets destined to t
MN’s oFA to be forwarded directly to its new COA. In this approach, the oF
allows the MN to execute a handoffbefore the new registration process is
completed. During the handoff, the oFA maintains the binding for the former M
After the oFA has received a binding update from the new FA (nFA) regarding
former MH, the OFA will tunnel all packets destined to the MH via the nFA (whic
will deliver them to the MH).

However, packets arriving at oFAafter the MH has leftand before the binding
update is received from the nFA is received would be lost. To avoid this, each
could utilize a circular buffer to store these packets. When a tunneled packet ar
at the oFA, it is decapsulated, and forwarded to the MH; additionally a copy
placed in the buffer. When the oFA receives a binding update these buffered pa
are re-tunneled to the new FA. In order to avoid duplicate packets, the MH inclu
both the source address and datagram identification of the most recently rec
packets in the registration request that is sent to the oFA. The oFA can use
information to forward only the buffered packets that havenot been received by the
MH. There still remain (at least) two sources of packet loss in this soluti
(a) Packets might be dropped by the oFA due to the limited size of the buffer;
(b) Packets that are tunneled from the oFA to nFA that arrivebeforethe registration
reply will be dropped.

• Handoff latency

There have been many proposals to reduce the handoff latency of MIP. I cla
them into two categories: (a) aiming to reduce the network registration time
using a hierarchical network management structure; (b) attempting to reduce
address resolution time through address pre-configuration. Methods in catego
are usually calledhierarchical handoff, while methods in category (b) are referre
to asfast-handoff.
Implementation and Analyses of the Mobile-IP Protocol 33

Development of Mobile IP Implementations

s.
reign

way -
cess
able
thus
the

] and
their
work.
t.

of
the

as a
the
S

s the
tion
d to
are
ome
is
ay

in the
tion
Note

ccess
bor

ility
and

bor
ress

in a
A)).
still
rs

used.
to

the
can
le,
work
le
ice
Hierarchical handoff was introduced to hide local movements of MHs from HA
Rather than provide the actual address of the MH, the address of a Gateway Fo
Agent (GFA) is sent to the HA. This address represents the address of a gate
local to the visited network. This gateway is shared by a number of network ac
points. When a MN moves from one access point to another that is reach
through the same gateway, then the HA does not need to be informed,
minimizing the signaling and routing traffic that needs to be sent through
network.

Many researcher have proposed fast-handoff techniques. Koodli and Perkins [9
Koodli [10] proposed a Fast Hand Over technique to reduce handover delay. In
proposal the MH is allowed to send packets as soon as it detects a new net
Thus as soon as an FA detects a new MH, it would start delivering packets to i

Another interesting proposal is from a group of students from the University
California at Berkeley.[11] They propose to achieve fast handoffs by using both
hierarchical structure of the network and location information provided byGPS
(Global Positioning System) receiver at each router. Each network domain h
hierarchical tree of foreign agents with a GFA at the top of this tree, thus to
external world the GFA looks like the single FA for this domain. Using a GP
receiver, each router learns its own position. An advertisement scheme inform
other routers in the domain of this router’s position. Routers use this posi
information to send the packets directed to both the (active) foreign agent an
adjacent foreign agents as well. In addition, the position information of GFAs
consulted to determine whether to send a registration request to the MH’s h
agent or to the MH’s previous GFA. Note that the GFA will act as a HA, if a MH
geographically closer to the domain than to its own HA. While this approach m
sound promising, geographical closeness may not necessary mean close
network topology. Additionally, this scheme has some extra cost of implementa
due to both the need for GPS receivers and to the extra messaging involved.
that similar schemes based upon knowing or computing a set of adjacent a
points have been proposed by others, for example Liu & Maguire[36] and neigh
graphs [37,38,39].

2. Mobile IP v6

IPv6 provides several additional features that enhance and simplify mob
support. Similar to MIP v4, two addresses are maintained (a Home address
COA), and a HA is used. However, FAs are not required, since Neigh
Discovery[15] and auto configuration of IP addresses (called Stateless Add
Auto Configuration [14]) are mandatory parts of IPv6, a mobile node can obta
local care-of address on its own (a co-located care of address (CCO
Consequently all routers must implement router advertisements. The MH
informs the HA of its current location. However, triangle routing no longer occu
and IP tunneling is no longer required as IPv6 source routing headers can be
Additionally, the MH can inform any IPv6 CN of its new location and a route
reach this location. By using binding updates, binding acknowledgements, and
Return Routability mechanisms integrated in the MIP v6 packet, the MH
communicate directly with the CN. However, if a CN is not Mobile IPv6-capab
then packets sent between the CN and a MH that is away from its home net
will be forwarded via the HA. Unfortunately, while many of the problems of Mobi
IP are well address by IPv6 and Mobile IP v6, there are few internet serv
providers offering IPv6.
Implementation and Analyses of the Mobile-IP Protocol 34

Appendix A

sts.
ing
tion

not a

ed a
ting
cast
uter.
ent
ive

and
age

fic
face
nique
the
ot

cast
If not,

ckets
e link

h the
ves,
lt in:
the

MH’s
he

l.[17]
icast
ds
ork

His
nd to
ters.
arge
ses

tive
.

MH
lieves
us
3. Multicast

IP multicast is an efficient way to send packets from one host to multiple ho
However, traditional multicasting techniques have problems efficiently provid
multicast to mobile hosts when faced with frequent membership or loca
changes. This is somewhat odd when one considers that a multicast address is
network interface address, thus it would seem that it should support mobility.

IP multicasting is the transmission of an IP packet to interfaces that have join
multicast. RFC 1112 [40] sets forth the recommended standard for IP multicas
on the Internet. In this scheme IP multicast packets are handled by “multi
routers” which may be co-resident with, or separate from, the typical unicast ro
IP multicasting requires implementation of the Internet Group Managem
Protocol (IGMP), which a node uses to join a multicast group in order to rece
packets addressed to a given multicast IP address.

There are two main Mobile IP multicast techniques: via a local multicast router
via bi-directional tunneling. In the first approach, the MH sends an IGMP mess
directly to a multicast router in its foreign network in order to join a speci
multicast group, this IGMP request triggers multicast routing based on the inter
which the request was received on - rather than an IP source address. This tech
requires a multicast router in each visiting network and it requires a CCOA for
MH. When a CCOA can not be obtained, then MH origination multicast is n
going to work. The reason is that multicast routers check if the upstream multi
packets arrive at the same interface as they should be sent back to the source.
the packets will be discarded. In the absence of CCOA, MH sends multicast pa
using its home address as source address, whose interface is different from th
the MH is using. Hence the packets will be discarded by the router.

The second technique requires that the MH sends multicast packets throug
unicast tunnel between the itself and its HA. Therefore, whenever the MH mo
there is no need to reconstruct the multicast distribution tree, but this may resu
(a) nonoptimal routing path (e.g., triangle routing), (b) tunnel convergence as
HA has to duplicate multicast packets for transmission toeachmobile node that it is
responsible for and send each of these packets via a tunnel to the respective
FA. This replication of multicast packets by the HA is required, even if all of t
mobile nodes are associated with a single HA and are visiting the same FA.

There are several alternatives to address these problems: Harrison, et a
proposed a Mobile Multicast scheme, that establishes a Designated Mult
Service Provider (DMSP), most of the time this is the MH’s HA, which forwar
multicast packets to its MHs, thus substantially reducing the required netw
traffic (as these packets can be forward as multicast packets).

Jiwoong Lee [30] proposed a Small Group Multicast (SGM) routing scheme.
basic idea is to include a list of destination addresses in a new SGM header a
avoid the use of the multicast routing protocols and multicast routing by the rou
SGM complements the existing multicast schemes in that it supports a very l
number of small multicast groups, thus making multicast practical for new clas
of applications such as IP telephony, various conferencing & collabora
applications, multiparty networked games, "replication" of Internet content, etc

Jiang Wu and Gerald Q. Maguire Jr. proposed another scheme in which the
sends messages to a multicast assistance agent in the network into which it be
that it will roam[29]. This agent joins the multicast tree on behalf of the MH. Th
Implementation and Analyses of the Mobile-IP Protocol 35

Appendix A

the

ow
ther.

i.e.,
port
nd
the
the
may
d in

is
dds

ing
inne
ctive
ocol
ation
N
this
ular
ost

s via
e are
.The
kets

eated
h the
ally
t IP

st of
ndle

ains
he
nd
after

sion
ive

IP
ts to

me
a

T)
when the MH actually arrives in the network, much of the work to set up
multicast tree has hopefully already be done.

4. Voice over IP

VoIP is a typical real-time application that requires low handoff latency and l
packet loss - even when users move from one network attachment point to ano
Currently, there are two basic approaches to support macro mobility (
inter-domain mobility) for VoIP services. MIP and related proposals seek to sup
mobility at the network layer while using existing VoIP protocols such as H.323 a
the Session Initiation Protocol (SIP) seek to solve the mobility problem at
application layer. Note that when handling mobility at the application layer,
signaling might not only have to go between the communicating parties, but
also need to propagate between the various SIP proxies which were involve
setting up the call (as these may bestateful).

As mentioned earlier, the biggest problem in MIP for such an application
triangular routing which adds potentially considerable delay. Tunneling also a
additional overhead and consumes additional bandwidth.

Although SIP was not originally designed for node mobility, there has been ongo
research effort to develop SIP based mobility support. Wedlund and Schulzr
have proposed [21] that when a MH moves from one cell to another during an a
session, it obtains a new IP address from a Dynamic Host Configuration Prot
(DHCP) server or equivalent in the new network and sends a new session invit
to CN (i.e., a re-INVITE). The purpose of this new invitation is to update the C
with the MH’s current IP address (so that the session can continue). Although
SIP-based solution offers some advantages over MIP, by eliminating triang
routing and tunneling overhead, it also has a number of drawbacks; the m
significant is that a MH using SIP always needs to acquire a new IP addres
DHCP which can cause a handoff delay of more than 2 seconds (however, ther
techniques - such as proposed by Vatn and Maguire to reduce this delay[32])
lack of an IP address and the resulting lack of the ability to send or receive pac
can substantially disruption the communication, unless the new session is cr
while the MH is in an overlapping coverage area (i.e., in an area covered by bot
old and new FA). Unfortunately, unless the MH has multiple receivers it is gener
only able to communicate via a single interface (usually with a single unicas
address) at any given time.

Jin-Woo Jung et al.[33] suggested a new mechanism that combines the be
Mobile IP and SIP based mobility. His scheme uses a SIP network server to ha
call/session deliveryand a Mobility Agent with SIP Registrar for handling location
registration, location updates, and location queries. This mobility agent maint
two kinds of binding: one is the normal MIP “Permanent IP-COA” binding and t
other is a SIP “User ID-Current IP binding”. As each MH acquires both a COA a
new IP address when roaming, thus the HAs do not need to tunnel data packets
completing a handoff for ongoing VoIP calls. This means that there is no ses
interruption during handoff (due to MIP) and no triangular routing during the act
session (due to SIP).

5. Firewall Traversal

MIP assumes that MHs and FAs are uniquely identifiable by a globally routable
address. Unfortunately, this assumption is not true when a mobile node attemp
communicate from behind a firewall. MIP relies on sending traffic from the ho
network to the MH or FA using IP-in-IP tunnelling, however, IP nodes behind
firewall are reachable only through the Network Address Translation (NA
Implementation and Analyses of the Mobile-IP Protocol 36

Appendix A

ally
s to
the
nce

unique
bling
P

DP
icate
ard
tion

ration
ply
e
by
which
ew
Note
e
d visa

her
ss is
is
not

o
tly to
rds
and

ity
this
he

) are:
col
es to
g the
ions
ing
r a

orks,
ong

ding
ons.
ise
device’s public address(es). Unfortunately, IP-in-IP tunnelling does not gener
contain enough information to allow a unique translation from a public addres
the address of the COA of a MH or the address of a FA which resides behind
NAT. For this reason, IP-in-IP tunnels can not generally pass through a NAT, he
Mobile IP will not work across a NAT.

Several authors have proposed new data tunneling mechanisms to ensure a
mapping of an internal address to an external address by the NAT; hence ena
MIP to traverse such a NAT. H. Levkowetz et al. [31] proposed a MIP UD
tunnelling mechanism which may be used to achieve NAT traversal. In MIP U
tunnelling, the mobile node uses an extension in its Registration Request to ind
that it is able to use Mobile IP UDP tunnelling, rather than one of the stand
Mobile IP tunnelling mechanisms. Note that this assumes that the registra
request can pass through a NAT. Subsequently, the HA may then send a regist
reply with an extension indicating acceptance (or denial). After receiving a re
from the HA, MIP UDP tunnelling will be used for both forward and revers
tunnelling (i.e., to and from the MH from the HA). UDP tunnelled packets sent
the mobile node use the same ports as the registration request message,
usually is UDP port 434. While, the source UDP port may vary between n
registrations, it remains constant for all tunnelled packets and re-registrations.
that UDP tunnelled packetssent bythe HA uses the same pair of ports, but in th
reverse order (i.e., what was the source port is used as the destination port an
versa).

Even if the problem of NAT traversal is solved by using UDP tunneling, anot
problem remains. Usually a firewall does not allow packets whose source addre
different from its own internal network address range to exit the firewall (this
called Ingress Filtering[24] - as addresses from another network are
topologically from “within” the firewall). To solve this problem, Montenegr
recommends using Reverse Tunneling, rather than sending the packets direc
the CN, i.e., the MH tunnels all of the packets back to its HA, which then forwa
these packets to the CN[25]. However, this results in non-optimal routing
increased signaling overhead.

6. Quality of Service (QoS)

Aside from the major problem of disruption during a Mobile IP handoff, the Qual
of Service (QoS) of on-going communication is the next most significant issue,
is especially true for traffic which should receive a guaranteed traffic flow. T
technologies to address this requirement (that have drawn the most attention
Integrated Services (IntServ), Differentiated Service (DiffServ), and Multiproto
Label Switching (MPLS). IntServ uses a per-flow approach to provide guarante
individual streams (based upon reserving resources in all of the routers alon
path), while DiffServ provides aggregate assurances for a group of applicat
providing a forwarding equivalence class. While MPLS simulates circuit switch
over an IP network. Instead of routing, MPLS does label based switching (fo
good summery of MPLS and details of a generalization of MPLS see [41]).

However, all of the above mentioned techniques were designed for fixed netw
in order to adapt them to MIP, some modifications are needed. Zhang and L
[34] identified several major problems, challenges, and requirements in provi
QoS-enabled mobile applications and their corresponding potential soluti
Additionally, the QoS survey regarding Mobile IP by Taha, et al. [28] is very prec
and covers almost all the relevant QoS topics.
Implementation and Analyses of the Mobile-IP Protocol 37

Appendix A

tion
to

ackets
yet
only

ing a
he
et)
er is
unnel
ses

some
he IP
ceive
specs

okia
ted

diate
only
or

:

ing
are
in a
d an

an
rk as
/IP

be
MH.

elongs
r use

ble
in the
ing
er

his
ectly
One of the topics in both of the above studies that is relevant here is the interrup
in service during a handoff. This interruption in service and the time required
establish a new path may cause an abrupt change in the QoS experienced by p
arriving at an intermediate node in the new path. Additionally, this node may not
know about the desired (previous) QoS requirements. Therefore, this node can
forward these packets using its default QoS. For example, after encapsulat
voice packet it might be marked (using DiffServ) as high priority, but t
intermediate routers might modify this packet’s priority level since thy do not (y
know that this packet should be treated as a high priority packet nor that this us
allowed to send such priority packets. Raab and Chandra propose using a t
template to solve this problem [27]. Moreover, if the current QoS mechanism u
the source or destination IP address to determine the forwarding class, then
signaling may also be needed to notify the nodes along the unchanged part of t
path that despite a MH’s COA being changed that the new packets should re
the same treatment as the earlier packets. Examples of this approach are filter
in IntServ nodes or packet classifiers at the edges of DiffServ networks.

9.2 Implementations on Windows

One of the more recent implementations that I studied was done by three N
engineers on Microsoft’s Windows 2000 in year 2000. Haverinen et al.[18] adop
a similar approach as I discussed in section Section 4.1 by utilizing an interme
driver between the TCP/IP stack and the device drivers. Even though they have
implemented MH functionality (which is much less complicated than either a HA
FA) in the driver, their approach still provides some useful insights. Specifically

1. Although there are programming interfaces for manipulating the forward
table and the ARP functionality in Microsoft’s Windows 2000 system, there
still several things that are not supported, thus they have to be implemented
kernel space driver. These include disabling the sending of ARP requests an
operation to control the reception of ICMP redirect messages.

2. For a MH, the forwarding table routines perform too strict sanity checks, thus
MH would not be allowed to use a host that resides on another IP subnetwo
its default gateway. While a sanity check is reasonable on fixed TCP
networks, in the case of Mobile IP the default router of a MH may very likely
a FA whose IP address does not belong to the same subnetwork as the
Therefore, there is a need to set the default router to some addresses that b
to the home network and to create a false ARP table entry for this address fo
with the link-layer address of packets to be sent to the HA.

3. Another practical problem was the time required to perform fowarding ta
updates. Unfortunately, it sometimes takes several seconds before changes
fowarding table take effect. Since a MH needs to create temporary forward
table entries for the mobility agents it is registering with, the handov
performance due to this high delay will be very poor. As a workaround for t
problem, this implementation sends the Mobile IP registration messages dir
through the intermediate driver, without involving the TCP/IP stack.
Implementation and Analyses of the Mobile-IP Protocol 38

Appendix A

on
ent,
for

from
he
10. Acknowledgments

The project was largely based on Anders Klemet’s implementation of Mobile IP
SunOS. Special thanks to Prof. Dr. Gerald Q. Maguire Jr., for his encouragem
patience, and help. Also thanks to George Liu from Ericsson Radio System
giving me this opportunity to do this project. Good ideas have also been taken
previous thesis work on Mobile IP by Fredrik Broman and Fredrik Tarberg. T
long delay in completing this work is solely my own fault.
Implementation and Analyses of the Mobile-IP Protocol 39

Appendix A

2,

03,

nts
996.

r

ed
sk

aft,

t for

ts:

iya,
,

ion,"
e,

for
2004.

uest
98.

6
ber

t
996.

t,
11. Bibliography

[1] Charles E. Perkins (Editor), “IP Mobility Support”, Request for Comments 200
Internet Engineering Task Force, October 1996.http://www.ietf.org/rfc/rfc2002.txt

[2] Charles E. Perkins, "IP Encapsulation within IP", Request for Comments 20
Internet Engineering Task Force, October 1996. http://www.ietf.org/rfc/rfc2003.txt

[3] Charles E. Perkins, “Minimal Encapsulation within IP”, Request for Comme
(Proposed Standard) 2004, Internet Engineering Task Force, October 1
http://www.ietf.org/rfc/rfc2004.txt

[4] J. Solomon, “Applicability Statement for IP Mobility Support”, Request fo
Comments 2005, Internet Engineering Task Force, October 1996.
http://www.ietf.org/rfc/rfc2005.txt

[5] D. Cong, M. Hamlen, and C. Perkins (Editors), “The Definitions of Manag
Objects for IP Mobility”, Request for Comments 2006, Internet Engineering Ta
Force, October 1996.http://www.ietf.org/rfc/rfc2006.txt

[6] Microsoft, Windows Driver Development Kit (DDK), ~1996

[7] W. Richard Stevens,TCP/IP Illustrated, Volume 1 , Addison-Wesley Publishing
Company, Inc., 1994

[8] C. Perkins and D. Johnson, Route Optimization in Mobile IP, IETF Internet Dr
draft-ietf-mobileip-optim-11.txt

[9] Rajeev Koodli and Charles E. Perkins, "Mobile IPv4 Fast Handovers," Reques
Comments 4988, Internet Engineering Task Force, October 2007.
 http://www.ietf.org/rfc/rfc4988.txt

[10] Rajeev Koodli (Ed.), "Fast Handovers for Mobile IPv6," Request for Commen
4068, Internet Engineering Task Force, July 2005.
http://www.ietf.org/rfc/rfc4068.txt

[11] Mustafa Ergen, Sinem Coleri, Baris Dundar, Rahul Jain, Anuj Puri, Pravin Vara
"Application of GPS to Mobile IP and Routing in Wireless Networks," IEEE VTC
Vancouver, Canada, September, 2002.

[12] E. Gustafsson, A. Jonsson, and C. Perkins, "Mobile IPv4 Regional Registrat
Internet Draft (work in progress), Internet Engineering Task Forc
draft-ietf-mobileip-reg-tunnel-09.txt, 25 June 2004.

[13] D. Johnson, C. Perkins, and J. Arkko, "Mobility Support in IPv6," Request
Comments (Proposed Standard) 3775, Internet Engineering Task Force, June
http://www.ietf.org/rfc/rfc3775.txt

[14] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration”, Req
for Comments 2462, Internet Engineering Task Force, December 19
http://www.ietf.org/rfc/rfc2462.txt

[15] T. Narten, E. Nordmark, and W. Simpson, “Neighbor Discovery for IP Version
(IPv6)”, Request for Comments 2461, Internet Engineering Task Force, Decem
1998.http://www.ietf.org/rfc/rfc2461.txt

[16] G. Montenegro, “Bi-directional Tunneling for Mobile IP”, Internet Draft, Interne
Engineering Task Force, draft-montenegro-tunneling-01.txt, September 1
http://www.ietf.org/internet-drafts/draft-montenegro-tunneling-01.txt.

[17] Tim G. Harrison, Carey L. Williamson, Wayne L. Mackrell, and Richard B. Bun
“Mobile Multicast (MoM) Protocol: Multicast Support for Mobile Hosts”,
Proceedings of ACM/IEEE MOBICOM’97, September 1997, pages: 151-160.
Implementation and Analyses of the Mobile-IP Protocol 40

http://www.ietf.org/rfc/rfc2462.txt
http://www.ietf.org/rfc/rfc2002.txt
http://www.ietf.org/rfc/rfc2003.txt
http://www.ietf.org/rfc/rfc2004.txt
http://www.ietf.org/rfc/rfc2005.txt
http://www.ietf.org/rfc/rfc2006.txt
http://www.ietf.org/rfc/rfc2461.txt
http://www.ietf.org/rfc/rfc4988.txt
http://www.ietf.org/rfc/rfc4068.txt
http://www.ietf.org/rfc/rfc3775.txt

Appendix A

IP
cal

and
io
-18

In
ile

nt for
C

35.

for
ce,

vice
nts

ents

P,"
xt,

ns,"

ah,
ions

eiver
00),

,

ion
rce,

-of
ug.

ug
nt
ns
es
[18] Henry Haverinen, Antti Kuikka, and Tuomas Maattanen, “A portable mobile
implementation”, Proceeding of the 25th Annual IEEE Conference on Lo
Computer Network, November 2000.

[19] Abdul Sakib Mondal,Mobile IP: Present State and Future, Plenum Publishing
Corporation, January 2003, ISBN-13: 9780306478741, 292 pages.

[20] Soonuk Seol, Myungchul Kim, Chansu Yu, and Jong-Hyun Lee, "Experiments
analysis of voice over Mobile IP," Personal, Indoor and Mobile Rad
Communications, 2002. The 13th IEEE International Symposium, Vol. 2, 15
September 2002 Pages: 977 - 981.

[21] Elin Wedlund and Henning Schulzrinne, "Mobility support using SIP,"
Proceedings of the 2nd ACM international workshop on Wireless mob
multimedia, 1999, Pages: 76 -82.

[22] Hanane Fathi, Shyam Chakraborty, and Ramjee Prasad, "Mobility manageme
VOIP: Evaluation of Mobile IP-based protocols," Communications, 2005. (IC
2005) 2005 IEEE International Conference, Vol. 5, May 2005 Pages: 3230 - 32

[23] Min Wang and Geng-Sheng (G.S.) Kuo, "Enhancement of voice over mobile IP
infrastructure-mode wireless LANs," Global Telecommunications Conferen
2005. GLOBECOM’05. IEEE Vol. 5, December 2005 Pages: 2642 - 2646.

[24] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial of Ser
Attacks which employ IP Source Address Spoofing," Request for Comme
(Proposed Standard) 2827, Internet Engineering Task Force, May 2000.

[25] G. Montenegro, "Reverse Tunneling for Mobile IP, revised," Request for Comm
(Proposed Standard) 3024, Internet Engineering Task Force, January 2001.

[26] Charles E. Perkins and David B. Johnson, "Route Optimization in Mobile I
Internet Draft, Internet Engineering Task Force, draft-ietf-mobileip-optim-11.t
September 2001.

[27] Stefan Raab and Madhavi W. Chandra, "Mobile IP Technology and Applicatio
Cisco Press, 2005.

[28] Abd-Elhamid M. Taha, Hossam S. Hassanein, and Mouftah T. Mouft
"Extensions for Internet QoS paradigms to mobile IP: a survey," Communicat
Magazine, IEEE Volume 43, Issue 5, May 2005 Pages: 132 - 139

[29] Jiang Wu and Gerald Q. Maguire Jr., Agent Based Seamless IP Multicast Rec
Handover, IFIP Conference on Personal Wireless Communications (PWC’20
Gdansk, Poland, 14-15 September 2000.

[30] Jiwoong Lee, SGM Support in Mobile IP, Internet draft, IETF
draft-lee-sgm-support-mobileip-00.txt, October 2000

[31] H. Levkowetz and S. Vaarala, "Mobile IP Traversal of Network Address Translat
(NAT) Devices", Request for Comments 3519, Internet Engineering Task Fo
April 2003 http://www.ietf.org/rfc/rfc3519.txt

[32] Jon-Olov Vatn and Gerald Q. Maquire Jr., “The effect of using co-located care
addresses on macro handover delay”, in 14th Nordic Teletraffic Seminar, A
1998.

[33] Jin-Woo Jung, Hyun-Kook Kahng , Ranganathan Mudumbai, and Do
Montgomery, “Performance Evaluation of Two Layered Mobility Manageme
using Mobile IP and Session Initiation Protocol”, Global Telecommunicatio
Conference, 2003. GLOBECOM ’03. IEEE, Volume: 3, 1-5 Dec. 2003, pag
1190- 1194 http://w3.antd.nist.gov/pubs/sip-mip-jwjung-globecom2003.pdf
Implementation and Analyses of the Mobile-IP Protocol 41

http://www.ietf.org/rfc/rfc3519.txt
http://w3.antd.nist.gov/pubs/sip-mip-jwjung-globecom2003.pdf

Appendix A

ges,
e on
ia,

4S:
of

06.

r
on

r
r

ff
ond

4.

g
the

FC)

rs
and
[34] Runtong, Zhang and Long, Keping (2002) QoS issues in mobile IP: challen
requirements and solutions. In: Proceedings of the International Conferenc
Computer Communications (ICCC 2002): Vol. 2, 11-14 Aug 2002, Mumbai, Ind
pages 802 - 812.

[35] Chakchai So-In, ”Mobile IP Survey”, A survey paper for the course CSE57
Advanced Topics in Networking: Wireless and Mobile Networking, Department
Computer Science & Engineering ,Washington University in St. Louis, May, 20
http://www.cse.wustl.edu/~jain/cse574-06/ftp/mobile_ip.pdf

[36] Juntong Liu and Gerald Q. Maguire Jr. “GMRM: An Efficient Routing Model fo
an Integrated Wireless Mobile Packet Switch Network”, The 3rd Workshop
Personal Wireless Communication (PWC98), Tokyo, Japan, 1998.

[37] Arunesh Mishra, Min-ho Shin, and William A. Arbaugh, “An Analysis of the Laye
2 Handoff costs in Wireless Local Area Networks”, ACM Compute
Communications Review , vol. 33, no. 2, pp. 93 - 102, 2003.

[38] Min-ho Shin, Arunesh Mishra, and William A. Arbaugh, “An Efficient Hando
Scheme in IEEE 802.11 using Neighbor Graphs”, in Proceedings of the Sec
International Conference on Mobile Systems, Applications, and Services , 200

[39] Arunesh Mishra, Min-ho Shin, and William A. Arbaugh, “Context Caching usin
Neighbor Graphs for Fast Handoffs in a Wireless Network”, in Proceedings of
23rd Conference on Computer Communications (INFOCOM) , March 2004.

[40] S. Deering, Host Extensions for IP Multicasting, Request for Comments (R
1112, Internet Engineering Task Force, August 1989.
http://www.ietf.org/rfc/rfc1112.txt

[41] Pontus Sköldström, “Control and Integration of GMPLS networks”. Maste
Thesis, Department of Communication Systems, School of Information
Communication Technology, Royal Institute of Technology, August 2008.
Implementation and Analyses of the Mobile-IP Protocol 42

http://w3.antd.nist.gov/pubs/sip-mip-jwjung-globecom2003.pdf
http://www.cse.wustl.edu/~jain/cse574-06/ftp/mobile_ip.pdf
http://www.ietf.org/rfc/rfc1112.txt

Appendix A
Appendix A A Modified Version of ‘Packet’ Sample

A.1 Rawupper.h

#ifndef __RAWUPPER_H__
#define __RAWUPPER_H__

#include“WinMIP.H”
#include“IOCTL.H”

///
//// PROMISCUOUS PROTOCOL DRIVER UPPER-EDGE FUNCTION PROTOTYPES

VOID UPPERPacketReceived(PUSER_PACKET_DATA pRAWUserPacketData);

BOOL UPPEROnOpenHandle(void);
BOOL UPPERStartReception(PIRP pIrp);
DWORD UPPERPacketRead(PDEVICE_OBJECT pDeviceObject, PIRP pIrp);
VOID UPPERFreeUserPacketData(PUSER_PACKET_DATA pRAWUserPacketData);
BOOL UPPERStopReception(PIRP pIrp);
BOOL UPPEROnCloseHandle(void);
DWORD UPPERBufferSend(PIRP pIrp);

#endif // __RAWUPPER_H__
Implementation and Analyses of the Mobile-IP Protocol 43

Appendix A
A.2 Rawupper.c

#include “ntddk.h”
#include “ntiologc.h”
#include “ndis.h”
#include<WinDef.h>
#include “debug.h”
#include “WinMIP.h”
#include“RAWUpper.h”
#include“RAWLower.h”

///
//// GLOBAL DATA

typedef
enum _UPPERState
{

UPPERSTATE_IDLE = 0,
UPPERSTATE_STARTED,
UPPERSTATE_STOPPING,
UPPERSTATE_STOPPED

}
UPPERState, *PUPPERState;

DWORD g_nQueuedPacketCount = 0;
UPPERState g_nUpperState = UPPERSTATE_IDLE;

///
//// PROTOCOL DRIVER UPPER-EDGE FUNCTION STUBS

///
//// UPPERSendCompleteHandler

VOID
UPPERSendCompleteHandler(DWORD nUPPERCallerData)
{

PIRP pIrp;
PIO_STACK_LOCATIONpIrpSp;

ASSERT(nUPPERCallerData);

if(!nUPPERCallerData)
{

return;
}

pIrp = (PIRP)nUPPERCallerData;

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

pIrp->IoStatus.Status = STATUS_SUCCESS;
pIrp->IoStatus.Information = 0;// Nothing Returned

IoCompleteRequest(pIrp, IO_NO_INCREMENT);
}

Implementation and Analyses of the Mobile-IP Protocol 44

Appendix A
///
//// UPPERBufferSend
// Remarks
// Modeled loosely after the packet sending mechanism used by the NT DDK
// PACKET protocol sample.
//

DWORD UPPERBufferSend(PIRP pIrp)
{

PIO_STACK_LOCATIONpIrpSp;
DWORD nResult;

#if DBG
DbgPrint(“UPPERBufferSend: Entry...\n”);

#endif

/* Sanity Checks
---------------- */
ASSERT(pIrp);

if(!pIrp)
{

return(STATUS_UNSUCCESSFUL);
}

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

IoMarkIrpPending(pIrp);
pIrp->IoStatus.Status = STATUS_PENDING;

/* IO Method Comments

 * Because this function is dispatched from DeviceIoControl, the method
 * used to transfer user data into the device is specified by the
 * method field of the IOCTL code - NOT by the flags specified when the
 * device was created.
 */

nResult = LOWERBufferSend(
(PBYTE)pIrp->AssociatedIrp.SystemBuffer,

pIrpSp->Parameters.DeviceIoControl.InputBufferLength,
(DWORD)pIrp
);

return(nResult);
}

Implementation and Analyses of the Mobile-IP Protocol 45

Appendix A
///
//// UPPERPacketReceived
//

VOID
UPPERPacketReceived(PUSER_PACKET_DATA pRAWUserPacketData)
{

PDEVICE_OBJECT pDeviceObject;
PDEVICE_EXTENSIONpDeviceExtension;
BOOL bResult;
PIRP pIrp;
PIO_STACK_LOCATIONpIrpSp;
KIRQL OldIrql;
PLIST_ENTRY pLinkage;

#if DBG
// DbgPrint(“UPPERPacketReceived Entry...\n”);
#endif

/* Sanity Check On Arguments
---------------------------- */
ASSERT(pRAWUserPacketData);

if(!pRAWUserPacketData)
{

return;
}

ASSERT(g_pTheDriverObject);

if(!g_pTheDriverObject)
{

return;
}

if(g_nUpperState != UPPERSTATE_STARTED)
{

/* Free Packet Here
------------------- */
LOWERFreeUserPacketData(pRAWUserPacketData);

return;
}

/* Report Packet Reception To Queued Callers
-- */
pDeviceObject = g_pTheDriverObject->DeviceObject;

while(pDeviceObject)
{

pDeviceExtension = pDeviceObject->DeviceExtension;

KeAcquireSpinLock(
&pDeviceExtension->ReadListSpinLock,
&OldIrql
);

if(!IsListEmpty(&pDeviceExtension->ReadList))
{

pLinkage = RemoveHeadList(
Implementation and Analyses of the Mobile-IP Protocol 46

Appendix A
&pDeviceExtension->ReadList
);

KeReleaseSpinLock(
&pDeviceExtension->ReadListSpinLock,
OldIrql
);

ASSERT(pLinkage);

if(pLinkage)
{

pIrp = CONTAINING_RECORD(
pLinkage,
IRP,

Tail.Overlay.ListEntry
);

IoSetCancelRoutine(pIrp, NULL);

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

NdisMoveMappedMemory(
MmGetSystemAddressForMdl(pIrp->MdlAddress),
pRAWUserPacketData,
sizeof(USER_PACKET_DATA)// ATTENTION!!! Could

copy less!!!
);

pIrp->IoStatus.Status = STATUS_SUCCESS;
pIrp->IoStatus.Information = sizeof(USER_PACKET_DATA);

IoCompleteRequest(pIrp, IO_NO_INCREMENT);
}

}

KeReleaseSpinLock(
&pDeviceExtension->ReadListSpinLock,
OldIrql
);

pDeviceObject = pDeviceObject->NextDevice;
}

/* No User. Free Packet Here
---------------------------- */
LOWERFreeUserPacketData(pRAWUserPacketData);

}

Implementation and Analyses of the Mobile-IP Protocol 47

Appendix A
///
//// UPPEROnOpenHandle

BOOL UPPEROnOpenHandle(void)
{

g_nQueuedPacketCount = 0;
g_nUpperState = UPPERSTATE_IDLE;

return(TRUE);
}

///
//// UPPERStartReception
//

BOOL UPPERStartReception(PIRP pIrp)
{

PIO_STACK_LOCATIONpIrpSp;

/* Sanity Check
--------------- */
ASSERT(pIrp);

if(!pIrp)
{

return(STATUS_UNSUCCESSFUL);
}

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

g_nQueuedPacketCount = 0;
g_nUpperState = UPPERSTATE_STARTED;

pIrp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(pIrp, IO_NO_INCREMENT);

return(STATUS_SUCCESS);
}

///
//// UPPERCancelPacketRead
// Remarks
// This routine is called with the CancelSpinLock held and is responsible
// for releasing it.
//

VOID UPPERCancelPacketRead(PDEVICE_OBJECT pDeviceObject, PIRP pIrp)
{

PDEVICE_EXTENSIONpDeviceExtension;
PIO_STACK_LOCATIONpIrpSp;
KIRQL OldIrql;

#if DBG
DbgPrint(“UPPERCancelPacketRead: Entry...\n”);

#endif

ASSERT(g_pTheDriverObject);
Implementation and Analyses of the Mobile-IP Protocol 48

Appendix A
if(!g_pTheDriverObject)
{

return;
}

pDeviceObject = g_pTheDriverObject->DeviceObject;

pDeviceExtension = pDeviceObject->DeviceExtension;

KeAcquireSpinLock(
&pDeviceExtension->ReadListSpinLock,
&OldIrql
);

if(!IsListEmpty(&pDeviceExtension->ReadList))
{

RemoveEntryList(&pIrp->Tail.Overlay.ListEntry);
}

KeReleaseSpinLock(
&pDeviceExtension->ReadListSpinLock,
OldIrql
);

IoSetCancelRoutine(pIrp, NULL);

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

pIrp->IoStatus.Status = STATUS_CANCELLED;
pIrp->IoStatus.Information = 0;

IoReleaseCancelSpinLock(pIrp->CancelIrql);

IoCompleteRequest(pIrp, IO_NO_INCREMENT);
}

///
//// UPPERPacketRead
//

DWORD UPPERPacketRead(PDEVICE_OBJECT pDeviceObject, PIRP pIrp)
{

PDEVICE_EXTENSION pDeviceExtension;
PIO_STACK_LOCATION pIrpSp;
DWORD nResult;
KIRQL OldIrql;

#if DBG
// DbgPrint(“UPPERPacketRead: Entry...\n”);
#endif

/* Sanity Checks
---------------- */
ASSERT(pDeviceObject);

if(!pDeviceObject)
{

return(STATUS_UNSUCCESSFUL);
}

Implementation and Analyses of the Mobile-IP Protocol 49

Appendix A
/* Sanity Checks
---------------- */
ASSERT(pIrp);

if(!pIrp)
{

return(STATUS_UNSUCCESSFUL);
}

pDeviceExtension = pDeviceObject->DeviceExtension;

IoSetCancelRoutine(pIrp, UPPERCancelPacketRead);

IoMarkIrpPending(pIrp);
pIrp->IoStatus.Status = STATUS_PENDING;

ExInterlockedInsertTailList(
&pDeviceExtension->ReadList,
&pIrp->Tail.Overlay.ListEntry,
&pDeviceExtension->ReadListSpinLock
);

return(STATUS_PENDING);
}

VOID UPPERFreeUserPacketData(PUSER_PACKET_DATA pRAWUserPacketData)
{

BOOL bResult;

--g_nQueuedPacketCount;

if(g_nUpperState == UPPERSTATE_STOPPING)
{

#if DBG
DbgPrint(“UPPERFreeUserPacketData: %d Packets Queued\n”,

g_nQueuedPacketCount);
#endif

if(g_nQueuedPacketCount == 0)
{

g_nUpperState = UPPERSTATE_STOPPED;

/* Wakeup Thread Blocked In UPPEROnStopReception
-- */

// SignalID((DWORD)&g_nQueuedPacketCount);
}

}

LOWERFreeUserPacketData(pRAWUserPacketData);
}

Implementation and Analyses of the Mobile-IP Protocol 50

Appendix A
///
//// UPPERStopReception
//

BOOL UPPERStopReception(PIRP pIrp)
{

PIO_STACK_LOCATIONpIrpSp;

#if DBG
DbgPrint(“UPPEROnStopReception: %d Packets Queued\n”, g_nQueuedPacketCount

);
#endif

/* Sanity Check
--------------- */
ASSERT(pIrp);

if(!pIrp)
{

return(FALSE);
}

pIrpSp = IoGetCurrentIrpStackLocation(pIrp);

g_nUpperState = UPPERSTATE_STOPPING;

/* Block Until Outstanding Queued Packets Are Processed
--- */

g_nUpperState = UPPERSTATE_STOPPED;

pIrp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(pIrp, IO_NO_INCREMENT);

return(TRUE);
}

///
//// UPPEROnCloseHandle
//

BOOL UPPEROnCloseHandle(void)
{

return(TRUE);
}

Implementation and Analyses of the Mobile-IP Protocol 51

Appendix A
A.3 Rawlower.h

#ifndef __RAWLOWER_H__
#define __RAWLOWER_H__

VOID
LOWEROpenAdapterCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status,
 IN NDIS_STATUS OpenErrorStatus
);

VOID
LOWERCloseAdapterCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status
);

VOID
LOWERSendCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_PACKET pNdisPacket,
 IN NDIS_STATUS Status
);

VOID
LOWERTransferDataCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_PACKET pNdisPacket,
 IN NDIS_STATUS Status,
 IN UINT BytesTransferred
);

VOID
LOWERResetCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status
);

VOID
LOWERRequestCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_REQUEST pNdisRequest,
 IN NDIS_STATUS Status
);

NDIS_STATUS
LOWERReceiveHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_HANDLE MacReceiveContext,
 IN PVOID HeaderBuffer,
 IN UINT HeaderBufferSize,
 IN PVOID LookAheadBuffer,
 IN UINT LookaheadBufferSize,
 IN UINT PacketSize
);

VOID
LOWERReceiveCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext
);
Implementation and Analyses of the Mobile-IP Protocol 52

Appendix A
VOID
LOWERStatusHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS GeneralStatus,
 IN PVOID StatusBuffer,
 IN UINT StatusBufferSize
);

VOID
LOWERStatusCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext
);

VOID
LOWERBindAdapterHandler(
 OUT PNDIS_STATUS pStatus,
 IN NDIS_HANDLE hBindAdapterContext,
 IN PNDIS_STRING AdapterName,
 IN PVOID SystemSpecific1,
 IN PVOID SystemSpecific2
);

VOID
LOWERUnbindAdapterHandler(
 OUT PNDIS_STATUS pStatus,
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_HANDLE hUnbindAdapterContext
);

PLOWER_CONTEXT LOWERAllocContext(void);
VOID LOWERFreeContext(PLOWER_CONTEXT pLOWERContext);

VOID LOWERFreeUserPacketData(PUSER_PACKET_DATA pRAWUserPacketData);

BOOL LOWERQueryInfo(PLOWER_INFO pLOWERInfo);

DWORD LOWERBufferSend(PBYTE pBuffer, DWORD nLength, DWORD nUPPERCallerData);

#endif // __RAWLOWER_H__

///
//// INCLUDE FILES

#include “ntddk.h”
#include “ntiologc.h”
#include “ndis.h”
#include<WinDef.h>// ATTENTION!!! For NT def of DWORD, etc. Need better way...

#include “debug.h”
#include “WinMIP.h”
#include“RAWLOWER.h”
#include “PCAEnet.H”
Implementation and Analyses of the Mobile-IP Protocol 53

Appendix A
///
//// LOWERFreePacketAndBuffers
//
// Purpose
// Free the NDIS buffers associated with a RAW_PACKET and then free
// the NDIS packet.
//
VOID
LOWERFreePacketAndBuffers(PRAW_PACKET pRAWPacket)
{

ULONG nDataSize, nBufferCount;
PNDIS_BUFFERpBuffer;

/* Sanity Check On Arguments
---------------------------- */
ASSERT(pRAWPacket);

if(!pRAWPacket)
{

return;
}

/* Verify The Packet Signature
------------------------------ */
ASSERT(pRAWPacket->Reserved.Signature == RAW_PACKET_SIGN);

if(pRAWPacket->Reserved.Signature != RAW_PACKET_SIGN)
{

IF_LOUD(DbgPrint(“LOWERFreePacketAndBuffers: Invalid Packet
Signature\n”);)

return;
}

NdisQueryPacket(
(PNDIS_PACKET)pRAWPacket,
(PULONG)NULL,
(PULONG)&nBufferCount,
&pBuffer,
&nDataSize
);

/* Free All Of The Packet’s Buffers
----------------------------------- */
while(nBufferCount-- > 0L)
{

NdisUnchainBufferAtFront((PNDIS_PACKET)pRAWPacket, &pBuffer);
NdisFreeBuffer(pBuffer);

}

/* Recycle The Packet
--------------------- */
pRAWPacket->Reserved.Signature = 0;// Zap The Signature

NdisReinitializePacket((PNDIS_PACKET)pRAWPacket);

/* And Free The Packet
---------------------- */
NdisFreePacket((PNDIS_PACKET)pRAWPacket);

}

Implementation and Analyses of the Mobile-IP Protocol 54

Appendix A
///
//// LOWERFreeUserPacketData
//

VOID
LOWERFreeUserPacketData(PUSER_PACKET_DATA pRAWUserPacketData)
{

PRAW_PACKET pRAWPacket;

/* Sanity Check On Arguments
---------------------------- */
ASSERT(pRAWUserPacketData);

if(!pRAWUserPacketData)
{

return;
}

pRAWPacket = CONTAINING_RECORD(
pRAWUserPacketData,
RAW_PACKET,
Reserved.UserPacketData
);

/* Verify The Packet Signature
------------------------------ */
ASSERT(pRAWPacket->Reserved.Signature == RAW_PACKET_SIGN);

if(pRAWPacket->Reserved.Signature != RAW_PACKET_SIGN)
{

IF_LOUD(DbgPrint(“LOWERFreePacketAndBuffers: Invalid Packet
Signature\n”);)

return;
}

LOWERFreePacketAndBuffers(pRAWPacket);
}

///
//// LOWERQueryInfo
//
// Purpose
// To respond to a query requesting information about the adapter on the
// binding.
//

BOOL LOWERQueryInfo(PLOWER_INFO pLOWERInfo)
{

PLOWER_CONTEXTpLOWERContext;
ANSI_STRING szansiAdapterName;

/* Sanity Checks
---------------- */
ASSERT(pLOWERInfo);

if(!pLOWERInfo)
{

return(FALSE);
Implementation and Analyses of the Mobile-IP Protocol 55

Appendix A
}

/* Return Information About The First Binding
--- */
ASSERT(!IsListEmpty(&g_LowerBindingList));

if(IsListEmpty(&g_LowerBindingList))
{

return(FALSE); // No Information To Report...
}

pLOWERContext = (PLOWER_CONTEXT)g_LowerBindingList.Flink;

/* Return Adapter Address
------------------------- */
NdisMoveMemory(

pLOWERInfo->szAdapterAddress,
pLOWERContext->szAdapterAddress,
ETHER_ADDR_LENGTH
);

/* Return Adapter Name
---------------------- */
szansiAdapterName.Buffer = pLOWERInfo->szAdapterName;
szansiAdapterName.MaximumLength = MAX_ADAPTER_NAME;

RtlUnicodeStringToAnsiString(
&szansiAdapterName,
(PNDIS_STRING)&pLOWERContext->szUniAdapterName,// Cheat!
FALSE
);

szansiAdapterName.Buffer[pLOWERContext->szUniAdapterName.Length] = 0;

/* Return The Medium
-------------------- */
pLOWERInfo->nSelectedMedium = (UINT)pLOWERContext->nSelectedMedium;

/* Driver Options
----------------- */
pLOWERInfo->bNoLoopback = pLOWERContext->bNoLoopback;

/* Packet Statistics
-------------------- */
pLOWERInfo->nLastPacketNumber.LowPart =

pLOWERContext->nLastPacketNumber.LowPart;
pLOWERInfo->nLastPacketNumber.HighPart =

pLOWERContext->nLastPacketNumber.HighPart;

pLOWERInfo->nTossedPacketCount.LowPart =
pLOWERContext->nTossedPacketCount.LowPart;

pLOWERInfo->nTossedPacketCount.HighPart =
pLOWERContext->nTossedPacketCount.HighPart;

return(TRUE);
}

Implementation and Analyses of the Mobile-IP Protocol 56

Appendix A
///
//// LOWERBufferSend
//
// Purpose
// To send a buffer on the MAC binding.
//

DWORD LOWERBufferSend(PBYTE pBuffer, DWORD nLength, DWORD nUPPERCallerData)
{

PLOWER_CONTEXTpLOWERContext;
PRAW_PACKET pRAWPacket;
PNDIS_BUFFERpNdisBuffer;
NDIS_STATUS nNdisStatus;

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_INVALID_PARAMETER);
}

ASSERT(pBuffer);

if(!pBuffer)
{

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_INVALID_PARAMETER);
}

ASSERT(nLength <= MAX_ETHER_SIZE);

if(nLength > MAX_ETHER_SIZE)
{

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_INVALID_PARAMETER);
}

if(nLength == 0)
{

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_SUCCESS);// Do Nothing Gracefully...
}

/* Send On The First Binding
---------------------------- */
ASSERT(!IsListEmpty(&g_LowerBindingList));

if(IsListEmpty(&g_LowerBindingList))
{

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_UNEXPECTED_NETWORK_ERROR);// No Binding
}

Implementation and Analyses of the Mobile-IP Protocol 57

Appendix A
pLOWERContext = (PLOWER_CONTEXT)g_LowerBindingList.Flink;

/* Allocate The Transmit Packet Descriptor
-- */
NdisAllocatePacket(

&nNdisStatus,
&(PNDIS_PACKET)pRAWPacket,
pLOWERContext->hPacketPool
);

if(nNdisStatus != NDIS_STATUS_SUCCESS || !pRAWPacket)
{

// ATTENTION!!! Use separate counter for TX/RX tossed counts...
// RAWLargeIntegerIncrement(&pLOWERContext->nTossedPacketCount);

IF_LOUD(DbgPrint(“LOWERBufferSend Could Not Allocate Packet\n”);)

UPPERSendCompleteHandler(nUPPERCallerData);

return(STATUS_NO_MEMORY); // Must Drop It
}

/* Initialize The Packet Signature
---------------------------------- */
pRAWPacket->Reserved.Signature = RAW_PACKET_SIGN;

/* Save Data To Be Returned To Caller On Completion
--- */
pRAWPacket->Reserved.nUPPERCallerData = nUPPERCallerData;

/* Add Our Source Address To The Buffer
--------------------------------------- */
switch(pLOWERContext->nSelectedMedium)
{

case NdisMediumLocalTalk:
pBuffer[1] = pLOWERContext->szAdapterAddress[5];
break;

case NdisMedium802_5:
case NdisMedium802_3:
default:

NdisMoveMemory(
&pBuffer[MSrcAddr],
pLOWERContext->szAdapterAddress,

ETHER_ADDR_LENGTH
);

break;
}

/* Allocate An NDIS Buffer Descriptor For The Transmit Data Buffer
-- */
NdisAllocateBuffer(

&nNdisStatus,
&pNdisBuffer,
pLOWERContext->hBufferPool,
pBuffer,
nLength
);
Implementation and Analyses of the Mobile-IP Protocol 58

Appendix A
if(nNdisStatus != NDIS_STATUS_SUCCESS || !pNdisBuffer)
{

// ATTENTION!!! Use separate counter for TX/RX tossed counts...
// RAWLargeIntegerIncrement(&pLOWERContext->nTossedPacketCount);

NdisFreePacket((PNDIS_PACKET)pRAWPacket);

#if DBG
DbgPrint(“LOWERBufferSend Could Not Allocate Buffer\n”);

#endif

return(STATUS_NO_MEMORY); // Must Drop It
}

/* Chain The Caller’s Buffer Into The NDIS Packet
--- */
NdisChainBufferAtFront((PNDIS_PACKET)pRAWPacket, pNdisBuffer);

/* Send The Frame
----------------- */
NdisSetSendFlags((PNDIS_PACKET)pRAWPacket, 0);

NdisSend(
&nNdisStatus,
pLOWERContext->hNdisAdapterHandle,
(PNDIS_PACKET)pRAWPacket
);

if(nNdisStatus != NDIS_STATUS_PENDING)
{

LOWERSendCompleteHandler(
(NDIS_HANDLE)pLOWERContext,
(PNDIS_PACKET)pRAWPacket,
nNdisStatus
);

}

return(STATUS_SUCCESS);
}

///
//// LOWERAllocContext
//

PLOWER_CONTEXT LOWERAllocContext(void)
{

PLOWER_CONTEXTpLOWERContext;
NDIS_STATUS nNdisStatus;
int i;

/* Allocate Memory For The Lower Binding Context
-- */
nNdisStatus = NdisAllocateMemory(

&pLOWERContext,
sizeof(LOWER_CONTEXT),
0, //

Allocate non-paged system-space memory
HighestAcceptableMax
);
Implementation and Analyses of the Mobile-IP Protocol 59

Appendix A
ASSERT(nNdisStatus == NDIS_STATUS_SUCCESS);

if(nNdisStatus != NDIS_STATUS_SUCCESS)
{

//
// no memory
//
return((PLOWER_CONTEXT)NULL);

}

NdisZeroMemory(pLOWERContext, sizeof(LOWER_CONTEXT));

/* Allocate The Packet Pool
--------------------------- */
NdisAllocatePacketPool(

&nNdisStatus,
&pLOWERContext->hPacketPool,
RAW_PACKET_POOL_SIZE,
sizeof(RAW_PACKET_RESERVED)
);

if (nNdisStatus != NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: Failed to allocate packet pool\n”);)

LOWERFreeContext(pLOWERContext);

return((PLOWER_CONTEXT)NULL);
}

/* Allocate The Buffer Pool
--------------------------- */
NdisAllocateBufferPool(

&nNdisStatus,
&pLOWERContext->hBufferPool,
RAW_BUFFER_POOL_SIZE
);

if(nNdisStatus != NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: Failed to allocate buffer pool\n”);)

NdisFreePacketPool(pLOWERContext->hPacketPool);

LOWERFreeContext(pLOWERContext);

return((PLOWER_CONTEXT)NULL);
}

/* Initialize Packet Receive List
--------------------------------- */
NdisAllocateSpinLock(&pLOWERContext->ReceiveListSpinLock);
InitializeListHead(&pLOWERContext->PacketReceiveList);

/* Initialize Request List
-------------------------- */
NdisAllocateSpinLock(&pLOWERContext->RequestSpinLock);
NdisInitializeListHead(&pLOWERContext->RequestList);
Implementation and Analyses of the Mobile-IP Protocol 60

Appendix A
/* Link Up The Request Pool
--------------------------- */
for (i=0;i<MAX_REQUESTS;i++)
{

NdisInterlockedInsertTailList(
&pLOWERContext->RequestList,
&pLOWERContext->Requests[i].ListElement,
&pLOWERContext->RequestSpinLock
);

}

/* Default To No Loopback
------------------------- */

// pLOWERContext->bNoLoopback = TRUE;
pLOWERContext->bNoLoopback = FALSE;

pLOWERContext->bLowerContextInitDone = TRUE;

return(pLOWERContext);
}

///
//// LOWERFreeContext
//
// Purpose
//
// Parameters
//
// Return Value
//

VOID LOWERFreeContext(PLOWER_CONTEXT pLOWERContext)
{

/* Free Spin Locks
------------------ */
NdisFreeSpinLock(&pLOWERContext->RequestSpinLock);
NdisFreeSpinLock(&pLOWERContext->ReceiveListSpinLock);

/* Free The NDIS Buffer And Packet Pools
-- */
if(pLOWERContext->hBufferPool)
{

NdisFreeBufferPool(pLOWERContext->hBufferPool);

pLOWERContext->hBufferPool = NULL;
}

if(pLOWERContext->hPacketPool)
{

NdisFreePacketPool(pLOWERContext->hPacketPool);

pLOWERContext->hPacketPool = NULL;
}

/* Free The Adapter Name Space
------------------------------ */
if(pLOWERContext->szUniAdapterName.Buffer)
{

NdisFreeMemory(
Implementation and Analyses of the Mobile-IP Protocol 61

Appendix A
pLOWERContext->szUniAdapterName.Buffer,
pLOWERContext->szUniAdapterName.MaximumLength,
0
);

}

/* Finally, Free The Context Memory
----------------------------------- */
NdisFreeMemory(

pLOWERContext,
sizeof(LOWER_CONTEXT),
0
);

}

///
//// NDIS 3.1 PROTOCOL LOWER-EDGE FUNCTION STUBS

///
//// LOWERGetAdapterAddress
//

VOID LOWERGetAdapterAddress(
PLOWER_CONTEXT pLOWERContext
)

{
PLIST_ENTRY pRequestListEntry;
PINTERNAL_REQUESTpRequest;

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

ASSERT(pLOWERContext);

if(!pLOWERContext)
{

return;
}

/* Ask For Current Address
-------------------------- */
pLOWERContext->nAdapterAddressStatus = NDIS_STATUS_FAILURE;

pRequestListEntry = NULL;

if(!IsListEmpty(&pLOWERContext->RequestList))
{

pRequestListEntry = NdisInterlockedRemoveHeadList(

&pLOWERContext->RequestList,

&pLOWERContext->RequestSpinLock
Implementation and Analyses of the Mobile-IP Protocol 62

Appendix A
);
}

if(pRequestListEntry == NULL)
{

pLOWERContext->nAdapterAddressStatus = NDIS_STATUS_RESOURCES;

IF_LOUD(DbgPrint(“LOWERGetAdapterAddress: Could Not Allocate Request
Entry\n”);)

return;
}

pRequest = (PINTERNAL_REQUEST)pRequestListEntry;

pRequest->Request.RequestType = NdisRequestQueryInformation;

switch(pLOWERContext->nSelectedMedium)
{

case NdisMedium802_3:
pRequest->Request.DATA.QUERY_INFORMATION.Oid =

OID_802_3_CURRENT_ADDRESS;

pRequest->Request.DATA.QUERY_INFORMATION.InformationBuffer =
pLOWERContext->szAdapterAddress;

pRequest->Request.DATA.QUERY_INFORMATION.InformationBufferLength =
ETHER_ADDR_LENGTH;

pRequest->Request.DATA.QUERY_INFORMATION.BytesWritten = 0;
pRequest->Request.DATA.QUERY_INFORMATION.BytesNeeded =

ETHER_ADDR_LENGTH;
break;

case NdisMedium802_5:
pRequest->Request.DATA.QUERY_INFORMATION.Oid =

OID_802_5_CURRENT_ADDRESS;

pRequest->Request.DATA.QUERY_INFORMATION.InformationBuffer =
pLOWERContext->szAdapterAddress;

pRequest->Request.DATA.QUERY_INFORMATION.InformationBufferLength =
ETHER_ADDR_LENGTH;

pRequest->Request.DATA.QUERY_INFORMATION.BytesWritten = 0;
pRequest->Request.DATA.QUERY_INFORMATION.BytesNeeded =

ETHER_ADDR_LENGTH;
break;

case NdisMediumLocalTalk:
pRequest->Request.DATA.QUERY_INFORMATION.Oid =

OID_LTALK_CURRENT_NODE_ID;

pRequest->Request.DATA.QUERY_INFORMATION.InformationBuffer =
&pLOWERContext->szAdapterAddress[4];

pRequest->Request.DATA.QUERY_INFORMATION.InformationBufferLength = sizeof(USHORT
);

pRequest->Request.DATA.QUERY_INFORMATION.BytesWritten = 0;
pRequest->Request.DATA.QUERY_INFORMATION.BytesNeeded = sizeof(

USHORT);
break;
Implementation and Analyses of the Mobile-IP Protocol 63

Appendix A
default:
ASSERT(FALSE);
return;

}

NdisRequest(
&pLOWERContext->nAdapterAddressStatus,
pLOWERContext->hNdisAdapterHandle,
&pRequest->Request
);

if(pLOWERContext->nAdapterAddressStatus != NDIS_STATUS_PENDING)
{

IF_LOUD(DbgPrint(“LOWERGetAdapterAddress: Calling
LOWERRequestCompleteHandler\n”);)

LOWERRequestCompleteHandler(
(NDIS_HANDLE)pLOWERContext,
&pRequest->Request,
pLOWERContext->nAdapterAddressStatus
);

}
}

///
//// LOWEROpenAdapterCompleteHandler
//

VOID LOWEROpenAdapterCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status,
 IN NDIS_STATUS OpenErrorStatus
)

{
PLOWER_CONTEXT pLOWERContext;

IF_LOUD(DbgPrint(“WinMIP: OpenAdapterCompleteHandler\n”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

pLOWERContext= (PLOWER_CONTEXT)ProtocolBindingContext;

if (Status != NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: OpenAdapterComplete-FAILURE\n”);)

#if defined(NDIS40) || defined(NDIS41)
if(pLOWERContext->hBindAdapterContext)
{

NdisCompleteBindAdapter(
Implementation and Analyses of the Mobile-IP Protocol 64

Appendix A
pLOWERContext->m_hBindAdapterContext,
Status, // Final

Status Of Bind Operation
OpenErrorStatus // Status From

NdisOpenAdapter
);

}
#endif

LOWERFreeContext(pLOWERContext);

return;
}

/* Determine Selected Medium
---------------------------- */
pLOWERContext->nSelectedMedium =

pLOWERContext->AdapterMediumArray[pLOWERContext->nSelectedMediumIndex
];

#if DBG
if(pLOWERContext->nSelectedMediumIndex == 0)
{

DbgPrint(“SelectedMedium: 802.3\n”);
}
else if(pLOWERContext->nSelectedMediumIndex == 1)
{

DbgPrint(“SelectedMedium: 802.3\n”);
}
else if(pLOWERContext->nSelectedMediumIndex == 2)
{

DbgPrint(“SelectedMedium: LocalTalk\n”);
}
else
{

DbgPrint(“SelectedMedium: %d Not Supported By WinMIP!\n”,
pLOWERContext->nSelectedMediumIndex);

}
#endif // DBG

/* Link The Binding Context Into The Binding List
--- */
InsertHeadList(

(PLIST_ENTRY)&g_LowerBindingList,
(PLIST_ENTRY)pLOWERContext
);

/* Indicate That The Adapter Has Been Opened
-- */
pLOWERContext->bAdapterOpen = TRUE;

#if defined(NDIS40) || defined(NDIS41)
if(pLOWERContext->hBindAdapterContext)
{

NdisCompleteBindAdapter(
pLOWERContext->m_hBindAdapterContext,
NDIS_STATUS_SUCCESS, // Final Status Of Bind

Operation
OpenErrorStatus // Status From

NdisOpenAdapter
Implementation and Analyses of the Mobile-IP Protocol 65

Appendix A
);
}

#endif

/* Get The Adapter Datalink (Physical) Address
-- */
LOWERGetAdapterAddress(pLOWERContext);

return;
}

///
//// LOWERCloseAdapterCompleteHandler
//

VOID LOWERCloseAdapterCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status
)
{

PLOWER_CONTEXT pLOWERContext;

IF_LOUD(DbgPrint(“WinMIP: CloseAdapterCompleteHandler Entry...\n”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

pLOWERContext->NdisRequestStatus = Status;

KeSetEvent(&pLOWERContext->NdisRequestEvent, 0L, FALSE);

return;
}

///
//// LOWERSendCompleteHandler
//

VOID LOWERSendCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_PACKET pNdisPacket,
 IN NDIS_STATUS Status
)
{

PLOWER_CONTEXT pLOWERContext;
PRAW_PACKET pRAWPacket;
DWORD nUPPERCallerData;

#if DBG
DbgPrint(“SendCompleteHandler Entry...”);
Implementation and Analyses of the Mobile-IP Protocol 66

Appendix A
#endif

/* Sanity Checks On Arguments
----------------------------- */
ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return;
}

ASSERT(pNdisPacket);

if(!pNdisPacket)
{

return;
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

pRAWPacket = (PRAW_PACKET)pNdisPacket;

/* Verify The Packet Signature
------------------------------ */
ASSERT(pRAWPacket->Reserved.Signature == RAW_PACKET_SIGN);

if(pRAWPacket->Reserved.Signature != RAW_PACKET_SIGN)
{

return;
}

nUPPERCallerData = pRAWPacket->Reserved.nUPPERCallerData;

/* Free The Packet
------------------ */
LOWERFreePacketAndBuffers(pRAWPacket);

/* Call The Upper Edge Send Completion Routine
-- */
UPPERSendCompleteHandler(nUPPERCallerData);

}

///
//// LOWERTransferDataCompleteHandler
//

VOID LOWERTransferDataCompleteHandler (
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_PACKET pNdisPacket,
 IN NDIS_STATUS Status,
 IN UINT BytesTransfered
)
{

PLOWER_CONTEXT pLOWERContext;
PRAW_PACKET pRAWPacket;

#if DBG
Implementation and Analyses of the Mobile-IP Protocol 67

Appendix A
// DbgPrint(“WinMIP: TransferDataCompleteHandler; Status: 0x%X; Bytes
Transfered; %d\n”,
// Status, BytesTransfered);
#endif

/* Sanity Checks On Arguments
----------------------------- */
ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return;
}

ASSERT(pNdisPacket);

if(!pNdisPacket)
{

return;
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

pRAWPacket = (PRAW_PACKET)pNdisPacket;

/* Verify The Packet Signature
------------------------------ */
ASSERT(pRAWPacket->Reserved.Signature == RAW_PACKET_SIGN);

if(pRAWPacket->Reserved.Signature != RAW_PACKET_SIGN)
{

return;
}

pRAWPacket->Reserved.UserPacketData.nPacketDataLength +=
BytesTransfered;

}

///
//// LOWERResetCompleteHandler
//

VOID LOWERResetCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS Status
)
{
 PLOWER_CONTEXT pLOWERContext;
 PIRP pIrp;

 PLIST_ENTRY ResetListEntry;

 IF_LOUD(DbgPrint(“WinMIP: ResetCompleteHandler Entry...\n”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);
Implementation and Analyses of the Mobile-IP Protocol 68

Appendix A
if(!g_NdisProtocolHandle)
{

return;
}

 pLOWERContext= (PLOWER_CONTEXT)ProtocolBindingContext;

 //
 // remove the reset IRP from the list
 //
 ResetListEntry=NdisInterlockedRemoveHeadList(
 &pLOWERContext->ResetIrpList,
 &pLOWERContext->RequestSpinLock
);

#if DBG
 if (ResetListEntry == NULL) {
 DbgBreakPoint();
 return;
 }
#endif

 pIrp=CONTAINING_RECORD(ResetListEntry,IRP,Tail.Overlay.ListEntry);

 pIrp->IoStatus.Status = STATUS_SUCCESS;
 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 IF_LOUD(DbgPrint(“WinMIP: ResetCompleteHandler Normal Exit\n”);)

 return;
}

///
//// LOWERSetPacketFilter
//
VOID LOWERSetPacketFilter(

PLOWER_CONTEXT pLOWERContext,
ULONG nPacketFilter
)

{
PLIST_ENTRY pRequestListEntry;
PINTERNAL_REQUESTpRequest;

/* Sanity Check On Arguments
---------------------------- */
ASSERT(pLOWERContext);

if(!pLOWERContext)
{

return;
}

/* Set The Packet Filter
------------------------ */
pLOWERContext->nSetPacketFilterStatus = NDIS_STATUS_FAILURE;

pLOWERContext->nPacketFilter = nPacketFilter;
Implementation and Analyses of the Mobile-IP Protocol 69

Appendix A
pRequestListEntry = NULL;

if(!IsListEmpty(&pLOWERContext->RequestList))
{

pRequestListEntry = NdisInterlockedRemoveHeadList(

&pLOWERContext->RequestList,

&pLOWERContext->RequestSpinLock
);

}

if(pRequestListEntry == NULL)
{

pLOWERContext->nSetPacketFilterStatus = NDIS_STATUS_RESOURCES;

#if DBG
DbgPrint(“LOWERSetPacketFilter: Could Not Allocate Request Entry\n”);

#endif

return;
}

pRequest = (PINTERNAL_REQUEST)pRequestListEntry;

pRequest->Request.RequestType = NdisRequestSetInformation;
pRequest->Request.DATA.SET_INFORMATION.Oid = OID_GEN_CURRENT_PACKET_FILTER;

pRequest->Request.DATA.SET_INFORMATION.InformationBuffer =
&pLOWERContext->nPacketFilter;

pRequest->Request.DATA.SET_INFORMATION.InformationBufferLength = sizeof(
ULONG);

pRequest->Request.DATA.SET_INFORMATION.BytesRead = 0;
pRequest->Request.DATA.SET_INFORMATION.BytesNeeded = 0;

NdisRequest(
&pLOWERContext->nSetPacketFilterStatus,
pLOWERContext->hNdisAdapterHandle,
&pRequest->Request
);

if(pLOWERContext->nSetPacketFilterStatus != NDIS_STATUS_PENDING)
{

#if DBG
DbgPrint(“LOWERSetPacketFilter: Calling LOWERRequestCompleteHandler\n”

);
#endif

LOWERRequestCompleteHandler(
(NDIS_HANDLE)pLOWERContext,
&pRequest->Request,
pLOWERContext->nSetPacketFilterStatus
);

}
}

Implementation and Analyses of the Mobile-IP Protocol 70

Appendix A
///
//// LOWERRequestCompleteHandler
//

VOID LOWERRequestCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN PNDIS_REQUEST pNdisRequest,
 IN NDIS_STATUS Status
)
{

PLOWER_CONTEXT pLOWERContext;
PINTERNAL_REQUESTpRequest;

#if DBG
DbgPrint(“WinMIP: LOWERRequestCompleteHandler Status 0x%x\n”, Status);

#endif

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return;
}

ASSERT(pNdisRequest);

if(!pNdisRequest)
{

return;
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

pRequest = CONTAINING_RECORD(pNdisRequest, INTERNAL_REQUEST, Request);

/* Handle Completion Based On RequestType
--- */
switch(pRequest->Request.RequestType)
{

case NdisRequestSetInformation:
/* Handle Based On Object ID
---------------------------- */
switch(pRequest->Request.DATA.SET_INFORMATION.Oid)
{

case OID_GEN_CURRENT_PACKET_FILTER:
Implementation and Analyses of the Mobile-IP Protocol 71

Appendix A
if(Status == NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“SetPacketFilter
Succeeded\n”);)

pLOWERContext->bFilterSet = TRUE;
}
else
{

IF_LOUD(DbgPrint(“SetPacketFilter
FAILED\n”);)

pLOWERContext->bFilterSet = FALSE;
}
break;

case OID_802_3_MULTICAST_LIST:
if(Status == NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“SetMulticastAddress
Succeeded\n”);)

#if DBG
DbgPrint(“BytesRead: %d\n”,

pRequest->Request.DATA.SET_INFORMATION.BytesRead);
#endif

}
else
{

IF_LOUD(DbgPrint(“SetMulticastAddress
FAILED\n”);)

}
break;

default:
IF_LOUD(DbgPrint(“LOWERRequestCompleteHandler

Unsupported OID\n”);)

break;
}
break;

case NdisRequestQueryInformation:
/* Handle Based On Object ID
---------------------------- */
switch(pRequest->Request.DATA.QUERY_INFORMATION.Oid)
{

case OID_802_3_CURRENT_ADDRESS:
if(Status == NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“Got Adapter 802.3
Current Address\n”);)

LOWERSetPacketFilter(
pLOWERContext,
NDIS_PACKET_TYPE_DIRECTED
|

NDIS_PACKET_TYPE_PROMISCUOUS
);

}
else
Implementation and Analyses of the Mobile-IP Protocol 72

Appendix A
{
IF_LOUD(DbgPrint(“Get Adapter 802.3

Address FAILED\n”);)
}
break;

case OID_802_5_CURRENT_ADDRESS:
if(Status == NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“Got Adapter 802.5
Current Address\n”);)

LOWERSetPacketFilter(
pLOWERContext,
NDIS_PACKET_TYPE_DIRECTED
|

NDIS_PACKET_TYPE_PROMISCUOUS
);

}
else
{

IF_LOUD(DbgPrint(“Get Adapter 802.5
Address FAILED\n”);)

}
break;

case OID_LTALK_CURRENT_NODE_ID:
if(Status == NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“Got Adapter LocalTalk
Node Address\n”);)

/* Put Node Address In Least Significant
Byte

--- */
pLOWERContext->szAdapterAddress[5] =

pLOWERContext->szAdapterAddress[4];
pLOWERContext->szAdapterAddress[4] =

0;

LOWERSetPacketFilter(
pLOWERContext,
NDIS_PACKET_TYPE_DIRECTED
| NDIS_PACKET_TYPE_BROADCAST

// |
NDIS_PACKET_TYPE_PROMISCUOUS

);
}
else
{

IF_LOUD(DbgPrint(“Get Adapter LocalTalk
Node Address FAILED\n”);)

}
break;

default:
IF_LOUD(DbgPrint(“LOWERRequestCompleteHandler

Unsupported OID\n”);)
Implementation and Analyses of the Mobile-IP Protocol 73

Appendix A
break;
}
break;

default:
IF_LOUD(DbgPrint(“LOWERRequestCompleteHandler Unsupported

RequestType\n”);)
break;

}

/* Put The Request Parameter Block Back Into The Free Request List
-- */
NdisInterlockedInsertTailList(

&pLOWERContext->RequestList,
&pRequest->ListElement,
&pLOWERContext->RequestSpinLock
);

}

VOID RAWLargeIntegerIncrement(PLARGE_INTEGER pLargeInteger)
{

if(++pLargeInteger->LowPart == 0)
{

++pLargeInteger->HighPart;
}

}

///
//// RAWShortGet
//

USHORT RAWShortGet(PUCHAR pBuffer, BOOL bDoSwap)
{

USHORTnResult;

nResult = 0;

if(!pBuffer)
{

return(0);
}

if(bDoSwap)
{

/* Perform Byte Swap
-------------------- */
nResult = ((pBuffer[0] << 8) & 0xFF00)

| (pBuffer[1] & 0x00FF);
}
else
{

/* Do Not Perform Byte Swap
--------------------------- */
nResult = ((pBuffer[1] << 8) & 0xFF00)

| (pBuffer[0] & 0x00FF);
}

return(nResult);
Implementation and Analyses of the Mobile-IP Protocol 74

Appendix A
}

///
//// LOWERAcceptPacket
//
// Purpose
// This function examines the packet header and lookahead buffer to
// determine if the packet should be accepted at the lower edge of
// the protocol driver.
//
// Parameters
//
// Return Value
// Returns TRUE if packet is to be accepted.
//
// Remarks
// For this sample, the function simply filters based upon the value
// of pLOWERContext->bNoLoopback.
//

BOOL LOWERAcceptPacket(
PLOWER_CONTEXT pLOWERContext,
IN PVOID HeaderBuffer,
IN UINT HeaderBufferSize,// Should Be MHdrSize (i.e., 14)
IN PVOID LookAheadBuffer,
IN UINT LookaheadBufferSize
)

{
/* Handle No Loopback Option
---------------------------- */
if(pLOWERContext->bNoLoopback)
{

/* Compare Source Address With Adapter Address
--- */
// ATTENTION!!! Wrapper function to use instead of memcmp???
if(memcmp(

&((PBYTE)HeaderBuffer)[MSrcAddr],
pLOWERContext->szAdapterAddress,
ETHER_ADDR_LENGTH
) == 0

)
{

/* Source Is This Adapter!!!
---------------------------- */
return(FALSE);

}
}

return(TRUE);
}

Implementation and Analyses of the Mobile-IP Protocol 75

Appendix A
///
//// LOWERReceiveHandler
//

NDIS_STATUS
LOWERReceiveHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_HANDLE MacReceiveContext,
 IN PVOID HeaderBuffer,
 IN UINT HeaderBufferSize,
 IN PVOID LookAheadBuffer,
 IN UINT LookaheadBufferSize,
 IN UINT PacketSize
)
{

PLOWER_CONTEXT pLOWERContext;
PNDIS_BUFFERpBuffer;
PRAW_PACKET pRAWPacket;
NDIS_STATUS nNdisStatus;
BOOL bResult;
LARGE_INTEGERnTickCount;

#if DBG
// DbgPrint(“WinMIP: ReceiveHandler Entry; Packet Size: %d - %d\n”,
// PacketSize, RAWShortGet(&((PBYTE)HeaderBuffer)[MLength], TRUE));
#endif

/* Sanity Checks On Arguments
----------------------------- */
ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return(NDIS_STATUS_SUCCESS);
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

/* Filter Received Packet

 * Return NDIS_STATUS_NOT_ACCEPTED if the filter decision is not to
 * accept the packet.
 */

bResult = LOWERAcceptPacket(
pLOWERContext,

HeaderBuffer,
HeaderBufferSize,
LookAheadBuffer,
LookaheadBufferSize

);

if(!bResult)
{

return(NDIS_STATUS_NOT_ACCEPTED);
}

/* Increment The Packet Number
Implementation and Analyses of the Mobile-IP Protocol 76

Appendix A
------------------------------ */
RAWLargeIntegerIncrement(&pLOWERContext->nLastPacketNumber);

/* Allocate The Receive Packet Descriptor
--- */
NdisAllocatePacket(

&nNdisStatus,
&(PNDIS_PACKET)pRAWPacket,
pLOWERContext->hPacketPool
);

if(nNdisStatus != NDIS_STATUS_SUCCESS || !pRAWPacket)
{

RAWLargeIntegerIncrement(&pLOWERContext->nTossedPacketCount);

#if DBG
DbgPrint(“LOWERReceiveHandler Could Not Allocate Packet\n”);

#endif

return(NDIS_STATUS_RESOURCES);// Must Drop It
}

/* Initialize The Packet Signature
---------------------------------- */
pRAWPacket->Reserved.Signature = RAW_PACKET_SIGN;

/* Copy Header Buffer
--------------------- */
pRAWPacket->Reserved.UserPacketData.nPacketDataLength = HeaderBufferSize;

NdisMoveMemory(
pRAWPacket->Reserved.UserPacketData.PacketBuffer,
(PBYTE)HeaderBuffer,
HeaderBufferSize
);

/* Allocate An NDIS Buffer Descriptor For The Receive Data Buffer
--- */
NdisAllocateBuffer(

&nNdisStatus,
&pBuffer,
pLOWERContext->hBufferPool,
&pRAWPacket->Reserved.UserPacketData.PacketBuffer[HeaderBufferSize],
(MAX_ETHER_SIZE - HeaderBufferSize)
);

if(nNdisStatus != NDIS_STATUS_SUCCESS || !pBuffer)
{

RAWLargeIntegerIncrement(&pLOWERContext->nTossedPacketCount);

NdisFreePacket((PNDIS_PACKET)pRAWPacket);

#if DBG
DbgPrint(“LOWERReceiveHandler Could Not Allocate Buffer\n”);

#endif

return(NDIS_STATUS_RESOURCES);// Must Drop It
}
else
{

Implementation and Analyses of the Mobile-IP Protocol 77

Appendix A
NdisChainBufferAtFront((PNDIS_PACKET)pRAWPacket, pBuffer);
}

/* Queue The Packet For Reception
--------------------------------- */
pRAWPacket->Reserved.UserPacketData.nPacketNumber.LowPart =

pLOWERContext->nLastPacketNumber.LowPart;

pRAWPacket->Reserved.UserPacketData.nPacketNumber.HighPart =
pLOWERContext->nLastPacketNumber.HighPart;

KeQueryTickCount(&nTickCount);

pRAWPacket->Reserved.UserPacketData.nPacketTime = nTickCount.LowPart;

pRAWPacket->Reserved.UserPacketData.nSelectedMedium =
(UINT)pLOWERContext->nSelectedMedium;

pRAWPacket->Reserved.nTransferDataStatus = NDIS_STATUS_PENDING;
pRAWPacket->Reserved.nBytesTransferred = 0;

// BUGBUG!!! Save - or at least check - MAC length...

NdisInterlockedInsertTailList(
&pLOWERContext->PacketReceiveList,
&pRAWPacket->Reserved.ListElement,
&pLOWERContext->ReceiveListSpinLock
);

/* Initiate Transfer Data

 * In NDIS terms, the “data” to be transfered is the 802.3 data,
 * which begins after the 14-byte 802.3 header.
 */
NdisTransferData(

&pRAWPacket->Reserved.nTransferDataStatus,
pLOWERContext->hNdisAdapterHandle,// From NdisOpenAdapter
MacReceiveContext, // Argument To this
0, //

ByteOffset From First Byte After Header
PacketSize, //

BytesToTransfer
(PNDIS_PACKET)pRAWPacket,// Destination Packet
&pRAWPacket->Reserved.nBytesTransferred
);

if(pRAWPacket->Reserved.nTransferDataStatus != NDIS_STATUS_PENDING)
{

/* The Transfer Didn’t Pend
--------------------------- */
LOWERTransferDataCompleteHandler (

ProtocolBindingContext,
(PNDIS_PACKET)pRAWPacket,
pRAWPacket->Reserved.nTransferDataStatus,
pRAWPacket->Reserved.nBytesTransferred
);

}

return(NDIS_STATUS_SUCCESS);
}

Implementation and Analyses of the Mobile-IP Protocol 78

Appendix A
///
//// LOWERReceiveCompleteHandler
//

VOID LOWERReceiveCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext
)
{

PLOWER_CONTEXT pLOWERContext;
PRAW_PACKET pRAWPacket;
PLIST_ENTRY linkage;

#if DBG
// DbgPrint(“ReceiveCompleteHandler Entry...\n”);
#endif

/* Sanity Checks On Arguments
----------------------------- */
ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return;
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

/* Check For Packets Waiting In The PacketReceiveList
--- */
NdisAcquireSpinLock(&pLOWERContext->ReceiveListSpinLock);

while(!IsListEmpty(&pLOWERContext->PacketReceiveList))
{

/* Find The Oldest Packet
------------------------- */
linkage = (PLIST_ENTRY)pLOWERContext->PacketReceiveList.Flink;

pRAWPacket = CONTAINING_RECORD(
linkage,
RAW_PACKET,

Reserved.ListElement
);

if(pRAWPacket->Reserved.nTransferDataStatus == NDIS_STATUS_PENDING)
{

NdisReleaseSpinLock(&pLOWERContext->ReceiveListSpinLock);

return;
}

#ifdef ZNEVER
linkage = NdisInterlockedRemoveHeadList(

&pLOWERContext->PacketReceiveList,

&pLOWERContext->ReceiveListSpinLock
Implementation and Analyses of the Mobile-IP Protocol 79

Appendix A
);
#else

// SpinLock Already Held...
linkage = RemoveHeadList(

&pLOWERContext->PacketReceiveList,
);

#endif

pRAWPacket = CONTAINING_RECORD(
linkage,
RAW_PACKET,
Reserved.ListElement
);

/* Verify The Packet Pointer
---------------------------- */
ASSERT(pRAWPacket);

if(!pRAWPacket)
{

break;
}

/* Verify The Packet Signature
------------------------------ */
ASSERT(pRAWPacket->Reserved.Signature == RAW_PACKET_SIGN);

if(pRAWPacket->Reserved.Signature != RAW_PACKET_SIGN)
{

#if DBG
DbgPrint(“LOWERReceiveCompleteHandler: Invalid Packet

Signature\n”);
#endif

break;
}

NdisReleaseSpinLock(&pLOWERContext->ReceiveListSpinLock);

/* Handle Packet Based On TransferData Status
--- */
if(pRAWPacket->Reserved.nTransferDataStatus == NDIS_STATUS_SUCCESS)
{

UPPERPacketReceived(&pRAWPacket->Reserved.UserPacketData);
}
else
{

// BUGBUG!!! Update Statistics...

#if DBG
DbgPrint(“LOWERReceiveCompleteHandler: Transfer Data Failed\n”

);
#endif

#if DBG
DbgPrint(“TransferCompleteStatus: 0x%x\n”,

pRAWPacket->Reserved.nTransferDataStatus);
#endif // DBG

/* Free The Packet And It’s Buffers
Implementation and Analyses of the Mobile-IP Protocol 80

Appendix A
----------------------------------- */
LOWERFreePacketAndBuffers(pRAWPacket);

}

NdisAcquireSpinLock(&pLOWERContext->ReceiveListSpinLock);
}

NdisReleaseSpinLock(&pLOWERContext->ReceiveListSpinLock);
}

///
//// LOWERStatusHandler
//

VOID LOWERStatusHandler(
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_STATUS GeneralStatus,
 IN PVOID StatusBuffer,
 IN UINT StatusBufferSize
)
{
 IF_LOUD(DbgPrint(“WinMIP: StatusHandler Entry...\n”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

 return;
}

///
//// LOWERStatusCompleteHandler
//

VOID LOWERStatusCompleteHandler(
 IN NDIS_HANDLE ProtocolBindingContext)
{
 IF_LOUD(DbgPrint(“WinMIP: StatusCompleteHandler Entry...\n”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

 return;
}

Implementation and Analyses of the Mobile-IP Protocol 81

Appendix A
///
//// LOWERBindAdapterHandler
//
//
// Remarks
// Windows NT supports the NDIS 3.0 specification for protocol drivers. This
// means that the BindAdapterHandler function isn’t automatically called
// under Windows NT.
//

VOID LOWERBindAdapterHandler(
OUT PNDIS_STATUS pProtocolBindStatus,
IN NDIS_HANDLE BindAdapterContext,
IN PNDIS_STRING AdapterName,
IN PVOID SystemSpecific1,
IN PVOID SystemSpecific2
)

{
PLOWER_CONTEXTpLOWERContext;
NDIS_STATUS nNdisStatus;

IF_LOUD(DbgPrint(“BindAdapterHandler Entry...”);)

*pProtocolBindStatus = NDIS_STATUS_FAILURE;// Assume Failure

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

/* Display The “AdapterName”

 * In the Windows NT environment, the “AdapterName” is really the exported
 * DosDevice name of the MAC adapter. A typical “AdapterName”, as displayed
 * by the following DbgPrintf, would be:
 *
 * 30, 32, “\Device\NE20001”
 */

#if DBG
DbgPrint(“AdapterName : %d, %d, \042%*.*ws\042\n”,

AdapterName->Length,
AdapterName->MaximumLength,
AdapterName->Length/sizeof(wchar_t),
AdapterName->Length/sizeof(wchar_t),
AdapterName->Buffer
);

#endif

#ifdef SINGLE_ADAPTER_BINDING
/* Only Allow Binding To One Adapter

 * The general architecture of the WinMIP driver could be extended
 * to support concurrent binding to multiple Ethernet adapters. However,
 * it is not done in this example because of the additional complexity
 * which would be introduced in the upper-edge API.
 *
Implementation and Analyses of the Mobile-IP Protocol 82

Appendix A
 * At this point the lower-edge binding list is examined. If a binding
 * already exists, return without calling NdisOpenAdapter.
 */
ASSERT(IsListEmpty(&g_LowerBindingList));

if(!IsListEmpty(&g_LowerBindingList))
{

return;
}

#endif

pLOWERContext = LOWERAllocContext();

ASSERT(pLOWERContext);

if(!pLOWERContext)
{

return;
}

/* Save AdapterName
------------------- */
pLOWERContext->szUniAdapterName.Length = AdapterName->Length;
pLOWERContext->szUniAdapterName.MaximumLength = AdapterName->MaximumLength;

nNdisStatus = NdisAllocateMemory(

&pLOWERContext->szUniAdapterName.Buffer,

pLOWERContext->szUniAdapterName.MaximumLength,
0, //

Allocate non-paged system-space memory
HighestAcceptableMax
);

ASSERT(nNdisStatus == NDIS_STATUS_SUCCESS);

if(nNdisStatus != NDIS_STATUS_SUCCESS)
{

return;
}

NdisMoveMemory(
pLOWERContext->szUniAdapterName.Buffer,
AdapterName->Buffer,
pLOWERContext->szUniAdapterName.Length
);

pLOWERContext->szUniAdapterName.Buffer[
pLOWERContext->szUniAdapterName.Length/sizeof(wchar_t)] = 0;

/* Assume Failure
----------------- */
pLOWERContext->nOpenAdapterStatus = NDIS_STATUS_FAILURE;
pLOWERContext->nOpenAdapterErrorStatus = NDIS_STATUS_FAILURE;

/* Specify Desired Mediums
-------------------------- */
pLOWERContext->AdapterMediumArray[0] = NdisMedium802_3;
pLOWERContext->AdapterMediumArray[1] = NdisMedium802_5;
Implementation and Analyses of the Mobile-IP Protocol 83

Appendix A
pLOWERContext->AdapterMediumArray[2] = NdisMediumLocalTalk;

/* Save The BindAdapterContext
------------------------------ */
pLOWERContext->hBindAdapterContext = BindAdapterContext;

pLOWERContext->nSelectedMedium = -1;// Medium Not Yet Known

//
// Try to open the MAC
//

IF_LOUD(DbgPrint(“Calling NdisOpenAdapter...”);)

NdisOpenAdapter(
&pLOWERContext->nOpenAdapterStatus,
&pLOWERContext->nOpenAdapterErrorStatus,
&pLOWERContext->hNdisAdapterHandle,
&pLOWERContext->nSelectedMediumIndex,
&pLOWERContext->AdapterMediumArray[0],
3, //

MediumArraySize
g_NdisProtocolHandle,
(NDIS_HANDLE)pLOWERContext,// Specify ProtocolBindingContext
AdapterName,
0,
NULL
);

/* ATTENTION!!!

 * This function always reports NDIS_STATUS_SUCCESS - even
 * in the case that the NdisOpenAdapter call returns NDIS_STATUS_PENDING.
 * A better (possibly) approach would be for this function to return
 * NDIS_STATUS_PENDING instead of NDIS_STATUS_SUCCESS if NdisOpenAdapter
 * returned NDIS_STATUS_PENDING; if this change was made, then
 * NdisBindAdapterComplete would need to be called from
 * LOWEROpenAdapterCompleteHandler.
 */

if(pLOWERContext->nOpenAdapterStatus != NDIS_STATUS_PENDING)
{

LOWEROpenAdapterCompleteHandler(
(NDIS_HANDLE)pLOWERContext,// ProtocolBindingContext
pLOWERContext->nOpenAdapterStatus,
pLOWERContext->nOpenAdapterErrorStatus
);

}

*pProtocolBindStatus = NDIS_STATUS_SUCCESS;// Report Success

IF_LOUD(DbgPrint(“BindAdapterHandler Exit\n”);)
}

Implementation and Analyses of the Mobile-IP Protocol 84

Appendix A
///
//// LOWERUnbindAdapterHandler
//
// Remarks
// Windows NT supports the NDIS 3.0 specification for protocol drivers. This
// means that the UnbindAdapterHandler function isn’t automatically called
// under Windows NT.
//
// The WinMIP uses a UnbindAdapterHandler, which is called by
// the driver itself when unbinding is necessary.
//

VOID LOWERUnbindAdapterHandler(
OUT PNDIS_STATUS pStatus,
IN NDIS_HANDLE ProtocolBindingContext,
IN NDIS_HANDLE UnbindAdapterContext
)

{
PLOWER_CONTEXTpLOWERContext;

IF_LOUD(DbgPrint(“UnbindAdapterHandler Entry...”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

ASSERT(ProtocolBindingContext);

if(!ProtocolBindingContext)
{

return;
}

/* Get Driver Context
--------------------- */
pLOWERContext = (PLOWER_CONTEXT)ProtocolBindingContext;

// ATTENTION!!! Unload Upper-Edge Bindings!!!

//
// This event is used in case any of the NDIS requests
// pend; we wait until it is set by the completion
// routine, which also sets NdisRequestStatus.
//
KeInitializeEvent(

&pLOWERContext->NdisRequestEvent,
NotificationEvent,
FALSE
);

NdisCloseAdapter(
pStatus,
pLOWERContext->hNdisAdapterHandle// Handle From NdisOpenAdapter
);
Implementation and Analyses of the Mobile-IP Protocol 85

Appendix A
if(*pStatus == NDIS_STATUS_PENDING)
{

//
// The completion routine will set NdisRequestStatus.
//
KeWaitForSingleObject(

&pLOWERContext->NdisRequestEvent,
Executive,
KernelMode,
TRUE,
(PLARGE_INTEGER)NULL
);

*pStatus = pLOWERContext->NdisRequestStatus;

KeResetEvent(&pLOWERContext->NdisRequestEvent);
}
else
{

LOWERCloseAdapterCompleteHandler(
ProtocolBindingContext,
*pStatus
);

}

LOWERFreeContext(pLOWERContext);
}

Implementation and Analyses of the Mobile-IP Protocol 86

Appendix A
A.4 WinMIP.h

#include “IOCTL.h”

///
//// PROTOCOL LOWER-EDGE BINDING CONTEXT

#define RAW_PACKET_SIGN (UINT)0x52415745

/*
--------------------------------------- */
typedef
struct _RAW_PACKET_RESERVED
{

UINT Signature; //
RAW_PACKET_SIGN

LIST_ENTRY ListElement;
// PIRP pIrp; //
ATTENTION!!! Get Rid Of This!!!
// PMDL pMdl; //
ATTENTION!!! Get Rid Of This!!!

DWORD nUPPERCallerData;

NDIS_STATUS nTransferDataStatus;
UINT nBytesTransferred;

USER_PACKET_DATAUserPacketData;

DWORD nPackingInsurance;// Spare.
Do Not Use.
}

RAW_PACKET_RESERVED, *PRAW_PACKET_RESERVED;

#define RESERVED(_p) ((PRAW_PACKET_RESERVED)((_p)->ProtocolReserved))

/*
--------------------------------------- */
typedef
struct _RAW_PACKET
{

NDIS_PACKET Packet;
RAW_PACKET_RESERVEDReserved;

}
RAW_PACKET, *PRAW_PACKET;

/* Structure For Making An NDIS Request
--------------------------------------- */
typedef
struct _INTERNAL_REQUEST
{

LIST_ENTRY ListElement;
PIRP pIrp;
NDIS_REQUEST Request;

}
INTERNAL_REQUEST, *PINTERNAL_REQUEST;

#define MAX_REQUESTS 4
Implementation and Analyses of the Mobile-IP Protocol 87

Appendix A
typedef
enum
{

RAW_UNDEFINED_EXTENSION,
RAW_ADAPTER_EXTENSION,
RAW_PROTOCOL_EXTENSION

}
RAW_EXTENSION_TYPE;

typedef
struct _DEVICE_ADAPTER_EXTENSION
{

NDIS_STRING AdapterName;

PWSTR BindString;
PWSTR ExportString;

PIRP pOpenCloseIrp;
}

DEVICE_ADAPTER_EXTENSION, *PDEVICE_ADAPTER_EXTENSION;

typedef
struct _DEVICE_PROTOCOL_EXTENSION
{

PWSTR ExportString;

PIRP pOpenCloseIrp;
}

DEVICE_PROTOCOL_EXTENSION, *PDEVICE_PROTOCOL_EXTENSION;

//
// Driver device extension.
//

typedef
struct _DEVICE_EXTENSION
{

RAW_EXTENSION_TYPEnExtensionType;

PDEVICE_OBJECT pDeviceObject;

/* Queue For Pending Reads On The Device
-- */
KSPIN_LOCK ReadListSpinLock;
LIST_ENTRY ReadList;

union
{

DEVICE_ADAPTER_EXTENSIONadapterExt;
DEVICE_PROTOCOL_EXTENSIONprotocolExt;

}
u;

}
DEVICE_EXTENSION, *PDEVICE_EXTENSION;
Implementation and Analyses of the Mobile-IP Protocol 88

Appendix A
/* Lower-Edge Binding Context

 * There is one of these for each adapter which the protocol is bound to.
 * The global variable g_LowerBindingList contains the list of lower
 * bindings.
 *
 * This sample does not support concurrent binding to multiple adapters
 * because it would make the upper-edge API too complex for a simple sample.
 * See the additional comment with the BindAdapterHandler function.
 */
typedef
struct _LOWER_CONTEXT
{

LIST_ENTRY qLink;

UINT Signature;

BOOL bLowerContextInitDone;

PDEVICE_EXTENSION DeviceExtension;

/* Adapter Open Fields
---------------------- */
BOOL bAdapterOpen; // TRUE

If Adapter Has Been Opened
NDIS_HANDLE hNdisAdapterHandle;// returned from NdisOpenAdapter
NDIS_HANDLE hBindAdapterContext;// To Call NdisCompleteBindAdapter
NDIS_STATUS nOpenAdapterStatus;
NDIS_STATUS nOpenAdapterErrorStatus;

UINT nSelectedMediumIndex;
NDIS_MEDIUM nSelectedMedium;
NDIS_MEDIUM AdapterMediumArray[4];

NDIS_HANDLE hUnbindAdapterContext;// To Call
NdisCompleteUnbindAdapter

NDIS_STATUS nCloseAdapterStatus;

/* Packet Filter Fields
----------------------- */
BOOL bFilterSet; // TRUE

If Packet Filter Has Been Set
NDIS_STATUS nSetPacketFilterStatus;
ULONG nPacketFilter; // Ndis Packet

Filter Bits For EtherTalk

/* Adapter Address Fields
------------------------- */
NDIS_STATUS nAdapterAddressStatus;
BYTE szAdapterAddress[ETHER_ADDR_LENGTH];

/* Adapter Name
--------------- */
NDIS_STRING szUniAdapterName;

/* Driver Options
----------------- */
BOOL bNoLoopback;

/* Packet Statistics
Implementation and Analyses of the Mobile-IP Protocol 89

Appendix A
-------------------- */
LARGE_INTEGERnLastPacketNumber;
LARGE_INTEGERnTossedPacketCount;// Because Of Lower-Edge Resources...

NDIS_SPIN_LOCKReceiveListSpinLock;
LIST_ENTRY PacketReceiveList;

NDIS_HANDLE hPacketPool;
NDIS_HANDLE hBufferPool;

KSPIN_LOCK RcvQSpinLock;
LIST_ENTRY RcvList;

// PIRP OpenCloseIrp;

KEVENT NdisRequestEvent;// used for pended requests.
NDIS_STATUS NdisRequestStatus;// records request status.

NDIS_SPIN_LOCK RequestSpinLock;
LIST_ENTRY RequestList;

LIST_ENTRY ResetIrpList;

INTERNAL_REQUEST Requests[MAX_REQUESTS];
}

LOWER_CONTEXT, *PLOWER_CONTEXT;

#defineRAW_PACKET_POOL_SIZE64
#defineRAW_BUFFER_POOL_SIZE64

extern PDRIVER_OBJECTg_pTheDriverObject;

extern NDIS_HANDLEg_NdisProtocolHandle;// returned from NdisRegisterProtocol

extern LIST_ENTRYg_LowerBindingList;
extern LIST_ENTRYg_PendingSendListList;

VOID RAWETHERDUnloadProtocol(void);
VOID RAWETHERDriverUnload(IN PDRIVER_OBJECT DriverObject);

//
// This constant is used for places where NdisAllocateMemory
// needs to be called and the HighestAcceptableAddress does
// not matter.
//
NDIS_PHYSICAL_ADDRESS HighestAcceptableMax =
 NDIS_PHYSICAL_ADDRESS_CONST(-1,-1);

#endif // __WinMIP_H__

///
//// INCLUDE FILES

#include “stdarg.h”
#include “ntddk.h”
#include “ntiologc.h”
#include “ndis.h”
Implementation and Analyses of the Mobile-IP Protocol 90

Appendix A
#include “debug.h”
#include “WinMIP.h”
#include“RAWLOWER.h”
#include“ADAPTDEV.H”
#include“PROTODEV.H”

/* NDIS Binding Context
----------------------- */
PDRIVER_OBJECT g_pTheDriverObject = NULL;

NDIS_HANDLE g_NdisProtocolHandle = 0;//
returned from NdisRegisterProtocol
NDIS_PROTOCOL_CHARACTERISTICSProtocolChar;
LIST_ENTRY g_LowerBindingList;

int
g_nUseCount = 0;

///
//// RAWETHERReadRegistry
//
// Purpose
//
// Parameters
//
// Return Value
// Status is returned.
//

NTSTATUS
RAWETHERReadRegistry(
 IN PWSTR *MacDriverName,
 IN PWSTR *RAWETHERDriverName,
 IN PUNICODE_STRING RegistryPath
);

#if DBG
//
// Declare the global debug flag for this driver.
//

ULONG RAWETHERDebugFlag = RAWETHER_DEBUG_LOUD;

#endif
Implementation and Analyses of the Mobile-IP Protocol 91

Appendix A
///
//// _DeviceOpen
//
// Purpose
// This is the dispatch routine for device create/open requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//
//

NTSTATUS
_DeviceOpen(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceOpen\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceOpen(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceOpen(pDeviceObject, pIrp));

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 92

Appendix A
///
//// _DeviceClose
//
// Purpose
// This is the dispatch routine for device close requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//

NTSTATUS
_DeviceClose(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceClose\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceClose(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceClose(pDeviceObject, pIrp));

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 93

Appendix A
///
//// _DeviceRead
//
// Purpose
// This is the dispatch routine for device read requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//

NTSTATUS
_DeviceRead(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceRead\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceRead(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceRead(pDeviceObject, pIrp));

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 94

Appendix A
///
//// _DeviceWrite
//
// Purpose
// This is the dispatch routine for device write requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//

NTSTATUS
_DeviceWrite(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceWrite\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceWrite(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceWrite(pDeviceObject, pIrp));

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 95

Appendix A
///
//// _DeviceCleanup
//
// Purpose
// This is the dispatch routine for device cleanup requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//

NTSTATUS
_DeviceCleanup(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceCleanup\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceCleanup(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceCleanup(pDeviceObject, pIrp));

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 96

Appendix A
///
//// _DeviceIoControl
//
// Purpose
// This is the dispatch routine for device IOCTL requests.
//
// Parameters
// pDeviceObject - Pointer to the device object.
// pIrp - Pointer to the request packet.
//
// Return Value
// Status is returned.
//
// Remarks
// The driver supports two kinds of device drivers: a PROTOCOL
// device and ADAPTER devices. This routine dispatches to a more specific
// routine depending on kind of device.
//

NTSTATUS
_DeviceIoControl(
 IN PDEVICE_OBJECT pDeviceObject,
 IN PIRP pIrp
)
{

PDEVICE_EXTENSION pDeviceExtension;

IF_LOUD(DbgPrint(“WinMIP: _DeviceIoControl\n”);)

pDeviceExtension = pDeviceObject->DeviceExtension;

switch(pDeviceExtension->nExtensionType)
{

case RAW_ADAPTER_EXTENSION:
return(RAWETHERAdapterDeviceIoControl(pDeviceObject, pIrp));

case RAW_PROTOCOL_EXTENSION:
return(RAWETHERProtocolDeviceIoControl(pDeviceObject, pIrp)

);

default:
break;

}

pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
return(STATUS_UNSUCCESSFUL);

}

Implementation and Analyses of the Mobile-IP Protocol 97

Appendix A
///
//// DriverEntry
//
// Purpose
// This routine initializes the driver.
//
// Parameters
// pDriverObject - Pointer to driver object created by system.
// RegistryPath - Pointer to the Unicode name of the registry path
// for this driver.
//
// Return Value
// The function return value is the final status from the initialization
// operation.
//

NTSTATUS
DriverEntry(
 IN PDRIVER_OBJECT pDriverObject,
 IN PUNICODE_STRING RegistryPath
)
{

NDIS_PROTOCOL_CHARACTERISTICS ProtocolChar;

UNICODE_STRING MacDriverName;
UNICODE_STRING UnicodeDeviceName;

PDEVICE_OBJECT pDeviceObject = NULL;
PDEVICE_EXTENSION pDeviceExtension = NULL;

staticNTSTATUS RegisterStatus = STATUS_SUCCESS;
NTSTATUS Status = STATUS_SUCCESS;
NTSTATUS ErrorCode = STATUS_SUCCESS;

ULONG DevicesCreated=0;

PWSTR BindString;
PWSTR ExportString;

PWSTR BindStringSave;
PWSTR ExportStringSave;

IF_LOUD(DbgPrint(“\n\nWinMIP: DriverEntry\n”);)

g_pTheDriverObject = pDriverObject;

InitializeListHead(&g_LowerBindingList);

NdisZeroMemory(&ProtocolChar,sizeof(NDIS_PROTOCOL_CHARACTERISTICS));

ProtocolChar.MajorNdisVersion = 3;
ProtocolChar.MinorNdisVersion = 0;
ProtocolChar.Reserved = 0;
ProtocolChar.OpenAdapterCompleteHandler = LOWEROpenAdapterCompleteHandler;
ProtocolChar.CloseAdapterCompleteHandler = LOWERCloseAdapterCompleteHandler;
ProtocolChar.SendCompleteHandler = LOWERSendCompleteHandler;
ProtocolChar.TransferDataCompleteHandler = LOWERTransferDataCompleteHandler;
ProtocolChar.ResetCompleteHandler = LOWERResetCompleteHandler;
ProtocolChar.RequestCompleteHandler = LOWERRequestCompleteHandler;
ProtocolChar.ReceiveHandler = LOWERReceiveHandler;
Implementation and Analyses of the Mobile-IP Protocol 98

Appendix A
ProtocolChar.ReceiveCompleteHandler = LOWERReceiveCompleteHandler;
ProtocolChar.StatusHandler = LOWERStatusHandler;
ProtocolChar.StatusCompleteHandler = LOWERStatusCompleteHandler;

// ATTENTION!!! Change To NdisxxxInitString
RtlInitString(&ProtocolChar.Name, RAWETHER_TRANSPORT_NAME);

// The NdisRegisterProtocol request is called when a PROTOCOL module
// initializes. It provides the NDIS interface with information about the
// PROTOCOL driver, including the addresses of its request handlers.

// The PROTOCOL driver passes in a characteristics table. This table is
// copied by the NdisRegisterProtocol request to its own internal storage.
// Thus, once registered, the PROTOCOL driver cannot alter its handler
// routines.

NdisRegisterProtocol(
&RegisterStatus,
&g_NdisProtocolHandle,
&ProtocolChar,
sizeof(NDIS_PROTOCOL_CHARACTERISTICS)
);

if (RegisterStatus != NDIS_STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: Failed to register protocol with NDIS\n”);)

g_pTheDriverObject = NULL;

return RegisterStatus;
}

//
// Set up the adapter device entry points.
//

pDriverObject->MajorFunction[IRP_MJ_CREATE] = _DeviceOpen;
pDriverObject->MajorFunction[IRP_MJ_CLOSE] = _DeviceClose;
pDriverObject->MajorFunction[IRP_MJ_READ] = _DeviceRead;
pDriverObject->MajorFunction[IRP_MJ_WRITE] = _DeviceWrite;
pDriverObject->MajorFunction[IRP_MJ_CLEANUP] = _DeviceCleanup;
pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = _DeviceIoControl;

pDriverObject->DriverUnload = RAWETHERDriverUnload;

//
// Get the name of the driver and the name of the MAC driver
// to bind to from the registry
//

Status=RAWETHERReadRegistry(
&BindString,
&ExportString,
RegistryPath
);

if (Status != STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: Failed to read registry\n”);)
Implementation and Analyses of the Mobile-IP Protocol 99

Appendix B
goto RegistryError;
}

BindStringSave = BindString;
ExportStringSave = ExportString;

//
// create a device object for each entry
//
while (*BindString!= UNICODE_NULL && *ExportString!= UNICODE_NULL)
{

//
// Create a counted unicode string for both null terminated strings
//

// ATTENTION!!! Change To NdisxxxInitString
RtlInitUnicodeString(

&MacDriverName,
BindString
);

// ATTENTION!!! Change To NdisxxxInitString
RtlInitUnicodeString(

&UnicodeDeviceName,
ExportString
);

//
// Advance to the next string of the MULTI_SZ string
//
BindString +=

(MacDriverName.Length+sizeof(UNICODE_NULL))/sizeof(WCHAR);

ExportString +=
(UnicodeDeviceName.Length+sizeof(UNICODE_NULL))/sizeof(WCHAR);

IF_LOUD(DbgPrint(“WinMIP: DeviceName=%ws
MacName=%ws\n”,UnicodeDeviceName.Buffer,MacDriverName.Buffer);)

Status = IoCreateDevice(
pDriverObject,
sizeof(DEVICE_EXTENSION),
&UnicodeDeviceName,
FILE_DEVICE_TRANSPORT,
0, //

Standard device characteristics
FALSE, // This isn’t an

exclusive device
&pDeviceObject
);

if (Status != STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: IoCreateDevice() failed:\n”);)

break;
}

Implementation and Analyses of the Mobile-IP Protocol 100

Appendix B
/* Simulate NDIS 3.1 Binding Mechanism

 * The NDIS 3.1 binding mechanism is emulated.
 * At this point in DriverEntry the information mecessary to fake the
 * BindAdapterHandler call is available and it is called.
 *
 * This means that, unlike the Packet Driver example, WinMIP bindings
 * are made when the driver is loaded - not when the device associated
 * with the binding is opened.
 *
 * Alternative mechanisms could also be used. For example, instead of
 * binding at this point, binding could be deferred until a device
 * OPEN is made which references the adapter. Using this approach, a
 * reference count should be maintained. The binding would remain
 * open as long as the binding reference count was non-zero.
 */
LOWERBindAdapterHandler(

&RegisterStatus,// pProtocolBindStatus
NULL, //

BindAdapterContext
&MacDriverName,// AdapterName
NULL, // SystemSpecific1
NULL // SystemSpecific2
);

DevicesCreated++;

pDeviceObject->Flags |= DO_DIRECT_IO;
pDeviceExtension = (PDEVICE_EXTENSION)

pDeviceObject->DeviceExtension;
pDeviceExtension->pDeviceObject = pDeviceObject;

pDeviceExtension->nExtensionType = RAW_ADAPTER_EXTENSION;

/* Initialize Packet Receive List
--------------------------------- */
KeInitializeSpinLock(&pDeviceExtension->ReadListSpinLock);
InitializeListHead(&pDeviceExtension->ReadList);

//
// Save the the name of the MAC driver to open in the Device Extension
//

pDeviceExtension->u.adapterExt.AdapterName=MacDriverName;

if (DevicesCreated == 1)
{

pDeviceExtension->u.adapterExt.BindString = BindStringSave;
pDeviceExtension->u.adapterExt.ExportString = ExportStringSave;

}
}

if (DevicesCreated > 0)
{

// ATTENTION!!! Change To NdisxxxInitString
RtlInitUnicodeString(

&UnicodeDeviceName,
L”\\Device\\WinMIP”);

/* Create The Protocol Device
Implementation and Analyses of the Mobile-IP Protocol 101

Appendix B
----------------------------- */
Status = IoCreateDevice(

pDriverObject,
sizeof(DEVICE_EXTENSION),
&UnicodeDeviceName,
FILE_DEVICE_TRANSPORT,
0, //

Standard device characteristics
FALSE, // This isn’t an

exclusive device
&pDeviceObject
);

if (Status != STATUS_SUCCESS)
{

IF_LOUD(DbgPrint(“WinMIP: IoCreateDevice() failed:\n”);)
}
else
{

pDeviceObject->Flags |= DO_DIRECT_IO;
pDeviceExtension = (PDEVICE_EXTENSION)

pDeviceObject->DeviceExtension;
pDeviceExtension->pDeviceObject = pDeviceObject;

pDeviceExtension->nExtensionType = RAW_PROTOCOL_EXTENSION;

/* Initialize Packet Receive List
--------------------------------- */
KeInitializeSpinLock(&pDeviceExtension->ReadListSpinLock);
InitializeListHead(&pDeviceExtension->ReadList);

}

//
// Managed to create at least on device.
//
return STATUS_SUCCESS;

}

ExFreePool(BindStringSave);
ExFreePool(ExportStringSave);

RegistryError:

NdisDeregisterProtocol(
&Status,
g_NdisProtocolHandle
);

g_NdisProtocolHandle = 0;

g_pTheDriverObject = NULL;

Status=STATUS_UNSUCCESSFUL;

return(Status);
}

///
//// RAWETHERUnloadProtocol
Implementation and Analyses of the Mobile-IP Protocol 102

Appendix B
//
// Purpose
// Unload the NDIS 3.1 protocol.
//
// Parameters
//
// Return Value
//
// Remarks
// This function emulates the NDIS 3.1 UnloadHandler function, which is not
// implemented in the NT NDIS 3.0 and NDIS 4.0 NDIS wrapper.
//

VOID
RAWETHERUnloadProtocol(void)
{

PLOWER_CONTEXTpLOWERContext;
NDIS_STATUS nNdisStatus = NDIS_STATUS_FAILURE;

IF_LOUD(DbgPrint(“UnloadProtocolHandler Entry...”);)

/* Sanity Checks
---------------- */
ASSERT(g_NdisProtocolHandle);

if(!g_NdisProtocolHandle)
{

return;
}

/* The Lower Binding List Should Be Empty Already!
-- */
ASSERT(IsListEmpty(&g_LowerBindingList));

while(!IsListEmpty(&g_LowerBindingList))
{

pLOWERContext = (PLOWER_CONTEXT)RemoveHeadList(&g_LowerBindingList);

// ATTENTION!!! Unload Upper-Edge Bindings!!!

/* Note

 * LOWERUnbindAdapterHandler() will call LOWERFreeContext(), so don’t
 * touch pLOWERContext after this call returns.
 */
LOWERUnbindAdapterHandler(

&nNdisStatus,
(NDIS_HANDLE)pLOWERContext,
NULL
);

}

NdisDeregisterProtocol(
&nNdisStatus,
g_NdisProtocolHandle// Handle From NdisRegisterProtocol
);

g_NdisProtocolHandle = 0;
}

Implementation and Analyses of the Mobile-IP Protocol 103

Appendix B
///
//// RAWETHERDriverUnload
//
// Purpose
//
// Parameters
// pDriverObject - Pointer to driver object created by system.
//
// Return Value
//

VOID
RAWETHERDriverUnload(
 IN PDRIVER_OBJECT pDriverObject
)
{

PDEVICE_OBJECT DeviceObject;
PDEVICE_OBJECT OldDeviceObject;
PDEVICE_EXTENSION pDeviceExtension;
NDIS_STATUS nNdisStatus;

IF_LOUD(DbgPrint(“WinMIP: DriverUnload\n”);)

/* Delete The Driver’s Devices
------------------------------ */
DeviceObject = pDriverObject->DeviceObject;

while(DeviceObject != NULL)
{

pDeviceExtension = DeviceObject->DeviceExtension;

if(pDeviceExtension->u.adapterExt.BindString != NULL)
{

ExFreePool(pDeviceExtension->u.adapterExt.BindString);
}

if(pDeviceExtension->u.adapterExt.ExportString != NULL)
{

ExFreePool(pDeviceExtension->u.adapterExt.ExportString);
}

OldDeviceObject=DeviceObject;

DeviceObject=DeviceObject->NextDevice;

IoDeleteDevice(OldDeviceObject);
}

/* Unload The Protocol
---------------------- */
RAWETHERUnloadProtocol();

}

Implementation and Analyses of the Mobile-IP Protocol 104

Appendix B
///
//// RAWETHERQueryRegistryRoutine
//

NTSTATUS
RAWETHERQueryRegistryRoutine(
 IN PWSTR ValueName,
 IN ULONG ValueType,
 IN PVOID ValueData,
 IN ULONG ValueLength,
 IN PVOID Context,
 IN PVOID EntryContext
)

{
PUCHAR Buffer;

IF_LOUD(DbgPrint(“WinMIP: QueryRegistryRoutine\n”);)

if (ValueType != REG_MULTI_SZ)
{

return STATUS_OBJECT_NAME_NOT_FOUND;
}

Buffer=ExAllocatePool(NonPagedPool,ValueLength);

if (Buffer==NULL)
{

return STATUS_INSUFFICIENT_RESOURCES;
}

RtlCopyMemory(Buffer, ValueData, ValueLength);

*((PUCHAR *)EntryContext)=Buffer;

return STATUS_SUCCESS;
}

Implementation and Analyses of the Mobile-IP Protocol 105

Appendix B
///
//// RAWETHERReadRegistry
//

NTSTATUS
RAWETHERReadRegistry(
 IN PWSTR *MacDriverName,
 IN PWSTR *RAWETHERDriverName,
 IN PUNICODE_STRING RegistryPath
)

{
NTSTATUS Status;

RTL_QUERY_REGISTRY_TABLE ParamTable[5];

PWSTR Bind = L”Bind”;
PWSTR Export = L”Export”;
PWSTR Parameters = L”Parameters”;
PWSTR Linkage = L”Linkage”;

PWCHAR Path;

Path=ExAllocatePool(PagedPool, RegistryPath->Length+sizeof(WCHAR));

if(Path == NULL)
{

return STATUS_INSUFFICIENT_RESOURCES;
}

RtlZeroMemory(Path, RegistryPath->Length+sizeof(WCHAR));

RtlCopyMemory(
Path,
RegistryPath->Buffer,
RegistryPath->Length
);

IF_LOUD(DbgPrint(“WinMIP: Reg path is %ws\n”,RegistryPath->Buffer);)

RtlZeroMemory(ParamTable, sizeof(ParamTable));

//
// change to the parmeters key
//

ParamTable[0].QueryRoutine = NULL;
ParamTable[0].Flags = RTL_QUERY_REGISTRY_SUBKEY;
ParamTable[0].Name = Parameters;

//
// change to the linkage key
//

ParamTable[1].QueryRoutine = NULL;
ParamTable[1].Flags = RTL_QUERY_REGISTRY_SUBKEY;
ParamTable[1].Name = Linkage;

//
Implementation and Analyses of the Mobile-IP Protocol 106

Appendix B
// Get the name of the mac driver we should bind to
//

ParamTable[2].QueryRoutine = RAWETHERQueryRegistryRoutine;
ParamTable[2].Flags = RTL_QUERY_REGISTRY_REQUIRED |

RTL_QUERY_REGISTRY_NOEXPAND;

ParamTable[2].Name = Bind;
ParamTable[2].EntryContext = (PVOID)MacDriverName;
ParamTable[2].DefaultType = REG_MULTI_SZ;

//
// Get the name that we should use for the driver object
//

ParamTable[3].QueryRoutine = RAWETHERQueryRegistryRoutine;
ParamTable[3].Flags = RTL_QUERY_REGISTRY_REQUIRED |

RTL_QUERY_REGISTRY_NOEXPAND;

ParamTable[3].Name = Export;
ParamTable[3].EntryContext = (PVOID)RAWETHERDriverName;
ParamTable[3].DefaultType = REG_MULTI_SZ;

Status=RtlQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE,
Path,
ParamTable,
NULL,
NULL
);

ExFreePool(Path);

return Status;
Implementation and Analyses of the Mobile-IP Protocol 107

Appendix B
Appendix B Win32 Packet Dump Application

B.1 IOCTL.h

#include <ntddndis.h>
#include <devioctl.h>

#include <WinDef.h>
#include “PCAEnet.h”

/* Transport Driver Name
--------------------------------- */
#define RAWETHER_TRANSPORT_NAME “WinMIP”

/* Function Codes For WinMIP Protocol (Transport) Driver
--
 * Passed in AL register on DeviceioControl call.
 * Macros and public IOCTL device codes are defined in WINIOCTL.H.
 */
#define IOCTL_RAWETHER_BASEFILE_DEVICE_TRANSPORT

#define IOCTL_PROTOCOL_SET_OID\
CTL_CODE(IOCTL_RAWETHER_BASE, 0 , METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PROTOCOL_QUERY_OID\
CTL_CODE(IOCTL_RAWETHER_BASE, 1 , METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PROTOCOL_RESET\
CTL_CODE(IOCTL_RAWETHER_BASE, 2 , METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_START_RECEPTION\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_STOP_RECEPTION\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0801, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_RELEASE_PACKET\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0802, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_QUERY_LOWER_INFO\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0803, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_BUFFER_SEND\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0804, METHOD_IN_DIRECT, FILE_ANY_ACCESS)

#define IOCTL_RAWETHER_PACKET_READ\
CTL_CODE(IOCTL_RAWETHER_BASE, 0x0805, METHOD_OUT_DIRECT, FILE_ANY_ACCESS)

#pragma pack(push,2)

typedef
struct _PACKET_OID_DATA
{

ULONG Oid;
ULONG Length;
UCHAR Data[1];

}
PACKET_OID_DATA, *PPACKET_OID_DATA;

typedef
struct _USER_PACKET_DATA
{

LARGE_INTEGERnPacketNumber;
DWORD nPacketTime; //

System Time (milliseconds)
Implementation and Analyses of the Mobile-IP Protocol 108

Appendix B
UINT nSelectedMedium; // NDIS_MEDIUM
Value

UINT nPacketDataLength;
UCHAR PacketBuffer[MAX_ETHER_SIZE + 16];// + Safety

Pad
}

USER_PACKET_DATA, *PUSER_PACKET_DATA;

#define MAX_ADAPTER_NAME64

typedef
struct _LOWER_INFO
{

/* Adapter Address Fields
------------------------- */
BYTE szAdapterAddress[ETHER_ADDR_LENGTH];
CHAR szAdapterName[MAX_ADAPTER_NAME];
UINT nSelectedMedium; // NDIS_MEDIUM

Value

/* Driver Options
----------------- */
BOOL bNoLoopback;

/* Packet Statistics
-------------------- */
LARGE_INTEGERnLastPacketNumber;
LARGE_INTEGERnTossedPacketCount;// Because Of Lower-Edge Resources...

}
LOWER_INFO, *PLOWER_INFO;

#pragma pack(pop)

#endif // __IOCTL_H__
Implementation and Analyses of the Mobile-IP Protocol 109

Appendix B
B.2 WinDump.c

#include <stdio.h>
#include <conio.h>
#include <windows.h>
#include <WindowsX.h>
#include<WinReg.H>
#include<RegStr.H>

#include <Assert.h>

#include<WinIOCTL.h>
#include “IOCTL.h”

// To Build: nmake /A

/* Static Data
-------------- */
HANDLE hDevice = INVALID_HANDLE_VALUE;// File handle of the VxD
BOOL bShutdown = FALSE; // Set by Ctrl-C
Handler

DWORD g_nReceivedPacketCountCount = 0;
DWORD g_nSequenceErrorCount = 0;
BOOL g_bQuietDisplay = FALSE;

DWORD nLastSendTime = 0;
#define SEND_TEST_INTERVAL15 // Seconds

/* Extract From NDIS.H
---------------------- */
typedef
enum _NDIS_MEDIUM
{
 NdisMedium802_3,
 NdisMedium802_5,
 NdisMediumFddi,
 NdisMediumWan,
 NdisMediumLocalTalk,
 NdisMediumDix, // defined for convenience, not a real medium
 NdisMediumArcnetRaw,
 NdisMediumArcnet878_2
}

NDIS_MEDIUM, *PNDIS_MEDIUM;

VS_FIXEDFILEINFOg_AppVersionInfo;
char g_szAppVersionString[16];

#define MAX_LINK_NAME_LENGTH 64
Implementation and Analyses of the Mobile-IP Protocol 110

Appendix B
///
//// HexDump
//
// Purpose
// Dump a HEX/ASCII representation of a buffer to the console display.
int HexDump(long start, PUCHAR buf, int len)
{

int i;

/* Sanity Check
--------------- */
assert(buf);

if(!buf)
{

return(0);
}

assert(len);

if(len == 0L)
{

return(0);
}

while(len > 0L)
{

printf(“%6.6X: “, start);

/* Print The HEX Representations
-------------------------------- */
for(i = 0; i < 8; ++i)
{

if(len - i > 0)
{

printf(“ %2.2X”, buf[i] & 0xFF);
}
else
{

printf(“ “);
}

}

printf(“ :”);

for(i = 8; i < 16; ++i)
{

if(len - i > 0)
{

printf(“ %2.2X”, buf[i] & 0xFF);
}
else
{

printf(“ “);
}

}

/* Print The ASCII Representations
---------------------------------- */
Implementation and Analyses of the Mobile-IP Protocol 111

Appendix B
printf(“ “);

for(i = 0; i < 16; ++i)
{

if(len - i > 0)
{

if(isprint(buf[i]))
{

printf(“%c”, buf[i]);
}
else
{

printf(“%c”, ‘.’);
}

}
else
{

printf(“%c”, ‘.’);
}

}

printf(“\n”);

len -= 16;
start += 16L;
buf += 16;

}

return(0);
}

Implementation and Analyses of the Mobile-IP Protocol 112

Appendix B
///
//// OnPacketReceivedAPC
//
// Purpose
// Asynchronous Procedure Call (APC) called by the WinMIP protocol driver
// to pass a received packet to the application.
//
// Parameters
//
// Return Value
//
// Remarks
//

DWORD WINAPI OnPacketReceivedAPC(PUSER_PACKET_DATA pRAWUserPacketData)
{

BOOL bSequenceError;
static DWORD nLastSequenceNo = 0;

assert(pRAWUserPacketData);

if(!pRAWUserPacketData)
{

return(0);
}

assert(hDevice != INVALID_HANDLE_VALUE);

if(hDevice == INVALID_HANDLE_VALUE)
{

return(0);
}

if(bShutdown)
{

return(0);
}

/* Update Statistics
-------------------- */
++g_nReceivedPacketCountCount;

bSequenceError = FALSE;

/* Check Packet Sequence Number

 * A sequence number error means that the driver received a
 * packet which it could not pass to the application because no read
 * was posted.
 *
 * Large packet sequence errors can be expected when dumping packets
 * to the console.
 */
if(nLastSequenceNo)
{

if(++nLastSequenceNo != pRAWUserPacketData->nPacketNumber.u.LowPart)
{

bSequenceError = TRUE;
++g_nSequenceErrorCount;

}

Implementation and Analyses of the Mobile-IP Protocol 113

Appendix B
}

nLastSequenceNo = pRAWUserPacketData->nPacketNumber.u.LowPart;

if(g_bQuietDisplay)
{

if(bSequenceError)
{

printf(“*”);
}
else
{

printf(“.”);
}

return(0);
}

/* Display Packet Header
------------------------ */
printf(“Packet No.: 0x%8.8X%8.8X “,

pRAWUserPacketData->nPacketNumber.u.HighPart,
pRAWUserPacketData->nPacketNumber.u.LowPart
);

printf(“Time: 0x%8.8X “, pRAWUserPacketData->nPacketTime);

printf(“Length: %d”, pRAWUserPacketData->nPacketDataLength);

/* Display Packet Sequence Error Indicator
--
 * If it is not the expected sequence number, append “* LOST PACKET *”
 * to the end of the line.
 */
if(bSequenceError)
{

printf(“ * LOST PACKET *”);
}

printf(“\n”);

/* Display Adapter Address
-------------------------- */
switch(pRAWUserPacketData->nSelectedMedium)
{

case NdisMediumLocalTalk:
printf(“Destination Node: %2.2X “,

(char *)pRAWUserPacketData->PacketBuffer[0]
);

printf(“Source Node: %2.2X\n”,
(char *)pRAWUserPacketData->PacketBuffer[1]
);

break;

case NdisMedium802_5:
case NdisMedium802_3:
default:

printf(“Destination: %2.2X.%2.2X.%2.2X.%2.2X.%2.2X.%2.2X “,
Implementation and Analyses of the Mobile-IP Protocol 114

Appendix B
(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 0
],

(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 1
],

(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 2
],

(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 3
],

(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 4
],

(char *)pRAWUserPacketData->PacketBuffer[MDstAddr + 5
]

);

printf(“Source: %2.2X.%2.2X.%2.2X.%2.2X.%2.2X.%2.2X\n”,
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 0

],
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 1

],
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 2

],
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 3

],
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 4

],
(char *)pRAWUserPacketData->PacketBuffer[MSrcAddr + 5

]
);

break;
}

/* Dump The Packet To The Console
--------------------------------- */
HexDump(0,

pRAWUserPacketData->PacketBuffer,
pRAWUserPacketData->nPacketDataLength
);

printf(“\n”);

return 0;
}

Implementation and Analyses of the Mobile-IP Protocol 115

Appendix B
///
//// CtrlHandler
//
// Purpose
// Console Ctrl-C handler.
//
// Parameters
//
// Return Value
//
// Remarks
// The Ctrl-C handler stops packet reception by calling the driver
// via the Win32 DeviceIoControl mechanism. The driver blocks the calling
// thread until all queued APC calls have been processed. Note that
// while in the process of stopping, the OnPacketReceivedAPC function
// will continue to be called.
//

BOOL WINAPI CtrlHandler(DWORD dwCtrlType)
{

DWORD nBytesReturned;// Req’d for DeviceIOControl call
OVERLAPPEDOverLapped;
BOOL bResult;

/* Make Sure Driver Has Been Opened
----------------------------------- */
assert(hDevice != INVALID_HANDLE_VALUE);

if(hDevice == INVALID_HANDLE_VALUE)
{

return(FALSE);
}

switch(dwCtrlType)
{

case CTRL_C_EVENT:
case CTRL_BREAK_EVENT:
case CTRL_CLOSE_EVENT:
case CTRL_SHUTDOWN_EVENT:
default:

bShutdown = TRUE;

printf(“\nStopping Packet Reception\n”);

printf(“Received Packet Count: %d\n”,
g_nReceivedPacketCountCount);

if(g_nSequenceErrorCount)
{

printf(“Sequence Error Count : %d\n”,
g_nSequenceErrorCount);

}

/* Create The OVERLAPPED Event To Wait On
--- */
OverLapped.hEvent = CreateEvent(

NULL,//
Security Attributes

FALSE,//
Auto-Reset
Implementation and Analyses of the Mobile-IP Protocol 116

Appendix B
FALSE,//
Initial State Signaled

NULL//
Event-obkect Name

);

ResetEvent(OverLapped.hEvent);

bResult = DeviceIoControl(
hDevice,

IOCTL_RAWETHER_STOP_RECEPTION,
NULL, 0,
NULL, 0,
&nBytesReturned,
&OverLapped //

REQUIRED For FILE_FLAG_OVERLAPPED
);

if(!bResult)
{

bResult = GetOverlappedResult(
hDevice,
&OverLapped,
&nBytesReturned,
TRUE // Wait

For Completion
);

}

CloseHandle(OverLapped.hEvent);

return(FALSE);// Let default handler do it’s job!
}

return(FALSE);
}

char *NAMETBLE[] =
{

“802.3”,
“802.5”,
“Fddi”,
“Wan”,
“LocalTalk”,
“Dix”,
“Arcnet (Raw)”,
“Arcnet (878.2)”,

};
Implementation and Analyses of the Mobile-IP Protocol 117

Appendix B
///
//// DisplayAdapterInformation
//
// Purpose
// Display adapter information returned from IOCTL_RAWETHER_QUERY_LOWER_INFO
// call to the protocol driver.
//

VOID DisplayAdapterInformation(VOID)
{

LOWER_INFOLowerInfo;
DWORD nBytesReturned;// Req’d for DeviceIOControl call
OVERLAPPEDOverLapped;
BOOL bResult;

/* Make Sure Driver Has Been Opened
----------------------------------- */
assert(hDevice != INVALID_HANDLE_VALUE);

if(hDevice == INVALID_HANDLE_VALUE)
{

return;
}

printf(“Adapter Information:\n\n”);

nBytesReturned = 0;

/* Create The OVERLAPPED Event To Wait On
--- */
OverLapped.hEvent = CreateEvent(

NULL,//
Security Attributes

FALSE,//
Auto-Reset

FALSE,//
Initial State Signaled

NULL//
Event-obkect Name

);

ResetEvent(OverLapped.hEvent);

bResult = DeviceIoControl(
hDevice,

IOCTL_RAWETHER_QUERY_LOWER_INFO,
&LowerInfo, sizeof(

LOWER_INFO),// Input Data (i.e., To Driver)
&LowerInfo, sizeof(

LOWER_INFO),// Output Data (i.e., From Driver)
&nBytesReturned,
&OverLapped //

REQUIRED For FILE_FLAG_OVERLAPPED
);

if(!bResult)
{

bResult = GetOverlappedResult(
hDevice,
Implementation and Analyses of the Mobile-IP Protocol 118

Appendix B
&OverLapped,
&nBytesReturned,
TRUE // Wait For

Completion
);

}

CloseHandle(OverLapped.hEvent);

if(!bResult)
{
fprintf(stderr, “Failed to get lower info\n”);

return;
}

/* Display The “Adapter Name”

 * The “AdapterName” is really the name of the adapter key under
 * HKLM\System\CurrentControlSet\Services\Class\Net. A typical
 * “AdapterName” would be “0002”.
 */
printf(“Adapter Name : %s\n”, LowerInfo.szAdapterName);

/* Display The Adapter Medium
----------------------------- */
if(NdisMedium802_3 <= LowerInfo.nSelectedMedium

&& LowerInfo.nSelectedMedium < NdisMediumArcnet878_2)
{

printf(“Adapter Medium : %s\n”, NAMETBLE[LowerInfo.nSelectedMedium]
);

}

/* Display Adapter Address
-------------------------- */
switch(LowerInfo.nSelectedMedium)
{

case NdisMediumLocalTalk:
printf(“Adapter Address: %2.2X\n”,

(char *)LowerInfo.szAdapterAddress[5]
);

break;

case NdisMedium802_5:
case NdisMedium802_3:
default:

printf(“Adapter Address:
%2.2X.%2.2X.%2.2X.%2.2X.%2.2X.%2.2X\n”,

(char *)LowerInfo.szAdapterAddress[0],
(char *)LowerInfo.szAdapterAddress[1],
(char *)LowerInfo.szAdapterAddress[2],
(char *)LowerInfo.szAdapterAddress[3],
(char *)LowerInfo.szAdapterAddress[4],
(char *)LowerInfo.szAdapterAddress[5]
);

break;
}

}

Implementation and Analyses of the Mobile-IP Protocol 119

Appendix B
///
//// SendTestPacket
//
// Purpose
// Send a test packet using the WinMIP VxD services.
//
// Parameters
// None
//
// Return Value
// None
//
// Remarks
//

VOID SendTestPacket(VOID)
{

PUCHAR pSendData;
DWORD nBytesReturned;// Req’d for DeviceIOControl call
BOOL bResult;
OVERLAPPEDOverLapped;
DWORD nWaitResult;

printf(“Sending Test Packet...”);

/* Make Sure Driver Has Been Opened
----------------------------------- */
assert(hDevice != INVALID_HANDLE_VALUE);

if(hDevice == INVALID_HANDLE_VALUE)
{

printf(“FAILED (1)\n”);
return;

}

/* Allocate Data Buffer
----------------------- */
pSendData = (PUCHAR)malloc(MAX_ETHER_SIZE);

assert(pSendData);

if(!pSendData)
{

printf(“FAILED (2)\n”);
return;

}

/* Create The OVERLAPPED Event To Wait On
--- */
OverLapped.hEvent = CreateEvent(

NULL,//
Security Attributes

FALSE,//
Auto-Reset

FALSE,//
Initial State Signaled

NULL//
Event-object Name

);
Implementation and Analyses of the Mobile-IP Protocol 120

Appendix B
assert(OverLapped.hEvent);

if(!OverLapped.hEvent)
{

printf(“FAILED (3)\n”);
free(pSendData);
return;

}

if(!ResetEvent(OverLapped.hEvent))
{

printf(“FAILED (4)\n”);
CloseHandle(OverLapped.hEvent);
free(pSendData);
return;

}

/* Fill The Data Buffer
----------------------- */
memset(pSendData, ‘A’, MAX_ETHER_SIZE);// For Visibility On Analyzer

// ATTENTION!!! This should be media-dependent!!!
 pSendData[0] = 0xFF;
 pSendData[1] = 0xFF;
 pSendData[2] = 0xFF;
 pSendData[3] = 0xFF;
 pSendData[4] = 0xFF;
 pSendData[5] = 0xFF;

/* Send The Data Buffer
----------------------- */
bResult = DeviceIoControl(

hDevice,
IOCTL_RAWETHER_BUFFER_SEND,
pSendData, 64, // Input

Data (i.e., To Driver)
NULL, 0, //

Output Data (i.e., From Driver)
&nBytesReturned,
&OverLapped // REQUIRED For

FILE_FLAG_OVERLAPPED
);

// assert(bResult);

if(bResult)
{

nWaitResult = WaitForSingleObject(OverLapped.hEvent, 10);

if(!nWaitResult)
{

printf(“SENT\n”);
}
else
{

printf(“FAILED (5)\n”);
}

}
else
{

Implementation and Analyses of the Mobile-IP Protocol 121

Appendix B
printf(“FAILED (6)\n”);
}

/* Free Resources
----------------- */
CloseHandle(OverLapped.hEvent);

free(pSendData);
}

#define NUM_PACKET_PACKS48

typedef
struct _PacketPack
{

USER_PACKET_DATAUserPacketData;
DWORD nBytesReturned;
OVERLAPPED OverLapped;

}
PacketPack, *PPacketPack;

///
//// DestroyPackages
//
// Purpose
// Close event handles and free memory associated with packet packages
// created previously by CreatePackages.
//

void DestroyPackages(PPacketPack pPackageBase, DWORD nPackageCount)
{

int i;
PPacketPack pPackage;

/* Sanity Checks
---------------- */
assert(pPackageBase);

if(!pPackageBase)
{

return;
}

/* Close Event Handles For Each Package
--------------------------------------- */
for(i = 0; i < NUM_PACKET_PACKS; i++)
{

pPackage = &pPackageBase[i];

if(pPackage->OverLapped.hEvent)
{

CloseHandle(pPackage->OverLapped.hEvent);
}

}

/* Free Memory Allocated For The Packages
--- */
free(pPackageBase);

}

Implementation and Analyses of the Mobile-IP Protocol 122

Appendix B
///
//// CreatePackages
//
// Purpose
// Allocate memory and create event handles for the specified number of
// packet “packages”.
//
// Parameters
// nPackageCount - The number of packet packages to create.
//
// Return Value
// If successfull, returns pointer to an array of packet packages.
//
// Remarks
// WinMIP uses multiple concurrent asynchronous IOCTL_RAWETHER_PACKET_READ
// calls as a means to reduce packet loss.
//
// Each packet “package” is a data structure (defined elsewhere) which
// contains a USER_PACKET_DATA, OVERLAPPED and other fields needed to
// make one asynchronous IOCTL_RAWETHER_PACKET_READ call to the RAWETHER
// driver.
//
// This function simply allocates and initializes multiple packet packages.
//

PPacketPack CreatePackages(DWORD nPackageCount)
{

int i;
PPacketPack pPackage, pPackageBase;

/* Allocate Memory For The Packages
----------------------------------- */
pPackageBase = (PPacketPack)malloc(sizeof(PacketPack) * nPackageCount);

assert(pPackageBase);

if(!pPackageBase)
{

return(NULL);
}

/* Zero The Package Memory
-------------------------- */
for(i = 0; i < NUM_PACKET_PACKS; i++)
{

pPackage = &pPackageBase[i];

memset(pPackage, 0x00, sizeof(PacketPack));
}

/* Create Event Handles For Each Package
-- */
for(i = 0; i < NUM_PACKET_PACKS; i++)
{

pPackage = &pPackageBase[i];

/* Create The OVERLAPPED Event To Wait On
--- */
pPackage->OverLapped.hEvent = CreateEvent(
Implementation and Analyses of the Mobile-IP Protocol 123

Appendix B
NULL,//
Security Attributes

FALSE,//
Auto-Reset

FALSE,//
Initial State Signaled

NULL//
Event-obkect Name

);

/* Verify That The Event Was Created
------------------------------------ */
assert(pPackage->OverLapped.hEvent);

if(!pPackage->OverLapped.hEvent)
{

/* Destroy Partially Allocated Packages
--------------------------------------- */
DestroyPackages(pPackageBase, nPackageCount);

return(NULL);
}

}

return(pPackageBase);
}

HANDLEPackageHandles[NUM_PACKET_PACKS];

VOID GetAppVersion(void)
{

char *pszFileName = NULL;

wsprintf(g_szAppVersionString, “Unknown”);

pszFileName = malloc(MAX_PATH);

if(!pszFileName)
{

return;
}

if(GetModuleFileName(NULL, pszFileName, MAX_PATH) > 0)
{

DWORD dwType;
DWORD dwDataLen = GetFileVersionInfoSize(pszFileName, &dwType);

void *pszBuffer = malloc(dwDataLen + 1);

if (pszBuffer == NULL)
return;

if (GetFileVersionInfo(pszFileName, 0L, dwDataLen, pszBuffer) == TRUE)
{

VS_FIXEDFILEINFO *pFileInfo;

if (VerQueryValue(pszBuffer, “\\”,
 (void

**)&pFileInfo, (UINT *)&dwDataLen) == TRUE)
{

Implementation and Analyses of the Mobile-IP Protocol 124

Bibliography
memcpy(&g_AppVersionInfo, pFileInfo, sizeof(
VS_FIXEDFILEINFO));

wsprintf(g_szAppVersionString, “%d.%2.2d.%2.2d.%2.2d”,
HIWORD(g_AppVersionInfo.dwFileVersionMS),
LOWORD(g_AppVersionInfo.dwFileVersionMS),
HIWORD(g_AppVersionInfo.dwFileVersionLS),
LOWORD(g_AppVersionInfo.dwFileVersionLS)
);

}
}
free(pszBuffer);

}

free(pszFileName);
}

Implementation and Analyses of the Mobile-IP Protocol 125

Bibliography
///
//// main
//
// Purpose
// Console application MAIN entry point.
//

int main(int argc, char **argv)
{

DWORD nBytesReturned;// Req’d for
DeviceIOControl call

OVERLAPPED OverLapped;
DWORD nSleepResult, nWaitResult;
char *pDriverName;
BOOL bResult;
TCHAR szSymbolicLink[MAX_LINK_NAME_LENGTH];
int i, nNextPackage;
PPacketPack pPackage, pPackageBase = NULL;

GetAppVersion();

printf(“Ndis 3.0 Windows NT Network Packet Dump Utility “);

if(argc > 1)
{

g_bQuietDisplay = TRUE;
}

pDriverName = RAWETHER_TRANSPORT_NAME;

/* Open the WinMIP Protocol Driver VxD
-- */
hDevice = INVALID_HANDLE_VALUE;

wsprintf(
szSymbolicLink, // szSymbolicLink Used As Scratch

Buffer...
TEXT(“\\Device\\%s”),
RAWETHER_TRANSPORT_NAME
);

bResult=DefineDosDevice(
DDD_RAW_TARGET_PATH,
RAWETHER_TRANSPORT_NAME,
szSymbolicLink
);

if(bResult)
{
}

wsprintf(
szSymbolicLink,
TEXT(“\\\\.\\%s”),
RAWETHER_TRANSPORT_NAME
);

//
// Note that the file is created with the FILE_FLAG_OVERLAPPED flag
// set. This allows asynchronous operations to be performed in the
Implementation and Analyses of the Mobile-IP Protocol 126

Bibliography
// file handle.
//
// In addition, opening a handle for overlapped I/O imposes the
// requirement that a pointer to a valid OVERLAPPED structure MUST
// be passed to all calls to DeviceIoControl. Otherwise, unpredictable
// errors can result.
//
hDevice = CreateFile(

szSymbolicLink,
0,0,NULL,

// CREATE_ALWAYS,
OPEN_EXISTING,

// FILE_FLAG_DELETE_ON_CLOSE |
FILE_FLAG_OVERLAPPED,

FILE_FLAG_OVERLAPPED,
0
);

if(hDevice == INVALID_HANDLE_VALUE)
{

 fprintf(stderr, “Cannot Load %s Protocol Driver Error=%08lx\n”,
pDriverName,
GetLastError()
);

exit(1);
}

/* Display Adapter Information
------------------------------ */
DisplayAdapterInformation();

printf(“\nPress ENTER To Start...\n”);

while(!kbhit())
{

Sleep(0);
}

getchar(); // Eat ENTER Character

/* Create Packet Packages
------------------------- */
pPackageBase = CreatePackages(NUM_PACKET_PACKS);

assert(pPackageBase);

if(!pPackageBase)
{

printf(“Could Not Create Read Packages\n”);

exit(2);
}

/* Build Handle Array For Call To WaitForMultipleObjects
-- */
for(i = 0; i < NUM_PACKET_PACKS; i++)
{

pPackage = &pPackageBase[i];
Implementation and Analyses of the Mobile-IP Protocol 127

Bibliography
PackageHandles[i] = pPackage->OverLapped.hEvent;
}

/* Set The Ctrl-C Handler
------------------------- */
SetConsoleCtrlHandler(CtrlHandler, TRUE);

printf(“Press Ctrl-C To Exit...\n”);

/* Create The OVERLAPPED Event To Wait On
--- */
OverLapped.hEvent = CreateEvent(

NULL,//
Security Attributes

FALSE,//
Auto-Reset

FALSE,//
Initial State Signaled

NULL//
Event-obkect Name

);

ResetEvent(OverLapped.hEvent);

/* Call Driver To Start Reception
--------------------------------- */
bResult = DeviceIoControl(

hDevice,
IOCTL_RAWETHER_START_RECEPTION,
NULL, 0,
NULL, 0,
&nBytesReturned,
&OverLapped // REQUIRED For

FILE_FLAG_OVERLAPPED
);

if(!bResult)
{

bResult = GetOverlappedResult(
hDevice,
&OverLapped,
&nBytesReturned,
TRUE // Wait For

Completion
);

}

CloseHandle(OverLapped.hEvent);

if(!bResult)
{
fprintf(stderr, “Start Reception Failed\n”);

DestroyPackages(pPackageBase, NUM_PACKET_PACKS);

exit(3);
}

bShutdown = FALSE;
Implementation and Analyses of the Mobile-IP Protocol 128

Bibliography
/* Start All The Packet Reads
----------------------------- */
for(i = 0; i < NUM_PACKET_PACKS; i++)
{

pPackage = &pPackageBase[i];

/* Reset The Package Event
-------------------------- */
if(!ResetEvent(pPackage->OverLapped.hEvent))
{

printf(“FAILED (4)\n”);
break;

}

/* Post A Packet Read
--------------------- */
bResult = DeviceIoControl(

hDevice,
IOCTL_RAWETHER_PACKET_READ,
NULL, 0, // Input

Data (i.e., To Driver)
&pPackage->UserPacketData,
sizeof(USER_PACKET_DATA),// Output

Data (i.e., From Driver)
&pPackage->nBytesReturned,
&pPackage->OverLapped
);

}

nNextPackage = 0;// Index Of Next Package To Read On

/* Loop Until Shutdown
---------------------- */
while(!bShutdown)
{

/* Wait For One Or More Packet Reads To Complete
--
 * To exit this application the user presses the Ctrl-C key. This
 * causes the CtrlHandler to be called. The CtrlHandler simply sets
 * the bShutdown flag and returns. The bShutdown flag must be noticed
 * in this while loop in order to exit the application.
 *
 * If no packets were being received, then the WaitForMultipleObjects
 * would not expire and the application would never exit.
 */
nWaitResult = WaitForMultipleObjects(

NUM_PACKET_PACKS,
PackageHandles,
FALSE,
500 //

.5-sec.
);

if(bShutdown)
{

break;
}

/* Handle Based On Wait Result
------------------------------ */
Implementation and Analyses of the Mobile-IP Protocol 129

Bibliography
if(WAIT_OBJECT_0 <= nWaitResult &&
nWaitResult <= WAIT_OBJECT_0 + NUM_PACKET_PACKS - 1

)
{

/* Notes

* Entry into this case means that one (or more) reads completed
 * successfully.
 *
 * The variable i, calculated below, identifies the lowest

package
 * index whose read operation caused WaitForMultipleObjects to
 * return. This value MUST BE IGNORED!!!
 *
 * In order to insure that packets are received sequentially,

the
 * nNextPackage parameter identifies the index number of the

next
 * packet package that we “expect” to read on. A call is made
 * to GetOverlappedResult to confirm that the expected packet

* package can, in fact be read on. If it can’t, then wait until
 * the expected packet package is actually ready.
 *
 * This scheme works because the NDISHOOK driver handles reads
 * in a FIFO fashion.
 *
 * The reason that the variable i MUST BE IGNORED can be

illustrated
 * at package array rollover. Consider the case when the there

are
 * 64 packages numbered 0 - 63 and package 62 has been

processed.
 * If two packets are received quickly, then packages 63 and 0

should
 * be processed in succession when WaitForMultipleObjects

returns.
 * In this case, the nNextPackage parameter would correctly

indicate
 * that package 63 should be handled next. However, the

parameter i
 * would indicate that package 0 should be next - which is

INCORRECT.
 */
i = nWaitResult - WAIT_OBJECT_0;// ATTENTION!!! Ignore This

Value!!!

pPackage = &pPackageBase[nNextPackage];// Pointer To Expected
Package

/* Sequentially Read On Expected Package Sequence

 * When WaitForMultipleObjects returns, one OR MORE reads have
 * completed successfully. The following loop reads on packet
 * packages sequentially until one is encountered which still
 * has I/O pending.
 */
do
{

/* Handle The Received Packet
----------------------------- */
Implementation and Analyses of the Mobile-IP Protocol 130

Bibliography
OnPacketReceivedAPC(&pPackage->UserPacketData);

/* Post Another Read On The Packet Package
-- */
if(!bShutdown)
{

/* Reset The Package Event
-------------------------- */
if(!ResetEvent(pPackage->OverLapped.hEvent))
{

printf(“FAILED (4)\n”);
break;

}

/* Post The Read
---------------- */
bResult = DeviceIoControl(

hDevice,

IOCTL_RAWETHER_PACKET_READ,
NULL, 0,

// Input Data (i.e., To Driver)

&pPackage->UserPacketData,
sizeof(

USER_PACKET_DATA),// Output Data (i.e., From Driver)

&pPackage->nBytesReturned,

&pPackage->OverLapped
);

}

/* Move To The Next Sequential Packet Package
--- */
if(++nNextPackage >= NUM_PACKET_PACKS)
{

nNextPackage = 0; // Wrap-around
}

pPackage = &pPackageBase[nNextPackage];// Pointer To
Expected Package

}
while(GetOverlappedResult(

hDevice,

&pPackage->OverLapped,

&pPackage->nBytesReturned,
FALSE
)

);
}
else if(WAIT_ABANDONED_0 <= nWaitResult &&

nWaitResult <= WAIT_ABANDONED_0 + NUM_PACKET_PACKS - 1
)

{
/* Notes

 * Entry into this case means that one (or more) reads were
Implementation and Analyses of the Mobile-IP Protocol 131

Bibliography
 * abandoned.
 *
 * The parameter i, calculated below, identifies which read
 * operation caused WaitForMultipleObjects to return.
 */
i = nWaitResult - WAIT_ABANDONED_0;

break;
}
else if(nWaitResult == WAIT_TIMEOUT)
{

if(bShutdown)
{

break;
}

}
else
{

break;
}

#ifdef ZNEVER
/* Sleep In An Alertable State
------------------------------ */
nSleepResult = SleepEx(SEND_TEST_INTERVAL * 1000, TRUE);

/* Send A Packet Occasionally
----------------------------- */
if(GetTickCount()

> nLastSendTime + (SEND_TEST_INTERVAL * 1000)
)

{
SendTestPacket();
nLastSendTime = GetTickCount();

}
#endif

}

/* Destroy The Packet Packages
------------------------------ */
DestroyPackages(pPackageBase, NUM_PACKET_PACKS);

return(0); // No Complaints
}

Implementation and Analyses of the Mobile-IP Protocol 132

www.kth.se

COS/CCS 2008-17

	Implementation and Analyses of the Mobile-IP Protocol
	1. Background
	1.1 Mobile Internet Protocol (Mobile-IP)
	1.2 Previous Implementations
	FIGURE 1. Anders Klemets’s implementaion of Mobile IP for SunOS

	1.3 This Project
	1.3.1 General Plan
	1.3.2 Information Search

	2. Understanding the Windows NT Drivers
	2.1 Types of NT Drivers
	2.2 NT Network Driver

	3. Understanding Windows NT Network Architecture
	FIGURE 2. Windows NT networking components
	3.1 NDIS Environment and Network Drivers
	FIGURE 3. Network Driver Interface Specification as a wrapper

	3.2 Types of Network Drivers
	3.2.1 Network Interface Card (NIC) drivers
	3.2.2 Intermediate protocol drivers
	3.2.3 Upper level protocol drivers
	FIGURE 4. Relationship between the protocol, intermediate, and NIC drivers

	3.3 NDIS Environment
	3.3.1 NDIS Upper-Edge Functions
	3.3.2 NDIS Lower-Edge Functions
	3.3.3 DriverEntry Function
	3.3.4 NDIS Library Functions
	3.3.5 NDIS Object Identifiers
	3.3.6 Structure Used by NDIS Drivers

	4. Defining Driver Type
	4.1 An Intermediate Driver
	FIGURE 5. An intermediate Driver

	4.2 A Parallel Driver Interacting with TCP/IP
	FIGURE 6. A Parallel Driver Interacting with TCP/IP

	4.3 A Stand-alone Driver
	FIGURE 7. A Stand-alone Driver

	4.4 Comparison of these three options
	4.5 A Protocol Driver - WinMIP

	5. Implementing the Driver in Windows NT
	5.1 Tools and platform
	5.1.1 The DDK Environment
	5.1.2 The Packet Sample

	5.2 Major steps in writing the driver
	5.2.1 Modifying Sample
	5.2.2 Intercepting IP Packets
	5.2.3 A Packet Dump Application on Windows NT
	5.2.4 Adding HA functionalities
	5.2.5 An NT Router
	5.2.6 Implementing FA Functionality

	6. NT Protocol Driver
	6.1 Basic structure
	6.2 Loading and Binding
	6.2.1 Register the Protocol Driver
	6.2.2 Opening and Binding an Adapter
	6.2.3 Query and Set Operations

	6.3 Network
	6.3.1 Receiving Incoming Raw Packets
	6.3.2 Sending Packets
	FIGURE 8. Using NdisSend

	6.4 Signalling
	6.4.1 IOCTL Interface

	6.5 IRQL (Interrupt ReQuest Level)

	7. Device I/O Control in Applications
	7.1 General
	7.2 Opening the Driver
	7.3 Sending Commands
	7.4 Closing a Driver
	7.5 Asynchronous Operations

	8. Conclusions
	8.1 Achieved Objectives
	8.2 Unfulfilled Objectives
	8.3 Further Work

	9. Development of Mobile IP Implementations
	9.1 Development of Mobile IP
	TABLE 1. Comparison of several Mobile-IP implementations (based on [19])
	1. Smooth Handoff
	2. Mobile IP v6
	3. Multicast
	4. Voice over IP
	5. Firewall Traversal
	6. Quality of Service (QoS)

	9.2 Implementations on Windows
	1. Although there are programming interfaces for manipulating the forwarding table and the ARP fu...
	2. For a MH, the forwarding table routines perform too strict sanity checks, thus an MH would not...
	3. Another practical problem was the time required to perform fowarding table updates. Unfortunat...

	10. Acknowledgments
	11. Bibliography
	[1] Charles E. Perkins (Editor), “IP Mobility Support”, Request for Comments 2002, Internet Engin...
	[2] Charles E. Perkins, "IP Encapsulation within IP", Request for Comments 2003, Internet Enginee...
	[3] Charles E. Perkins, “Minimal Encapsulation within IP”, Request for Comments (Proposed Standar...
	[4] J. Solomon, “Applicability Statement for IP Mobility Support”, Request for Comments 2005, Int...
	[5] D. Cong, M. Hamlen, and C. Perkins (Editors), “The Definitions of Managed Objects for IP Mobi...
	[6] Microsoft, Windows Driver Development Kit (DDK), ~1996
	[7] W. Richard Stevens, TCP/IP Illustrated, Volume 1 , Addison-Wesley Publishing Company, Inc., 1994
	[8] C. Perkins and D. Johnson, Route Optimization in Mobile IP, IETF Internet Draft, draft-ietf-m...
	[9] Rajeev Koodli and Charles E. Perkins, "Mobile IPv4 Fast Handovers," Request for Comments 4988...
	[10] Rajeev Koodli (Ed.), "Fast Handovers for Mobile IPv6," Request for Comments: 4068, Internet ...
	[11] Mustafa Ergen, Sinem Coleri, Baris Dundar, Rahul Jain, Anuj Puri, Pravin Varaiya, "Applicati...
	[12] E. Gustafsson, A. Jonsson, and C. Perkins, "Mobile IPv4 Regional Registration," Internet Dra...
	[13] D. Johnson, C. Perkins, and J. Arkko, "Mobility Support in IPv6," Request for Comments (Prop...
	[14] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration”, Request for Comments 2...
	[15] T. Narten, E. Nordmark, and W. Simpson, “Neighbor Discovery for IP Version 6 (IPv6)”, Reques...
	[16] G. Montenegro, “Bi-directional Tunneling for Mobile IP”, Internet Draft, Internet Engineerin...
	[17] Tim G. Harrison, Carey L. Williamson, Wayne L. Mackrell, and Richard B. Bunt, “Mobile Multic...
	[18] Henry Haverinen, Antti Kuikka, and Tuomas Maattanen, “A portable mobile IP implementation”, ...
	[19] Abdul Sakib Mondal, Mobile IP: Present State and Future, Plenum Publishing Corporation, Janu...
	[20] Soonuk Seol, Myungchul Kim, Chansu Yu, and Jong-Hyun Lee, "Experiments and analysis of voice...
	[21] Elin Wedlund and Henning Schulzrinne, "Mobility support using SIP," In Proceedings of the 2n...
	[22] Hanane Fathi, Shyam Chakraborty, and Ramjee Prasad, "Mobility management for VOIP: Evaluatio...
	[23] Min Wang and Geng-Sheng (G.S.) Kuo, "Enhancement of voice over mobile IP for infrastructure-...
	[24] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks wh...
	[25] G. Montenegro, "Reverse Tunneling for Mobile IP, revised," Request for Comments (Proposed St...
	[26] Charles E. Perkins and David B. Johnson, "Route Optimization in Mobile IP," Internet Draft, ...
	[27] Stefan Raab and Madhavi W. Chandra, "Mobile IP Technology and Applications," Cisco Press, 2005.
	[28] Abd-Elhamid M. Taha, Hossam S. Hassanein, and Mouftah T. Mouftah, "Extensions for Internet Q...
	[29] Jiang Wu and Gerald Q. Maguire Jr., Agent Based Seamless IP Multicast Receiver Handover, IFI...
	[30] Jiwoong Lee, SGM Support in Mobile IP, Internet draft, IETF, draft-lee-sgm-support-mobileip-...
	[31] H. Levkowetz and S. Vaarala, "Mobile IP Traversal of Network Address Translation (NAT) Devic...
	[32] Jon-Olov Vatn and Gerald Q. Maquire Jr., “The effect of using co-located care-of addresses o...
	[33] Jin-Woo Jung, Hyun-Kook Kahng , Ranganathan Mudumbai, and Doug Montgomery, “Performance Eval...
	[34] Runtong, Zhang and Long, Keping (2002) QoS issues in mobile IP: challenges, requirements and...
	[35] Chakchai So-In, ”Mobile IP Survey”, A survey paper for the course CSE574S: Advanced Topics i...
	[36] Juntong Liu and Gerald Q. Maguire Jr. “GMRM: An Efficient Routing Model for an Integrated Wi...
	[37] Arunesh Mishra, Min-ho Shin, and William A. Arbaugh, “An Analysis of the Layer 2 Handoff cos...
	[38] Min-ho Shin, Arunesh Mishra, and William A. Arbaugh, “An Efficient Handoff Scheme in IEEE 80...
	[39] Arunesh Mishra, Min-ho Shin, and William A. Arbaugh, “Context Caching using Neighbor Graphs ...
	[40] S. Deering, Host Extensions for IP Multicasting, Request for Comments (RFC) 1112, Internet E...
	[41] Pontus Sköldström, “Control and Integration of GMPLS networks”. Masters Thesis, Department o...

	Appendix A A Modified Version of ‘Packet’ Sample
	A.1 Rawupper.h
	A.2 Rawupper.c
	A.3 Rawlower.h
	A.4 WinMIP.h

	Appendix B Win32 Packet Dump Application
	B.1 IOCTL.h
	B.2 WinDump.c

