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PREFACE 

This report is part of the final examination for the Master of Science in Engineering program, 

Civilingenjörsprogrammet, at Royal Institute of Technology (KTH) in Stockholm, Sweden. The 

project was conducted at Ericsson AB in Älvsjö, IP Design department, FTP/DRX section 

during year 2007 and 2008. The supervisor and examiner at KTH was Professor Gerald Q. 

Maguire Jr. at Department of Communication Systems (CoS), School of Information and 

Communication Technology (ICT), KTH. Our supervisors at Ericsson AB were Karl Knutsson 

and Sheng-Chou Li. 
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ABSTRACT 

IP security (IPsec) is commonly used for protection in Virtual Private Networks (VPN). It is 

also used for the protection of traffic between nodes in third generation (3G) mobile networks. 

The main duty of telecommunication operators is to assure the quality of service and 

availability of the network for their users. Therefore knowledge of threats that could affect these 

requirements is of relevance. Denial of Service (DoS) and other attacks could constitute serious 

threats in 3G networks and, if successful, they could lead to financial and reputation damage for 

the telecommunication operator. One of the goals of each telecommunications vendor is to 

produce equipment and software in such a way as to reduce the risk of successful attacks upon 

networks built using their equipment and software. This master’s thesis aims to identify the 

classes of attacks that could affect the regular operation of an IPsec-protected network. 

Therefore, the IPsec protocol and its possible weaknesses are explained. As practical 

demonstration of these ideas, an Intrusion Detection Analyzer prototype for an Ericsson 

Ethernet Interface board was developed to detect anomalous IPsec-protected traffic.  
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SAMMANFATTNING 

IP Security (IPsec) protokollet används bl.a. för att skydda Virtuellt Privat Nätverk (VPN). 

Protokollet används även för att skydda noderna i tredje generationens (3G) mobila nätverk. 

Telekomoperatöreranas uppgift går bl.a. ut på att se till att de mobila näten är tillgängliga för 

användarna samt garanterna en viss garanterad tjänstekvalitet. Därför är kunskapen om de olika 

hoten som påverkar dessa faktorer relevant. Överbelastningsattacker och andra attacker kan 

utgöra ett stort hot mot bl.a. 3G nät. Om dessa attacker lyckas kan de leda till finansiella skador 

och ett skadat anseende för telekomoperatörerna. Ett av målen för telekomtillverkarna är att 

tillverka produkter och program som kan minimera riskerna för en attack och skadorna som 

åstadkoms på ett nätverk uppbyggt med deras utrustning. Detta examensarbete har som mål att 

identifiera de olika typer av attacker som kan påverka driften av IPsec-skyddade nätverk. IPsec-

protokollet och dess svagheter är förklarade. Svagheter och problem med vissa 

implementationer nämns också. I detta arbete ingår också att utveckla en Intrusion Detection 

Analyzer prototyp för ett Ericssons Ethernet Gränssnitt  kort för att upptäcka avvikande IPsec-

skyddad trafik. 
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1 INTRODUCTION 

1.1 Problem Statement 

Internet Protocol (IP) is increasingly used to carry telecommunication traffic, an example of this which is 

specifically relevant to this thesis is the traffic between Radio Base Stations (RBS) and Radio Network 

Controllers (RNC). The 3rd Generation Partnership Project (3GPP), a collaborating group of 

telecommunication vendors & associations concerned with the evolution of GSM and its 3rd Generation (3G) 

mobile network specification, has specified that IPsec must be supported in order to provide IP network layer 

security [1].  Ericsson Ethernet Interface board, used to provide a modular interface to IP and ATM 

networks, is used in many mobile networks and because of the 3GPP requirements it will need to support 
IPsec ESP in tunnel mode with authentication in the future.  

Although IPsec provides network security, specifically confidentiality & authentication, the protocol has 

been criticized for its complexity and because certain configurations could expose an implementation to 

serious attacks. Even if a secure configuration is used, a system protected by IPsec could still be vulnerable 

to some forms of attacks, i.e. Denial of Service (DoS) attacks. A DoS attack might reduce the capacity of a 

mobile network, affecting the quality of service of one or more calls and/or limit the number of simultaneous 

users. Traditional Intrusion Detection Systems (IDS) cannot detect these attacks, since this IDS is usually 

located after the IPsec gateway. If the IDS is located after the IPsec gateway, then attack traffic rejected and 

discarded during IPsec processing will not reach an IDS, hence the IDS will neither be able to generate alerts 

for attacks nor capture traffic for subsequent analysis. Thus while IPsec may be successful in preventing this 

traffic from crossing the gateway, the network still suffers from the loss in capacity due to the resources 

which have been utilized by this rejected traffic, and these attempts should be detected.  

This thesis will survey known weaknesses and attacks against the IPsec protocol. It will also look in detail at 

attacks on IPsec, when configured according to the 3GPP specification and other configurations. The 

relevant IPsec standards are IETF RFC 2401–2412 [2-13]. The Ericsson CPP IPsec implementation to be 

used in Ericsson Ethernet Interface board will be referred as “Ericsson IPsec implementation” in this 

document. This thesis will cover only IP version 4 (IPv4), since the testing environment and the initial 

Ericsson IPsec implementation is IPv4. At this stage of the Ericsson IPsec implementation, no automatic key 

management protocol exists, e.g. IKE is not implemented. Therefore, this thesis will not cover the key 

management protocol and only manual keying is used, but any actual Ericsson IPsec implementation will 
use IKE or other key management protocol.  To demonstrate the theoretical ideas for detecting attacks, a 

prototype without a graphical interface will be developed in C programming language. 

1.2 Ericsson Platforms 

Ericsson uses a layered network approach in order to structure a telecommunication system’s functionalities. 

The layers are: content and user application, communications control, and connectivity (see Figure 1). The 

layered system approach has evolved from the Ericsson’s earlier successful AXE telephone exchange 

system. Two new platforms extend the AXE platform [14]: Telecom Server Platform (TSP) and the Ericsson 

Connectivity Packet Platform (CPP), previously called Cello Packet Platform. These new platforms extend 

the existing AXE platform to handle both circuit switching and packet data transport.  
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The Ericsson AXE 810 platform supports Global System for Mobile communications (GSM) and Universal 

Mobile Telecommunications System (UMTS) networks. The AXE platform has many built-in functions, 

specifically it supports both a Mobile Switching Center (MSC) and Base Station Controller (BSC). Most 

Ericsson platforms are built with commercially available standardized components, interfaces, buses, and 

software.  

TSP was introduced in order to support the second generation of mobile phone standards (2G). It handles 

content and user applications, and offers several network operator services in the same physical structure. 

TSP is able to offer network operator services, i.e. Home Location Register (HLR); Media Gateway Control 

Function (MGCF); Authentication, Authorization and Accounting (AAA) [15]. 

CPP [16] was introduced in order to support the third generation of mobile phone standards (3G) building 

upon GSM. CPP supports both Asynchronous Transfer Mode (ATM) and IP traffic. Physically CPP employs 

several chassis containing different kinds of circuit boards, processor boards, switch boards, interface boards, 

echo cancellers, and transcoders. CPP products are currently on the market and used to provide a variety of 

telecommunication services, such as RBS and RNC for Wideband Code Division Multiple Access 

(WCDMA) networks and Radio Access and Packet Data Serving Nodes (PDSNs) for Code Division 

Multiple Access 2000 (CDMA2000) networks. 

 

 

Figure 1: Ericsson Layered Platform Structure [14] 1 

1.3 Ericsson Ethernet Interface board 

The Ericsson Ethernet Interface board is an Ethernet-to-ATM (Asynchronous Transfer Mode) backplane 

converter. The board can be used in Radio Base Stations or in a Radio Network Controllers with an LSI 

Corporation APP300 family  (formerly Agere) network processor. 

                                                      

1 This figure appears here with the permission of CGA Information AB. 
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 The main modules of the board  are: 

Opto/Line Interface Unit (LIU) module  Optical and electrical Gigabit interfaces 

(1000BASE-X and 1000BASE-T) 

Ethernet switch module  Ethernet switch (operates at the data link layer, 

layer 2 in the Open System Interface (OSI) 

model). In RBS nodes the switch is used for 

switching between the site LAN (temperature 

sensors and site equipment) and Operation & 

Maintenance (O&M) terminals and mainly as 

connection point for the IP/Ethernet backbone  

Network processor module  Network Processor Unit (NPU), that allows IP 

termination and internetworking to ATM, and 

the IPsec block, to provide IPsec functionality 

Device Board Module  Main Processor and memories. The main 

processor belongs to PowerPC family and is 

referred in Ericsson documentation as “Board 

processor”. It manages the traffic on the board, 

which includes board processing support, switch 

function monitoring and configuration, NPU 

monitoring & configuration, and NPU error & 

special packets (also called exception packet) 

processing 

 

 

Figure 2: Main modules of the Ericsson Ethernet Interface  board 

Ericsson Ethernet Interface board  
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1.3.1 �etwork Processor 

Due to the enormous demand for bandwidth and computationally intensive applications in 

telecommunication environments, network processors have a crucial role in assuring high-speed data 

processing. For a good review on network processors see [18].   

Network processors are used in an RBS or RNC to provide IP to ATM interworking, when this is necessary. 

In a network processor [19], time-critical processes, i.e. forwarding, shaping, etc., are executed in the data 

path/dataplane, also called the Wire-Speed Path since it receives the packets that need minimal processing; 

hence, these packets should be processed at the speed of the incoming packets on the relevant line interface. 

While management duties, i.e. error processing, configuration, aggregating and reporting of statistics, etc., 

are executed in the control path/controlplane, also called the Slow-Speed Path since it receives only packets 

that need unusual, less time critical, or complex processing. This division into fast path and slow path 

assumes that there is a division between packets which can be processed using the fast path and all other 

packets and that the majority of packets do not need slow path processing. 

The network processor (NP) used on the Ericsson Ethernet Interface board  is from the LSI Corporation 

Advanced PayloadPlus APP300 family of software-programmable network processors. The processor offers 

a fully integrated, single-chip solution with data-path and control-path functions offering a bandwidth in the 

range 400 Mbits/s up to 2 Gbits/s [20]. Each member of the APP300 family provides classification for 

processing protocols as well as policing/metering and statistics functions to enable flexible billing and 

accounting metrics for both ATM cells and IP/Ethernet packets. The APP300 uses SDRAM memories and 

standards interfaces to provide connectivity to the physical layer or backplane devices. 

The APP300 Network processor series uses the Functional Programming language (FPL) [21] [22], to 

classify the incoming data, and the C for Network Processor (C-NP) language [23], to perform Traffic 

Management functions on the data processed by the classifier, to execute checks (policing), and collect 

statistics. 

 

The main blocks of the APP300 are (see Figure 3): 

Physical interfaces  data is received in the input interfaces and 

delivered to the output interfaces 

Classification and Policing  incoming packets are stored in queues, pattern 

matching and classification is performed, and 

finally the packets are reassembled; during the 

process statistics are collected 

Traffic management  enforces discard-policies, shapes the Quality 

of Service (QoS) and Class of Service (CoS), 

and performs any necessary packet 

modifications 

The Agere Payload Plus Network [24] processor series is produced by LSI (following the merger of Agere 

corporation into LSI). 
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Figure 3: Main blocks of the APP300 -etwork processor series 

1.3.2 IPsec processing in  Ericsson Ethernet Interface board 

The NP sends IPsec processing information to the IPsec block via SPI-3 by appending an extra header to the 

packet to be processed, called the Security Protocol Processor (SPP) transform internal header. Different 

headers can be added to the packet according to the desired IPsec functionality, inbound/outbound direction, 

and to request AH or ESP processing. The format of the first 3 words (32 bits per word) in each header is the 

same for all headers, but additional information can be added after the first 3 words.  

 

 

During IPsec processing, the IPsec block removes the previously added SPP header and adds a two word 

SPP result header to the packet. This header contains error codes generated during processing (if any) and 

the (original) Opaque Software Tag from the incoming SPP header, see Figure 4. 

 

Figure 4: SPP Result Header 
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Fatal Error (FE) Indicates if a fatal error has occurred. (Error 

codes are explained later in this section) 

Non Fatal Error (NE) Indicates if a non fatal error has occurred 

Error Status If FE or NE are set, this field indicates the type of 

error, otherwise it should contains zeros 

Result Packet Length Specifies the length of the packet processed  

Opaque Software Tag The 32 bit field specified in the SPP transform 

internal header passing unmodified  

During processing, two types of errors might occur: fatal or non fatal errors. It is possible to have more than 

one error code per packet. Fatal error occurs only if the input token or the SA context record  is incorrect, 

therefore they are due to programming errors. Note that a modified IPsec packet should not generate a fatal 

error, but only one or more non-fatal errors, see Table 2. The upper two bits of the SPP result header indicate 

whether an error has occurred, see Figure 4 and Table 1. Once a fatal error occurs, the packet must be 

discarded. If one or more errors occur, the Error Status field is set, see Figure 4. In this thesis we are 

only concerned with the non fatal errors that might be generated by (maliciously) modified IPsec packets. 

 

Table 1: The two most significant bits in the SPP result header indicating type of IPsec processing error 

Bit set Type of Error 

00 No error 

01 Non fatal error 

10 Fatal Error 

11 
Fatal Error and 

Non Fatal Error 

 

 

Figure 5: Position of Fatal Errors bits in SPP Result Header 
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Figure 6: Position of -on Fatal Errors bits in SPP Result Header 

 

Table 2: IPsec block  Fatal Error Codes 

Error 
ID 

Description 

E0 Packet Length error: token instructions vs. input fetch 

E1 Token Error, unknown token instruction 

E2 Token contains too much bypass data 

E3 
Crypto block size error(ECB, CBC) / Counter 

Overflow(CTR) 

E4 Basic Hash: block size error 

E5 Invalid algorithm/command/mode/combination 

E6 
Using algorithm which is prohibited by the virtue of  SPP 

Core register 4 

E14 Time-out Error (i.e. the SPP core hung and timed out) 

E15 Output DMA Error 
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Table 3: IPsec block -on-Fatal Error Codes 

Error 
ID 

Description 

E7 Basic Hash: hash input overflow 

E8 TTL / HOP-limit underflow 

E9 Authentication failed (Inbound) 

E10 Sequence Number check failed / rollover 

E11 SPI Check Failed 

E12 Checksum Incorrect 

E13 Pad Verification failed 

1.4 Intrusion Detection 

A definition of intrusion detection is given in U.S. Department of Commerce, National Institute for Science 

and Technology’s (NIST) Special Publication on Intrusion Detection Systems (IDS) [26]: “Intrusion 

detection is the process of monitoring the events occurring in a computer system or network and analyzing 

them for signs of possible incidents, which are violations or imminent threats of violation of computer 

security policies, acceptable use policies, or standard security practices”. These incidents could be of 

malicious nature or caused by inexpert use of the system. 

There could be several reasons to use Intrusion Detection Systems, depending on the aim of the system [27]: 

• To monitor a system in order to track attempts against the security of the system  

• To detect if a system is unprotected against attacks not prevented by other security measures 

• To detect  if an user is probing the system (retrieving information prior to perform an attack) 

• To retrieve feedback concerning the security of the system 

• To provide the history of a successful attack, in order to understand the cause and to restore the 

system 

Telecommunication networks are a very important part of the modern world’s infrastructure, therefore it is 

crucial to detect any “strange activities” on the network. Activities of interest could be an attack against a 

network (detection when the attack has already been performed), an attempt to attack the network (detection 

during the attack is being performing), or retrieval of information prior to performing an attack (also called 

probing). Furthermore, an Intrusion Detection System must be able to reveal possible vulnerabilities of the 

system by analyzing, tracking, and alerting the network operator. 
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The main parts of an IDS are: 

Information 

Sources  
The sources of information used to determine whether an intrusion has taken 

place. In our work, the information source is the error codes generated, by the 

IPsec block during the IPsec processing and by the NP during SA lookup or 

Security Policy lookup 

Analysis This part of the intrusion detection systems analyses the data retrieved from 

the information sources and decides if there is evidence of an attack against 

the system. The three main approaches to analyze events to detect attacks are: 

 Signature-based 

detection 

Based on a known attack pattern (also called a 

signature). The major limitation of this approach 

is that it only detects known attacks   

 Anomaly detection Based on comparison of abnormal system activity 

against normal system activity observed during a 

period of time (also called profile). This could be 

effective in detecting previously unknown 

threats, but the approach could also produce 

many false positive (false detection alarms) 

depending on how much the current traffic differs 

from the profile 

 Stateful protocol 

analysis or deep 

packet inspection 

Based on comparison of predetermined profiles 

of accepted state transitions of a protocol against 

observed events. This technique could detect 

unexpected sequences of commands in the 

execution of a protocol, but it cannot detect many 

forms of attacks, e.g.,  denial of service attacks, 

that execute the correct transitions in the 

protocol’s states  

 In our work, we focus on the Analysis sub-system of an IDS. This sub-system 

is designed to run external to the network processor board and to manage 

several Ericsson  Ethernet Interface board. 

Response The set of actions that the system takes once it detects intrusions. These 

actions are basically divided into active response, i.e. automated intervention, 

and  passive response, i.e.,  reporting the events. In our project, the Analyzer 

is designed to simply alert the operator in case of detected intrusions. Thus 

our solution will not include implementing any automatic responses to the 

detection of a potential attack also known as Intrusion Prevention System 

(IPS) 

 

The placement of an IDS is of importance, as these systems are limited when IPsec protocol is used. The 

possible scenarios are described below. If the IDS is placed before an IPsec gateway, see Figure 7, the IDS 

will not be able to analyze encrypted traffic and therefore will not be able to detect attacks. 
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Figure 7: IDS placed before an IPsec gateway 

Also when placing an IDS behind an IPsec gateway, as in Figure 8,  the IDS will not be able to detect IPsec 

specific attacks, i.e. replayed packets, incorrect encrypted packet, DoS attacks, etc., since these packets are 

discarded before they are forwarded for IP processing, hence the traffic data is never forwarded to the IDS 

for analysis.  

 

Figure 8: IDS placed after an IPsec gateway 

In case of IPsec traffic, the best location for the IDS is incorporating it into the IPsec gateway, see Figure 9, 

in order to learn of processing failures: if any processing errors occur, the IDS will still be able to retrieve 

and analyze the data. 

 

Figure 9: IDS placed in direct connection with IPsec gateway 

IDS 

IPsec Gateway 
Interior Exterior 

IDS IPsec Gateway Interior Exterior 

IDS IPsec Gateway Interior Exterior 
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An IDS that is able to detect attacks against IPsec gateways is therefore an interesting research topic. An IDS 

could have several outcomes as shown by Figure 10. The outcomes are: 

 

False Positive The IDS alerts when no attack is occurring 

True Positive The IDS alerts when an attack is occurring 

False -egative The IDS does not alert when an attack is occurring 

True -egative The IDS does not alert when no attack is occurring 

 

  Attack 

  True  False 

Alarm 

True 
True 

Positive 
 

False 

Positive 

    

False 
False 

Negative 
 

True 

Negative 

 

Figure 10: A matrix illustrating different IDS outcomes 

The ultimate IDS should generate as few false positives and false negatives as possible. False positive errors 

usually require an operator’s attention to solve the situation and a high number of these alerts might lead to 

the operator to ignore future alerts.  False negatives on the other side are the situations labeled as normal by 

the IDS, whereas an attack is occurring and the IDS does not fulfill its expected function. 
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2 BACKGROUND 

2.1 The Internet Protocol  

The Internet Protocol (IP) operates at the network layer in the Open System Interface (OSI) model and is a 

best effort protocol, consequently, it is unreliable and connectionless. There are currently two versions of the 

protocol: IP version 4 (IPv4) [28] and IP version 6 (IPv6) [29]. One of the differences between the two 

versions is the number of IP addresses: just over 4 billion of addresses for IPv4 (address size of 32-bit), over 

16 billion-billion of addresses for IPv6 (address size of 128-bit). 

At the IP layer, packets are called datagrams. A datagram is composed of a header part and a data part, the 

latter is also called an IP payload. In IPv4 the header can be 20 to 60 bytes long and contains the information 

for routing and delivering the packet. The data part can be 0 to 65515 bytes long. The maximum size of IP 

datagram is 65535 bytes, but the data link protocol imposes a limit to this size. For example, Ethernet frames 

can have maximum payload of 1500 bytes, therefore IP datagram over Ethernet cannot be longer than 1500 

bytes. The limit on the maximum IP datagram size imposed by the data link protocol is called Maximum 

Transmission Unit (MTU). 

 

Figure 11: Format of IPv4 Datagram 
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Description of the header fields:  

Version (VER) This field contains the version number of the IP 

protocol. The version can be 4 (IPv4) or 6 (IPv6). 

In this thesis we are only concerned with IP 

version 4 (see Section 1.1)    

Header Length (HLEN) This 4-bit field defines the total length of the 

datagram header in 4 byte words and, 

consequently, specifies the offset to the data. The 

value of this field depends on the variable length 

of the header: if the Options field is not used, the 

length of the header is 20 bytes (the value 5 x 4 

bytes = 20 bytes), otherwise the length could be up 

to 60 bytes (the value 15 x 4 bytes = 60 bytes) 

Differentiated services (DS) Previously called Type of Service [2] specifies a 

preference for how the datagram has to be handled 

(delay, throughput, reliability). Recently [30], this 

field has been redefined as Differentiated Services, 

due to the new technologies that require real-time 

data streaming and different classes of service 

Total length This field specifies the total size of the datagram in 

bytes (header plus data). The total size can be the 

minimum of 20 bytes (20 bytes header plus no 

data) and up to 65535 bytes. The length field is 16 

bits long 

Identification This field is used during datagram fragmentation 

to identify the fragments of the original datagram 

Flags This field is used to control fragmentation (the 

Don’t Fragment bit) or to indicate if there are more 

fragments (the More Fragments bit), the third bit is 

reserved and should be set to zero 

Fragment offset This field is used in fragmentation and specifies 

the offset of a fragment from the beginning of 

original IP datagram. 

Time to live (TTL) This field specifies the lifetime of a packet. 

Originally designed as the time in seconds, today it 

expresses the maximum number of hops the packet 

can transit. The TTL value is decremented every 

time a datagram is processed by a router, and the 

datagram is discarded once the value is zero 
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Protocol This field indicates the protocol used for the 

payload of the IP datagram. The protocol-number 

is assigned by Internet Assigned Numbers 

Authority (IANA) [31] 

Header checksum This field is used to check the header for 

transmission errors; the checksum of the header 

must be computed and compared to the stored 

value of this header at every router (Section 3.1 in 

[28]); when this check fails, the datagram is 

discarded 

Source IP address This field contains the source IP address. 

However, if Network Address Translation (NAT) 

is used, the original source IP address is translated 

to a global network IP address associated with the 

NAT device or vice versa 

Destination IP address This field contains the destination IP address, but 

if NAT is used, then a global IP address is used in 

place of the original destination IP address or vice 

versa; this global address will be associated with 

the destination NAT 

Options This field is a an optional field used for 

application-specific information and it affects the 

length of the HLEN field 

 

At the network layer the main processing steps are routing, fragmentation, reassembly, and Address 

Resolution Protocol (ARP) [32]. 

2.2 IP Security 

IP Security (IPsec) was designed by Internet Engineering Task Force (IETF) to provide a security framework 

at the network layer, i.e., layer 3 of the OSI model. IPsec ensures private communication over a public IP 

network [2] and is commonly used to implement Virtual Private Networks (VPN) [33]. 

Depending on its implementation and configuration, IPsec could provide the following types of security 

services:  

Confidentiality IPsec prevents the disclosure of transmitted data to 

unauthorized parties through encryption. The data is encrypted 

using cryptographic algorithms and the receiver must have a 

key to decrypt the data 
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Connectionless 

Integrity 

IPsec detects the modification of transmitted data, without 

regard to the ordering of the datagram in a stream of traffic. 

The integrity is assured through a Hashed Message 

Authentication Code (HMAC), which is the output of a 

cryptographic hash function of the data  

Data origin 

authentication 

IPsec guarantees the origin of the data through cryptographic 

processing 

Anti-Replay IPsec is able to detect and reject replayed packets sent by an 

attacker 

Access control IPsec is based on policies that are applied to classify and filter 

the traffic. The policies can regulate the user’s behavior or 

shape the network traffic 

 

IPsec consists of the several components [34] [35]: 

• Security associations (SA) 

• Security Policy Database (SPD) 

• Security Association Database (SAD) 

• Two Security protocols: Authentication Header (AH) and Encapsulated Security Payload (ESP) 

• Two Modes: Transport mode and Tunnel mode  

• Cryptographic algorithms: used to provide authentication (i.e. MD5 and SHA-1) and encryption 

(i.e. DES, TDES, Blowfish and AES) 

• Key management: Internet Key Exchange protocol (IKE)  or manual keying 

2.2.1 Security Association 

Since the IP protocol is unreliable and connectionless, Security Associations (SA) are used to create a secure 

and protected connection between two hosts. An SA is a unidirectional association between a pair of hosts, 

therefore, for two-way IPsec communication, two SAs are needed, one for each direction (i.e. inbound and 

outbound traffic). Either an automatic key management protocol (IKE) is used for SA negotiation or it is set 

manually. Every SA is uniquely identified by three basic elements: 

• Security Parameter Index (SPI): is an arbitrary 32-bit value selected by the destination to identify 

the SA’s entry in the database. The same SPI can be assigned to a different SA (for a given 

destination address), but only if a different security protocol is used (thus there is an SPI for each of 

AH and ESP) 

• Security protocol: AH or ESP 
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• Destination IP address: unicast address, IP broadcast, or multicast group address. There can be 

many SAs associated with a given destination address. 

The SA stores also information about IPsec mode, cryptographic algorithms, cryptographic keys, and 

lifetime of the keys agreed by both peers for the communication (see the example in Table 4).  

 

Table 4: Sample of  Security Association 

Source Address 192.168.66.10 

Destination Address 192.168.70.10 

Security Parameter Index 1000 

Mode tunnel 

Security Protocol ESP 

ESP algorithm AES-CBC 128 bits 

ESP algorithm key “123456789….” 

2.2.1.1 Security Policy Database 

The Security Policy Database (SPD) [2] consists of a list of policy entries. This database is consulted during 

the processing of all traffic, IPsec and non-IPsec. Each entry in the SPD must specify one or more selectors 

(depending on the granularity of the actions to be taken) and a processing action. The selector is a set of IP or 

upper layer protocol header field values, used by the SPD to map traffic to a policy. The selectors can 

include Destination IP address, Source IP address, Transport Layer Protocol, System Name, and User ID 2. 

The SPD three possible processing actions are:  

Discard  the traffic is not allowed to pass and is discarded 

Bypass  the traffic is allowed to pass further without any IPsec protection 

Protect  the traffic requires IPsec protection  

The SPD processing scheme is different for inbound and outbound traffic. During both processing phases, an 

audit log should be utilized. 

 

 

                                                      

2 Not all selectors might be available 
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2.2.1.1.1 IPsec Inbound Processing 

Inbound processing [2] is performed on the incoming IPsec-protected packets. If the received packet was 

fragmented, the reassembly of the packet is performed prior to the AH or ESP processing. After the packet is 

reassembled, the Fragment offset field is set to zero and the Flags field is reset.  

When a packet is received, the following steps are executed: 

1. The SPI, the packet’s destination address (outer IP header), and the Security Protocol are used to 

look up one or several SAs in the SAD  

2. If a SA is found. The following steps are taken: 

a. If anti-replay protection is enabled, the Sequence Number is validated 

b. If  integrity protection is enabled, the hash of the authenticated data must be verified by 

computing the Integrity Check Value and checking if it matches the value in the HMAC field 

see Figure 12  

c. If confidentiality protection is enabled, the packet is decrypted and the original IP datagram 

is de-encapsulated or (re-)constructed (depending upon the mode used) 

d. The inbound SPD is consulted to determine what policies and actions should be applied  

e. A check to see whether the required IPsec processing has been applied according to the 

selected policies is done 

f. Forward the packet to IPsec outbound processing or send the datagram further for IP 

processing  

3. If no SA is found, the packet is discarded and an error should logged 

2.2.1.1.2 IPsec Outbound Processing 

Outbound processing [2] is applied to packets prior transmission. If a packet has to be fragmented, IP 

fragmentation occurs after IPsec processing. The SPD is consulted during the processing of IPsec and non-

IPsec traffic, to determine what kind of action is to be taken. The outbound policies in the SPD are matched 

against the packet’s selector fields to locate the first of the appropriate policies. This can result in a decision 

to discard the packet, bypass IPsec processing, or protecting the packet with IPsec. In the last case a number 

of further steps are taken. These are: 

1. The policy will point to zero or more SAs in the SAD 

2. If one or more SAs exist, match the packet’s selector fields against those in the existing SAs. 

Otherwise, if no SAs were found or none match, the packet is dropped. Note that while normally an 

IPsec implementation would create a new SA using IKE, since currently we only support manually 

established keys, the absence of a relevant SA is an indication of either an error or an attack and 

hence should be reported to the IDS 

3. IPsec header is added to the packet  (more formally: the existing packet is encapsulated in a new IP 

packet (Tunnel mode)) 
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4. The selected SA is used for IPsec processing: if confidentiality protection is required, then 

encryption is performed. Afterwards, if integrity protection is required, a keyed hash value is 

calculated and added to the new packet  

2.2.1.2 Security Association Database 

The Security Association Database (SAD) [2] contains the parameters associated with each active security 

association. Each entry in the SAD corresponds to a security association and it must contain the value or 

values negotiated when the security association was created. The entries in the SAD are ordered because a 

security policy may require more than one SA to be applied to a specific set of traffic. For example, the ESP 

SA might be applied first and then the AH SA (or vice-versa); each order has a particular semantics. The 

way that the SAD is consulted during inbound processing is different from how it is consulted for outbound 

processing, see Sections  2.2.1.1.1 and 2.2.1.1.2. 

2.2.2 Security modes 

IPsec has two modes: transport mode and tunnel mode. The transport mode is usually used between two 

hosts to protect the end-to-end communication. This mode could also be used between a host and a security 

gateway, if the security gateway acts as a host.  

Tunnel mode is used mainly for secure IP tunneling where one or both the ends of the SA are security 

gateways that forward the traffic. This IPsec mode is widely used to create VPNs. This mode could also be 

used for host to host communication, and in this case the source and destination addresses would be the same 

in the inner and outer IP header. In out thesis project we work with ESP tunnel mode. 
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Figure 12: Format of an IP datagram showing transport mode and tunnel mode in comparison to the original packet 

2.2.3 Security protocols 

2.2.3.1 Authentication Header 

The Authentication Header protocol (AH) [3] can provide data origin authentication, connectionless 

integrity, and optionally anti-replay protection for IP traffic. Authentication and integrity checks are 

performed by applying a hash-based algorithm (such as MD5 or SHA-1) to the packet, excluding the outer IP 

header’s mutable fields: TOS/DS, Flags, Fragment Offset, TTL, and header checksum. Anti-replay is 

performed by including a unique sequence number in each packet. Usually a monotonically increasing 

counter is used for this purpose, with an initial value of zero. 
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Figure 13:  AH Header 

Description of the fields: 

Next Header  This field identifies the protocol of the data in the 

payload. It is the same as Protocol field value in IP 

header for transport mode and IP version value for 

tunnel mode 

Payload Length  The size of the AH header expressed in 32-bit words  

Reserved  Reserved for future use and must be set to zero 

SPI  See Section 2.2.1, used to locate a SA in the SAD 

Sequence Number  Used for anti-replay protection, a monotonically 

increasing counter value. It is mandatory for the sender 

to include the sequence number in a transmitted packet, 

but it is optional for the receiver to process it. The 

counters on both sides of transmission are initialized to 

zero when an SA is established and must be reset by 

establishing a new SA and thus a new key as soon as 232 

packets has been sent. In case of manual keying, anti-

replay protection should not be used (according to 

Section 5 in [7]). If anti-replay is disabled, the sender 

still increments the counter value and it will start from 

zero after reaching the maximum value (according to 

Section 3.3.3 in [7]) 

Authentication Data  Contains the Integrity Check Value (ICV) of the packet, 

see Section 2.2.5, and must be multiple of 32-bits for 

IPv4. The recipient computes a hash over the received 

packet and compares the two hash values (i.e., calculated 

versus received): if they do not match the packet is 

discarded 
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2.2.3.1.1 AH in Transport Mode 

AH in Transport mode contains the value 51 (AH) in the Protocol field, which indicates that there is an 

AH header, see Figure 14. The Next header field in the AH header specifies the protocol value of the 

packet actually encapsulated in the payload. In transport mode, this packet has to be the upper layer protocol, 

i.e. TCP, UDP, or STCP. During inbound processing, once all the IPsec fields are stripped off and the 

original IP packet is reconstructed, the Protocol field of the reconstructed IP packet will contain the value 

saved in Next header  field in the AH header. 

 

Figure 14: Format of IPv4 datagram protected with IPsec AH Transport mode  

2.2.3.1.2 AH in Tunnel Mode 

For AH in tunnel mode, the original IP datagram is appended after the AH header, and a new outer IP header 

is prepended (see Figure 15). The Next Header field contains the protocol value of the encapsulated 

packet, this is always 4 (IPv4) for tunnel mode. The Source Address and Destination Address 

fields might be different from the original source and destination address included in the original IP header 

(since they now represent the tunnel end-points).  This creates a tunnel which can be used to implement a 

VPN.  
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Figure 15: IPv4 Datagram Protected with IPsec AH Tunnel Mode 

2.2.3.2 Encapsulated Security Payload 

Encapsulated Security Payload (ESP) [7] provides confidentiality and optionally, data origin authentication, 

connectionless integrity protection, and anti-replay protection. If the encryption algorithm requires a random 

initialization vector (IV), the value is stored just before the protected payload (indicated as the Encrypted 

Payload in Figure 16). ESP includes a header and a trailer which surround the encrypted payload. The SPI, 

Sequence Number, and Next Header fields have the same function as in AH, however in the case of 
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ESP the Next Header is encrypted, therefore it is not possible to determine if transport or tunnel mode is 

used until the packet has been decrypted. In comparison with AH, the new fields are:  

• Padding: this field enables use of a block-cipher for encryption by adding a variable amount of 

padding data, in order to make the encrypted data a multiple of the block size required for this block-

cipher 

• Padding length: this field specifies the length of the padding 

• Authentication data: this field is optional and provides integrity only for the ESP header and 

encrypted payload, not for the full IP packet as is the case of AH 

 

Figure 16: ESP packet  

2.2.3.2.1 ESP in Transport Mode 

For ESP in transport mode, security services are provided only for ESP fields and the higher layer protocol 

payload (i.e., TCP, UDP, and others) not for the IP header preceding the ESP header. 
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Figure 17: IPv4 Datagram Protected with IPsec ESP Transport Mode 

2.2.3.2.2 ESP in Tunnel Mode 

For ESP in Tunnel mode, the original IP datagram is encapsulated between the ESP header and the encrypted 

payload. The protection is applied only to the ESP header and original IP datagram. The Source and 

Destination fields of the new IP datagram could be different from the original source and destination 

address included in the original IP datagram (as these represent the end-points of the tunnel). 
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Figure 18: IPv4 Datagram Protected with IPsec ESP Tunnel Mode 

2.2.4 Authentication algorithms 

An Integrity Check Value (ICV) is calculated to assure the integrity of the packet. The mechanism to create 

the ICV is based on a secret key, shared between the two parties, and a hash algorithm such as MD5 and 

SHA-1. This mechanism is called a Hash Message Authentication Code (HMAC) [36]. HMAC can be used 

in both AH and ESP to assure integrity and data origin authentication. According to the 3GPP specification 

[1], the authentication algorithms that can be used are MD5 and SHA-1, although both of them have been 
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compromised. There are some authentication algorithms that haven’t been compromised, e.g., SHA-224, 

SHA-256, SHA-384, SHA-512, but only MD5 and SHA-1 will be used in this project.  

2.2.4.1 MD5 

Message Digest 5 (MD5) algorithm [37] is a cryptographic hash function producing a 128-bit hash value. It 

was designed by Ronald Rivest in 1991 to replace MD4. Though some vulnerabilities have been found [38], 

MD5 is still a widely used hash function. The use of MD5 within AH and ESP for IPsec is specified in [4]. 

2.2.4.2 SHA-1 

Secure Hash Algorithm (SHA-1) was designed by the National Security Agency (NSA) and published by the 

National Institute of Standards and Technology (NIST) in FIPS PUB 180-1 and FIPS PUB 180-2 (the latest). 

SHA-1 is one of the five cryptographic hash functions named SHA and produces a message digest of 160-

bit. The security of SHA-1 has been compromised by cryptography researchers [39]. SHA-1 was developed 

to be the successor to MD5. The use of SHA-1 within AH and ESP for IPsec is specified in [5]. 

2.2.5 Encryption algorithms  

Encryption algorithms, also called ciphers, are used to encrypt data prior to transmission, transforming the 

content of the packet in order to assure confidentiality. Encryption algorithms operating on data blocks of 

fixed length are called block ciphers. To avoid the repetition of blocks produced by encrypting the same 

plaintext block, alternative encryption modes could be used or an Initialization Vector (IV) can be used to 

encrypt the first block of the data. 

According to the 3GPP specification [1], Cipher Block Chaining (CBC) mode is used in ESP for 3G systems. 

This mode requires an IV to encrypt the first block and to randomize the process. The IV should be long 

enough that it will not be used twice in the encryption process with the same secret key. When manual 

keying is used, the secret key should be updated when all the possible IV values have been used. When IKE 

is used, a new SA will be negotiated once the Sequence number is close to an overflow. The use of CBC 

mode for encryption algorithm with IPsec ESP protocol is specified in [40]. 

According to Section 5.3.3 of the 3GPP specification [1], the encryption algorithms that must be supported 

are DES-CBC, TDES-CBC, and AES-CBC 128 bit. 

2.2.5.1 DES 

The Data Encryption Standard (DES) is a cryptographic algorithm selected by NIST as an official Federal 

Information Processing Standard (FIPS) [41] in 1976. DES can nowadays be easily broken since the 56-bit 

key length is too small [42], therefore it is no longer considered to be sufficiently cryptographic. The use of 

DES in CBC mode within ESP is specified in [6]. 

2.2.5.2 TDES 

Triple DES (TDES) is a cipher derived from DES. It encrypts a plaintext block through DES three times and 

its key length could be 112 or 168 bit. The EEE mode is implemented by encrypting a block using DES three 
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times. The EDE mode is implemented by encrypting, decrypting and finally encrypting a block using DES. 

The use of TDES in CBC mode within ESP is specified in [43]. 

2.2.5.3 AES 

The Advanced Encryption Standard (AES), also known as Rijndael, is a block cipher adopted as a Federal 

Information Processing Standard by NIST  [44]. It has a variable key size of 128, 192, or 256 bits and a 

block size of 128 bits. The encryption process is done by iterating 12-14 encryption rounds, depending on the 

key size. The only successful attack against AES is side channel attacks: what is attacked is not the 

underlying cipher but the implementation of the cipher on the system, which leaks some data. Daniel 

Bernstein performed a cache timing attack using chosen cipher text and cache timing characteristics to 

calculate the correct key [45]. The use of AES within ESP is specified in [46] (for AES-CBC) and [47] (for 

AES-CTR). 

2.2.6 Key Management 

2.2.6.1 IKE 

Internet Key Exchange (IKE) protocol [10] is an automated key management protocol used to set up a SA in 

the IPsec protocol suite. IKE is built upon the Oakley protocol, a key-agreement protocol based on Diffie-

Hellman key exchange, allowing authenticated parties to set up a shared session secret, and to subsequently 

derive cryptographic keys. Mutual authentication of the communicating hosts is provided using public key 

techniques or a pre-shared key. 

2.2.6.2 Manual Keying 

Manual keying is the process of manually configuring keys and security associations on each host. Manual 

keying can be used in small static environments, but it is not advisable for network with many hosts, due to 

configuration and re-keying limitation. In our project manual keying is used because the Ericsson IPsec 

system is currently in development and no automatic key management protocol has been implemented yet. 

2.2.7 Implementations and Architectures 

IPsec can be implemented in a host or in a router. Host-implementation is the most flexible solution to 

provide end-to-end protection between a pair of devices in a network. However, IPsec need to be configured 

on each of them. Router-implementation (in this case the routers are also called a Security Gateway) is 

mainly used in tunnel mode to create a VPN, but can also be used in transport mode if the router is the final 

destination. The latter implementation is recommended if the network consists of many clients, to avoid 

IPsec configuration on each client, but leaving the connection between routers and local hosts unprotected by 

IPsec. 

In our project a router-implementation using tunnel mode is used, as specified in Section 4.5 and Section 

5.3.2 of the 3GPP specification [1]. Three different IPsec architectures are defined in RFC 2401 (The term 

“implementation” is used instead of “architecture” in the documentation): 
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• Integrated architecture: integrates IPsec protocols and capabilities directly into IP. This is the most 

elegant solution since no hardware or architectural layer has to be changed or reconfigured. IPv6 

integrates IPsec as a mandatory part and the use is optional; while IPv4 requires making changes to 

the IP implementation on each device 

• Bump In The Stack (BITS) architecture: IPsec is implemented as separate architectural layer 

between IP and the data link layer and adds security protection to datagrams created by the IP layer. 

This approach is appropriate for use with legacy systems and used for IPv4 hosts 

• Bump In The Wire (BITW) architecture: an outboard crypto processor is used to provide IPsec 

services. This architecture allows non-IPsec compliant routers to provide IPsec services to the local 

hosts 

Since IPsec is based on cryptographic computation, an architecture implementing IPsec has to supply the 

computing power for cryptographic algorithms. The current generation of network processors provides the 

computational capacity for IPsec, and a dedicated fast connection is used in order to offload the processing 

of memory expensive computation (look-ups for SA, encryption, and so on). In our project the BITW 

architecture is used since IPsec block is used for IPsec processing in the Ericsson Ethernet Interface  board, 

see Section 1.3. 

2.3 Related work 

For commercial implementation of IPsec, the common way to warn users about a system’s vulnerabilities is 

issuing a security advisory. Common Vulnerabilities and Exposures (CVE) [48] is a list of possible known 

security vulnerabilities and exposures, each of them identified by a standard name called CVE Identifier. 

Therefore, for CVE compliant IPsec implementation, the solution to remediate a problem can be searched for 

in the CVE databases. If an entry in the database matches the CVE Identifier, then the problem can be easily 

solved.      

In case of proprietary implementations, an attack on the system must be detected in order to alert the 

operator, who can take manual actions, e.g., applying filters to discard attack traffic and neutralize the effects 

of these attacks.  

Instead of taking manual action, a better solution would be to automate the process. VPNshield [49]  is a 

prototype for protecting edge networks and detecting denial of service attacks, thus enabling continuous 

system operation. This product provides, as stated in [50], automated attack detection and a response 

mechanism to enable uninterrupted VPN service, automatic installation of filters to quickly eliminate the 

attack traffic. Currently, there is no version of this available as a commercial product.  

In Mika Müller’s master thesis, entitled “Analysis tool for studying IP security Denial of Service resistance” 

[51], DoS attacks against IPSec’s IKE protocol are examined. The resistance of different IKE 

implementations were tested and evaluated. This thesis will likely be relevant to Ericsson and others who 

carry on the work begun in this thesis but it does not cover the IPsec protocol itself. 

Ari Muittari’s master thesis, entitled “Internet Key Exchange (IKE) protocol vulnerability risks”, [52] 

examines vulnerabilities and possible ways to attack IKE version 1, reporting on experiments and the tools 

used to perform these attacks.  
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In Matti Järvinen’s master thesis, entitled “PKI Requirements for IPsec” [53], the PKI and IKE protocol are 

investigated, to define the interface between IKE and PKI and enable a certificate-based authentication in 

IKE implementation. 

“Attacking the IPsec Standards in Encryption-only Configuration” [54] show that some attacks against 

encryption-only IPsec configuration can be performed, even if the IPsec configurations reflects RFCs (2401-

2411 or 4301-4309) and does proper padding checks. They tested their attacks on different open-source 

IPsec implementation and report the success of the attacks on the OpenSolaris implementation. They also 

point out the need for more precise prescriptions of how to handle security-sensitive issues, instead of just 

warning the IPsec manager on performing checks that, if badly implemented, could make the IPsec 

implementation vulnerable to old attacks (i.e. Bellovin’s attacks – see Sections 3.2 and 4.4.1).  

The website of Arnold K. L. Yau, [55], a doctoral student of prof. Kenneth G. Paterson at University of 

London. This website contains links to both theoretical papers and attacks on IPsec, as well as articles on 

several different IPsec implementations.  

Henrik Dikvall’s master thesis “IPsec in hardware”, [56], discusses how the IPsec protocol can be 

implemented efficiently in hardware, and in particular in a network switch, to make it acts as a security 

gateway. The thesis is motivated by the need to run IPsec on application specific hardware at “wire-speed”, 

instead of as software on common CPU, because of the demanding computations needed. 
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3 CRITICISM AGAINST AND WEAKNESSES IN IPSEC 

The IPsec protocol [2] has been criticized for being too complex. It tries to support many different situations 

with different options, which makes it hard to analyze its security thoroughly. There are two different modes 

that can be applied to each of the two security protocols, leading to four possible situations: ESP tunnel 

mode, ESP transport mode, AH tunnel mode, and AH transport mode. Add to that the possibility to choose 

from a number of encryption and authentication algorithms in different combinations. ESP mode must also 

support no encryption mode (NULL Encryption algorithm) to provide authentication and integrity without 

confidentiality and no authentication mode, which both could be used for debugging/testing. 

This extensive variety of configurations makes IPsec hard to overview. Network administrators with limited 

knowledge in cryptography might find it difficult to configure an IPsec network in a secure way. Security 

experts have shown that certain security configurations make IPsec vulnerable and in some cases useless, as 

shown later in Section 4.  

3.1 Ferguson and Schneier evaluation 

Cryptography researchers Niels Ferguson and Bruce Schneier published a lengthy evaluation of IPsec [57] in 

1999. The writers point out several weaknesses in the protocol and blame the complexity of the protocol on 

the way IPsec was developed, through a standardization committee. Too many options and too much 

flexibility was a side effect, often resulting in several ways of doing the same or similar things. At the end of 

the development process, nobody seems satisfied with the results.  A better solution would be, according to 

the writers, to organize a contest similar to the one organized by NIST for the development of the AES 

algorithm.  

IPsec documentation is also criticized for being hard to read and missing important sections in the RFCs, 

e.g., rationale and overview section. It is pointed out that the ISAKMP specification [9] contains errors, 

contradictions, and is missing essential explanations.  

The writers question the need of having a separate transport mode and see it as a subset of the tunnel mode. 

Tunnel mode provides the same services as transport mode, and the writers recommend the elimination of 

the transport mode.  The difference between the ESP protocol and AH protocol is also discussed. While the 

AH protocol authenticates more data than ESP, i.e. the outer IP header in tunnel mode, since ESP could 

authenticate the entire packet payload including the inner IP header in tunnel mode, this should be sufficient 

to convince the recipient that the packet was sent by someone in possession of the authentication key. There 

is no real explanation in the IPsec documentation, why the IP header should be authenticated, since IP is only 

used to transport the packet from one destination to another.  Therefore, the writers recommend the 

elimination of the AH protocol. 

The ESP specification [7] states that authentication is optional. This enables the configuration of encryption 

with no authentication, which makes IPsec vulnerable to very serious attacks as described in Section 4.4. The 

writers recommend that authentication should always be used, but that encryption should be optional. The 

Security Associations are also discussed. Recall that each SA is unidirectional, thus to be able to send data 

between two IP end-points, two SAs need to be negotiated. If encryption is provided by ESP and 

authentication by AH, then a total of four SAs must be negotiated. However, the need to be able to send data 

in one direction is unusual and a bidirectional SA would reduce the number of SAs required by the half and 
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reduces the SA negotiation setup exchange. Of course this latter point is irrelevant in the case of manual 

keying, since the SAs are statically configured. 

Ferguson and Schneier [57] point out that IPsec ICMP processing is unclearly documented. Specifically, the 

Security Architecture for IP [2], Section 6, states that unauthenticated ICMP messages should be discarded 

since they could be used in a DoS attack. Since IPsec packets may traverse through routers not implementing 

IPsec and hence incapable of providing IPsec authentication, these ICMP messages would be discarded, and 

a critical function of IP would be lost. Local security policy determines if an IPsec implementation should 

reject or accept unauthenticated ICMP traffic. Section 6 in RFC 2401 [2] states the following “Thus it MUST 

be possible to configure an IPsec implementation to accept or reject (router) ICMP traffic as per local 

security policy.”. For instance, Microsoft’s Windows 2000 Server IPsec implementation allows the user to 

configure an IPsec filter list per policy [58]. 

3.2 Probable plaintext in IPsec  

Steven M. Bellovin published an article about probable plaintext attacks [59] against encryption used in 

IPsec in ESP tunnel mode. These attacks show how traffic could be used in cryptanalysis, providing a fair 

amount of probable plaintext to the attacker.  

An attacker starts with prediction about certain properties of the encrypted packets. Bellovin states that 

measurements have shown that 30-40% of network packet traffic [60] [61] is 40-byte TCP ACK-packets. If 

random padding is not used, analysis of packet length distribution would yield sufficient information to 

probably suggest the type of an encrypted packet. The attacker starts analyzing the positions of bits in the 

encrypted packet. 

3.2.1 Probable Plaintext in the IP Header 

In tunnel mode, the first part of the encrypted ESP payload is the IP header of the original datagram (IPv4). 

Since the position of inner IP header fields are known [28], only the guessed values of the fields will be 

given (see Figure 11). 

The Version number is always 4 for IPv4 and the Header Length of the packet is mostly 5, followed by 

ToS/DiffServ field which generally is 10. From the length of the packet, the Total Length field could be 

determined and in case of TCP ACK packet, the value should be 28. If random padding is not used, traffic 

analysis could be used to determine the Total Length field value.  Prediction of these fields results in 32 bits 

of probable plaintext.  

We proceed by looking at values which could be guessed with some certainty.  The Flags field and the 

Fragment offset field are generally set to zero. Protocol field is 6 if TCP is used as transport protocol or 11 

for UDP. In case the attacker has some knowledge about the distance between the packet sender and 

recipient, the high order bits of the TTL field could also be guessed. 

The rest of the packet header is the source and destination address fields. Assuming that the Options field is 

not used, then, through traffic analysis, a TCP ACK packet could be chosen for analysis. There are several 

scenarios for determining the address fields. First, if an ESP tunnel mode connection is established between a 

host and a gateway, either the Source Address or Destination Address field could be known. Since the IP 

address could easily be known for a host, this knowledge gives an additional 32 bit of plaintext. Secondly, if 
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an ESP tunnel mode connection is used between two hosts, then both the Source Address and Destination 

Address are known, giving 64 bits of plaintext.  Alternatively, when we have an ESP tunnel mode connection 

between two gateways, 16-24 of most significant bits of the Source and Destination Addresses could be 

guessed. 

3.2.2 Probable Plaintext in the TCP header and UDP header 

Bellovin continues analyzing IPsec ESP in details, and follows the same methodology as used in the previous 

section. Traffic analysis helps us to identify encrypted TCP packets among the rest of packet traffic. Bellovin 

starts by identifying and guessing values of TCP header fields, the Source Port and Destination Port field 

could be considered random, but Bellovin claims in Section 6 in [59] that these values could be deduced 

from the traffic characteristics, giving an additional 16 bits of probable plaintext. Sequence �umber should 

also be considered as random, but in certain cases the value could be predicted [62]. The Acknowledgment 

�umber is the value of Sequence �umber in case an acknowledgment packet is sent back. However, if the 

initial SYN packet sent by the client to open the connection could be identified, the Acknowledgment 

�umber field is zeroed in this specific case, giving 32 bit of plaintext. Bellovin claims in Section 4.2 of [59], 

that some values of the Flags, Window, and Urgent Pointer field could be predicted. These predictions 

would give a total of 88 bits with some uncertainty of probable plaintext. If a UDP header is analyzed, 

Bellovin claims in Section 4.3 of [59] that 28 bits of probable plaintext can be guessed.  

IPsec uses padding in different cases: to pad encryption data to cipher block size (ESP) and align the packet 

to a 4-byte word boundary. Padding could be used to provide partial traffic flow confidentiality. Since IPsec 

ESP padding (0-255 bytes) is added at the end of the data payload, the positions of the different fields 

mentioned are known and the padding does not obscure the identification. 
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4 ATTACKS AGAINST IPSEC 

In this section, attacks against IPsec protocol in general will be reviewed. The attacks are not theoretical but 

proof of concepts has been implemented in most cases. At the end of Section 4 a conclusion of the effects 

and risks of these attacks against the IPsec configuration used in this thesis work is included. 

4.1 Replay attack 

IPsec’s Encapsulating Security Payload [7] and IPsec’s Authentication Header protocol [3] require the anti-

replay service to be disabled, if manual keying is used. The explanation in Section 5 in both [7] and [3] states 

the following: 

 “If the key used to compute an ICV is manually distributed, correct provision of the anti-replay service 

would require correct maintenance of the counter state at the sender, until the key is replaced, and there 

likely would be no automated recovery provision if counter overflow were imminent. ” 

Ferguson and Schneier [57] gives a scenario of a possible attack if the anti-replay service is turned off.  

Suppose that both an AH transport mode SA (denoted SAAH) and an ESP transport mode SA (denoted 

SAESP1) have been negotiated. Now a tunnel is established providing both confidentiality through SAESP1 and 

authentication through SAAH , but no anti-replay protection is enabled. After the data has been transmitted, 

SAESP1 is deleted from the SAD but SAAH is kept.   

Later a new ESP transport mode SA is negotiated, denoted SAESP2 , and the user chooses the same SPI value 

for SAESP2 as used for SAESP1. The attacker now replays packets used from the first exchange. The receiver 

authenticates the packets through SAAH , and finds the packets valid. The receiver proceeds to decrypt the 

packets, but the data has been encrypted by SAESP1 which probably garbles the original data. The receiver 

believes that the traffic is authentic and presents the decrypted data, garbled data, to the application with 

unknown consequences. 

This situation could have been avoided by authenticating the data and then encrypting it. In case several SAs 

are used for IPsec processing, all the related SAs should be deleted when not needed anymore. The SPI 

number should also be different each time a SA is created, a counter would be suitable for this purpose. Also, 

manual keying has its limitations in busy and larger networks, although it is easier to administer in a small 

scale network - but where the threshold of shifting to automatic keying is - lies outside the scope of this 

thesis.  

4.2 CPU overload DoS attack 

One of the steps in the IPsec inbound processing, is packet authentication verification, a moderately 

computational costly process. Section 5.2, in RFC 2401 [2] explains the steps taken when an incoming IPsec 

packet is processed. An attacker could misuse the MAC verification process to launch a Denial of Service 

attack against an IPsec endpoint by sending a large number of bogus IPsec packets to the IPsec endpoint.  

Depending on the processing capacity of the system, the vulnerability for this kind of Denial of Service 

attack is obvious. Both ESP and AH protocols are vulnerable to such an attack, and an IPsec endpoint cannot 

distinguish between legal and illegal packets until it performs computation. Even if anti-replay service is 
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applied, packets could be sent with correct sequence numbers. Recall that the sequence number field could 

be known to an attacker, because the sequence number, both in AH or ESP processed packet is sent in clear 

text and the value is increased monotonically.  Therefore the receiving endpoint, will accept the sequence 

number value, rendering the anti-replay service useless in this case, and forwarding the packet for 

authentication processing. 

Touch and Yang published a paper regarding this problem [63]. The authors published their experiment 

measurements about throughput reduction when an IPsec endpoint is attacked. The paper handles three types 

of attacks.  Alg stands for Algorithm:  

• Alg-SPI, an attacker sending spoofed IPsec packets with incorrect IPsec SPI value 

• Alg-key, an attacker sending spoofed IPsec packets with correct IPsec SPI value but encrypted with 

incorrect key 

• Alg-OK, an attacker sending spoofed IPsec packets with correct IPsec SPI value and processed with 

the correct key 

The attacks in the experiment were conducted against four different IPsec configurations, IPsec HMAC MD5 

authenticated transport mode, IPsec HMAC SHA1 authenticated transport mode, DES encrypted IPsec 

transport mode, and TDES encrypted IPsec transport mode.   

The paper shows that an attacker is able to reduce IPsec authenticated traffic throughput by 20% with Alg-

SPI attack, 40% with Alg-key attack, and with 50% with the Alg-OK attack (see Figure 4 in [63]). In case of 

attacks against IPsec encrypted traffic, the throughput reduction was similar to the previous results, but the 

Alg-key attack caused a reduction of about 50% (see Figure 5 in [63]).  

 

4.3 Sliding Window Attack 

The IPsec anti-replay service is implemented through a sliding window. The window size must be a 

minimum of 32 packets long, but can also be larger, e.g. 64 or 128 packets long or even longer. All packets 

sent with sequence number falling to the left of the sliding window (low values) are automatically dropped. 

The same applies to packets with sequence number within in the window, but marked as already received. 

ESP RFC 2406, Section 3.4.3, states the following: 

“All ESP implementations MUST support the anti-replay service, though its use may be enabled or disabled 

by the receiver on a per-SA basis. This service MUST �OT be enabled unless the authentication service also 

is enabled for the SA, since otherwise the Sequence �umber field has not been integrity protected.” 

Since the mandatory simultaneous use of the anti-replay service and authentication service is a configuration 

matter, IPsec is vulnerable for misconfiguration errors by system administrators. The vast number of 

different settings of modes, protocols, and other security settings might lead to weak security configurations. 

This issue was pointed out by Ferguson and Schneier in Section 3.1 in [57].  The IPsec documentation states 

that the implementation of the anti-replay sliding window is a local matter, but requires packets to be 

authenticated before updating the window.  Paterson and Yau [64] have previously explained weaknesses of 

unauthenticated ESP tunnel mode packets encrypted in CBC mode. The same technique and configuration 

used by Paterson and Yau, would help an attacker to change the Sequence �umber to the desired value.  
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Liang and Muradyan explain in Appendix A of [65] that the anti-replay sliding window is moved to the right 

once a packet with a Sequence �umber higher than the sliding window´s right edge arrives. If the update is 

simply made by shifting one step to the right, an attacker could send several packets with a high Sequence 

�umber which will update the sliding window far to the right. This will cause incoming legitimate packets to 

be labeled as old or replayed, and therefore to be dropped. This would cause a total IPsec traffic stop and a 

Denial of Service situation. If the sliding window gets updated to the position of the incoming packet´s 

Sequence �umber, a single packet with a very high Sequence �umber is sufficient for a Denial of Service 

attack against the IPsec endpoint. Since the packet would be updated to the far right, no legitimate packet 

would be accepted. Liang and Muradyan warn about this situation and point out that the sliding window 

should not be updated until the packet passes an acceptance test. There is no explanation about what a 

suitable acceptance test is, but probably authentication verification is meant. Since the 3GPP specification 

requires that ESP mode with authentication must be used, this class of attack will not succeed in this 

configuration. 

4.4 Attacks against unauthenticated ESP traffic in CBC mode 

4.4.1 Bellovin’s attack  

Bellovin published an article [59] about an attack which defeats a specific configuration of IPsec encryption. 

To succeed with the attack there are some prerequisites: IPsec ESP without authentication is used and for 

encryption CBC mode [40] [6] [46] is applied. CBC encryption mode is vulnerable to a bit-flipping attack, 

see Section 2.3 in [64], which enables an attacker to introduce controlled changes to the decrypted cipher 

text. In this attack, the attacker needs to be able to send packets through the same IPsec gateway and should 

be able to capture, delete, and modify packets. 

The attack works as following: Eve, denoted E, wants to read the secret sent by Alice, denoted A, to Bob, 

denoted B (see Figure 19). Therefore E captures the packet sent from A to B, denoted PA.  E also sends an 

UDP packet through the same IPsec connection and captures the packet after it has been encrypted, denoted 

PE1. Now E cuts out the encrypted TCP header and the encrypted secret from PA. E also cuts out the IP 

header, ESP header and encrypted UDP header from his first packet PE1 and constructs a new IPsec packet. 

E sends PE2 through the IPsec tunnel and the receiving gateway will start decrypting the data. This will 

probably cause a decryption error in the first cipher block, the TCP header of A’s original packet, PA., but 

because of the self healing property of CBC mode3, the receiving gateway will proceed and correctly decrypt 

the rest of packet. Since the UDP header of PE2 is constructed by E, the decrypted packet could be sent to an 

IP address controlled by E. Authentication of IPsec packets stops this attack. 

                                                      

3 If one block of ciphertext is altered, the error propagates for at most two blocks. 
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Figure 19: Modification of an IPsec packet in Bellovin’s attack. 

4.4.2 Paterson’s and Yau’s attack  

Paterson and Yau published a paper [64] about serious attacks against IPsec that would enable an attacker to 

decrypt IPsec traffic due to certain configurations. Their research is a further development of Bellovin´s 

attack [66]. A proof of concept was implemented and vulnerability warnings were issued worldwide 

afterward [67] [68]. There were several factors that made the attacks successful: the optional use of 

encryption without authentication, the use of CBC encryption mode, faulty IPsec inbound processing 

implementation, and some properties of an ICMP packet reply. 

They presented three different attacks that could be launched: attacks based on destination address rewriting, 

attacks based on IP options processing, and attacks based on protocol field manipulation. The general ideas 

and methods of the attack will be described, for detailed information we refer to [64]. 

An assumption to succeed with the attack is that no security policy check is made after IPsec inbound 

processing for the inner IP header.  However, RFC 2401 mandates that an IPsec implementation should 

consult the SPD after IPsec processing. This faulty IPsec implementation existed in Linux kernel release 

2.6.8.1. 

4.4.2.1 Attacks based on destination address rewriting 

There are two versions of the attack, a 64-bit cipher block and 128-bit cipher block version. Only the 64-bit 

version will be described in this brief introduction. The IPsec traffic is sent between two gateways running 

ESP in tunnel mode with CBC encryption mode. An assumption is made that the attacker knows the 

destination address of the inner IP packet (see Figure 11). Recall that bit flipping in CBC for the first cipher 

block introduces controlled changes in the decrypted second cipher block, see Section 2.3 in [64].  
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Phase 1 

An attacker captures a packet from the traffic he wants to decrypt (see Figure 20).  The first 32 bit of second 

cipher block C2 are masked with the attacker’s IP address and the assumed known destination address. This 

would cancel out the original IP destination address and the decrypted cipher block would then have the 

attacker’s IP address as destination address.  Also the first half of cipher block C2 (32 bit) are changed but to 

a random value.  A problem will arise once C2 is decrypted to plaintext, P2. The plaintext P2 will contain the 

TTL, Protocol, IP Header Checksum and Source Destination fields. Those values must 

be valid to successfully reroute the encapsulated IP packet to the desired IP address. The TTL value should 

be large enough to reach the destination. The Protocol Field could be arbitrary because the IP 

destination is controlled by the attacker who handles the IP processing. The IP Header Checksum must 

be valid to not be dropped, and Source Destination should be routable.  

 

Figure 20: Phase 1 modification of IPsec packet in Paterson’s and Yau’s attack [64] 4 

The attack succeeds once a decrypted IP packet is routed to the attacker’s IP address. The attacker repeats 

the alteration of the IPsec packet with different random value in C2 and injects it within the IPsec traffic until 

he succeeds. The paper shows that success probability for the attack for each new constructed IP packet with 

random value in the last 32 bit in C2 is roughly 2-17. The major obstacle in the attack is succeeding to decrypt 

a valid value for the IP Header Checksum field. The paper estimates that 2-16 is the success probability 

to get a valid Header Checksum field.  It is calculated that 217 iterations of the attack would give a 60% 

success probability. 

 

 

 

                                                      

4 This figure appears here with the permission of Professor Kenneth G. Paterson 
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Phase 2 

Once we succeed in phase 1, we reuse the information to be able to decrypt any data encrypted by the same 

SA. We chop the encrypted version (see  Figure 21) of IPsec packet arriving to our chosen destination 

address into several blocks C1 , C2  , C3  , … , Cq-2 , Cq-1 , Cq .  

The blocks C1 , C2 , C3  consists of the encrypted IP and ESP headers and the blocks Cq-2, Cq-1, Cq 

constitutes of the ESP tail. We insert (q-6) blocks of any cipher blocks encrypted by the same SA in-

between. Once our modified packet is reinjected in the IPsec traffic, it will get decrypted and sent to our 

chosen IP address. A lot of details have been omitted and the paper should be consulted for more detailed 

information. 

 

Figure 21: Phase 2 modification of IPsec packet in Paterson’s and Yau’s attack [64] 5 

4.4.2.2 Attacks based on IP options processing  

In the second attack outlined by Paterson and Yau, the Internet Control Message Protocol (ICMP) is used to 

defeat the IPsec encryption. 

Phase 1 

The attacker starts with modifying the Header Length field of the inner datagram of a captured IPsec 

packet (Figure 20) to a value higher than 5 by flipping a few bits, and then randomizing the last 32 bytes of 

C2 .  The modified packet is resent to the IPsec gateway. 

Once the inner datagram is processed by the IPsec gateway, the first bits of the IP payload will be interpreted 

as IP options bytes. Then with a high probability, an ICMP “parameter problem” error message would 

be generated.  The ICMP message will contain the IP header of the inner datagram and segments of the 

payload. If an attacker is able to capture the ICMP message, he will be able to obtain plaintext information 

from the IPsec.  

Randomizing the last 32 bytes of C2 , will probably render in incorrect decrypted IP header values for, TTL, 

protocol, header checksum and source address, and the packet would probably be dropped 

                                                      

5 This figure appears here with the permission of Professor Kenneth G. Paterson 
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before any  IP Options processing takes place. This means that ICMP packets will rarely be generated. In 

case an ICMP message is generated, it will probably be routed to an unknown source address if ICMP traffic 

is allowed through IPsec gateway. The attacker is thought to be able to capture the traversing ICMP packet. 

Even though the mentioned difficulty with correct header checksum, iterating the attack with new random 

value in the C2 sufficiently often will achieve a sufficient success rate, as proved in the paper.  

Phase 2 

Once an ICMP has been captured, the attacker would be able to capture about 64 bits of IPsec payload 

plaintext. The attacker uses the same header causing the ICMP packet generation but inserting the chosen 

cipher blocks after the ESP payload header. The attacker will in this way receive decrypted cipher blocks 

through ICMP packet. 

4.4.2.3 Attacks based on protocol field manipulation 

This attack is carried out by changing the value of the Protocol field in the inner IP header, through bit-

flipping, to one that is not supported by the end host receiving the inner datagram. This action will generate 

an ICMP “protocol unreachable” error message with the same properties as in the previous attack, Section 

4.4.2.2, containing parts of the decrypted payload. The ICMP packet will in this case be generated by the end 

host, not by the security gateway.  To succeed with the attack, the source address must be changed to be 

routed back to the attacker. The header checksum must also be correct in order to not be dropped.  The same 

iteration and block cipher copy-and-paste techniques as used in the previous attack, applies also here. For 

more detailed information, see Section 5 in [64]. 

4.5 IPsec attacks summary 

The attacks mentioned earlier pose a serious threat against some IPsec configurations. In this thesis work, 

ESP tunnel mode with authentication is used as specified in the 3GPP specification TS 33.210 [1].   

The replay attack described in Section 4.1 will not work because AH is not used to provide authentication, 

but rather ESP is. The same ESP SA will provide both authentication and encryption. Also, once a new SA is 

created, a new SPI number must be given which preferably has not been used recently. Remember, the SPI 

field is 32 bit long. According to the RFC as explained in the section, anti replay should be turned off if 

manual keying is used. The solution with manual keying is temporary and automatic key management will 

be used in the future. The attack is not a threat. However, if anti replay is turned off, the system is 
vulnerable to “regular” replay attacks, i.e., resending captured packets at later stage. 

The CPU overload DoS attack described in the Section 4.2 is a real threat to some IPsec architectures. In this 

work, BITW IPsec architecture is used, i.e., IPsec processing is done by a dedicated hardware which works 

on wire speed and the attack will not work. This attack poses a threat in case the IPsec processing is done by 

software on a multipurpose CPU. 

The Sliding Window Attack described in Section 4.3 works only if anti-replay is turned off. The temporary 

solution with manual keying should avoid anti-replay protection. If anti-replay is not used, this attack is a 

threat. However, since automatic key management and anti-replay protection will be used this attack is not a 

threat. 
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The attacks against unauthenticated ESP traffic in CBC mode described in Section 4.4 do not pose a threat 

against the IPsec configuration used in this thesis. The 3GPP specification [1] requires authentication to be 

used and the attacks would fail in that case. It is crucial to have authentication protection, since such attacks 

are among the most serious attacks against IPsec. A proof of concept has been implemented, which led to 

issuance of worldwide warnings about the risks of such attacks. 

In addition to those attacks mentioned above, an attacker might make use of program specific 

implementation vulnerabilities to attack a system. If an IPsec gateway generates log files and no restriction is 

placed on the volume of these log files, an attacker might try to generate large amounts of log data to use all 

available storage space or to exhaust the system resources in some way. An attacker might also use the 

fragmentation properties of IP to force the discard of legitimate IPsec packets. By sending fake IPsec packet 

fragments, the fragments will be saved in the fragmentation reassembly memory area, which at some point 

will overflow which will might lead to legitimate IPsec packets being discarded.  
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5 METHOD  

IPsec packets might be modified during transport because of natural occurring transmission errors. On an 

1000BASE-T/1000BASE-X Ethernet link as our incoming data will be received on, a 32 bit CRC (Cyclic 

Redundancy Check) will be able to detect 1-2-32 ≈ 99.99999998 % of all errors [69]. If we have 300 Mb/s 

ESP traffic with SHA-1/AES-CBC in tunnel mode, assuming we sent the maximum amount of data possible 

in each Ethernet frame, i.e., 1500 bytes, we will receive around 25000  Ethernet packets/s. The probability of 

getting a bit error in a coaxial cable is 10-9 and fiber optics is 10-12 [70]. If we make the unrealistic 

assumption that every Ethernet frame we receive contains a random error, the time until we receive an 

incorrect Ethernet frame with a correct CRC is:  

hours 48 seconds 171799
225000

1
32

≈≈

×
−

 

This shows that it is very unlikely that a transmission error will corrupt an IPsec packet, but a hardware 

failure could generate incorrect packets with correct CRC values. A malfunctioning switch might corrupt a 

packet before adding the CRC. The receiver will not detect such errors by verifying the CRC, but hopefully 

these errors will be detected in later stages of the packet processing. A third party might also intentionally 

modify IPsec packets in an effort to attack a system or to gain information. These modifications will cause 

the IPsec packet to fail probably authentication (or at later checks).  

Therefore it is important to notice that some failures will occur for reasons other than an attack. Hence it 

is important to look in detail at both the rate and number of such failures and to exploit other information to 

determine if there really is an attack in progress. 

The IPsec configuration used in this project uses ESP Tunnel Mode with authentication protection as 

specified in Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 in the 3GPP specification TS 33.210 [1].  Figure 22 shows 

an overview of the logical setup used in this thesis for detecting intrusions against IPsec. The source labeled 

Traffic generator sends IPsec packets to the Traffic destination. The network processor on 

the Ericsson Ethernet Interface board processes the received packets through the IPsec block before 

forwarding them to the Traffic destination. If a modified packet is processed, the IPsec 

processing will fail and the network processor will forward the modified IPsec packet together with the error 

codes to the Analyzer.  
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Figure 22: A logical overview of the Intrusion Detection Setup for the Ericsson Ethernet Interface Board 

In this project, the classification engine in the network processor was modified to send the interesting parts 

of the modified IPsec packets (see Table 8) to the Analyzer for further analysis, instead of simply 

discarding the packets. The encrypted payload of a modified IPsec packet is not interesting for our 

implementation of the Analyzer, since it will consume bandwidth in the network processor and it will not 

yield any further information for analysis. This project is divided in two main parts. Since the IPsec hardware 

and the software implementation are not ready yet at this date, a simulation of the NP in the Ericsson 

Ethernet Interface board will be used. In the first part of the project, steps 1, 2, and 3 (see Figure 22) of the 

data flow diagram are simulated using the LSI System Performance Analyzer (SPA) software (see Section 

5.2).  

The second part of the project will simulate the entire process, using an IPsec software implementation 

instead of hardware implementation. A second traffic generator (see Section 5.3.1) developed based upon the 

first phase, will be used to specify and simulate the data sent from the board to the Analyzer, and an IPsec 

stack implementation will be modified to simulate the behavior of the NP in the board. 

5.1 Different scenarios of IPsec processing 

In each case, the error codes generated by the NP could either be due to hardware failure/bad IPsec 

processing before sending to the Ericsson Ethernet Interface board, or an attacker. However, the knowledge 

about what type of failure occurs can be useful to investigate the possible reasons. In this section we explain 

the possible classes of failure and what resources the attacker needs to access to avoid detection.  
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Figure 23: The different steps for an incoming IPsec packet to traverse through an IPsec gateway 

Referring to the IPsec processing diagram in Figure 23, there can be the following types of failure: 

• SA lookup failure 

• IPsec processing failure 

• Security Policy violation 

The attacker is able to send a “correct” IPsec packet only when the packet is able to pass all checks. In the 

following discussion, we will refer to the letters in Figure 24 to identify the parts of the network the attacker 

can access.  

 

 

Figure 24: View of a network protected by two IPsec gateways 

5.1.1 SA lookup failure 

Detection of an SA lookup failure reveals that the attacker can inject packets at B (see Table 5).  However, in 

the first case, the attacker has no knowledge of valid SAs, but can only guess. Unless the attacker has 

guessed valid SA, a SA lookup failure will occur.   

In the second case the attacker is able also to sniff the packets at B, then the attacker could create a packet 

with a valid SA and avoid detection at this stage, but such a packet will most probability be detected at next 

stage, “IPsec processing failure”.  
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Table 5:  Attack scenarios during SA lookup failure 

Case 
Attacker’s 
capability 

Attack scenario 
Detection by 
Analyzer at 

this stage 

1 Inject packets at B 
Attacker injects a packet at B, trying to guess a 

valid SA. 
Yes 

2 
Inject packets at B 

Sniff packets at B 

Attacker sniffs the traffic at B and injects a 

packet with valid SA selectors value at B. 
No 

 

5.1.2 IPsec processing failure 

Detection of an IPsec processing failure reveals that the attacker can inject and sniff packets at B (see Table 

6). The attacker is able to pass the SA lookup step simply by sniffing the packets passing through B and 

looking at the SA selectors: Destination Address and IPsec Protocol (Protocol field) in the IP header, and SPI 

in the ESP header. The attacker needs only to read these fields, transmitted in plaintext, create a new packet 

with the correct selectors for a valid SA, and inject the packet. However, the attacker has no knowledge of 

the authentication key for the SA, therefore the packet will be discarded at the authentication verification 

step, causing an IPsec processing failure. 

 

Table 6: Attack scenarios during IPsec processing failure 

Case 
Attacker’s 
capability 

Attack scenario 
Detection by 
Analyzer at 

this stage 

1 
Inject packets at B 

Sniff packets at B 

The attacker sniffs the traffic at B and injects a 

packet with valid SA selectors at B but 

incorrect authentication data. 

Yes 

2 
Inject packets at A  

(Sniff packets at B) 

The attacker injects a plaintext packet at A, 

which will be encapsulated in an IPsec packet 

with correct authentication data. The attacker 

could also sniff the authenticated packet at B to 

gain information about the authentication key. 

No 
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5.1.3 Security policy violation 

The detection of a security policy violation reveals that the attacker can inject and sniff packets in A (see 

Table 7) and sniff packets in B (not necessary), but is unaware of the security policy set at the Security 

Gateway 2. By injecting packets at A, the attacker will have the packets IPsec processed by Security 

Gateway 1, since it shares the keys with Security Gateway 2. Therefore the packets will pass the 

authentication and decryption step.  The attacker could use this attack to gain information on the encryption 

key used for the SA, comparing the plaintext packets injected at A with the (same) encrypted packets, sniffed 

at B (if possible).  If the attacker is able to find the encryption key before detection and rekeying, he could 

decrypt protected traffic. Therefore, detection time and the time before rekeying must be configured properly 

in order to avoid this situation.  

Table 7: Attack scenarios during security policy violation 

Case 
Attacker’s 
capability 

Attack scenario 
Detection by 
Analyzer at 

this stage 

1 

Inject packets at A 

(Sniff packets at B) 

 

The attacker injects a plaintext packet in A, 

which will be encapsulated in an IPsec packet 

with correct authentication data. The attacker 

could also sniff the authenticated packet at B to 

compare cipher and plain text pairs for 

cryptanalysis. 

Yes 

2 

Sniff packets at A 

 Inject packets at A 

(Sniff packets at B) 

 

Attacker sniffs the traffic at A and injects a 

plaintext packet at A, which will be 

encapsulated in an IPsec packet with right 

authentication and will have the same selectors 

as the “normal” packets. The attacker could 

also sniff the authenticated packet at B to 

compare cipher and plain text pairs for 

cryptanalysis. 

No 

 

5.1.4 Correct IPsec packet 

To send a correct IPsec packet, the attacker needs to inject packets in A, and sniff packets in A. Assuming he 

is able to pass all the previous steps, in order to pass the security policy verification step, the attacker needs 

to eavesdrop the security policy selectors of packets  to be IPsec processed. Some of these selectors are the 

original source and destination addresses, and transport layer protocol, which, in case of tunnel mode, will be 

encrypted when the packet is processed by Security Gateway 1. Therefore, the attacker also needs to sniff the 

packets at A, intercept the security policy selectors, create a new packet with the correct selectors for a valid 

security policy, and inject the packet at A. Note that being able to sniff at C would also reveal which packets 

make it through all the way, hence it is possible to learn the correct security policy selector values. 
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5.2 LSI System Performance Analyzer 

The first part of the project is performed in a simulated environment. The LSI System Performance Analyzer 

(SPA) [71] version AG_NP-3.9.0.56, sample configuration file app3_ipsec_ipv4_lb.xml is used to 

simulate two IPsec gateways communicating, by looping back the data in the same IPsec gateway, 

loopback mode, see Figure 25.  

 

Figure 25: Screenshot of the LSI System Performance Analyzer 

The following steps are executed to simulate two IPsec gateways (SPA and sample configuration file 

specific): 

1. A traffic generator sends an IP packet to a destination through the IPsec gateway ( the APP340 

network processor (NP) and APP155 IPsec coprocessor) 

2. The packets are split into protocol data units (PDUs) of 64 bytes for internal routing within the 

network processor. 

3. The blocks of the IP packet are received at input port 2 in NP  

4. The blocks are passed to the classifier which executes FPL code to process the data in two passes:  

o In Pass 1, the blocks are identified and reassembled 

o In Pass 2, the IP packet is classified and a Destination ID (DID) is derived based on the 

Destination Address field in the IP header, to identify IPsec mode and protocol, and 
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on the Next Header field, to identify if inbound or outbound IPsec processing is 

necessary. Details of this DID are explained in Section 5.2.4 

5. The IP packet is passed to the NP’s Traffic Manager, which executes the Stream Editor  (SED) script 

(written in C-NP) linked with the chosen DID. The script prepends the  SPP Transform Internal 

Header to the packet for IPsec processing 

6. The IP packet is sent to the IPsec block through output port 4 

7. The IP packet is encrypted and authentication data is added (IP → IPsec) and the IPsec packet is 

sent back to NP input port 4  

8. The IPsec packet is classified in the NP and sent to loopback port 3 to simulate an incoming IPsec 

packet 

9. The incoming IPsec packet is received from input port 3 and classified as in steps 4 and 5 

10. The IPsec packet is sent to the  IPsec block through output port 4 

11. The IPsec packet is decrypted and authentication is verified (IPsec → IP) and the IP packet  is sent 

back to NP input port 4  

12. The IP packet is classified in the NP and sent to port 2 to its final destination 

5.2.1 Classification of modified IPsec packets 

As mentioned earlier, if a modified packet is processed by the IPsec block, only a non-fatal error will occur, 

since fatal errors only occur because of an incorrect SED script executed to add SPP processing header (see 

Section 7.3.1 in [72]). The IPsec block will prepend a result header to the IPsec packet (Figure 4) setting the 

relevant error bits (Figure 6). The Classification Engine (CE) is programmed in a language called Functional 

Programming Language (FPL). The CE FPL code checks the two most significant bits in the SPP result 

header that was appended to the IPsec packet. In our case, the CE FPL code has been modified such that if a 

non-fatal error occurs (i.e., the error bits are 01), see Table 1, then instead of discarding the packet, it should 

be sent to the Traffic Manager (TM). The traffic manager will in turn forward the packet to the output port, 

which will result in its being sent to the Analyzer. The CE sends the packet to the TM by executing the 

fTransmit() function [22], which is used to specify: 

 

 

Figure 26: Chart of fields in the fTransmit() function  
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Destination ID  the DID assigned to the IPsec packet points to the SED script to encapsulate this 

packet in an UDP packet destined to the Analyzer. See details in Section 5.2.4.  

PDU length  specifies the length of the packet sent from the CE to the TM. The PDU length is 

different depending on the error type generated. 

PDU offset  this field specifies the starting byte to read the PDU 

Information  this field can be used to pass information to the TM (see Figure 26). We have used 

this field to pass a counter value, which is used and updated in the FPL code of the 

CE. This value is copied into the Identification field of the IP header through 

the SED script executed in the TM  

Figure 27: Only the indicated data of the IPsec packet is sent from the Classification Engine to the Traffic Manager in case of an IPsec 
processing failure (E2 error packet) 

5.2.2 Traffic Management of modified IPsec packets 

Once classification is done, the TM receives the packet and encapsulates it in a UDP packet destined to the 

Analyzer. To do this a SED script is executed  which prepends an Ethernet header, IP header, UDP header, 

and Analyzer packet ID header to the portion of the packet sent from the CE to the TM, see Figure 28. The 

Analyzer packet ID header is used by the Analyzer to identify the type of packet received, see Table 8. 
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Figure 28: The prepended headers of the PDU sent to the Analyzer in case of an IPsec processing failure (E2 error packet) 
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Table 8: The different packet types sent to the Analyzer  

Analyzer 

ID  

Packet 
type 

Description 
UDP packet payload Payload size 

0x01 

E1 Error 

Packet 

Packet with SA lookup 

failure data  

Analyzer ID + IP 

header + ESP header 

1 + 20 + 8 = 29 

byte 

0x02 

E2 Error 

Packet 
Packet with IPsec 

processing failure data 

Analyzer ID + SPP 

Header + IP header + 

ESP header 

1 + 8 +20 + 8 = 

37 byte 

0x03 

E3 Error 

Packet 

Packet with IPsec 

violation data  

Analyzer ID + IP 

header  

1 + 20  = 21 byte 

0x04 

IPsec 

packet 
Packet with SA selectors 

of  sniffed IPsec packet 

Analyzer ID + IP 

destination address + 

ESP SPI number 

1 + 4 + 4  = 9 

byte 

 

The SED script must execute quickly and complete processing during two “global pulses”. “When writing a 

C-NP script, you must know how much time it takes to process a block and maintain line rate. In the Traffic 

Manager, this duration is called the global pulse and refers to the unit of processing time available for each 

of the processing units, or pipe stages. The global pulse is configurable. APP300 scripts must complete 

within 23 clocks (1 global pulse) for full line rate, except in the SED compute engine that can have up to 46 

clocks (2 global pulses) for full line rate due to its double compute engine structure”  (Section Compute 

Engine Overview, Compute Engine Timing in [73]). Our SED script completes all modifications in 38 

clocks. The script calculates the IP header checksum, but does not calculate a UDP checksum, it is simply set 

to zero, due to processing time limitations mentioned earlier. This is allowed because of the optional use of 

the UDP checksum field, as specified in [74]. All the values for the Ethernet header, IP header, and UDP 

header are known in advance and can be statically specified in the SED script, e.g.: 

• The Ethernet frame source MAC address (Ericsson Ethernet Interface board), and destination MAC 

Address (Analyzer) are known  

• The IP header checksum can be calculated in advance since all IP header values are known and fixed 

in value, e.g. source IP address (Ericsson Ethernet Interface  board), destination IP address 

(Analyzer), Protocol (IP), and packet length  

• The UDP header values are also known,  the source port (Ericsson Ethernet Interface board), 

destination port (Analyzer), and length are all fixed value;  and the checksum is zero since 

calculation of the UDP checksum is optional 
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5.2.3 Creating a SED Script in the SPA 

To be able to execute the necessary SED script, a SED script entity must be created in the SPA. Using the 

graphical user interface in the simulator we navigated to APP340E3 → RSP → SEDScripts and created a 

new SED script. This requires that we specify the id (SED script number) and file (location) values. 

5.2.4 Creating a DID in the SPA 

To create a DID entity in the SPA, we navigate to APP340E3 → RSP → DestinationIds and create a new 

DID. Figure 29 shows the different values the can be set. Here we will mention only the values of interest in 

this case: 

headerDelta specifies the number of bytes prepended to the PDU  

Id    specifies the ID number of the DID 

queueId specifies the queue which will be used in the TM. A queue has a priority and 

port ID  

sedScriptId  specifies the ID number of the SED script to be executed 

sedScriptParms sets the SED_param_blockin the SED register file map, see Appendix D. 

In this field we specify the Analyzer packet ID header value. The SED script 

will read this value from the SED register file map and write it into the 

prepended Analyzer packet ID header  
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Figure 29: Creating a Destination ID (DID) in the SPA 

5.3 Software IPsec stack implementation 

5.3.1 Traffic Generator 

To simulate different types of data used in both verification of the Analyzer’s functionality and used later for 

simulation, a traffic generator was developed. The traffic generator reads data in hexadecimal format from 

standard input or a file and sends UDP packets to the specified IP address and port number. The command 

usage is shown executing the traffic generator with –h flag.  In the data file, a user can specify, e.g., the 

payload, the number of packets to send of the specific payload format, and the time to wait before sending 

the next UDP packet. 
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Figure 30: Screenshot of the packet traffic generator executing 

5.3.2 Analyzer program 

As mentioned earlier, to simulate incoming packets as the one generated during the simulation part Section 

5.2, a traffic generator was developed Both the Analyzer program and traffic generator has been developed 

in  NetBSD 3.0.0 operating system environment and compiled by gcc version 3.3.3 (NetBSD 

nb3 20040520).  

5.3.2.1 The logic of the Analyzer 

The Analyzer has been designed around the concept of Signal to Noise ratio (S/N). Discarding erroneous 

packets at each stage of the IPsec processing (see Figure 23) can be compared to applying a filter to the 

incoming signal. The signal part of the ratio consists of the correctly processed IPsec packets, whereas the 

noise part consists of hardware failure/attack packets which generated errors. After passing a stage in the 

IPsec processing, the total S/N ratio for IPsec processing (see Figure 23) increases, since the incorrect 

packets detected at the previous stage have been discarded.  
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This motivates the use of a sliding window, to monitor IPsec traffic per each stage. However, the final alert 

decision should be based on combination of alerts from multiple-size sliding windows per stage, because the 

size of the sliding window will affect accuracy and detection time:  

Short sliding window   Advantage: shorter reaction time  

     Disadvantage: increased false positive rate    

Long sliding window        Advantage: decreased false positive rate 

     Disadvantage: longer reaction time 

In our prototype implementation of the Analyzer, two sliding windows per IPsec processing stage and per 

board (described in Section 5.1) will detect abnormalities by monitoring both the error and normal packets. 

A shorter sliding window SW1 (see Figure 31 and Figure 32) is implemented to shorten the detection time. A 

longer sliding window SW2 is implemented to have more data to analyze and is able to react more 

accurately. A scheme of alert situations is defined later on. 

 

Figure 31: An illustration of sliding window 1 to monitor E1 error packets 

 

Figure 32: An illustration of sliding window 1 and 2 implementation to monitor E1 error packets 

There is currently no statistics about IPsec failure rate using the actual Ericsson IPsec implementation. 

Therefore suitable sliding window sizes are not determined, but are easily configured through a configuration 

file. Board specific sliding windows will keep track of E1 and E3 errors whereas SA specific sliding 

windows will keep track of E2 errors. A SA is identified by the SPI, IPsec mode (ESP), and IP destination 

address (IPsec gateway). All these data are available per IPsec packet. 
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Table 9: The probabilities of different type of errors received from the board 

Error Packet 
Probability 

Value 
SA 

specific 

E1 Unknown No 

E2 Unknown Yes 

E3 Unknown No 

 

Every SW (sliding window) might generate two different threshold alerts. For instance SW1 might generate 

SW1 threshold 1 alert if number of error packets in sliding window 1 is higher than the allowed threshold 1. 

Threshold Alert 2 is set to be higher, representing a more serious situation than Threshold Alert 1. Table 10 

and Figure 33 illustrate the different cases when the Analyzer program should alert the operator. 

 

Table 10: The different cases when the Analyzer program need to alert the operator 

Sliding Window 1 Sliding Window 2 -ote 

Threshold 2 alert *  

Threshold 1 alert Threshold 1 alert  Only SW1 consults 

SW2 before alert 

* Threshold 2 alert  

(* = either -ormal situation, Threshold 1 alert or Threshold 2 alert) 
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Figure 33: Different sliding window alert cases (-o size or theshold value set, just for illustration) 

5.3.2.2 Executing the Analyzer 

The Analyzer starts by reading two configuration files located in the configuration folder at startup 

and configure the program accordingly. The program reads from the settings.cfg file the port to open 

for the listening socket and the threshold and size values for sliding windows 1 and 2, as shown in Figure 38. 

Since at this stage of the Ericsson IPsec implementation no statistics were available, therefore the setting of 

the appropriate variable values should be determined in future work. In the same folder the boards.cfg 

file is located and the Analyzer reads the number of boards to analyze, their IP addresses, and other data 

needed. The Analyzer also saves logs of the error packets in the Log folder. 

5.3.3 Monitoring IPsec traffic 

In order to update the sliding windows per SA, we need to keep track of the transmitted IPsec packets per 

SA. The idea is to mirror all the IPsec traffic to the Analyzer. The possible techniques are: 

• Port-mirroring, also called SPAN (Switch Port Analyzer) in Cisco terminology: the switch 

replicates packets on a port for monitoring. See the reference for different switch manufacturers 

[75]. 
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•  TAP (Test Access Port):  the tap sends traffic data to the monitoring device by splitting or 

regenerating the network signal, see [76]  

Due to port-mirroring limitations, e.g.. packet loss and switch resources impact, passive TAP is considered a 

better solution, as discussed in [77]. However, since a TAP is a passive device, it will not filter anything, and 

the Analyzer machine has to be physically connected to the TAP device. Since the Analyzer has to manage 

more than one board and the different boards will not be connected to the same network, a sensor per board 

could be used to filter the IPsec traffic out of all the traffic directed to the board, encapsulate the SA selectors 

in a UDP packet and sent it to the Analyzer. In this way the amount of traffic sent to the Analyzer is less than 

mirroring all the traffic for each board to the Analyzer: the only information needed is the Analyzer ID (1 

byte) and the SA selectors, Destination address (4 byte) and SPI (4 byte), encapsulated in an UDP packet 

(see Table 8).   

 

 

Figure 34: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using TAP  

 

Figure 35: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using port mirroring 
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5.3.4 The Sniffer 

In order to monitor incoming IPsec traffic and emulate the TAP and sensor, we modified the example code 

of sniffex.c Version 0.1.1 (Copyright (c) 2005 The Tcpdump Group), found at [78]. The 

program captures data on the network using libpcap library [79]. Our modified version reads the network 

traffic and sends the IPsec SA selectors (SPI and Destination) as UDP packets to the Analyzer as specified in 

Table 8 
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6 ANALYSIS 

6.1 Simulation in the LSI System Performance Analyzer 

6.1.1 Capturing IPsec packets 

To be able to modify IPsec packets for the simulation, network traffic containing IPsec traffic is dumped to a 

file through command line instructions, see Appendix A. The IPsec packet produced in the IPsec gateway 

simulation as described in Section 5.2 is used for later steps. 

6.1.2 Reinjecting modified IPsec packets 

Once the IPsec packet has been captured in the earlier steps, specific bits or field values can be modified. 

ESP SPI value, sequence number, and/or encrypted payload can be modified, which will generate an error 

when processed by the IPsec block. To generate error packets we ran some tests (see Appendix B), but we 

were not able to generate all the possible non-fatal errors, e.g. authentication failure, basic hash, TTL/HOP-

limit underflow (see Table 3), because of limitations in the SPA. Once the packet has been modified, the 

IPsec payload (ESP header + payload + ESP trailer) is reinjected into the simulator by specifying the IP 

payload in the traffic generator as shown in Figure 36. The IP header is constructed as follow: the 

Protocol value is set to 50 (ESP) to indicate inbound processing and the Destination IP address 

value is set to select the correct IPsec protocol and mode. In a real implementation, the selectors of the IP 

packet will be used to lookup the policy in the SPD.  
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Figure 36: Screenshot of IPsec reinjection in the SPA simulator 

6.1.3 Forwarding modified IPsec packets to the Analyzer 

Once the modified IPsec packet has been reinjected in the simulator, the network processor processes the 

incoming packet as usual. When the modified packet is sent to the IPsec block for IPsec processing, a non-

fatal error will occur during processing and the prepended SPP result header will indicate this error, see 

Figure 37. The IPsec block sends the error codes and IPsec packet to the network processor where and the 

CE assign it a DID (the DID created earlier in the simulator and specified in the CE FPL code). The DID 

selected (1” in this case) will forward the packet to the correct port by encapsulating the data into an UDP 

packet after executing the SED script described in Section 5.2.2. 
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Figure 37: Screenshot of a modified IPsec packet with an IPsec block error set in the SPP result header in the SPA 

6.2 Simulation using a software IPsec stack implementation 

The purpose of the simulation is to show the different classes of attack, the potential abilities of the attacker, 

and to provide a functional test of the Analyzer implementation. The simulation did not define any threshold 

values, since no statistics were provided and, without them, discussion about reasonable threshold values is 

not possible. Therefore, all the thresholds in the Analyzer were set to zero which will generate both threshold 

alerts (see Figure 33). 
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Figure 38: Screenshot of the startup of Analyzer  

The simulation required the following components: 

Fast IPsec modified Fast IPsec [80] is an implementation of IPsec, based on KAME [81], 

that can use cryptographic hardware devices whenever possible to 

carry out cryptographic operations, and consequently, to optimize the 

performance of IPsec. The Fast IPsec source code for NetBSD was 

modified to print a tag (ANALYZER_E[1,2,3]) in the system log file, 

when an E1, E2, or E3 failure occurs 
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Script to filter the logfile  tail –n0 –f /var/log/messages |  awk -f analyzer_case                

The scripts reads the last line of the logfile (option -n0 of tail) and 

sends a line on the pipe as soon as it is written to the file (option -f of 

tail). Awk receives the new line from the pipe and calls the 

analyzer_case script (Appendix E), where is specified in case the line 

contains ANALYZER_E[1,2,3], send the packet (see Table 8) using 

the traffic generator created earlier 

Traffic generator see Section 5.3.1 

Sniffer  see Section 5.3.4 

 

 

Figure 39: Logical configuration for simulation 

 

The simulation was performed on two machines (NetBSD 3.0.2 with Fast IPsec enabled), named Belkar and 

Elan. The lab configuration and the programs executed on Belkar and Elan are shown in Figure 41. To set up 

the IPsec tunnel between Belkar and Elan, the SAD and SPD had to be configured on both machines. A good 

tutorial on how to set up an IPsec VPN can be found at [82]. The setkey command is used to set up the SAs, 

security policy and keys. The commands to be executed by setkey can be specified in a scriptfile. Both 

Belkar and Elan have their own key configuration files, called setkey.conf, which can be found in Appendix 

C. The setkey.conf script is executed by the following command under both machines: 

/sbin/setkey –f /etc/setkey.conf 
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The content of the SAD can be shown executing the command: 

/sbin/setkey –D 

 

While the content of the SPD is dumped with: 

/sbin/setkey -DP 

 

After having configured the IPsec tunnel, we started the Analyzer, Sniffer, and the script to filter the logfile, 

monitoring the traffic with Tcpdump. To generate traffic from Belkar we executed the traffic generator. By 

monitoring the traffic with Tcpdump (version 3.8.3) we observed IPsec packets from Belkar to Elan, along 

with UDP packets (sniffer packets) from Elan to Belkar, as expected. 

 

Figure 40: Screenshot of Tcpdump trace of traffic between Belkar and Elan 
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Figure 41: Configuration of the hosts in the lab and the flow of datagrams (traffic on interface wm0) 

6.2.1 Simulation of attack at SA lookup phase 

In this case the attacker has to forge a fake IPsec packet. It can be done using Netdude [83] (Network Dump 

data Displayer and Editor), a tool that allows a user to modify all fields of a packet stored in a pcap file. The 

attacker only needs to set the destination address of Elan, set the protocol field in the IP header to be 50 

(ESP) and set the other fields of the packet. We forged a packet with Netdude (version 0.3.3-2.1), set SPI 

0x666 and saved it in a pcap file SA_lookup_failure_SPI_666. To reinject the packet we used Tcpreplay 

(version 2.3.5) [84], using the command:  

belkar# tcpreplay –I wm0  SA_lookup_failure_SPI_666 

 

Once we reinjected this packet, we received the SA lookup alerts on the Analyzer, since the only allowed 

SPI was 256 (0x100), as specified in the setkey.conf for Elan, therefore the Analyzer printed two alerts since 

the threshold was set to 0 for both sliding windows. 
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6.2.1.1 Screenshots of programs running on Elan during SA lookup attack simulation  

 

 

Figure 42: Screenshot of programs running on Elan during SA lookup attack simulation (Sniffer) 

 

Figure 43: Screenshot of programs running on Elan during SA lookup attack simulation (Script to filter logfile) 

 

Figure 44: Screenshot of programs running on Elan during SA lookup attack simulation (SPD) 
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Figure 45: Screenshot of programs running on Elan during SA lookup attack simulation (Tcpdump) 

6.2.1.2 Screenshots of programs running on Belkar during SA lookup attack simulation 

 

Figure 46: Screenshot of programs running on Belkar during SA lookup attack simulation (Analyzer) 
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Figure 47: Screenshot of programs running on Belkar during SA lookup attack simulation (Attacker) 

 

Figure 48: Screenshot of programs running on Belkar during SA lookup attack simulation (SAD and SPD) 

 

6.2.2 Simulation of attack at IPsec processing phase 

We captured some IPsec packets and stored them in a pcap file with the command: 

belkar# tcpdump dst 192.168.66.3 –w capture 

 

Then, we used Netdude to modify the (authenticated) payload of one of the sniffed packets, as shown in 

Figure 49. 
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Figure 

We restarted Analyzer, Sniffer, and script

belkar# tcpreplay –I wm0  IPsec_processing_failure_modified_payload

 

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication 

validation (see Section 6.2.2.1 and 

 

6.2.2.1 Screenshots of programs running on Elan during IPsec 

Figure 50: Screenshot of programs running on Elan during IPsec processing failure (SPD)

Modified data in the packet payload
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Figure 49: Screenshot of -etdude used for IPsec packet modification 

and script to filter the log file. Then we used Tcpreplay to reinject the packet:

I wm0  IPsec_processing_failure_modified_payload

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication 

and 6.2.2.2). 

Screenshots of programs running on Elan during IPsec processing failure

: Screenshot of programs running on Elan during IPsec processing failure (SPD)

Modified data in the packet payload 

 

: Screenshot of -etdude used for IPsec packet modification  

we used Tcpreplay to reinject the packet: 

I wm0  IPsec_processing_failure_modified_payload 

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication 

processing failure 

 

: Screenshot of programs running on Elan during IPsec processing failure (SPD) 
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Figure 51: Screenshot of programs running on Elan during IPsec processing failure (Script to filter logfile) 

 

Figure 52: Screenshot of programs running on Elan during IPsec processing failure (Sniffer) 
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Figure 53: Screenshot of programs running on Elan during IPsec processing failure (Tcpdump) 

6.2.2.2 Screenshots of programs running on Belkar during IPsec processing failure 

 

Figure 54: Screenshot of programs running on Belkar during IPsec processing failure (SPD and SAD) 
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Figure 55: Screenshot of programs running on Belkar during IPsec processing failure (Analyzer) 

 

Figure 56: Screenshot of programs running on Belkar during IPsec processing failure (Attacker) 

6.2.3 Simulation of attack at Security Policy verification phase 

Before simulating this attack we had to change the security policy to discard the incoming traffic. We first 

tried with non-IPsec traffic, by flushing the SPD on Belkar and Elan, and pinging from Belkar to Elan. As it 

is shown in Figure 57 and Figure 58, we received an ICMP Reply for each ICMP Request (marked in dotted 

line). Once we set up the security policy to discard traffic going out from Elan, we did not receive ICMP 

Reply packets anymore (marked in full line).  
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Figure 57: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy enforcement (SPD) 

 

Figure 58: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy enforcement (Tcpdump) 
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We set up the security policy on Belkar to encrypt the outgoing ICMP Request packet (Figure 60) and setting 

the security policy on Elan to discard the incoming traffic as earlier. In this case we noticed something 

strange: we observed ICMP Reply packets (Figure 59) which means the packets received from Elan were 

IPsec processed, but no SPD lookup was actually done and no security policy was checked. We discovered 

subsequently that this is a bug in NetBSD Fast IPsec implementation [85]. 

 

 

Figure 59: Tcpdump trace of the traffic on Belkar testing the faulty IPsec implementation on Elan 

 

Figure 60: SPD dump on Belkar testing the faulty IPsec implementation on Elan 
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To go on with the simulation of this type of attack, we changed the security policy on Elan to discard the 

ICMP reply (outgoing traffic), and we restarted Analyzer, Sniffer and script to filter the log file. To have a 

Security Policy violation we started to ping from Belkar to Elan, and we obtained the alert messages on the 

Analyzer, as expected (see Section 6.2.3.1 and 6.2.3.2) . 

6.2.3.1 Screenshots of programs running on Elan during Security Policy violation 

  

Figure 61: Screenshot of programs running on Elan during Security Policy violation (Tcpdump) 

 

Figure 62: Screenshot of programs running on Elan during Security Policy violation (SPD) 

 

Figure 63: Screenshot of programs running on Elan during Security Policy violation (Script to filter logfile) 
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Figure 64: Screenshot of programs running on Elan during Security Policy violation (sniffer) 

 

6.2.3.2 Screenshots of programs running on Belkar during Security Policy violation 

 

Figure 65: Screenshot of programs running on Belkar during Security Policy violation (SAD and SPD) 
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Figure 66: Screenshot of programs running on Belkar during Security Policy violation (Analyzer) 

 

Figure 67: Screenshot of programs running on Belkar during Security Policy violation (Attacker) 
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7 CONCLUSIONS 

7.1 Conclusion 

The aim of this thesis project was to implement an Analyzer prototype to identify anomalous activity on 

nodes when using an Ericsson Ethernet Interface board. We examined a variety of security weaknesses and 

attacks against IPsec protocol. A significant effort in this thesis was to understand the board, Network 

Processor, and its IPsec functionality.  

We have met the goals stated for the thesis project, but we were not able to determine if the solution 

implemented is the best one. However, since the implementation is easily configurable this should facilitate 

future testing once the hardware is available. We have not been able to identify any weaknesses or attacks 

against IPsec ESP tunnel mode with authentication as used in this thesis but still detection of an attempt to 

attack the system is of relevance and reveals the compromised part of the network or incorrect 

implementation of IPsec. We tested different attack scenarios on an IPsec connection established between 

two hosts and the Analyzer detected all of the attacks successfully.  The error threshold values were set to 

zero as explained earlier. We encountered several limitations and obstacles during our work, e.g. confidential 

information about the implementation of the IPsec coprocessor and the protocols used in the Ericsson 

Ethernet Interface board and the lack of a clear description of the non-fatal error codes. Other limitations 

included the incomplete implementation of IPsec both in hardware and software, which led us in splitting our 

effort into two parts: simulation of the board side and a prototype of the Analyzer. These limitations lead to 

the many assumptions that were made during this project.  We had also to consider the requirements of 

executing scripts in the network processor; along with understanding the FPL and C-NP programming 

languages, as these had only a subset of the allowed functions typical of a high level programming language. 

Through this thesis we gained a lot of understanding of the IPsec protocol, along with its weaknesses and 

different attacks against the protocol. We have also learned how the Ericsson Ethernet Interface board and its 

network processor functions e.g., packet classification, management, scheduling, etc. We have also learned 

how a network processor communicates with the IPsec block and how an IPsec packet is processed. We 

learned how to modify an IPsec implementation, setup an IPsec connection between two hosts, and 

reconfigure an operating system kernel. During the simulation phase we realized, after some testing, that a 

part of the NetBSD FAST IPsec implementation was incorrect and this was confirmed in an earlier bug 

report submitted (by others). This faulty IPsec implementation is exactly the same type of vulnerability 

exploited in Paterson’s attack (described in Section 4.4.2).  

Our suggestion for future thesis students is to carefully understand what you need to do, and have as detailed 

requirements as possible in the early stages of the work, even before starting the thesis project. Additionally, 

it is important also to keep the supervisors updated continuously, as in our case we wasted some time on an 

implementation that we subsequently had to redo.  
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7.2 Future work 

There are many suggestions about what to do next. A suggestion would be to test the code which we have 

developed on the real hardware once the implementation is ready. That would require SAD, SPD, complete 

support of IPsec in the classification code, and SED scripts to process IPsec traffic. There is also a need to 

accumulate IPsec failure rate statistics in a simulated normal situation to be able to set the appropriate sliding 

window sizes and thresholds. Another suggestion for future work is to identify IPsec failure patterns and 

analyze IPsec packets by decrypting the payload. This would require synchronization with the SAD and SPD 

in order to synchronize keys and policies. A further area of research would be to investigate the possibility to 

prevent attacks by blocking suspicious IPsec traffic and investigate weaknesses in IPsec key management 

protocols. 
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APPENDIX A 

 

SPA simulation traffic dump 

 
 
np5.txt 
 
Agere Dump  APP300  Packets AG_NP-3.9.0.56(Wed 
Aug 22 15:23:28 CDT 2007)  
 
 
ASI Counters ... 
512: 2 
520: 2 
524: 2 
532: 2 
540: 4 
592: 1 
608: 1 
672: 1 
676: 1 
 
 
FPP Packets ... 
 
 
                        [Packet #1] 
(DestId:1022  Length:0   Offset:4   Params:0   
TM Params:0   BeginTimestamp:391   
EndTimestamp:2398) 
[Segment #1] 
Priority                0 
Bytes Transmitted       64 
Data                    FF 03 00 21 45 00 00 40  
                        00 01 00 00 08 06 A1 A7  
                        07 07 07 07 01 01 02 02  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
[Segment #2] 
Priority                0 
Bytes Transmitted       4 
Data                    66 66 66 66  
 
 
                        [Packet #2] 
(DestId:3002  Length:0   Offset:8   Params:0   
TM Params:0   BeginTimestamp:4968   
EndTimestamp:6971) 
[Segment #1] 
Priority                0 
Bytes Transmitted       64 
Data                    00 00 00 88 00 45 67 89  
                        45 00 00 88 00 00 00 00  
                        0A 32 A1 36 06 06 06 06  
                        01 01 02 02 00 00 00 02  
                        00 00 00 01 DC 30 DF 6F  
                        00 00 00 00 DF 6B 7D 6F  
                        00 00 00 00 BA FF FF BF  
                        FF FE FF FF F7 F9 5E 58  
[Segment #2] 
Priority                0 
Bytes Transmitted       64 
Data                    F8 F8 F8 F8 FE FE FD FD  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  

                        99 99 99 99 99 99 99 99  
                        99 99 99 99 FE FD FC FB  
                        FA F9 F8 F7 F6 F5 F4 F3  
[Segment #3] 
Priority                0 
Bytes Transmitted       16 
Data                    F2 F1 F1 FB 00 00 00 00  
                        00 00 00 00 00 00 00 00  
 
 
                        [Packet #3] 
(DestId:1122  Length:0   Offset:14   Params:0   
TM Params:0   BeginTimestamp:8513   
EndTimestamp:10568) 
[Segment #1] 
Priority                0 
Bytes Transmitted       64 
Data                    05 05 05 05 05 05 09 09  
                        09 09 09 09 08 00 45 00  
                        00 88 00 00 00 00 0A 32  
                        A1 36 06 06 06 06 01 01  
                        02 02 00 00 00 02 00 00  
                        00 01 DC 30 DF 6F 00 00  
                        00 00 DF 6B 7D 6F 00 00  
                        00 00 BA FF FF BF FF FE  
[Segment #2] 
Priority                0 
Bytes Transmitted       64 
Data                    FF FF F7 F9 5E 58 F8 F8  
                        F8 F8 FE FE FD FD 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 FE FD FC FB FA F9  
[Segment #3] 
Priority                0 
Bytes Transmitted       22 
Data                    F8 F7 F6 F5 F4 F3 F2 F1  
                        F1 FB 00 00 00 00 00 00  
                        00 00 00 00 00 00  
 
 
                        [Packet #4] 
(DestId:3022  Length:0   Offset:0   Params:0   
TM Params:0   BeginTimestamp:13091   
EndTimestamp:14942) 
[Segment #1] 
Priority                0 
Bytes Transmitted       64 
Data                    00 00 00 54 80 45 67 89  
                        45 00 00 54 00 00 00 00  
                        0A 04 A1 98 06 06 06 06  
                        01 01 02 02 45 00 00 40  
                        00 01 00 00 08 06 A1 A7  
                        07 07 07 07 01 01 02 02  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
[Segment #2] 
Priority                0 
Bytes Transmitted       28 
Data                    66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
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                        66 66 66 66  
 
 
RSP Packets ... 
 
                        [Packet #1] 
Destination ID          1022 
Queue ID                1 
Scheduler ID            0 
Enqueue PDU ID          1 
Packet Dropped?         No 
Dropped Entity            
Reason Dropped           
Logical Port ID         4 
Port Manager ID         4 
Output Port ID          4 
Traffic Manager Time    3 cycles 
Traffic Shaper Time     1 cycles 
Entry Timestamp         498 
Exit Timestamp          3597 
[Segment #1] 
MPHY Port               0 
Stream Editor Time      18 cycles 
Timestamp               3567 
Bytes Transmitted       64 
Data                    19 40 00 58 00 08 00 54  
                        00 45 67 89 14 00 10 00  
                        40 00 08 10 11 00 00 00  
                        45 00 00 88 00 00 00 00  
                        0A 32 A1 36 06 06 06 06  
                        01 01 02 02 45 00 00 40  
                        00 01 00 00 08 06 A1 A7  
                        07 07 07 07 01 01 02 02  
[Segment #2] 
MPHY Port               0 
Stream Editor Time      18 cycles 
Timestamp               3597 
Bytes Transmitted       44 
Data                    66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66  
 
                        [Packet #2] 
Destination ID          3002 
Queue ID                3 
Scheduler ID            0 
Enqueue PDU ID          2 
Packet Dropped?         No 
Dropped Entity            
Reason Dropped           
Logical Port ID         3 
Port Manager ID         3 
Output Port ID          3 
Traffic Manager Time    3 cycles 
Traffic Shaper Time     1 cycles 
Entry Timestamp         5077 
Exit Timestamp          8185 
[Segment #1] 
MPHY Port               0 
Stream Editor Time      1 cycles 
Timestamp               8125 
Bytes Transmitted       64 
Data                    05 05 05 05 05 05 09 09  
                        09 09 09 09 08 00 45 00  
                        00 88 00 00 00 00 0A 32  
                        A1 36 06 06 06 06 01 01  
                        02 02 00 00 00 02 00 00  
                        00 01 DC 30 DF 6F 00 00  
                        00 00 DF 6B 7D 6F 00 00  
                        00 00 BA FF FF BF FF FE  
[Segment #2] 
MPHY Port               0 

Stream Editor Time      1 cycles 
Timestamp               8168 
Bytes Transmitted       64 
Data                    FF FF F7 F9 5E 58 F8 F8  
                        F8 F8 FE FE FD FD 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 FE FD FC FB FA F9  
[Segment #3] 
MPHY Port               0 
Stream Editor Time      1 cycles 
Timestamp               8185 
Bytes Transmitted       22 
Data                    F8 F7 F6 F5 F4 F3 F2 F1  
                        F1 FB 00 00 00 00 00 00  
                        00 00 00 00 00 00  
 
                        [Packet #3] 
Destination ID          1122 
Queue ID                1 
Scheduler ID            0 
Enqueue PDU ID          3 
Packet Dropped?         No 
Dropped Entity            
Reason Dropped           
Logical Port ID         4 
Port Manager ID         4 
Output Port ID          4 
Traffic Manager Time    3 cycles 
Traffic Shaper Time     1 cycles 
Entry Timestamp         8620 
Exit Timestamp          11805 
[Segment #1] 
MPHY Port               0 
Stream Editor Time      16 cycles 
Timestamp               11737 
Bytes Transmitted       64 
Data                    1D 40 01 E8 00 98 00 88  
                        80 45 67 89 20 04 00 08  
                        42 00 10 00 50 00 00 08  
                        03 11 00 00 45 00 00 88  
                        00 00 00 00 0A 32 A1 36  
                        06 06 06 06 01 01 02 02  
                        00 00 00 02 00 00 00 01  
                        DC 30 DF 6F 00 00 00 00  
[Segment #2] 
MPHY Port               0 
Stream Editor Time      16 cycles 
Timestamp               11780 
Bytes Transmitted       64 
Data                    DF 6B 7D 6F 00 00 00 00  
                        BA FF FF BF FF FE FF FF  
                        F7 F9 5E 58 F8 F8 F8 F8  
                        FE FE FD FD 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
                        99 99 99 99 99 99 99 99  
[Segment #3] 
MPHY Port               0 
Stream Editor Time      16 cycles 
Timestamp               11805 
Bytes Transmitted       36 
Data                    99 99 99 99 99 99 99 99  
                        FE FD FC FB FA F9 F8 F7  
                        F6 F5 F4 F3 F2 F1 F1 FB  
                        00 00 00 00 00 00 00 00  
                        00 00 00 00  
 
                        [Packet #4] 
Destination ID          3022 
Queue ID                4 
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Scheduler ID            0 
Enqueue PDU ID          4 
Packet Dropped?         No 
Dropped Entity            
Reason Dropped           
Logical Port ID         2 
Port Manager ID         2 
Output Port ID          2 
Traffic Manager Time    3 cycles 
Traffic Shaper Time     1 cycles 
Entry Timestamp         13198 
Exit Timestamp          16228 
[Segment #1] 
MPHY Port               0 
Stream Editor Time      16 cycles 
Timestamp               16210 
Bytes Transmitted       64 
Data                    05 05 05 05 05 05 09 09  
                        09 09 09 09 08 00 45 00  
                        00 40 00 01 00 00 08 06  
                        A1 A7 07 07 07 07 01 01  
                        02 02 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 66 66  
[Segment #2] 
MPHY Port               0 
Stream Editor Time      16 cycles 
Timestamp               16228 
Bytes Transmitted       18 
Data                    66 66 66 66 66 66 66 66  
                        66 66 66 66 66 66 9B DC  
                        3C D9  
 

testAPP155.txt 

Agere Dump  APP150  Packets AG_NP-3.9.0.56(Wed 
Aug 22 15:23:28 CDT 2007)  
 
 
SE Packets ... 
 
                        [Packet #1] 
PDU Type                     IPSec 
Security Association ID      22 
Token Template ID            esp4o 
Direction                    outbound 
Encryption Algorithm         AES128_CBC 
Authentication Algorithm     HMAC_SHA1 
Begin Timestamp              1086 
End Timestamp                1394 
 
                        [Packet #2] 
PDU Type                     IPSec 
Security Association ID      122 
Token Template ID            esp4i 
Direction                    inbound 
Encryption Algorithm         AES128_CBC 
Authentication Algorithm     HMAC_SHA1 
Begin Timestamp              3537 
End Timestamp                3832 
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APPENDIX B 

Configurations to generate some errors 

 

File "np5.txt" is the dump file of the simulation with the configuration file 

"app3_ipsec_ipv4_lb.xml" (see Appendix A). From this dump file, we can extract 

the encrypted data from Packet #2 or #3, and insert it in the payload of a new 

IP packet as input of the simulation to run some tests and generate some errors.  

TEST 1: right encrypted packet, no errors 

In the Traffic Generator, Traffic Flow(1): 

• Protocols -> IP: Source -> Value(0) = 7.7.7.7 

• Destination -> Value(1) = 1.1.2.2 (delete all the others)  // the 

selection of security protocol (AH or ESP) is based on destination address 

• Protocol -> Value(0) = 0x32 // indicates Next Header = 50 (ESP), therefore 

inbound processing 

• SizeDistribution -> Explicit(0) -> PayloadSize(0) = 116 bytes  // SPI + 

Sequence number + Initializator Vector + inner IP header + inner IP 

payload + padding + authentication data (only zero) = (8 + 8 + 16 + 20 + 

44 + 16 + 12) bytes = 116 bytes 

• Right click on TrafficFlow(1) -> Edit all TrafficFlow elements -> disable 

TrafficFlow(2) and enable TrafficFlow(1) 

Packet 1)  Payload pattern -> PatternGenerator(0) -> right click on 

Patterns -> Add new, Pattern -> Pattern(0) -> pattern = 

0x0000000200000001DC30DF6F00000000DF6B7D6F00000000BAFFFFBFFFFE

FFFFF7F95E58F8F8F8F8FEFEFDFD9999999999999999999999999999999999

999999999999999999999999999999999999999999999999999999FEFDFCFB

FAF9F8F7F6F5F4F3F2F1F1FB000000000000000000000000 

 

TEST 2: error code E11 SPI check failed  

In the Traffic Generator, Traffic Flow(1):  

Packet 2)   SPI = 1 and Sequence number = 2 

   TrafficModels -> ConstantBitRate(0) -> duration = 2 packets 

Payload pattern -> PatternGenerator(0) -> right click on 

Patterns -> Add new, Pattern -> Pattern(1) -> pattern = 

0x0000000100000002(the rest as in test 1) 
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This generate an E11 error (SPI check failed) because the SPI 1 is not 

associated with Security Association 122.  

     

Packet 3)   SPI = 3 and Sequence number = 3 

   TrafficModels -> ConstantBitRate(0) -> duration = 3 packets 

Payload pattern -> PatternGenerator(0) -> right click on 

Patterns -> Add new, Pattern -> Pattern(2) -> pattern = 

0x0000000300000003(the rest as in test 1) 

This generate an E11 error (SPI check failed) because the SPI number 3 is not 

defined in the SPA configuration file. 
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APPENDIX C 

Setkey.conf scripts 

Setkey.conf on Elan: 

#!sbin/setkey -f 
 
# Key configuration script for Elan 
 
# Flush the SAD and SPD 
flush; 
spdflush; 
 
# ESP SAs doing encryption using 192 bit long keys (168 + 24 parity) 
# and authentication using 128 bit long keys 
add 192.168.66.1 192.168.66.3 esp 0x100 -m tunnel -E 3des-cbc   
0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831 -A hmac-md5 
0xc0291ff014dccdd03874d9e8e4cdf3e6; 
add 192.168.66.3 192.168.66.1 esp 0x200 -m tunnel -E 3des-cbc   
0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df -A hmac-md5 
0x96358c90783bbfa3d7b196ceabe0536b; 
 
 
# Security policies 
spdadd 192.168.66.3 192.168.66.1 icmp -P out discard; 

 

Setkey.conf on Belkar: 

#!sbin/setkey -f 
 
# Key configuration script for Belkar 
 
# Flush the SAD and SPD 
flush; 
spdflush; 
 
# ESP SAs doing encryption using 192 bit long keys (168 + 24 parity) 
# and authentication using 128 bit long keys 
add 192.168.66.1 192.168.66.3 esp 0x100 -m tunnel -E 3des-cbc   
0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831 -A hmac-md5 
0xc0291ff014dccdd03874d9e8e4cdf3e6; 
#add 192.168.66.3 192.168.66.1 esp 0x200 -m tunnel -E 3des-cbc   
0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df -A hmac-md5 
0x96358c90783bbfa3d7b196ceabe0536b; 
 
 
# Security policies 
spdadd 192.168.66.1 192.168.66.3 udp -P out ipsec esp/tunnel/192.168.66.1-
192.168.66.3/require; 
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APPENDIX D 

SED Register File Map, Figure 2-11 from [73] (This figure appears here with the permission of LSI 

Corporation) 
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APPENDIX E 

Analyzer_case script 

 

#!/bin/awk -f 
 
/ ANALYZER_E1 / { 
    # cut the first 28 byte; 1 byte = 2 characters -> first 56 char 
    payload = substr($7, 0, 56) 
    printf("Sending Analyzer E1 packet\n") 
    printf("generator/tg -d 192.168.66.1 -p 1700 -P 0x01%s\n", payload) | "sh" 
} 
 
/ ANALYZER_E2 / { 
    # cut the first 28 byte; 1 byte = 2 characters -> first 56 char 
    payload = substr($7, 0, 56) 
    # specify SPP header for authentication error 
    printf("Sending Analyzer E2 packet\n") 
    printf("generator/tg -d 192.168.66.1 -P 0x024020005480456789%s\n", payload) 
| "sh" 
} 
 
/ ANALYZER_E3 / { 
    # cut the first 20 byte; 1 byte = 2 characters -> first 40 char 
    payload = substr($7, 0, 40) 
    printf("Sending Analyzer E3 packet\n") 
    printf("generator/tg -d 192.168.66.1 -P 0x03%s\n", payload) | "sh" 
} 

 

 




