
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2008-01

K R I S T O F E R B O R G S T R Ö M

Multimedia Messaging Service
Components for Web 2.0

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Multimedia Messaging Service Components for Web 2.0

Kristofer Borgström

Academic supervisor and examiner

Professor Gerald Q. Maguire Jr.

Industrial supervisor

Peter Yeung, Ericsson

 i

Abstract
The purpose of this master’s thesis is to simplify the exchange (in both directions) of multimedia content
between mobile phones and network attached web servers. The solution proposed in this report
specifically concerns displaying Multimedia Messaging Service (MMS) messages via a web browser
connected to a network-attached web server and graphically authoring MMS messages via a web interface.

This thesis project is important because it brings multimedia content, in the form of MMS messages, from
isolation in the telecommunication world closer to wide availability via the Internet. This transition is very
important as the Internet is where media is shared with the world today. This approach brings added value
to end users who want to share content generated using their phone on a web site. It also provides added
value to operators who want to increase the amount of MMS traffic in their networks.

The solution is non-trivial because there are a number of complexities at both ends. This is because the
MMS messages that are authored at mobile phones differ between both handset models and manufacturers.
Moreover, the format used for MMS (MMS SMIL) is not widely used on the Internet, thus a
transformation to an Internet browser supported format must be performed. The thesis examines to what
extent this transformation can be completely automatic and how MMS messages can be authored through
a web interface.

The results show that MMS messages can be successfully transformed to HTML and embedded directly in
web pages, thus providing a seamless experience for viewing MMS messages. Depending on the content
of the MMS message in question, the current browser and which media player plug-ins are available, the
generated HTML will be displayed differently. The results also show that MMS messages can be
composed in real time* through a web interface with good results.

* The MMS will be displayed as it is being composed, allowing the end user to have good idea of how the
MMS message will be experienced when sent to a mobile terminal.

 ii

Sammanfattning
Syftet med detta examensarbete är att förenkla utbyte (i båda riktningarna) av multimedia mellan
mobiltelefoner och nätverksuppkopplade webbservrar. Lösningen som föreslås i denna rapport behandlar
specifikt hur Multimedia Messaging Service (MMS)-meddelanden kan visas i en webbläsare via
nätverksuppkopplade webbservrar och hur MMS-meddelanden kan komponeras grafiskt via ett
webbinterface.

Detta examensarbete är viktigt eftersom det för multimedia, i form av MMS-meddelanden, från isolering i
telekommunikationsvärlden närmare en bred tillgänglighet via Internet. Denna övergång är viktig
eftersom det är på Internet som multimedia görs tillgängligt för världen i dagens läge. Denna approach
förbättrar upplevelsen för användare som vill dela med sig av innehåll genom sin telefon genom en
hemsida. Den ökar också möjligheterna för mobiloperatörer att öka MMS-trafiken i sina nätverk.

Lösningen är inte trivial eftersom det existerar ett antal komplexiteter i båda ändarna. Detta beror på att
MMS-meddelanden som skapas i mobiltelefoner skiljer sig åt mellan såväl tillverkare som modeller.
Dessutom används inte MMS-formatet (MMS SMIL) på Internet. Således måste en transformering till ett
format som stöds av webbläsare genomföras. Detta examensarbete undersöker i vilken utsträckning denna
transformering kan automatiseras helt och även hur MMS-meddelanden kan skapas via ett webbinterface.

Resultaten visar att MMS-meddelanden framgångsrikt kan transformeras till HTML och bäddas in på en
hemsida på ett sådant sätt att de upplevs som en del av hemsidan. Beroende på vilken typ av media som
MMS-meddelandet innehåller, den aktuella webbläsarkonfigurationen och på vilka mediaspelar-plug-ins
som finns tillgängliga, måste olika HTML genereras för att innehållet ska visas på ett bra sätt. Resultaten
visar också att MMS-meddelanden kan skapas grafiskt, i realtid, direkt genom ett webbinterface med goda
resultat.

 iii

Abbreviations
3GPP 3’rd Generation Partnership Project

AJAX Asynchronous JavaScript and XML

Blog Web log

CSS Cascading Style Sheets

DOM Document Object Model

DHTML Dynamic HyperText Markup Language

GUI Graphical User Interface

HTML HyperText Markup Language

IPX Internet Payment Exchange

JAXB Java API for XML Binding

JAXP Java API for XML Processing

JDK Java Development Kit

JMF Java Media Framework

JSF Java Server Faces

JSON JavaScript Object Notation

JSP Java Server Pages

JSTL Java Standard Tag Library

MMS Multimedia Messaging Service

OMA Open Mobile Alliance

SAX Simple API for XML

SDK Software Development Kit

SMIL Synchronized Multimedia Integration Language

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XPath XML Path Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

VASP Value Added Service Provider

W3C World Wide Web Consortium

 iv

Contents
1. Introduction...1

1.1. Problem description ..1
1.1.1. MMS transformation components..1
1.1.2. Web components ...2

1.2. Why is the thesis project significant?..3
1.2.1. Introduction...3
1.2.2. Potential ...3
1.2.3. Difficulties ...4

2. Background ..8
2.1. Previous work in the area ...8

2.1.1. Displaying MMS SMIL..8
2.1.2. XML transformations..9
2.1.3. Displaying multimedia on the Web ..12
2.1.4. Connecting to service providers ..18

2.2. Underlying technologies..19
2.2.1. SMIL basics..19
2.2.2. MMS SMIL and its limitations ..20
2.2.3. Web applications in Java ...20

3. Method..23
3.1. Goals ...23

3.1.1. MMS transformation components..23
3.1.2. MMS presentation components ...23
3.1.3. MMS composer components ...24
3.1.4. Additional deliverables ...25

3.2. Steps to be performed ..25
3.2.1. Determining how SMIL is displayed in different SMIL players25
3.2.2. Setting up a test environment for MMS ...25
3.2.3. Interpreting MMS SMIL ..26
3.2.4. Implementing static templates for HTML+TIME..26
3.2.5. Implementing static templates for DHTML ..26
3.2.6. Transformation requirements...27
3.2.7. Transformation technology ..27
3.2.8. Determine media player capabilities..27
3.2.9. Designing and implementing the components ..27

4. Analysis ..28
4.1. Performed steps..28

4.1.1. Adapting SMIL content to specific players ..28
4.1.2. Setting up a test environment for MMS ...28
4.1.3. Determining interesting data in MMS SMIL...32
4.1.4. Implementation of HTML+TIME static templates ..35
4.1.5. Implementation of DHTML static templates ..39
4.1.6. Transformation requirements...41
4.1.7. Transformation technologies ...44
4.1.8. Determining media player capabilities...45

4.2. Proposed solution ...47
4.2.1. Naming conventions ..47
4.2.2. Transformation components ..48
4.2.3. SMIL viewer components...52

 v

4.2.4. MMS composer components ...56
4.3. Does this match original goals?..58

5. Conclusions..59
5.1. Conclusion...59
5.2. Future work ...60

6. References ...63

Appendix A - Ericsson Service Creation Study – Final Report
Appendix B - MMS SMIL from different mobile phones
Appendix C – JavaScript Code
Appendix D – E-mail correspondence with Eric Hyche
Appendix E – User guide
Appendix F – Javadoc

 1

1. Introduction

1.1. Problem description
The goal of this master’s thesis project is to simplify the exchange of multimedia content between mobile
phones and Internet web sites. To achieve this goal, this project has three major parts:

• Java components are used to convert Multimedia Messages Service (MMS) Synchronized Multimedia
Integration Language (SMIL) to HTML (see section 1.2.2). The resulting views can be displayed via
traditional web browsers.

• Web components are introduced to display MMS content and to compose new MMS SMIL-based
MMS messages on Internet web sites via traditional web browsers.

• An integration of web components into an existing web application is made in order to demonstrate
how to use the proposed components in a meaningful way within a traditional web browser.

This master thesis contributes to the realization of Web 2.0 by bringing mobile multimedia content to the
traditional Internet based web.

1.1.1. MMS transformation components

MMS messages received from a mobile phone may contain several different types of media, such as:
images, text, video, and audio. Such a message also contains a SMIL document that describes how the
message should be displayed. A SMIL document received from a mobile phone is formatted according to
MMS SMIL as defined by the Open Mobile Alliance (OMA) [1].

In order to be able to display MMS messages on a web site, each MMS SMIL-formatted message has to be
converted to a format that is supported by either the user’s browser or by a multimedia player that is
available on the user’s computer, preferably through a browser plug-in (such plug-ins are described in
section 2.1.3.2).

The best way to display the media would be to have it integrated directly in a web page. This is possible
using the Microsoft Internet Explorer browser through an extension of HTML known as HTML+TIME
 [10], this is similar to XHTML+SMIL*. However, none of the other major browsers currently support
SMIL directly, although the Mozilla Firefox team are currently considering SMIL support [2]. As a
starting point, HTML+TIME should be supported by the MMS components; the means of doing so is
described as part of this thesis project.

* XHTML+SMIL is defined in the SMIL 2.0 specification which is briefly discussed in section 2.2.1.

 2

Ideally, this thesis project should implement a simple cross-browser MMS SMIL player using Dynamic
HyperText Markup Language (DHTML)* in order to support other browsers. However, the first priority is
support for major desktop browsers (specifically: Microsoft’s Internet Explorer [3], Mozilla’s Firefox [4],
and Apple’s Safari [5]). The second priority is porting the implementation to a XHTML-Mobile Profile
(XHTML-MP) [6] and ECMAScript [7] solution in order to support mobile browsers.

Support for SMIL in an embedded SMIL player is the lowest priority, because initial testing indicated that
the existing SMIL player implementations were quite different and do not display content in a satisfactory
manner, see section 4.1.1.

1.1.1.1. Content transcoding support

Bringing the Internet and mobile phones together also presents some problems with regard to the content
itself. This is because a given type of content is not always supported by different devices nor via the
different media players. The problem is clearest with audio and video content. The formats traditionally
used for video and audio in MMS messages are H.263 video and AAC/AMR/MIDI audio†. These formats
are not traditionally used on the web; therefore they are not supported by the major web browsers.
However, they are supported by Apple’s QuickTime player and RealNetworks’ RealPlayer.

Content transcoding should ideally be enabled through use of Java libraries, e.g. the Java Media
Framework (JMF). Unfortunately, the most recent version of JMF (2.1.1) does not support most of the
mobile media formats. Although, there is an open source project called Jffmpeg [9] which may be used to
provide such transcoding. Unfortunately, there is currently no implementation that could be used directly.
Thus it is unlikely that such transcoding support can be part of this thesis project. Instead, an Apple
QuickTime plug-in or similar media player plug-in that can play these formats will be utilized. Additional
details of such plug-ins will be given in section 2.1.3.2.

1.1.2. Web components

1.1.2.1. MMS presentation components

As stated in the previous section, different web browsers have different levels of support for SMIL.
Furthermore, while one or more media players are able to play SMIL content, they may or may not be
available as plug-ins to display content for a given web browser. Thus, depending on browser/media
player capabilities which a given user has installed and on the type of media that a specific MMS message
contains, a decision about what HTML view to generate and display on the page to be presented to the
user must be made. As should be readily apparent, this greatly complicates the problem of presenting
content to each user.

The best way to display MMS messages would be to integrate them directly into a web page, so that they
are a seamless part of the web page. Ideally they should be displayed the way that the author of the content
intended. This can be achieved with direct SMIL support in the browser (HTML+TIME), with a DHTML
MMS SMIL player implementation, or with an embedded media player that can play SMIL presentations.

* DHTML is a collection of technologies used to create dynamic web pages. Such technologies include:
HTML, JavaScript, Cascading Style Sheets (CSS) and the Document Object Model (DOM).
† These media formats are defined as being in the Core MM Content Domain in the MMS Conformance
Document [8] as defined by the 3’rd Generation Partnership Project (3GPP).

 3

In some scenarios, it may not be desirable to present a given MMS message as it was composed, e.g. as a
timed presentation. For example, in such scenarios, the web developer might want to control how the
content is displayed. For these situations, the MMS content should also be available, through suitable web
components, for example, as an ordered array of multimedia elements.

1.1.2.2. MMS composer components

The MMS composer components enable easy, web based creation of MMS SMIL presentations. The
resulting presentations can then be sent to a mobile phone or displayed using the presentation components.

The Graphical User Interface (GUI) of the MMS composer components should be similar to MMS
message composers available on mobile phones, although when running on a network-attached computer
the interface should make use of the larger presentation area available.

1.2. Why is the thesis project significant?
1.2.1. Introduction

In many modern technologies, features have been offered to end users through different devices and
different underlying technologies. Today we see these different devices converging. This is especially
noticeable in the telecommunication industry where mobile phones now have the same features as mp3
players, web browsers, personal organizers, etc.

As the various technologies converge with respect to hardware, the need to ensure that these different
devices can exchange information with each other increases. Thus providing the end user with full
flexibility of accessing and sharing information from one device to another, despite using potentially
different underlying technologies. This further accelerates the trend toward convergence.

1.2.2. Potential

The Internet is likely to be the major source of information that is available to most users today. Thus if
you want to show something to the world, the Internet is the place to make it available. The sharing of
pictures, music, and video is a very large part of the Internet as experienced by users today, for example,
through services such as Facebook [11], YouTube [12], etc. Mobile phones have the advantage of being a
device that most people always have with them and increasingly these devices have the ability to take
photos or shoot videos, allowing them to capture activities that might otherwise not be readily captured.
Therefore mobile phones have a great potential to be a major source of new multimedia content. We are
starting to see this content on the web today (see for example CNN’s I-Report [13]). However, the
production of user-generated content is only starting to explode and we can expect much more such
content in the future.

 4

Unfortunately, it is currently quite complicated to share content from a mobile phone via a web site of
your own choice. This often requires moving the content from the mobile phone to a computer in order to
upload it. Even when web sites have a mobile version, these sites often do not have the full features of a
regular web site and even if they do, then data traffic to and from this site is often quite expensive*.
Further more, mobile surfing of the web is perceived as complicated. Hence the option of simply sending
content as a message is very attractive, as many users are familiar with sending messages, thus sending a
multimedia message is often perceived as being fast and easy (as compared to the alternative means of
sending content). The result is that the user is able to readily display multimedia content generated by their
mobile phones on a web site. This new source of significant volumes of user produced content creates a
lot of new possibilities for both web masters and end users.

At the receiving site (or along the path to it) the MMS content must be transformed to one of the formats
which are commonly used on Internet web sites. This MMS transformation can also be used to close the
gap between the Internet and the mobile world in the other direction. If MMS transformation from web
sites is made easy and wide-spread access to mobile networks is available, then multimedia sites all over
the web could have a button to send an MMS message with multimedia content to a mobile phone†. Some
examples of what this solution could be used to achieve include:

• Existing media services such as YouTube could allow MMS messages as a new way of posting
content.

• Blogs could receive content directly from MMS messages and could generate content to be viewed by
users as MMS messages.

• End users could increase traffic to their sites/blogs by sending the most interesting posts to friends as
MMS messages.

1.2.3. Difficulties

It is quite complicated to display an MMS message in a web browser in the same layout it was composed.
This is because MMS messages consist of a number of media elements and a SMIL file that defines how
the media should be displayed. Unfortunately, it is the interpretation of the SMIL that presents the greatest
problem. Currently, SMIL capable players show the message in very different ways. Figures 1 and 2 show
how an MMS message sent from a mobile phone was displayed in two different media players.

* Even though there are flat-rate options available, most Swedish operators (Telenor [14], Tele2 [15], and
Tre [16]) charge 10-15kr/MB as the going rate for mobile surfing.
† There is an issue regarding who will pay for the sent MMS message. In some scenarios it may be
acceptable that the creator of the service (web site) is charged (the creator can then charge users in turn).
In other scenarios, when the receiver of the MMS message is to be charged, I believe that some sort of
subscription service will be required. I.e. a user send a message specifying that it is ok to receive x
messages per month at a cost of y each.

 5

Figure 1. MMS SMIL displayed in RealNetworks’ RealPlayer. All elements are displayed, but
the display area is not fully utilized.

Figure 2. MMS SMIL displayed in Apple’s QuickTime. Only the text appears and it does so
both enlarged and with inverted colors.

 6

Currently there is direct SMIL support in the Microsoft’s Internet Explorer browser through
HTML+TIME [10]. However, because this is not a direct subset of SMIL, but rather a different language
that can be used to achieve a similar end result, MMS SMIL can not be displayed at all via Internet
Explorer without transformation of the MMS SMIL to HTML+TIME. This illustrates the need for MMS
transformation.

There are many reasons why we have not yet seen the types of services described in section 1.2.2
available all over the web. First of all, there is a knowledge gap between web developers and developers
of mobile services, few web developers know how to connect to a mobile network and access the services
available there. There are however ongoing efforts in the telecommunication industry to simplify this
process through standardized interfaces and Web Services [18]. Such a standard is, for example, Parlay X
which is standardized by the Parlay Group [19]. The Parlay X standard defines a set of telecommunication
Web Services that can be used to access telecommunication network capabilities such as MMS. There are
also Software Development Kits* (SDKs) to further simplify the access to such capabilities, for example,
the Telecom Web Services SDK [17].

The MMS components, as presented in this thesis project, are needed to simplify the utilization of MMS
capabilities by web developers. Examples of technologies that may be used to expose this type of
functionality include Java Server Pages (JSP) (see sections 2.2.3.2 and 2.2.3.3), Java Server Faces (JSF)
and even Java object representations of MMS messages. The purpose of such components is to make it
very easy to display and create MMS content in any Java application, and especially in web applications.
However, few web developers know of these technologies or how to utilize them to achieve their goals.

Traditionally, operators have posed a big problem by being very strict as to what services they offered end
users. Often, the service creation process† from innovation to launch has been very tightly controlled by
operators; even though applications have been developed by a third party these applications are typically
hosted and branded by the operator. This tight control of all aspects of the service (and even the choice of
available services) is known as the walled garden approach to service delivery, as opposed to the open
garden approach where the operator exposes the capabilities of the mobile network to third parties that
can create and host services themselves. Such capabilities may be exposed either within the operator’s
network, or publicly through the Internet. The latter approach seems likely enable a larger number of
developers and service providers to make use of telecommunication network capabilities, thus providing
users with a wider selection of services.

It appears to be increasingly difficult for operators to ignore the potential traffic which would be added to
their network by allowing multimedia sites all over the world to be mobile-enabled as well as allowing
third parties to create and host traditional mobile services. In short, operators are moving toward
embracing the open garden model which has been so successful on the Internet. This trend was one of the
key findings in a service creation study that was performed by inCode on behalf of Ericsson during the
summer of 2007, see Appendix A.

* An SDK is typically a set of software development tools used by software developers to create
applications that use a specific set of functionality.
† The service creation process in this context refers to the process of developing a new service/application
that utilizes telecommunication network capabilities. The process covers the steps of innovation,
development, testing, and launch of the service.

 7

Further more, several operators have already taken steps towards enabling an open garden and are offering
their developer communities proprietary SDKs which they can use to create and launch their own services.
These operators include British BT with their Web21C SDK [20] and Swedish Telenor with their
Mobilstart portal [21]. BT’s solution does not currently support MMS, but Telenor’s solution does. In
addition, the solution presented in this master’s thesis could be used together with Telenor’s solution in
order to simplify sending and receiving MMS messages.

A web developer who wants to utilize MMS capabilities needs to have a basic understanding of the
structure of MMS messages in order to know how best to display their content on the web and also to be
able to create MMS messages that are displayed as intended when sent to mobile phones. The developer
should also know how to transport the MMS messages to and from a mobile network. However, in an
open garden scenario, when using available protocols and SDKs as described above, this is not necessarily
a lot more difficult than performing a file upload.

 8

2. Background

2.1. Previous work in the area
There has been very little work done to try to achieve what this thesis project attempts. That is, there is
currently no open solution for showing MMS content as presentations on the web via a web browser.
However, there are a number of sites that display MMS messages as blog entries, such as mms2web.com
 [22] and mobilblogg.nu [23]. Neither of these are based on open solutions for displaying MMS messages
on the web, nor do they implement the slide-show-presentation effect of MMS messages when displaying
content on the web. Furthermore, neither is able to send MMS content to a mobile phone.

There has been a lot of work done in related areas. This work can be summarized as follows:

• Displaying MMS SMIL presentations to make full use of the presentation area, see section 2.1.1.

• Transforming Extensible Markup Language (XML) documents, see section 2.1.2.

• Displaying timed multimedia on the web, see section 2.1.3.

• Connecting to service providers through telecommunication protocols such as MM7 and Parlay X, see
section 2.1.4.

2.1.1. Displaying MMS SMIL

This section describes previous work done to display MMS SMIL; while making full use of the
presentation area. To fully understand the details of this section, please refer to sections 2.2.1 and 2.2.2 for
an introduction to SMIL and MMS SMIL.

2.1.1.1. Background

Because of the large differences in capabilities (e.g. screen size and processing capacity) between different
mobile phones (even between models from a single vendor), the MMS SMIL specification [8] leaves a lot
of room for the MMS SMIL player to decide how to display content based on device specific capabilities.

The MMS SMIL specification [8] states that:

 …the messages that are produced should be valid and complete SMIL messages,
and should be displayed properly on non-mobile terminals (e.g., PCs). [4.1 Usage of
SMIL, page 13]

While this is technically true in most cases and the MMS SMIL generated by mobile devices can be
viewed in SMIL 2.0 compliant players, no real effort has been made by mobile device vendors to author
SMIL that will be displayed in a user-friendly way. A study of how different handset models generate
SMIL and what data can be used to determine how the message should be displayed has been made. This
study is presented in section 4.1.3.

 9

2.1.1.2. Handset SMIL players

In order for the experience when viewing MMS messages on the web to be similar to when these
messages are displayed on a mobile device a set of rules have to be followed. These rules mainly concern
the presentation area size and how to optimize the viewing experience when these messages do not
conform to the SMIL specification (as noted in the MMS SMIL specification [8]). The rules proposed in
this thesis project are based on how handset vendors have actually chosen to implement MMS SMIL
players.

After examining how MMS messages are displayed on two mobiles phones (one Nokia model N70 and
one Sony Ericsson phone model P990i), the following rules for displaying MMS on the web are proposed:

• The presentation area should have a fixed size that emulates the screen of a mobile phone.

• The regions defined in MMS SMIL will be ignored in order to make full use of screen size. In other
words, if a slide contains only contains one element which according to the layout should be put in the
lower half of the presentation area, it will be displayed in the top instead. Otherwise the top half of this
slide would be empty.*

• Allow vertical scrolling while an element is playing. Scrolling is done across the whole presentation
area.†

• Video will support the following scaling settings:

o Use the original size of the video.

o Set height to half the screen height and retain aspect ratio.

o Set height to half the screen height and stretch width.

Note that the above rules sometimes do not follow layout attributes in the MMS SMIL file. This is in
accordance with the MMS SMIL specification, as stated in section 2.1.1.1.

2.1.2. XML transformations

2.1.2.1. Background

There are a couple of different technologies that can be used to transform XML encoded content. These
include, but are not limited to: XSLT, JAXB, DOM, JDOM [24] and SAX. Most of these technologies
will be described later.

* This is how it behaves on the Sony Ericsson P990 test phone, but not on the Nokia N70 test phone. The
layout employed by the Sony Ericsson handset was chosen because it was considered to provide a more
natural view of an MMS message (as opposed to strictly following MMS SMIL as in the Nokia case).
† The Nokia N70 test phone required manually activating scrolling, which was viewed as a limitation.

 10

The particular requirements for transforming MMS SMIL to HTML+TIME have been investigated and are
explained in section 4.1.5. The objective of considering the technologies above was to identify a
technology that can perform the transformation in a satisfactory manner. In establishing the exact
requirements for the transformation, one must consider what data is available and meaningful in the MMS
SMIL. Further more, consideration must also be given to the question of whether the data actually needs
to be processed and consideration given to the composition of the end result.

The following requirements are suggested and explained in section 4.1.5. They are presented here to
motivate the consideration of each of the potential Java technologies in terms of these requirements.

• Read and parse MMS SMIL.

• Generate output in XML.

• Perform string processing.

• Generate XML with mixed namespaces and processing instructions.

• Generate different output based on current settings of one or more variables.

• Ease of Java code integration.

• Ease of reading and inserting text files.

2.1.2.2. XSLT

XSL Transformation (XSLT) is part of the Extensible Stylesheet Language (XSL). It can be used to
transform one XML document into another XML document based on one or more XSL style sheets.
XSLT uses XPath to navigate through the elements and attributes of an XML document. An XSLT style
sheet is used as a template to produce the resulting XML document. [25]

Advantages

• XSLT supports a wide variety of features that support complex transformations.

• Because XSLT is supported by major browsers, server side transformation can be avoided, thus
reducing the amount of processing power required by the server (at the cost of processing at the client).

• XSLT provides a standard and widespread technique to transform XML documents.

• Almost no Java code is required to perform the transformation.

• XSLT does not require an XML schema.

Disadvantages

• One XSL template file is required for each combination of settings.

• Does not directly support inserting content from text files into the output document. This could be
worked around by using file inclusion tags in the server side scripting language (JSP, JSF, etc.).

 11

• Does not support reading of a document into a custom Java object representation as required in the
Java code integration requirement.

2.1.2.3. JAXB

Java API for XML Binding (JAXB) provides an API that enables a developer to generate a set of classes
that represents a specific XML schema and based on these classes; generate an XML document that
conforms to the specified XML schema.

JAXB uses the xjc compiler (which is part of the Java Developers Kit (JDK) [26]) available as an Apache
Ant* [27] task and as a command line tool to generate java classes. These Java classes are then used to
programmatically produce an XML document that can be written (marshalled) to a file. JAXB can also be
used to read (unmarshal) XML documents that conform to a certain XML schema.

Advantages

• JAXB guarantees that the resulting XML document conforms to the XML schema.

• Provides a widespread and standardized way generate XML documents.

• The XML document is created from a Java context so that java expressions can be used to produce the
output.

• Using Java I/O APIs any file can be read and its content inserted into the generated XML document.

Disadvantages

• Transformation must be done on the server.

• Requires a lot of java code.

• XML schemas must be written to define exactly what is legal and what is not in the output and input
files.

• It is very complicated, though possible, to mix namespaces.

2.1.2.4. SAX

Simple API for XML (SAX) is an event based API that can be used to parse and generate XML encoded
content. A SAX parser parses an XML file sequentially, invoking event methods of a handler as the file is
processed. This results in a fast and memory efficient way to parse XML.

However, SAX can not be used to access an XML file randomly. It requires more code than programming
using the previously mentioned technologies and it is also more difficult to visualize its operations
because it is event based. [28], [29]

* Apache Ant is a software tool that enables platform independent software builds.

 12

Advantages

• Provides a standard API to parse and generate XML.

• Fast and memory efficient [30].

• The XML document is created from a Java context so that Java expressions can be used to produce the
output.

• Provides simple methods to generate XML documents with different namespaces.

• Using Java I/O APIs any file can be read and its content inserted into the generated XML document.

Disadvantages

• Requires more code than other technologies.

• Does not allow in-memory modification of the XML.

2.1.2.5. Other technologies

There are several other technologies that can be used to transform XML, although research into how to
use these are outside the scope of this master’s thesis.

The decision to exclude investigation of other technologies from the scope of this master’s project was
based on the following assumptions:

• JAXB, SAX, and XSLT are flexible, provide good performance, and are widely used. [30]

• JAXB and SAX provide all the required features, as put forth in section 2.1.2.1.

• There are too many different potential XML transformation technologies to investigate all of them
within the scope of this master’s thesis; thus this thesis has focused on the most widely used
technologies.

2.1.3. Displaying multimedia on the Web

2.1.3.1. HTML+TIME

HTML+TIME is the basis for SMIL support that is built into Microsoft’s Internet Explorer. Since the
introduction of HTML+TIME in Internet Explorer 5, the specification has evolved and is now at version 2.
 [10] HTML+TIME provides timing much like that used in SMIL. In fact, HTML+TIME is actually based
on the XHTML+SMIL profile of SMIL 2.0, see section 2.2.1. Although HTML+TIME has been around for
a long time, it has not received been widely adopted by web developers. One major reason for this is that
it is still only implemented by Microsoft’s Internet Explorer and will not work with any other browser.
This might change in the future as the Mozilla Firefox team wants to support parts of the forthcoming
SMIL 3.0 specification [2].

 13

Although there are few actual implementations of HTML+TIME sites on the web, there are some good
references available, describing how to use HTML+TIME. These include tutorials, references, and
examples, see the HTML+TIME tutorials at W3Schools.com [31] and on Microsoft.com [10]. These
tutorials were used as a reference when creating the HTML+TIME templates described in section 4.1.4.

2.1.3.2. Embedding media players

To enable playback of media types that are not directly supported by a web browser, an external media
player can be embedded as a part of a web page. This requires that the end user’s browser has a plug-in for
the specific media player that is to be embedded. Most media players expose playback control features
through JavaScript so that the media can be started and stopped at any time.

The process of embedding media players is done slightly differently in different browsers and different
versions thereof. There are two different tags that can be used, the embed tag and the object tag. To ensure
cross-compatibility, the two can be combined by using an object tag with a nested embed tag. A
simple example of how Apple’s QuickTime player can be embedded in an HTML web page is given in the
code example shown in Example 1.

Using the object tag, all run-time parameters should be specified using nested param elements. Using
the embed tag on the other hand all parameters are specified as attributes.

The classid attribute is different for different media players. Different players have a series of different
parameters that define how the embedded element will be displayed. Different media players also define
different JavaScript methods to control playback of media files. The parameters and functions for the
different media player plug-ins that are interesting for this thesis project are listed tables 1, 2, and 3 below.

<object id="audio1" height="0" width="0"
 classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 codebase="http://www.apple.com/qtactivex/qtplugin.cab">

 <param name="src" value="mmsvoice.amr">
 <param name="autoplay" value="false">

 <embed name="audio1" height="0" width="0"
 src="mmsvoice.amr"
 type="video/quicktime"
 autostart="false"
 pluginspage="http://www.apple.com/quicktime/download/">
 </embed>
</object>

Example 1. HTML code example of embedding an Apple QuickTime media player
element.

 14

Table 1. Parameters and functions for Apple’s QuickTime plug-in [32], [33].

Name Description

AUTOPLAY This parameter specifies whether playback should start automatically.

Values:

true Start playback automatically
false Do not start playback automatically

CLASSID This parameter specifies the unique class ID for this object as needed by
Microsoft’s Internet Explorer.

The value of this attribute specifies that Apple’s QuickTime should be used to
play the the content.

Value:

“clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”

CONTROLLER This parameter specifies the visibility of the movie controller.

Values:

true The movie controller is visible
false The movie controller is not visible

PLUGINSPAGE This parameter specifies a Uniform Resource Locator (URL) from which the
user can fetch the necessary plug-in if it is not installed.

SCALE This parameter specifies the scaling to use for a movie.

Values:

“tofit” The movie is stretched to fit within the height and width of
the element

“aspect” The movie is stretched to fit within the height and width of
the element, while maintaining the aspect ratio

<numeric> A numeric value defining a scaling factor relative to the
original size of the video clip. For example: “1.5”

 15

Name Description

GetPluginStatus() This function gets the status of the current movie.

Values:

“Waiting” Waiting for the movie data stream to begin

“Loading” Data stream has begun, not able to play/display the
movie yet

“Playable” Movie is playable, although not all data has been
downloaded

“Complete” All data has been downloaded

“Error: <#>” The movie failed with the specified error number

Play() This function starts playback of the movie

Rewind() This function rewinds the movie

Stop() This function stops playback of the movie

Table 2. Parameters and functions for RealNetworks’ Real Player plug-in [34].

Name Description

AUTOSTART This parameter specifies whether playback should start automatically.

Values:

true Start playback automatically
false Do not start playback automatically

 16

Name Description

CENTER This parameter specifies whether the presentation should be centered in the
image window and displayed in its original, encoded size.

Values:

true The presentation is centered
false The presentation is not centered

CLASSID This parameter specifies the unique class ID for this object as needed by
Microsoft’s Internet Explorer.

The value of this attribute specifies that RealNetworks’ RealPlayer should be
used to play the the content.

Value:

“clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”

CONTROLS This parameter specifies the controls to be displayed on the web page.

Applicable value:

“ImageWindow” Show only the image window for video or
animation playback

MAINTAINASPECT This parameter specifies whether the height-to-width (aspect) ratio of the clip
should stay constant when the clip scales to fit the image window

Values:

true The aspect ratio remains constant
false The aspect ratio does not remain
 constant

DoPlay() This function starts playback of the movie

DoStop() This function stops playback of the movie

 17

Name Description

GetPlayState() This function gets the current playback state.

Values:

0 Stopped
1 Contacting
2 Buffering
3 Playing
4 Paused
5 Seeking

Table 3. Parameters and functions for Microsoft’s Windows Media Player plug-in [35] [36].

Name Description

AUTOREWIND This parameter specifies whether the movie should automatically be rewound
when it stops.

Values:

true Auto rewind
false Don’t auto rewind

AUTOSTART This parameter specifies whether playback should start automatically.

Values:

true Start playback automatically
false Do not start playback automatically

CLASSID This parameter specifies the unique class ID for this object as needed by
Microsoft’s Internet Explorer.

The value of this attribute specifies that Microsoft’s Windows Media Player
should be used to play the the content.

Value:

“clsid:6BF52A52-394A-11D3-B153-00C04F79FAA6”

 18

Name Description

PLAYSTATE This parameter specifies the current playback state.

Applicable values:

0 Undefined
1 Stopped
2 Paused
3 Playing

SHOWCONTROLS This parameter specifies whether to show playback controls or not.

Values:

true Show playback controls
false Do not show playback controls

Play() This function starts playback of the movie

Stop() This function stops playback of the movie

2.1.4. Connecting to service providers

Sections 2.1.4.1 and 2.1.4.2 describe two different protocols that can be used to send and receive MMS
messages. Sending and receiving MMS messages requires that the application is connected to a service
provider that in turn is connected to the mobile networks to which the messages should be sent.

2.1.4.1. MM7

MM7 is a telecommunication protocol used to handle multimedia messaging between Value Added
Service Providers and mobile networks. The MM7 protocol is defined in 3GPP 23.140 [41] and is based
on the SOAP protocol [42]. MM7 allows Value Added Service Providers to send, receive, cancel, and
replace MMS messages when communicating directly with an MMS relay server; as well as to receive
and/or retrieve status information about a certain message.

There are several MM7 SDKs available to simplify the use of the MM7 protocol by Java application
developers. One such SDK is Ericsson’s MM7 SDK [39] which can be downloaded from Ericsson’s
Developer Program [38].

There is also a standardized Java API that can be used for MMS messaging. This API is defined in Java
Specification Request (JSR) 212 and is known as the SAMS-M API. There is currently no open SAMS-M
implementation available. However, there is an implementation of SAMS-M included in the J2EE Web
Application Template which is available from Ericsson’s Developer Program [54].

 19

2.1.4.2. Parlay X

Parlay X is a set of telecommunication Web Services which provide application developers with an
abstract interface to a mobile network. Parlay X Web Services can be used to access telecommunication
network capabilities such as, for example, MMS messaging. Parlay X Web Services is defined by the
Parlay Group [19] and is a SOAP-based [42] set of Web Services. The Parlay X Web Services that are
defined for MMS allow an application developer to send and receive MMS messages as well as retrieve
and receive the delivery status for an MMS message.

Parlay X Web Service calls are made to a Parlay X gateway that is responsible for exposing the Web
Services (either within an operator’s network or on the Internet), and for processing the Web Service
requests and forwarding them to the mobile network using the appropriate protocol. In doing so, it allows
application developers to access a number of different telecommunication network capabilities, without
using complex telecom protocols (such as MM7), but rather using Web Services.

Furthermore, there are SDKs available that will simplify the use of Parlay X web services. One such SDK
is Ericsson’s Telecom Web Services SDK [17]. This SDK exposes the telecommunication capabilities as
basic JavaBeans, which means the developer does not have to be familiar with Web Services in order to
access such capabilities.

2.2. Underlying technologies
2.2.1. SMIL basics

The SMIL language is a text-based, standardized XML format developed to provide interactive
multimedia as web content. The SMIL standard was released by the web standards organization: World
Wide Web Consortium (W3C) [37]. [38]

The SMIL language combines different types of media formats into an interactive presentation. The SMIL
2.0 specification supports features such as selection, linking, activation control, synchronization, and
transitions, which enables a very rich display of multimedia content. [38]

Because the SMIL 2.0 specification is very extensive, W3C defined a number of profiles that provide
subsets of the functionality of the full SMIL 2.0 language, to allow thinner clients to support the more
basic features of SMIL. SMIL 2.0 defines the following profiles: [38]

SMIL 2.0 Language The full SMIL 2.0 language

SMIL 2.0 Basic Subset for low-power devices

3GPP Mobile SMIL SMIL subset designed for mobile phones

XHTML+SMIL SMIL timing integrated into XHTML

SMIL 1.0 The original SMIL specification

Even though the 3GPP Mobile SMIL profile was designed for mobile phones, it has not been widely
adopted by the telecommunication industry as of yet, although Nokia has added 3GPP SMIL support to
some of their newer models [44]. Instead, the telecommunication industry uses another subset of SMIL
known as MMS SMIL. MMS SMIL was not defined by W3C, but rather by Open Mobile Alliance (OMA)
 [45]. This subset is explained in more detail in section 2.2.2.

 20

XHTML+SMIL was designed to be integrated into XHTML. Despite the release of the SMIL 2.0
specification in August 2001, none of the major browsers* currently support XHTML+SMIL. In fact, this
specification has not progressed to W3C’s recommendation status. However, Microsoft’s Internet
Explorer does offer similar functionality through HTML+TIME [10], which was the result of a
collaboration between Microsoft, Macromedia, Compaq/Digital, and Digital Renaissance. It has not been
adopted in browsers other than Microsoft’s Internet Explorer. It was submitted to the W3C in 1998 [46]
and it appears likely, though not specifically stated, that it was an important contribution to the work of
defining the XHTML+SMIL profile [47].

2.2.2. MMS SMIL and its limitations

As briefly described in section 2.2.1, MMS SMIL [8] is a subset of the SMIL 2.0 specification. It was
specified by the Open Mobile Alliance (OMA) [45]. OMA is an organization that was formed by nearly
200 companies involved in the mobile industry to ensure interoperability between vendors, operators,
networks, and devices. MMS SMIL was designed to be a subset of SMIL suited for multimedia messaging.
SMIL provides the capabilities to present multimedia content. At the time MMS SMIL was proposed there
was no SMIL profile defined by the W3C [37] that was considered suitable for the mobile devices
available at that time. Thus, OMA specified MMS SMIL [8].

There are a number of limitations in the MMS SMIL specification, most are related to the limited screen
size and limited processing capabilities of the mobile devices available at that time. The most notable
limitations on MMS SMIL are:

• Each SMIL “slide” may contain a maximum of two regions, of which one must be text. It may also
contain background sound. [8]

• The size of the SMIL message is critical. Early devices supported a total message size of at least
100kB, while newer devices can handle messages up to 600kB. However, the size of the message may
also be limited by networks it passes through. [8]

• Mobile devices are not guaranteed to display the content as it was specified in SMIL. If the content
does not fit the display, then the mobile device may rearrange it so that it can be displayed. [8]

• The synchronization features are limited, for instance, nesting of time containers are not allowed. [8]

2.2.3. Web applications in Java

This section provides a brief introduction to web applications in Java, for more information, please refer to
Java Servlet Programming [48], Pro JSP 2 [49], and J2EE Design Patterns [50].

* This includes Microsoft’s Internet Explorer, Mozilla’s Firefox, Apple’s Safari and Opera’s Opera.

 21

2.2.3.1. Introduction

The main difference between a web application and a traditional application is that for web applications,
most of the logic performed by the application is not performed on the client’s computer, but rather on a
web server. A web application client (a browser) sends a request to view a resource or to perform an
action, and then the server processes this request, returning as its result a web page. Typical actions
performed by the web server include: reading data from disk, processing of data, and performing database
lookups.

Web applications in Java are typically Servlet based. A Servlet is a Java class that handles an incoming
HTTP requests, processes these requests and sends responses back to the clients. Servlets exist within a
web container on the web server. Based on which URL was requested by the client, different Servlets will
be responsible for handling the request. Which Servlet is responsible for serving a given URL is defined in
a deployment descriptor. Figure 5 shows an overview of a typical Java web application.

Client

HTTP requests

Web Container

Servlet

Servlet

Servlet

Web Server

Database

File System
HTTP responses

Figure 3. Web application overview.

Servlet-based web applications are highly maintainable and reusable [49]. A Java web application is
packaged in a .war archive and can be deployed on any web container supporting Java Servlet
technology, for example, Apache’s Tomcat [51].

2.2.3.2. JSP

The markup of JSP is similar to HTML markup. The difference between HTML pages and JSP pages is
that JSP pages can contain Java statements. In short, JSP adds the full functionality of the Java APIs to a
web page. This enables the page to access databases, perform business logic, and display the result of
these transactions on a web page.

 22

The means by which this is accomplished is through a number of JSP tags, JSP expressions, and through
embedded Java code. However, embedding Java code directly in a JSP page is considered bad practice
because it often results in a lot of Java code mixed with HTML, making the code hard to follow and
maintain. Using JSP 2, it is rarely necessary to embed Java code directly in a JSP page, because there is a
large set of predefined tags, available through the Java Standard Tag Library (JSTL) that can be used to
handle tasks such as iterating through collections and performing conditional statements. [49]

2.2.3.3. Custom tags

JSP custom tags provide a way to encapsulate reusable functionality on JSP pages. Custom tags can be
used to add JSP code and logic that will be used on several different places within a web site, thus greatly
improving reusability, readability, and maintainability.

 23

3. Method

3.1. Goals
3.1.1. MMS transformation components

The first goal is to provide a minimal set of transformations for MMS SMIL to enable MMS SMIL to be
displayed by a HTML-capable web browser. This includes supporting all media types and the commonly
used slide compositions defined in MMS SMIL in order to display MMS messages as they would be
displayed on mobile terminals. Another goal is to support MMS transformation from and to a Java object
representation of an MMS message. This will greatly simplify editing of an MMS message as well as
enabling MMS messages to be authored directly using Java code. Additionally it would be interesting to
support 3GPP SMIL as an additional source format for transformation to HTML views; however, this is a
very low priority activity.

The transformation components should support a set of rules that define how the HTML view of a given
MMS message should be produced. The rules were determined based on functionality in the SMIL
language and common media players. Such rules include for example the size of the presentation area for
the MMS message, how many times the MMS message should be played, and whether or not to include a
playback control bar.

The first priority for an MMS SMIL to HTML transformation is implementing a transformation that
enables the resulting web content to utilize the timing capabilities of HTML+TIME. As discussed in
section 2.1.3.1 HTML+TIME is currently only supported by Microsoft’s Internet Explorer browser.
Additionally, it would be very interesting to implement HTML output that will work in browsers that do
not support HTML+TIME. Such an approach could make use of JavaScript and CSS to achieve the timing
effects that MMS messages require. The first step in such an alternative solution would be to generate
output that is supported by typical desktop-based browsers. However, it would also be interesting to
implement a solution based on XHTML-MP and ECMAScript, such that it could also be displayed in
mobile terminal browsers.

There should also be an automatic way of determining what media player plug-ins are available in the end
user’s browser. This is likely to improve the user’s experience because the user will not have to manually
determine which media player is installed and select this as their media player for this content.

The MMS transformation components should not limit the persistence strategy that can be chosen for
media files. Thus it should be possible to serve media files that are required by the transformation
components directly from a database or any other data source. Therefore, it should be possible to specify a
Java class representation of a folder that contains media files. This Java class representation of a specific
folder can then be used to serve the files from persistent (or even in-memory) storage.

It is also important to log important events and to implement the component code following a clear
abstract design in order to simplify future development.

3.1.2. MMS presentation components

The MMS presentation components are based on the transformation components. The goal of the
presentation components is to simplify the use of the transformation components from a web developer’s
perspective.

 24

The presentation components should include a Servlet that performs real-time transformations from MMS
SMIL to HTML. We will refer to the different forms of HTML output as views. The Servlet should also
handle errors and based upon the cause of the error, the HTTP request should be dispatched to a
predefined error page that will display a message to the end user. To further help developers integrate
MMS messages into their web sites; a JSP custom tag that embeds the MMS view in a web page and
passes the applicable parameters to the Servlet should be developed. Ideally, the web developer would
only have to embed the JSP tag on a page and need not be aware of all the complexities involved
concerning either MMS SMIL or the transformation process. Given sufficient time it would be interesting
to implement a JSF tag with which could provide features similar to this JSP tag.

3.1.3. MMS composer components

The main goal of the MMS composer components is to make it as easy as possible to add MMS message
authoring capabilities to a web site. A suitable solution should automate the process of composing an
MMS message on a web page using JavaScript methods to add and remove different elements from an
area in which the MMS is being graphically composed in real time based on input from the user. This area
will henceforth be referred to as the MMS canvas. The content composition of the MMS message should
also be verified, e.g. if a method is called to add an element that is not allowed on the current slide, then
an appropriate error message will be returned.

The MMS composer components should also include a JavaScript method that will send the data of the
composed MMS message to a given URL. This URL should in turn point to a Servlet that is responsible
for creating a Java object representation of the MMS message and saving the resulting MMS SMIL. This
Servlet should be one of the transformation components.

The MMS composer’s HTML code should be exposed to the web developer through at least a JSP custom
tag. Given sufficient time, it would be interesting to expose the HTML code as a JSF tag as well in order
to simplify integration of the composer in a JSF application.

The composer components need not handle file uploads. The composer components should assume that
all media files are already available from the web container. The Servlet responsible for creating and
saving the MMS SMIL should not be aware of any paths specifying where the media files are located*.
Instead, only the file name of a given media file should need to be added to the src attribute of a given
media element in the resulting MMS SMIL. As such, the composer components are primarily MMS SMIL
authoring tools, while the media file handling responsibilities belong to the surrounding web application.

The exception to this rule concerns text elements which should not be added to the MMS canvas as media
files. Instead, the add-text JavaScript method (which takes one string containing the text) will be used to
store this text in a text file that is generated during the transformation to MMS SMIL. As with the
transformation components, the persistence strategy used to save text files should not be limited by the
components.

* Note that during the authoring process, the composer components should support any valid HTML media
paths. This functionality should be supported because it will greatly improve the user experience, as the
user can see the media elements on the MMS canvas during the composing phase.

 25

3.1.4. Additional deliverables

This thesis project is being conducted at Ericsson and as such there are some additional deliverables
required to package this thesis so that it is interesting and valuable for Ericsson and by extension, the Web
2.0 community. One of the key components of this will be downloadable development information via
Ericsson’s Developer Program web site [52].

While this thesis will not be included in the download package that will be made available to developers
through Ericsson’s web site, a shorter and more focused user guide will be written and will be made
available. This user guide is included as Appendix E.

To demonstrate to developers how to use the components in a meaningful way, the components will also
be integrated into one or more example web applications, which should be included as a part of the
download package. Parts of these examples are used in this thesis project.

3.2. Steps to be performed
3.2.1. Determining how SMIL is displayed in different SMIL players

As briefly discussed in section 1.2.3, SMIL presentations are not always displayed uniformly by different
SMIL players. Thus, a study of how content is actually displayed in different media players was
considered to be a very important part of this thesis project. SMIL is a very extensive specification, and
few players support the whole SMIL specification. Further more, one should not assume that all players
that can display the content do so in exactly the same way. Therefore, in order to present messages as
uniformly as possible via different players, a study was conducted to determine how to format SMIL so
that it is displayed very similarly via different media players; as well as to make sure it is displayed as was
intended by the author. See section 4.1.1.

3.2.2. Setting up a test environment for MMS

A test environment was created in order to test how mobile networks and terminals handle MMS
messages. This test environment is very important as it enables us to conduct experiments in a controlled
environment. It was initially unknown whether all terminals and networks produce MMS messages
formatted in the exact same way. Further more, different networks and terminals may modify the SMIL
file and terminals may ignore certain parts of the layout that is defined within the SMIL file [8].

These differences in rendering and content changes can be very difficult and time consuming to predict
from specifications alone. Therefore a central task throughout this project was to test, in reality, what the
end results are for both incoming and outgoing messages.

The Ericsson department where this thesis project is taking place had access to an Ericsson Internet
Payment Exchange (IPX) account [53], which enables sending and receiving MMS messages to more than
350 different mobile networks. The protocol used to communicate with Ericsson IPX is MM7. Thus, test
applications could send and receive MMS messages, using an MM7 API (such as an implementation of
SAMS-M (JSR-212) [40] or Ericsson’s MM7 SDK 5.0 [39]).

The implementation of the test applications created for this test environment is described in section 4.1.2.

 26

3.2.3. Interpreting MMS SMIL

It is desirable to use most of the information contained in the MMS SMIL file in order to present the
content as it was intended by the author and as output by an MMS composer. This data could also help the
transformation components decide how to transform the MMS SMIL to an HTML view.

However, it is not necessarily the case that all available data in each MMS SMIL file should be used in the
transformation. As discussed in section 2.1.1, MMS SMIL players do not necessarily comply with the
SMIL specification. Instead, a given MMS SMIL presentation should be displayed as the player deems best,
given its available screen size and processing power. Although these limitations are typically not present
on a desktop computer, this freedom has effected how MMS SMIL files are created by mobile phones in
the sense that they are often not adapted to the content of a given MMS message. Thus, it may be
preferable to ignore some data in the MMS SMIL in order to display it in user friendly way.

A qualitative study of how MMS SMIL messages are composed in mobile phones was carried out to
determine which parts of an MMS SMIL file contain valid and/or valuable data which should be used
during the transformation. This study is described in section 4.1.3.

3.2.4. Implementing static templates for HTML+TIME

Before the transformation components can be implemented it is necessary to identify what the output of
the transformation should be. For our first set of transformation components we implement static
templates that output HTML+TIME pages to display the content of an MMS message which has been
formatted using MMS SMIL.

Some challenges to overcome are:

• Achieving a slide show effect using HTML+TIME

• Embedding media players for audio and video slides

• Performing scaling of images and video

• Controlling playback using JavaScript and HTML+TIME events

• Implementing playback control bar

The steps necessary in order to create static templates for conversion of MMS SMIL to HTML+TIME are
described in section 4.1.4.

3.2.5. Implementing static templates for DHTML

Before the transformation components for DHTML can be implemented it is necessary to identify what
the output the transformation should be. For our second set of transformation components we implement
static templates that output DHTML pages to display the content of an MMS message.

 27

Some challenges to overcome are:

• Achieving slide show effect using DHTML.

• Controlling playback using JavaScript and CSS.

• Controlling playback for audio and video files

• Performing scaling of images

The steps necessary in order to create static templates for conversion of MMS SMIL to DHTML are
described in section 4.1.5.

3.2.6. Transformation requirements

Even when both the input and output of an XML transformation are known, the best way to perform a
transformation between the two formats has to be determined. In order to determine which technology is
best suited for performing this transformation, a set of requirements were used to evaluate a number of
potential transformation technologies. These requirements are based on the input, output, and also the
level of integration with Java code that is required.

The specific requirements and their respective motivations are discussed in section 4.1.5.

3.2.7. Transformation technology

As discussed in section 2.1.2 there are a number different of technologies that could be used to transform
XML data. Determining which of these technologies should be used is very important, as it will affect
most parts of the transformation components. To determine which XML technology to use, the following
technologies were investigated and compared to the requirements – this is described in section 4.1.5.

The different technologies (introduced in section 2.1.2) are compared with the suggested requirements
(described in section 4.1.5) in section 4.1.7.

3.2.8. Determine media player capabilities

In order for the transformation components to be able to embed an appropriate media player for a certain
media type, it is important to know what media players support each of the different media formats. To
determine this, a number of media players and their capabilities have been empirically tested. This testing
and the results of these tests are described in section 4.1.8.

3.2.9. Designing and implementing the components

Much of the effort in this thesis project concerns how to design and implement the different components.
The implementation details are briefly discussed in section 4.2. The Javadoc documentation for all classes
can be found in Appendix F. Further more, the user guide is included in Appendix E. The complete
package will be published during the first quarter of 2008, and can then be downloaded from Ericsson’s
Developer Program [52].

 28

4. Analysis

4.1. Performed steps
4.1.1. Adapting SMIL content to specific players

After some very basic testing of how SMIL is displayed in the different supported players that were to be
supported, it became very clear that both SMIL and the contents need to be generated differently
depending on which player will be used by the receiver to display the message. Some of the
inconsistencies among the players are:

• Embedded players require different amounts of extra space at the bottom of the embedded element’s
area on the web page, for playback controls.

• Text size varies.

• Text clipping is different in the different players.

• Some players support relative URIs to the media content (e.g. mypic.jpg), while others require an
absolute URL*.

Initial testing revealed that there was a need for an extensive study of how to create content to be
displayed in more or less the same way via the different media players. Alternatively it would be
necessary to generate multiple versions of the content (one version per player) and to know which player
will be used for playback before sending the content to the device.

Due to the complexities involved in conducting this study and implementing transformation components
to transform MMS SMIL content to the format needed for specific media players; the alternative solution
of implementing a transformation solution from MMS SMIL to the subset of SMIL that was supported
directly in media players was given a low priority.

4.1.2. Setting up a test environment for MMS

In order to easily send and receive MMS messages, two simple applications were implemented. These
applications use SAMS-M to communicate with IPX. The SAMS-M implementation used was previously
developed at Ericsson, but has not been released separately. To further simplify the implementation of the
test applications, the application J2EE Web Application Template [54] from Ericsson’s Developer
Program was used as a base (as the above mentioned SAMS-M implementation is included in this
template application).

* Real Network’s RealPlayer requires absolute URLs if media is referenced directly from SMIL. It may be
possible to work around this issue by referencing the SMIL file from a RealPlayer .ram file. For more
information, see the e-mail correspondence with Eric Hyche from Real Networks collected in Appendix D.

 29

4.1.2.1. Sending MMS

The send MMS application was designed to read files from a specific folder, attach them to an MMS
message, and send the resulting message. This enables easy testing of any MMS SMIL message by simply
copying the MMS SMIL file and the accompanying media files into this directory and invoking the
sending class.

The send MMS application consists of a starter class with only a main method. The main method performs
the following steps:

• Defines hard-coded parameters such to-number, from-number, and subject.

• Creates a new MmsSendBean.*

• Sets the parameters of the MmsSendBean.

• All files in the subfolder mms are read and set as attachments to the MmsSendBean.

• Use the business method of the bean to send the MMS message.

The code snippet in Example 2 shows this main method:

* Note that a Java bean is simply a Java component, for more details about this particular Java bean,
please refer to the J2EE Web Application Template [54].

public static void main(String[] args) throws Exception {

 MmsSendBean sendMms = new MmsSendBean();

 sendMms.setMmsReceiver("<to-number>");
 sendMms.setMmsSender("<from-number>");
 sendMms.setSubject("<subject>");

 ArrayList<File> attachments = new ArrayList<File>();

 File mmsDir = new File("mms");
 File[] mmsFiles = mmsDir.listFiles();

 for (int i = 0; i < mmsFiles.length; i++) {
 attachments.add(mmsFiles[i]);
 }

 sendMms.setUploadedFiles(attachments);

 sendMms.setMimeFile("mime.types"); //Set mime types

 sendMms.sendMMS();
}

Example 2. Main method for send MMS application

 30

The MmsSendBean was taken from the J2EE Web Application Template and modified slightly to use
hard-coded parameters matching the particular IPX account which was used for testing. The resulting
class is a Java bean wrapper around SAMS-M that enables sending of MMS messages using the MM7
protocol and this particular IPX account.

4.1.2.2. Receiving MMS

The receive MMS application was designed to listen for incoming MMS messages from IPX and save the
attached files (both the MMS SMIL and the media files) in a new folder for each MMS message. This
enables fast and easy collection of MMS SMIL sent from different mobile phones so that the variations
between the resulting content can be easily studied.

Setting up the receive MMS application is a bit more complicated because it must be able to receive and
act upon MM7 messages. Using the SAMS-M implementation, this is done in a web container by mapping
a Servlet class to the URL that is used to listen for incoming MMS messages. This Servlet is responsible
for parsing the MM7 message and notifying the listener that a new message has arrived.

In summary, the following steps were performed to create the receive MMS application:

• Implement the javax.sams.MessageListener interface that will receive messages and save
them in a folder.

• Create an init Servlet that registers the javax.sams.MessageListener implementation with
the SAMS-M API.

• Configure the init Servlet via the web.xml deployment descriptor and set it to be loaded on startup of
the application.

• Configure the com.ericsson.mm7.MmsReceiverServlet Servlet that receives incoming
MM7 messages in the web.xml file.

For more information about web applications, please refer to section 2.2.3.

The code snippet in Example 3 below shows part of the MmsListener class that implements the
javax.sams.MessageListener interface. This class also defines a startListener() method
that is called by the init Servlet to register the current instance with the SAMS-M API.

 31

public class MmsListener implements javax.sams.MessageListener {

 //This method is called by the SAMS-M API when a message is
received
 public void onMessage(Message message) throws
InvalidArgumentException, ServiceException {
 if (message instanceof javax.sams.messaging.mms.MmsMessage) {
 MmsMessage mmsMessage = (MmsMessage)message;
 saveMms(mmsMessage);
 }
 }

 private void saveMms(MmsMessage mmsMessage) {
 try {
 ContentPart[] contentArray = mmsMessage.getContents();

 for (int i = 0; i < contentArray.length; i++) {
 byte[] content = contentArray[i].getContent();
 String name = contentArray[i].getLocation();
 File folder = new File(folderStr);
 FileOutputStream out = new FileOutputStream(new File(folder
+ name));
 out.write(data);
 out.flush();
 out.close();

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void startListener(){
 //Register this MmsListener to listener handler
 try{

 MmsMessageListenerHandler mmsMessageListenerHandler = null;

 ServiceFactory factory = new ServiceFactory();
 Service service = factory.getService(MessagingSession.class,
"mms");

 MmsMessagingSession session =
 (MmsMessagingSession)service.openSession(new Hashtable());

 mmsMessageListenerHandler =
(MmsMessageListenerHandler)session.getMessageListenerHandler();

 mmsMessageListenerHandler.setDefaultMessageListener(this);
 System.out.println("Listening to new MMS!");
 } catch(Exception se){
 System.err.print(se);
 }
 }
}

Example 3. SAMS-M MmsListener implementation example.

 32

The code snippet depicted in Example 4 is part of the init Servlet that registers the listener.

public class InitServlet extends javax.Servlet.http.HttpServlet
implements javax.Servlet.Servlet {

 @Override
 public void init() throws ServletException {
 super.init();

 MmsListener listener = new MmsListener();
 listener.startListener();

 }

}

Example 4. InitServlet code that is used to start listening to incoming MMS messages

Example 5 contains an XML code snippet which is part of the web.xml file that defines the application
as a web application to a Java web container such as, for example, Apache Tomcat [51].

<Servlet>
 <Servlet-name>MmsReceiverServlet</Servlet-name>
 <Servlet-class>com.ericsson.mm7.MmsReceiverServlet</Servlet-class>
</Servlet>
<Servlet>
 <Servlet-name>InitServlet</Servlet-name>
 <Servlet-class>mms.receive.InitServlet</Servlet-class>
 <load-on-startup>1</load-on-startup>
</Servlet>
<Servlet-mapping>
 <Servlet-name>MmsReceiverServlet</Servlet-name>
 <url-pattern>/MmsReceiverServlet</url-pattern>
</Servlet-mapping>

Example 5. Servlet mappings for the receive MMS application.

4.1.3. Determining interesting data in MMS SMIL

In order to identify which elements and attributes are available in MMS messages sent from different
mobile phones and whether they contain valid data, MMS messages were composed (containing roughly
the same content) and sent from the following types of phones and the resulting MMS SMIL analyzed:

• Motorola MotoRAZR V3

• Nokia N70

• Nokia 5140

• Samsung SGH-Z560

• Sony Ericsson K800

• Sony Ericsson P910

• Sony Ericsson P990

 33

Appendix B contains a selection of the resulting MMS SMIL files which were analyzed.

The main conclusion drawn after a closer look at the different SMIL files (for these messages) is that they
differ a lot in terms of which attributes are set and what their values are. However, the following data is
present in all of these samples:

• Order of the region elements, e.g. media or text region on top.

• Which media/text element should be displayed on which slide.

• File name of media/text element.*

• Duration of each slide and element.

The dimension attributes were not related to the actual size of the content included in the message. Instead,
all of the terminals that were tested, used fixed height and width attributes. Thus, the dimension attributes
will be disregarded in order to transform MMS messages to a HTML version that is displayed similarily to
how they would be displayed on a mobile terminal.

Table 4 contains a list of elements and attributes that are defined in the MMS SMIL specification, the
occurrence of these in MMS SMIL from different vendors, and how these elements and attributes are
processed by the transformation components.

Table 4. MMS SMIL elements and attributes and how they should be processed by the
transformation components.

Name Occurrence Processing notes

smil Always The root element. Occurs with or without a namespace declaration

head Always Contains no interesting data

layout Always Contains no interesting data

root-layout Always Contains backgroundColor, height and width attributes.

The backgroundColor attribute contains background color
information for the MMS message. This attribute will be fully
supported.

The height and width attributes will be ignored as discussed
earlier in this section.

* Not true for the Nokia 5140 where the content type must be used to generate the actual file name.

 34

Name Occurrence Processing notes

region Always Contains left, top, height, width, fit and id attributes.

Order of occurrence of regions with IDs “Text” and “Image”
respectively will be used to determine which type of layout applies
to a certain MMS message (e.g. text on top or image/video on top)

All attributes will be ignored and the layout determined by the
transformation components.

body Always Contains no interesting data

par Always Contains dur attribute

The dur attribute will be used to determine how long a slide is
displayed.

text When
applicable

Contains src, region, alt, begin, end and dur attributes.

The src attribute contains the content ID of the text file to which
it refers. If the src attribute is not a valid file name, it must be
replaced with a valid file name before the MMS SMIL is
transformed to an HTML view.

The text file referenced by the source attribute is read and inserted
into the HTML view during transformation.

All other attributes are ignored.

img When
applicable

Contains src, region, alt, begin, end and dur attributes.

The src attribute contains the content ID of the image file to
which it refers. If the src attribute is not a valid file name, it must
be replaced with a valid file name before the MMS SMIL is
transformed to an HTML view.

All other attributes are ignored.

 35

Name Occurrence Processing notes

audio When
applicable

Contains src, region, alt, begin, end and dur attributes.

The src attribute contains the content ID of the audio file to
which it refers. If the src attribute is not a valid file name, it must
be replaced with a valid file name before the MMS SMIL is
transformed to an HTML view.

All other attributes are ignored.

video When
applicable

Contains src, region, alt, begin, end and dur attributes.

The src attribute contains the content ID of the video file to
which it refers. If the src attribute is not a valid file name, it must
be replaced with a valid file name before the MMS SMIL is
transformed to an HTML view.

All other attributes are ignored.

ref Never Not supported.

4.1.4. Implementation of HTML+TIME static templates

The next step in creating the transformation components was defining what the end result should be in
various scenarios, in order to transform the content into the correct HTML+TIME format necessary in
order to achieve the desired output look and behavior.

4.1.4.1. Difficulties

While creating the HTML+TIME view templates, some problems were discovered:

• If the content overflows vertically, a scrollbar is added on the right side to allow scrolling. However,
this reduces the available width to display the content. Because the width of an image or video
element is often set to the width of the presentation area, this will also add a horizontal scroll bar
because the image/video element no longer fits in the width of the column. This problem is illustrated
in Figure 4 below.

• Playback of a video or audio element needs to be started when a certain slide is played.

• Scaling settings have to be implemented for video in different media players. The supported scaling
settings are defined in the Javadoc documentation; see Appendix F (class
TransformationConfiguration).

 36

• It is desirable to display a splash-screen* before and after MMS message playback.

• When a media player plug-in is embedded on a slide it can be started using JavaScript methods
invoked by HTML+TIME events. However, if the media takes several seconds to load, then the
playback of the embedded media player will not be synchronized with the timing of the slide. This
means that the last few seconds of the media file will not be played because the slide change causes
the media player to stop playback before it has played the final part of this media.

Figure 4. Horizontal scroll bar automatically added because of the addition of the vertical
scroll bar.

4.1.4.2. Solutions

Asynchronous JavaScript method calls

The problems concerning content overflow and starting playback of video or audio when a slide is played
can be solved through an event in HTML+TIME, the onbegin event occurs when timed elements are
started. This can be used to address the various difficulties noted above, specifically:

• We can resize all child elements of the presentation area to the current available width using
JavaScript.

• We can start playback of an embedded media player using JavaScript.

* A splash-screen is an image that is displayed before an MMS has started playing and after playback
finishes (unless repeatCount is set to “indefinite”). The splash screen can be customized to show,
for example, advertisements.

 37

However, using this event mechanism does not solve the entire problem. As the event occurs just before
the browser “inserts” the timed element. This results in two difficulties:

• Resizing of the image fails because the elements are not yet in the presentation area, so there is not yet
a scroll bar limiting the available width.

• The embedded media player does not yet exist, thus it can not be started.

Fortunately both these difficulties can be solved by calling the resizing/play methods asynchronously by
declaring an inner function and starting it using the setTimeout method. An example of how this is
technique is used to start playback of an embedded Apple QuickTime player is given in Example 6:

Complete implementations of the JavaScripts that are used to start and stop playback for Apple’s
QuickTime, Real Network’s RealPlayer and Microsoft’s Windows Media Player and to resize elements are
included in Appendix C.2..

Handling video scaling in different media players

Different media players enable scaling functionality through different attributes. The attributes used in
different media players to achieve these scaling settings are shown in Table 5 along with their respective
values.

/**
 * Call play on QuickTime embedded element asyncronously
 */
function playQt(player) {

 //Define the function
 var theFunction = function() {
 player.Play();
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);

}

Example 6. Asynchronous JavaScript method to start playback of an embedded
QuickTime player.

 38

4.1.4.3. Result

The end result was successful and all the different slide compositions were displayed satisfactorily. Figure
5 illustrates two examples of transformed output during playback and Figure 6 shows a static template of
the splash screen and the playback control bar. However, no means of dynamically adapting the duration
of a slide to allow synchronization with the media player was discovered.

Figure 5. HTML+TIME template results. (left) Image + text and (right) video + text.

Table 5. Scaling settings for media players.

Scaling setting Apple’s QuickTime RealNetworks’ RealPlayer Microsoft’s
Windows Media
Player

Original size scale=”1” center=”true”
maintainaspect=”true”

Not supported

Stretch scale=”tofit” center=”false”
maintainaspect=”false”

always

Stretch but retain
aspect ratio

scale=”aspect” center=”false”
maintainaspect=”true”

Not supported

 39

Figure 6. HTML+TIME template with splash screen and playback control.

4.1.5. Implementation of DHTML static templates

The next step in creating the transformation components was defining what the end result should be in a
transformation to DHTML, in order to achieve the desired output look and behavior.

4.1.5.1. Difficulties

While creating the DHTML view templates, some problems were discovered (their solutions are
addressed in the next section):

• Implementing a timed slide-show presentation using DHTML.

• Not starting the timeout of a slide until an embedded media player has started playing is necessary to
avoid clipping the end of the media file.

• While implementing the static templates for DHTML, the templates were tested on more recent
versions of Microsoft Windows* using several different browsers†. These tests revealed an issue with
respect to embedding media players in recent versions Microsoft’s Internet Explorer and Opera’s
Opera. The issue is that media player controls in these browsers have to be manually clicked by the
user before they are activated and can be used.

* The templates were tested on Windows XP SP 2 and Windows Vista.

† Specifically: Microsoft’s Internet Explorer 7.0, Mozilla’s Firefox 2.0, Apple’s Safari 3 public beta, and
Opera’s Opera 9

 40

• RealNetworks’ RealPlayer plug-in does not seem support JavaScript control of playback from:
Opera’s Opera and Apple’s Safari.

• There are some compatibility issues between Apple’s QuickTime 7.1.6 plug-in and Mozilla’s Firefox
which randomly causes the browser to crash (other versions of Apple’s QuickTime, specifically more
recent versions, work without any problem)

• It requires a lot of time to support a number of media players, as new code has to developed for each
one.

4.1.5.2. Solutions

Implementing the slide show effect

The slide show effect of MMS messages is achieved using a series of HTML div elements which are put
on top of each other. To alternate between the slides (and the splash-screen) the CSS style attribute
visibility is set to visible for the currently displayed div and to hidden for all other div
elements. The timing of the slides is handled using JavaScript timers.

Waiting for media player playback to start

The browser plug-ins for both Apple’s QuickTime and RealNetworks’ RealPlayer include JavaScript
methods to check the current state of the media player. These methods are used to determine if playback
of a media file has started or not, thus instead of immediately starting the timer that invokes the method
that will display the next slide: if playback has not started, the state of the media player is iteratively
checked (after a small time delay) until playback has started and the timeout to show the next slide is
started at this point.

Avoiding click-to-activate for embedded media players

The requirement for a user to click a media player element in order to activate it can be avoided by using
JavaScript code to dynamically insert the elements of the embedded media player. This method is
described in Microsoft’s Microsoft Developer Network (MSDN) documentation [43] and requires that an
external JavaScript file is used to insert the embedded media player. To enable the control to be dynamic
with respect to different attributes and parameters, this requires that a JavaScript file is dynamically
created for each MMS message.

Avoiding media player/browser incompatibilities

Because no means of working around the above mentioned media player/browser incompatibility issues
were discovered, this will be handled by adding configuration parameters that define what media
player/browser combinations will be allowed when transforming to an HTML view.

Removing support for Microsoft’s Windows Media Player

There is significant work involved in creating static views that works with each individual media player.
Due to this, the limited time available for this thesis project, and the fact that Microsoft’s Windows Media
Player does not support the formats that are typically used for audio and video in MMS messages (see
section 4.1.8), support for this player was not included for the DHTML views.

 41

4.1.5.3. Result

The end result was successful and all the different slide compositions were displayed satisfactorily.
Exploiting the fact that the playback state of media elements can be checked, enables the created DHTML
views to solve the problem of media being clipped at the end, unlike the situation when using an
HTML+TIME view (section 4.1.4). The end result of the DHTML template with an updated playback
control bar and splash screen are shown in Figure 7.

4.1.6. Transformation requirements

4.1.6.1. Introduction

To get an idea of what capabilities are required for the transformation components, the following
examples show an MMS SMIL file and the same MMS SMIL file after it has been transformed to valid
HTML+TIME, such that the content can be displayed in Microsoft’s Internet Explorer. This is depicted in
examples 7 and 8.

Figure 7. DHTML template results.

 42

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html xmlns:t="urn:schemas-microsoft-com:time">
 <head>

 <?import namespace="t" implementation="#default#time2">

 <style>.t {behavior: url(#default#time2)}</style>
 </head>
 <body>
 <div style="background-color: white; width: 200px; heigth:
200px;">
 <t:par>
 <t:seq>
 <img class="t" src="similan.jpg" style="width: 100%;
height: 50%" dur="5000ms"/>

 </t:seq>
 <t:seq>
 <div class="t" style="width: 100%; height: 50%;
overflow: scroll; font-size: small; color: black;" dur="5000ms">
 The beaches at the Similan Islands.
 </div>
 </t:seq>
 </t:par>
 </div>
 </body>
</html>

Example 8. Example of MMS SMIL transformed to HTML+TIME.

<smil>
 <head>
 <meta name="generator" content="SEMC-UIQSMARTPHONE-P990i" />
 <layout>
 <root-layout width="200px" height="200px"
background-color="white" backgroundColor="white" />
 <region id="Image" top="0%" height="50%" fit="meet"
background-color="white" backgroundColor="white" />
 <region id="Text" top="50%" height="50%" fit="meet"
background-color="white" backgroundColor="white" />
 </layout>
 </head>
 <body>
 <par dur="5000ms">

 <text src="text.txt" region="Text">
 <param name="foreground-color" value="black" />
 <param name="textsize" value="small" />
 </text>
 </par>
 </body>
</smil>

Example 7. Example MMS SMIL file.

 43

The above examples make it possible to define some specific requirements upon the transformation
capabilities. These capability requirements are listed and explained in section 4.1.6.2.

4.1.6.2. Requirements

The requirements for the MMS transformation technologies that will be utilized by the transformation
components are listed in Table 6.

Table 6. Requirements for transformation technologies.

Requirement Description

Read and parse MMS SMIL In order to transform an MMS SMIL file to another format, it must
be read and parsed so that data from it can be added to the
resulting HTML view. Though this requirement seems very basic,
there were some issues parsing incoming MMS SMIL files using
JAXB, this is described in more detail in section 4.1.7.

Generate output XML The transformation components must also be able to output XML
data in the form of HTML+TIME web pages.

Enable string processing Basic string processing including functions that can be used to
concatenate and split strings is required. For instance, it must be
possible to use data from several attributes in the input MMS
SMIL file and concatenate it to a singe style attribute of an
HTML+TIME element.

Generate XML with mixed
namespaces and processing
instructions

HTML+TIME web pages require a processing instruction to
specify that the content on a given web page should be treated as
HTML+TIME. HTML+TIME elements must also have a
namespace prefix (the prefix “t” for time is used for all
HTML+TIME tags throughout this master’s thesis).

Generate output based on settings

The output generated by the transformation must be flexible to
enable a web site author to choose how to display the MMS
messages in different scenarios. For more details, see section 4.2
and the Javadoc documentation in Appendix F (class
TransformationConfiguration).

Java code integration

During implementation of the components it became apparent that
it would greatly simplify transformation and generation to have a
common Java object representation of a given MMS message.
Thus, a requirement that the transformation technology can be
integrated with Java was suggested.

 44

Requirement Description

Read and insert text files In SMIL, text is specified in a separate text file. This text file is
then referenced by a media tag with a src attribute that specifies
the location of the text file. This is not the case for HTML where
text is generally embedded in the code. Thus, the text files
referenced by an MMS SMIL must be read and inserted into the
output file.

4.1.7. Transformation technologies

XSLT

XSLT is a very flexible way to easily transform MMS SMIL documents to HTML+TIME that is supported
by Internet Explorer. However, its intended use is not to parse XML files into Java object representations.
Further more, supporting settings would require that a set of XSL templates be generated for each
combination of settings.

JAXB

JAXB provides a way to interpret and generate XML documents using Java code. JAXB was ruled out
during testing because it is not flexible and encountered parsing errors for some SMIL files that were
received from actual terminals, because these did not match the schemas from which the JAXB classes
were generated. Thus, several schemas would have to written and each input file may require several
parsing attempts before the parsing will be successful.

SAX

SAX provides the fastest and most memory efficient way to parse and generate XML with great flexibility.
Using SAX APIs will result in more code, which possibly will be harder to follow.

Conclusion

An object representation of an MMS message is suggested as the starting point. A properly designed set of
classes to represent an MMS message provides a common object tree for different parts of the components.
The suggested benefits of such an object tree are:

• To easily accept output from the parsing parts of the components

• To provide an easy to interpret input to the HTML view generation parts of the components

• To provide a simple to understand input format for a function for writing MMS SMIL to an output
stream

• Enables run-time editing of an MMS message

• Enables easy MMS authoring through Java code

 45

The decision to utilize this object representation of MMS messages immediately excludes XSLT. While
JAXB requires many different complicated schemas to represent each input and output file format. This
later approach quickly becomes difficult to handle and is likely to have poor transformation performance
as a given input file may have to be parsed several times before it is successfully transformed. Thus, SAX
is the suggested transformation technology, as it provides all required the features, is very flexible, and has
the best performance for such a transformation-oriented application. However, while not directly related to
transformation, JAXB is suggested as the XML technology to use when directly writing MMS SMIL to an
output stream. The reason is that very little flexibility is required for this operation and that the MMS
SMIL output should be well defined (hence only one schema is needed for output).

4.1.8. Determining media player capabilities

A number of tests were made by simply trying to play different media types in the different media players.
The test was performed on a computer running Microsoft Windows 2000 with service pack 4. The reason
that the tests were not performed on more recent operating system is that no such computer was available
at that time. However, since that time, the views generated by the transformation have been tested
successfully on both Windows XP SP2 and Windows Vista*. The following media players were tested:

• Microsoft’s Internet Explorer

• Microsoft’s Windows Media Player

• Apple’s QuickTime

• RealNetworks’ RealPlayer

While not all media formats have been tested, the ambition was to test media types that are likely to
originate from a mobile phone, as well as some other widely used formats. The results for audio and video
are given in tables 7 and 8 respectively.

* Not all media formats have been tested on these systems

 46

Table 8. Media player video support (D – direct support, A – automatic CODEC download
support and N – Not supported).

Media player H.263 H.264 MP4 AVI WMV

Microsoft’s Internet Explorer 6.0 N N N D D

Microsoft’s Windows Media
Player 9.0

N N N D D

Apple’s QuickTime 7.1.6 D D D D N

RealNetworks’ RealPlayer 10.5 A A A D D

Table 7. Media player audio support (D – direct support, A – automatic CODEC download
support and N – Not supported).

Media player AAC AMR AU M4A MIDI MP3 WAV WMA

Microsoft’s Internet Explorer
6.0

N N D N D D D D

Microsoft’s Windows Media
Player 9.0

N N D N D D D D

Apple’s QuickTime 7.1.6 D D D D D D D N

RealNetwork’s RealPlayer
10.5

D A D D A D D D

 47

4.2. Proposed solution
4.2.1. Naming conventions

An important consideration during the design and implementation of the transformation components was
to establish a naming convention for media players and browsers so that these can be communicated
throughout the components. Thus, a naming convention for media players (Table 9) and browsers (Table
10) is proposed. This naming convention specifies that each media player and browser should have a name
which is a case sensitive string that should match java-class-name case conventions.

Table 9. Media player names.

Media player Name

Microsoft’s Internet Explorer InternetExplorer

Microsoft’s Windows Media Player WindowsMediaPlayer

Apple’s QuickTime QuickTime

RealNetworks’ RealPlayer RealPlayer

Table 10. Browser names.

Browser Name

Microsoft’s Internet Explorer InternetExplorer

Mozilla’s Firefox Firefox

Apple’s Safari Safari

Opera’s Opera Opera

Any other browser without HTML+TIME support Any other string

 48

4.2.2. Transformation components

The transformation components allow developers to transform MMS messages between different formats.
Transformation is typically done from MMS SMIL to an HTML view of the MMS message. However, to
simplify editing of MMS messages and even authoring an MMS message using Java code, the proposed
solution specifies a Java object representation of an MMS message. This object is the MmsMessage class.
It is primarily designed to be an in-memory representation of an MMS SMIL file but, also contains
additional information that is needed (or may be useful) during transformation.

The proposed solution also specifies the MmsTransformer class. This class is used to perform a set of
different transformations such as parsing MMS SMIL and generating HTML views from an MMS message.
The MmsTransformer class uses different implementations of the HtmlViewGenerator interface
to generate different HTML views. Which implementation is used depends upon which browser is
specified in the TransformationConfiguration. This is also passed to the transformation
method. There are additional settings available through the TransformationConfiguration, for
more details see the Javadoc in Appendix F.

Another class that is fundamental to understanding the proposed solution is the DataSourceFolder
interface. Implementations of this interface are used to serve files to the transformation components. This
interface is required because to perform a transformation to an HTML view, data from the media files is
required (e.g. the text contents of a text file). All the data access is handled through this interface, rather
than reading directly from the file system, this allows the media file data to originate from any data source.
Such data sources include: hard-drives, databases, and even memory.

A brief description of the core classes and interfaces for the proposed solution are given in Table 11. For
further details about the implementation, please refer to the Javadoc which is included as Appendix F.

Table 11. Core MMS transformation classes method overview.

Class/Interface Method Description

newInstance() A static method used to create a new
MmsTransformer instance.
Because instantiation is resource
expensive, it is recommended to use
the TransformerPool class to
obtain an MmsTransformer.

MmsTransformer

parseMmsSmil(InputStream
smilStream)

A SAX parser is used to parse the
MMS SMIL to an MmsMessage
object.

 49

Class/Interface Method Description

transform(MmsMessage mms,
OutputStream output,
TransformationConfiguration
config)

Transforms the specified
MmsMessage to an HTML view
based on the settings provided in the
TransformationConfiguration.

After the transformation is
completed, the resulting HTML is
written to the specified
OutputStream.

This method requires that a
DataSourceFolder has been set
on the MmsMessage.

transform(InputStream
smilStream,
DataSourceFolder mmsFolder,
OutputStream output,
TransformationConfiguration
config)

Transforms the specified MMS SMIL
specified as an InputStream to an
HTML view based on the settings
provided in the
TransformationConfiguration.

After the transformation is
completed the resulting HTML is
written to the specified
OutputStream.

HtmlViewGenerator
(interface)

generate(MmsMessage
message, OutputStream
output,
TransformationConfiguration
config)

This method is called by the
transform-methods of the
MmsTransformer class and used to
transform an MMS message to a
specific HTML view
implementation.

Included implementations:
HtmlTimeGenerator
DhtmlGenerator

Transformation

Configuration

- This class extends
java.utils.Properties. It
defines a set of static fields that
define property names for different
settings that are processed during the
transformation process.

 50

Class/Interface Method Description

DataSourceFolder
(interface)

getDataSource(URI
relativeUri)

Returns a
javax.activation.DataSource
corresponding to the specified file
name or null if the file was not found
in the folder.

Included implementations:
FileDataSourceFolder

The sequence diagram in Figure 8 shows how the transformation components can be used by an
application to generate an HTML view from MMS SMIL.

 51

Figure 8. Transformation sequence diagram. This sequence diagram illustrates the

interaction between an application and the different Java classes used to transform an MMS
SMIL to an HTML view.

 52

4.2.3. SMIL viewer components

The SMIL viewer components are used to display a transformed MMS message on a web page. The
viewer components consist of the MmsTransformationServlet and the custom JSP tag mms.tag.
The MmsTransformationServlet is responsible for calling the appropriate transformation
components and returning an HTML view or an appropriate error page (if something went wrong during
the transformation). The tag is responsible for adding the HTML code that requests the transformed MMS
message from the MmsTransformationServlet. The tag implements this behavior by adding an
IFrame on the page with src attribute set to point to the MmsTransformationServlet. The src
attribute also contains the applicable parameters needed to display the MMS message.

Example 9 below shows a very simple example of how a JSP page could display an MMS message using
the viewer.tag custom tag. The example assumes that the viewer.tag tag file is located in the
WEB-INF/tags directory of the web application.

Figure 9 shows a sequence diagram of the steps performed by the JSP page, the mms.tag custom tag and
the MmsTransformationServlet:

<%@ taglib prefix="mms" tagdir="/WEB-INF/tags" %>
<html>
 <head>
 <title>MMS Test</title>
 </head>
 <body>
 <mms:viewer width="240px"
 height="320px"
 mmsDir="/mms/mms1"
 smil="s.smil"
 servletPath="MmsTransformationServlet">
 </mms:viewer>
 </body>
</html>

Example 9. MMS viewer tag example code

 53

Figure 9. Viewer components sequence diagram. This sequence diagram illustrates the

interaction between a browser and different parts of the MMS components that are used to
transform an MMS message to HTML.

The sequence diagram in Figure 9 shows the most trivial scenario where the MMS message contains no
complex content and the transformation was successful. However, there are a number of reasons why a
transformation may fail. In failure scenarios the MmsTransformationServlet will dispatch the
view to a web page that is responsible for notifying the end user of what went wrong. There are three
distinct error scenarios which have different error pages which could be presented to the end user. The
relative URL of each error page can be customized as an init parameter to the
MmsTransformationServlet. These errors, their causes, and which error page is to be shown to
the user are described in Table 12.

 54

Table 12. Error pages for the MmsTransformationServlet.

Cause Error page Responsibility of the error page

Transformation failed because the
MMS message that was transformed
contained audio or video (requires
an embedded media player) and no
information about what media
players were available in the end
user’s browser was included in the
request to the
MmsTransformationServlet.

Custom error page can be
specified with the init
parameter name:

loading-page

Default value:

/mms-loading.jsp

This error page will always appear
the first time a user tries to view an
MMS message that contains audio
or video elements. The
responsibility of this page is to use
JavaScript to determine which
media players are available in the
end user’s browser and then reload
itself with information about which
media players were available. This
is done by appending the
“players” parameter to the
location of the IFrame in which the
page is loaded. Once the
“players” parameter has been
specified to the
MmsTransformationServlet
its value will be stored in the user’s
session, thus the detection will only
be performed once*.

* If several MMS messages are loaded simultaneously, the detection may occur several times for one user.

 55

Cause Error page Responsibility of the error page

Transformation failed because the
MMS message that was transformed
contained audio or video (requires
an embedded media player) and no
information about what media
players were available in the end
user’s browser was included in the
request to the
MmsTransformationServlet.

Custom error page can be
specified with the init
parameter name:

loading-page

Default value:

/mms-loading.jsp

This error page will always appear
the first time a user tries to view an
MMS message that contains audio
or video elements. The
responsibility of this page is to use
JavaScript to determine which
media players are available in the
end user’s browser and then reload
itself with information about which
media players were available. This
is done by appending the
“players” parameter to the
location of the IFrame in which the
page is loaded. Once the
“players” parameter has been
specified to the
MmsTransformationServlet
its value will be stored in the user’s
session, thus the detection will only
be performed once*.

Transformation failed because the
MMS message that was transformed
contained audio or video for which
playback is not supported by any of
the media players that were
specified in the “players”
parameter when media players were
detected on the “loading-page”.

This will only occur if the
THROW_PLAYER_NOT_AVAILABLE
setting of the
TransformationConfiguration
is set to true. Otherwise the media
will be excluded from the generated
HTML view instead.

Custom error page can be
specified with the init
parameter name:

no-player-page

Default value:

/mms-no-player.jsp

The responsibility of this page is to
notify the end user that there was no
available media player available in
the browser that allows playback of
a media element. A link to a
download page for such a media
player could also be included on the
page. To enable the page to display
a useful error message/link, a
PlayerNotAvailableBean is
added as a request-scope attribute
using the key: “playerInfo”.
The
PlayerNotAvailableBean
contains information about the file
extension of the file for which no
media player was found and which
media players were detected on the
loading-page.

* If several MMS messages are loaded simultaneously, the detection may occur several times for one user.

 56

Cause Error page Responsibility of the error page

Transformation failed for any other
reason.

Custom error page can be
specified with the init
parameter name:

error-page

Default value:

/mms-error.jsp

The responsibility of this page is to
display a message to end user
explaining that there was an internal
error and that the MMS message
can not be displayed.

To show the quite complex flow of events involved when an MMS message contains audio or video
elements, Figure 10 shows a sequence diagram that depicts the flow of events in such a scenario.

 57

F

4.2.4. MMS composer components

The MMS composer components consist of one set of components that are embedded directly on a web
page. These components comprise the MMS canvas. The MMS canvas components include a snippet of
HTML code and a large set of JavaScript methods used to “draw” the MMS message on the canvas; these
JavaScripts are included in Appendix C.4. The HTML code acts as a placeholder for the canvas and is
initially displayed to the user as an empty white area. It is upon this white area that the MMS will be
displayed while it is being composed. The HTML code snippet includes a form that is used to submit the
composed MMS message to the server. This form includes a number of settings that are specified as
hidden HTML input elements.

Example 10 below shows a very simple example of how a JSP page could add the MMS canvas using the
JSP custom tag composer.tag. The example assumes that the composer.tag tag file is located in
the WEB-INF/tags directory of the web application.

The MMS composer components do not include the code to call the JavaScript methods that are used to
create the MMS message. The reason for this design decision is that these JavaScript calls would be
tightly coupled to the look and feel of the page around the MMS canvas and the look and feel should be
implemented by the developer who creates the web page.

The MMS canvas supports adding of audio and video clips. However, it does not play back video and
audio clips as they are added to the MMS message. Instead, when a video clip is added, an image is
displayed where the video clip will be placed in the resulting MMS message. Audio clips are not
displayed on the MMS canvas.

<%@ taglib prefix="mms" tagdir="/WEB-INF/tags" %>
<html>
 <head>
 <title>MMS Test</title>
 </head>
 <body>
 <mms:composer height="320px"
 width="240px"
 jsUri="mms-resources/scripts/mms-composer.js"
 servletPath="MmsComposerServlet"
 forwardPath="mms-composer-ok.jsp"
 smilFile="s.smil"
 targetDir="/mms/mmstest" />
 </body>
</html>

Example 10. MMS canvas JSP tag

 58

When an MMS message is edited using JavaScript methods of the MMS canvas, two representations of
the MMS message are updated. First, the actual HTML tags on the page will be dynamically updated so
that a current view of the MMS message is displayed. Secondly, a JavaScript object representation of the
MMS message is updated. When the user is finished with the MMS message and invokes the method used
to submit it to the server, the JavaScript object representation of the MMS message is transformed to a
JavaScript Object Notation (JSON) string before it is submitted to the server.

The second part of the MMS composer components is the MmsComposerServlet. This Servlet
retrieves the JSON string from the request, parses it and creates an MmsMessage Java object based on
the composed MMS message. At this point the MMS message is saved as and the request is dispatched to
a specified page or Servlet. For more details, please refer to the Javadoc for the MmsComposerServlet.

For more information about the MMS composer components, please refer to the user guide that is
included in Appendix E, the JavaScript code (including extensive usage information as comments) is
included in Appendix C.4., and the Javadoc of the MmsComposerServlet is available in Appendix F.
The MMS composer components have also been integrated into the emulator that is included in the
Telecom Web Services SDK [17], which can be used as a reference when implementing a look and feel
for the MMS canvas. An example of how the Telecom Web Services Network Emulator can be used to
create an MMS message is illustrated in Figure 11.

Figure 11. MMS canvas integrated with the Telecom Web Services Network Emulator

 59

4.3. Does this result match the original goals?
The results of the implementation of the components achieve the original goals (see section 3.1) quite well.
The transformer components have been implemented and support both an HTML+TIME view and a
DHTML view. The goal of being able to detect which media player plug-ins were available was reached.
Although it would also have been desirable to detect which version of the media player plug-in is
available. The viewer components were implemented as JSP custom tags and allow an MMS message to
be easily added to a JSP page. The goals for the composer components were all reached. The proposed
solution also includes a Java object representation of an MMS message, thus also fulfilling that goal.

However, there are some goals that were not achieved, most of these were assigned low priorities from the
beginning. The first of these is the support for transformation to a SMIL format that is supported by media
players directly so that an MMS message may be played directly using a media player. The second goal
that was not reached was the support for 3GPP SMIL as an alternative input format to the transformation
components. One goal that was not fully realized and did have a high priority was the support for logging
throughout the components. Another goal that was not achieved was the support for XHTML-MP versions
of the components that would allow them to be used on web pages designed for mobile terminals.
Furthermore, there was not time to implement JSF versions of the custom tags that would simplify
embedding of MMS views and the MMS canvas on a web page.

The goals regarding packaging and documenting the components proposed in this thesis (as listed in
section 3.1.4) for publication on Ericsson’s Developer World have unfortunately not been achieved at the
current time. The only one of these goals that has been at least partly met is the writing of the user guide
for the components (see Appendix E).

 60

5. Conclusions

5.1. Conclusion
The implementation of the MMS Components for Web 2.0, as proposed by this master’s thesis, has been a
success. The goals with the highest priorities were all reached, thus resulting in a flexible set of
components that can be used to integrate MMS messages as a part of Java web application. The proposed
solution works with all tested browsers which I believe is very important for the usability of these
components.

There are some limitations to the views that are generated by the transformation components (as described
in sections 4.1.4 and 4.1.5). These limitations include media file clipping for the HTML+TIME views, and
browser/media player incompatibilities for the DHTML views. The first of which is a big problem for
MMS messages that do contain audio and/or video elements. The problem could be worked around by
manually increasing the duration for slides based on how long it is likely to take a user to fully download
and start playing the clip. The browser/media player compatibility issues could be considered small
because the components can be configured not to allow these combinations of browsers and media players.
Also, the by far most popular browsers (Microsoft’s Internet Explorer and Mozilla’s Firefox [55]) have no
compatibility issues with the most recent versions of either Apple’s QuickTime or RealNetworks’
RealPlayer.

One goal that was not achieved even though it had a high priority is extensive logging of events in the
components. Even though the components log at least the most critical errors, the logging capabilities of
the components should have been better structured and more extensive. It would also have been useful to
implement an AJAX script/Servlet combination that would report debugging information from the Java
Scripts to the server.

If I would have had another chance to do this thesis project from the beginning, there are some changes I
would have made to the priorities of the different tasks. First of all I would have excluded support for
HTML+TIME from the components because implementing the HTML+TIME views was very time
consuming, not easy to combine with embedded media players, and most of all, the fact that only
Microsoft’s Internet Explorer browser supports HTML+TIME means that it would be very restrictive to
only support this view. In retrospect I should also mention that I should have had a lower ambition for the
number of media players that I spent time trying to support. If I would have stuck to the two players that
can play typical MMS message media types (Apple’s QuickTime and RealNetworks’ RealPlayer) I would
have saved a lot of time.

Although the proposed solution itself is limited to the Java platform, it would be possible to use it on other
types of sites using mashup*. This would require that an MMS messaging solution is hosted on a Java-
based web server. Creators of other sites could then include the MMS content on their sites using any
server side platform such as Microsoft’s ASP.NET [56] or PHP [57], using mashup technology.

There has not been time to finish the documentation and packaging of the components proposed in this
thesis at the current time. Documentation and packaging of the components will take place after this thesis
project is completed and will be released on the Ericsson Developer Program [52] home page during
quarter 1 2008.

* A mashup-site is a site that combines data from several different sources.

 61

In conclusion I think that the components proposed in this master’s thesis provide a solid solution for
integrating MMS messaging capabilities on the web and I believe that it has the potential to bring content
from mobile phones closer together with other multimedia as it is shared on the web today.

5.2. Future work
During the course of this master’s thesis a number of ideas for additional future work were generated.
These ideas are listed below in Table 13.

Table 13. Future work descriptions

Task Description

Creating a demo application

After this thesis project is completed, it will complemented with a
small demo application that shows how make use of the MMS
components both to view and compose MMS messages. This
demo application will be included as part of the release of MMS
components for Web 2.0 on the Ericsson Developer Program [52]
home page. The demo application should also utilize the MM7
SDK [39] and the Telecom Web Services SDK [17] to
demonstrate how to connect to service providers to and
send/receive MMS messages using MM7 and Parlay X Web
Services respectively.

Writing a design guide

After this thesis project is completed, it will be complemented
with a design guide of the implementation of the MMS
components for Web 2.0 as proposed in this thesis project.

Test the MMS SMIL with mobile
terminals

It would be quite useful to test whether the MMS messages
created by the MMS composer components are displayed as
intended on a large variety of mobile phones. Messages with
many different slide compositions should also be tested across
these terminals in order to ensure that MMS SMIL that is
generated (though it already conforms to MMS SMIL) will be
displayed correctly on most modern mobile phones.

Adding a content-serving tag

Adding a JSP tag that serves the content of an MMS message as a
sorted array would be a useful addition to the components. Such a
tag could be used to embed the contents of an MMS message on a
web page in any way the author of a web page desires – not only
as a timed slide show.

 62

Task Description

Extending view/media player
selection options

An interesting feature to add to the transformation/viewer
components would be an extension of the media player extension
JavaScript so that it would also detect what version of a certain
plug-in is available. The transformation components could utilize
this information when making the choice of what media player to
embed when generating a specific view. This could for example
be used to make sure that a view generated for Mozilla’s Firefox
browser would not use an Apple QuickTime plug-in if the
available version of Apple’s QuickTime was 7.1.6, due to the
incompatibility described in section 4.1.5.

Transformation to other SMIL
formats

The transformation components could be extended with features
that transform MMS SMIL to a version of SMIL that is displayed
well in different SMIL-enabled media players. Such media players
include, for example, Apple’s QuickTime and RealNetworks’
RealPlayer. This would enable MMS messages to be displayed
without a web browser and eliminate any browser/media player
plug-in incompatibilities.

Implementing new views Another interesting feature to add to the components would be
generation of more views. Such views might include:

• An XHTML version of the DHTML view and the composer
components.

• An XHTML-MP and ECMAScript version of the DHTML
view the composer components to enable mobile browsers to
display the components properly.

• An HTML version 5 version of the DHTML view and the
composer components. This view could utilize the new
video and audio tags to play media content.

Implementing JSF tags Converting the JSP custom tags to JSF tags should be quite easy
and would be a useful complement for web developers who are
using JSF.

 63

Task Description

Adding transcoding support Including transcoding support in the transformation components
would be very interesting as it would eliminate the need for the
user to have media player that is capable of playing all the media
files of an MMS message. This would also eliminate the
video/audio clipping problem with HTML+TIME view, as
discussed in section 4.1.4.

Porting the components to other
server-side platforms

To enable web developers who do not use the Java platform as the
server side platform to use the transformation components, they
could be ported to run work on other platforms.

 64

6. References
[1] Open Mobile Alliance, http://www.openmobilealliance.org/ (last modified 2007-10-30)

[2] Firefox/Feature Brainstorming:Web Standards Support,
http://wiki.mozilla.org/Firefox/Feature_Brainstorming:Web_Standards_Support (last
modified 2007-08-01)

[3] Internet Explorer: Home Page,
http://www.microsoft.com/windows/products/winfamily/ie/default.mspx (last viewed
2008-01-14)

[4] Firefox web browser | Faster, more secure, & customizable,
http://en.www.mozilla.com/en/firefox/ (last viewed 2008-01-14)

[5] Apple – Safari 3 public beta, http://www.apple.com/safari/ (last viewed 2008-01-14)

[6] XHTML Mobile Profile – Approved version 1.1,
http://www.openmobilealliance.org/release_program/docs/Browsing/V2_1-20061020-
A/OMA-WAP-XHTMLMP-V1_1-20061020-A.pdf (last viewed 2007-11-13)

[7] ECMAScript Languange Specification, http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf (last viewed 2007-11-13)

[8] OMA Multimedia Messaging Service V1.3, release date: 2005-09-27, Specification -
Multimedia Messaging Service Conformance Document,
http://www.openmobilealliance.org/Technical/release_program/mms_v1_3.aspx - OMA-
TS-MMS-CONF-V1_3-20051027-C.pdf (last viewed 2008-01-28)

[9] Jffmpeg: CODEC pack for the Java Media Framework, http://jffmpeg.sourceforge.net/
(last modified 2005-03-26)

[10] HTML+TIME, http://msdn2.microsoft.com/en-us/library/ms533112.aspx (last viewed
2007-09-03)

[11] Facebook, http://www.facebook.com/ (last viewed 2007-11-15)

[12] YouTube, http://www.youtube.com/ (last viewed 2007-11-15)

[13] CNN – I-Report Toolkit, http://www.cnn.com/exchange/ireports/toolkit/index.html (last
viewed 2008-01-30)

[14] Wap och Surf – Tele2 , http://www.tele2.se/tillaggstjanster-wap-och-surf.html (last
viewed 2007-11-15)

[15] Prislista Röstabonnemang Privat – Tre,
http://www.tre.se/upload/Price/PrislistaPrivat071012v10.pdf (last viewed 2007-11-15)

[16] Telenor abonnemang – Telenor, http://www.telenor.se/111.jsp?smid=137167 (last
viewed 2007-11-15)

 65

[17] Ericsson - Telecom Web Services SDK v3.0,
http://www.ericsson.com/mobilityworld/sub/open/technologies/parlayx/tools/tc_ws_sdk_
3_0 (last viewed 2008-01-16)

[18] Web service – Wikipedia, http://en.wikipedia.org/wiki/Web_Services (last modified
2007-11-13)

[19] The Parlay Group, http://www.parlay.org/en/index.asp (last viewed 2007-11-15)

[20] Web21C SDK – BT, http://web21c.bt.com/ (last viewed 2007-11-15)

[21] Mobilstart - Telenor, https://mobilstart.telenor.se/web/guest/home (last viewed 2007-11-
15)

[22] mms2web.com, http://www.mms2web.com/ (last viewed 2007-11-15)

[23] mobilblogg.nu, http://www.mobilblogg.nu/ (last viewed 2007-11-15)

[24] JDOM, http://www.jdom.org/ (last modified 2006-05-15)

[25] XSL Transformations (XSLT) - Version 1.0 (W3C recommendation),
http://www.w3.org/TR/xslt (2007-08-28)

[26] SUN - Java SE Technologies at a Glance,
http://java.sun.com/javase/technologies/index.jsp (last viewed 2008-02-05)

[27] Apache – Apache Ant – Welcome, http://ant.apache.org/ (last viewed 2008-01-16)

[28] Oracle: Parsing XML efficiency, http://www.oracle.com/technology/oramag/oracle/03-
sep/o53devxml.html (last viewed 2007-10-01)

[29] Sun - Serial Access with SAX,
http://java.sun.com/webservices/jaxp/dist/1.1/docs/tutorial/sax/index.html (last modified
2005-06-15)

[30] IBM: XML and Java technologies: Data binding, Part 2: Performance,
http://www.ibm.com/developerworks/xml/library/x-databdopt2/ (last viewed 2007-10-10)

[31] SMIL Tutorial, http://www.w3schools.com/smil/default.asp (last viewed 2007-09-06)

[32] QuickTime: Embedding QuickTime for web delivery,
http://docs.info.apple.com/article.html?artnum=61011 (last modified 2007-05-31)

[33] JavaScript Support,
http://developer.apple.com/documentation/QuickTime/REF/QT41_HTML/QT41WhatsN
ew-72.html (last viewed 2007-10-01).

[34] Embedded RealPlayer Extended functionality guide,
http://service.real.com/help/library/guides/extend/embed.htm (last modified 2001-10-27)

[35] Windows Media Player 6.4 SDK, http://msdn2.microsoft.com/en-
us/library/ms984011.aspx (last viewed 2007-10-01)

 66

[36] Windows Media Player 11 SDK, https://msdn2.microsoft.com/en-
us/library/bb262657.aspx (last viewed 2007-10-01)

[37] W3C – World Wide Web Consortium, http://www.w3.org/

[38] Dick C. A. Bulterman & Lloyd Rutledge. SMIL 2.0 – Interactive Multimedia for Web and
Mobile Devices. Springer-Verlag Berlin Heidelberg 2004.

[39] MMS MM7 SDK 4.0 and 5.0 – Ericsson Developer Program,
http://www.ericsson.com/mobilityworld/sub/open/technologies/mms_mm7/tools/mm7_s
dk (last viewed 2007-08-15)

[40] Java Community Process – JSR-212: Server API for Mobile Services:Messaging –
SAMS: Messaging, http://jcp.org/en/jsr/detail?id=212 (last viewed 2007-08-15)

[41] 3GPP - Multimedia Messaging Service (MMS); Functional description; Stage 2,
http://www.3gpp.org/ftp/Specs/html-info/23140.htm (last viewed 2008-01-16)

[42] W3C - SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) - W3C
Recommendation 27 April 2007, http://www.w3.org/TR/soap12-part1/ (last modified
2007-04-27)

[43] Microsoft – Activating ActiveX Controls, http://msdn2.microsoft.com/en-
us/library/ms537508.aspx (last viewed 2008-01-16)

[44] Nokia, http://www.nokia.com/, (last viewed 2007-08-16)

[45] Open mobile alliance, http://www.openmobilealliance.org/ (last viewed 2007-11-19)

[46] Timed Interactive Multimedia Extensions for HTML (HTML+TIME) - Extending SMIL into
the Web Browser, http://www.w3.org/TR/1998/NOTE-HTMLplusTIME-19980918 (last
modified 2000-03-13)

[47] XHTML+SMIL Profile – W3C Note, http://www.w3.org/TR/XHTMLplusSMIL/ (last
modified 2002-01-31)

[48] Jason Hunter, William Crawford. Java Servlet Programming 2nd Edition. O’Reilly &
Associates, Inc., Sebastopol, USA (2001)

[49] S Brown, S Dalton, D Jepp, D Johnson, S Li, M Raible. Pro JSP 2, fourth edition.
Springer Verlag, New York, USA (2005)

[50] William Crawford, Jonathan Kaplan. J2EE Design Patterns, first edition. O’Reilly &
Associates, Inc., Sebastopol, USA (2003)

[51] Apache Tomcat, http://tomcat.apache.org/ (last modified 2007-09-20)

[52] Ericsson – Developer Program - Ericsson Mobility World,
http://www.ericsson.com/mobilityworld (last viewed 2008-01-16)

[53] Ericsson IPX, http://www.ericsson.com/solutions/ipx/ (last viewed 2007-08-04)

Appendix A - Ericsson Service Creation Study – Final Report
This Appendix A contains a copy a service creation study performed by inCode on behalf on of Ericsson.
Note that slides 21, 22 and 25 have been modified because these contained information that was intended
for internal use only.

Ericsson Service Creation Study

INTERNAL AND CONFIDENTIAL MATERIAL

Final Report

07 September 2007

Account Manager: Bengt Nordström
Email: BNordstrom@incodewireless.com

Page 1© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Summary and next steps for Ericsson

1. Operators see service innovation as key to act against falling ARPU levels. They turn to
third parties for innovation and cost reduction.

1. Operators see service innovation as key to act against falling ARPU levels. They turn to
third parties for innovation and cost reduction.

2. There is a trend for operators to expose capabilities in a web-centric fashion, lowering
technical and commercial hurdles for service creation.

2. There is a trend for operators to expose capabilities in a web-centric fashion, lowering
technical and commercial hurdles for service creation.

1. Evaluate findings of this study against current product line-up and market message1. Evaluate findings of this study against current product line-up and market message

Summary of inCode’s study:

3. Operators require help on their way towards a web-centric approach. We see potential for
Ericsson in areas such as hosted IMS services, professional services and solutions for
service execution (SDP) which in turn simplifies service creation.

3. Operators require help on their way towards a web-centric approach. We see potential for
Ericsson in areas such as hosted IMS services, professional services and solutions for
service execution (SDP) which in turn simplifies service creation.

Next steps for Ericsson:

2. Review inCode recommendations and identified opportunities 2. Review inCode recommendations and identified opportunities

3. Discuss our findings with operators in order to gain further understanding of their needs3. Discuss our findings with operators in order to gain further understanding of their needs

Page 1© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews

IV. Opportunities and next steps

V. Appendix

Page 3© 2007 inCode. Proprietary and Confidential. All Rights Reserved

The study’s aim is to provide Ericsson with a clear understanding of
its clients’ approaches and needs regarding service creation

Understanding operator approaches for service creation shallUnderstanding operator approaches for service creation shall
help Ericsson align its product portfolio and market message.help Ericsson align its product portfolio and market message.

Concept Development Launch Post launch

ServiceService
StrategyStrategy

Follower

Partner brand

Outsourced

Innovator

Operator brand

In-house developed

ServiceService
CreationCreation

ProcessesProcesses

ServiceService
CreationCreation

ToolsTools

IDEs SDKs

Plug-ins Version
Control

Requirement
Tracking

Emulators

Page 4© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Our project approach was mainly driven by preparing, conducting
and analyzing interviews with industry representatives worldwide

Kickoff & Prep
(1 week)

Kickoff & PrepKickoff & Prep
(1 week)(1 week)

Ericsson interviews
(2 weeks)

Ericsson interviewsEricsson interviews
(2 weeks)(2 weeks)

Prepare, conduct, and document interviews
(7 weeks)

Prepare, conduct, and document interviewsPrepare, conduct, and document interviews
(7 weeks)(7 weeks)

Develop findings
(5 weeks)

Develop findingsDevelop findings
(5 weeks)(5 weeks)

July Aug Sept

Questionnaires
(2 weeks)

QuestionnairesQuestionnaires
(2 weeks)(2 weeks)

Kick-off workshop
28 June

Interim workshop and findings
08 August

Final workshop
07 September

Status meetings Status meetings

Deliverables to Ericsson:
• Interim report
• Final report
• Interview transcripts

Page 5© 2007 inCode. Proprietary and Confidential. All Rights Reserved

The inCode team has led discussions with over twenty senior
managers and experts from various types of companies and regions

1Cable network operator
4Mobile application developer

1Broadband provider
6Fixed-mobile operator
6Mobile operator

of companies interviewedCategory

Page 6© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews

IV. Opportunities and next steps

V. Appendix

Page 7© 2007 inCode. Proprietary and Confidential. All Rights Reserved

The project scope includes the creation of both enabling services and
end user services

Service
A service can be any single part of a telecom operator’s offering to end users
(consumers or corporate users) or its business partners.

Enabling services are capabilities that network operators offer to third parties for the
creation and provisioning of end user services.

End user services are commercially offered consumer or business services, running
on electronic devices such as telephones, PCs or set-top boxes.

Page 8© 2007 inCode. Proprietary and Confidential. All Rights Reserved

In addition to the underlying service strategy, we wanted to find out
how and with which tools services are created

Service creation
Service creation refers to the activities, processes and tools required in order to
develop and launch services.

Processes
Tools

SMS

MMS

LBS Billing …

SDK SDKSDK SDK

IDE

Waterfall process

Handset-centric Network-centric Other tools and plug-ins

Rational Unified ProcessAgile process

Concept Development Launch Post launch

Page 9© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Although this project focused on service creation, the
interdependencies with service execution are apparent

Service Execution Environment
Network-centric applications

Capabilities

Control Management

SMS
MMS

LBS DRM Billing …

Service Creation Environment

Concept Development Launch Post launch

SDK SDKSDK SDK

IDE

SMSC LBS DRM MMSC …

SDK Handset-centric applications

Service creation and service execution are closely linked:
Before starting to work, developers need to know which systems the service shall run on

Standards for server protocols or handset APIs exist, but are often implemented inconsistently across
vendors and operators

Handset execution environments (runtime or browser environments) have a short life-cycle and tools tend
to be of limited quality

Page 10© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Service creation is influenced by various types of companies in the
telecom, media and internet industries

Infrastructure
Vendors

InfrastructureInfrastructure
VendorsVendors Device

Manufacturers

DeviceDevice
ManufacturersManufacturers

Network
Operators

NetworkNetwork
OperatorsOperators

Application
Developers

Application Application
DevelopersDevelopers End UsersEnd UsersEnd Users

Content
Aggregators

Content Content
AggregatorsAggregators

For this first phase of the Service Creation project, Ericsson aFor this first phase of the Service Creation project, Ericsson and inCodend inCode
have chosen to interview network operators and application develhave chosen to interview network operators and application developers. opers.

In case of mobile phones: Stimulate
the usage of new device features,
thereby drive ASPs

Stimulate the usage of network-
centric services, thereby drive

network equipment and solution sales

Use VAS for various purposes

Develop and aggregate
content for various parties in
the ecosystem

Stimulate the usage of services that
drive ARPU and/or customer

retention

Develop applications for
various parties in the

ecosystem

Internet and
Media Companies

Internet andInternet and
Media CompaniesMedia Companies

Increase service usage among
existing users; and reach new user
groups

Page 11© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Operators see service innovation as a means to act against voice
ARPU erosion and to increase customer retention

Operators need service innovation in all three areas in order toOperators need service innovation in all three areas in order to maintain ARPU,maintain ARPU,
thereby making service creation a vital component of the strategthereby making service creation a vital component of the strategy.y.

20
17

5

6

2

2007 2010

New revenue sources

Data ARPU

Voice ARPU

Monthly mobile ARPU worldwide
(USD)

Sources: Strategy Analytics, Ericsson analysis

⇊

⇊

2

Fixed-mobile substitution
Fixed-mobile convergence
Voice-based VAS
Push to talk
…

Content
Data access
P2P messaging
Video telephony
…

Broadband access
Broadband services: IPTV, VoIP
Advertising
PC-based services
…

Example services:

New revenue source Data ARPU Voice ARPU

Page 12© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews
• Strategy
• Processes
• Tools

IV. Opportunities and next steps

V. Appendix

Page 13© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Service creation generally happens with high, but varying levels of
third party involvement

1. Operators rely heavily on 3rd parties for service creation, in particular for the
development portion.

1. Operators rely heavily on 3rd parties for service creation, in particular for the
development portion.

We coordinate the
SC process; our

technology
partners are

responsible for
tools and

development.

Operator A

XYZ SDK was
developed to take

advantage of
industry

innovation.

Operator B

Typically we ask
what third parties
can offer, see if it
interests us, then

we arrange an
RFP.

Operator C

We have a small
number of
internally
available

developers, but
we are using
outsourcing.

Operator E

Almost all
services are
created by

partners today
and we do the

technical project
management.

Operator D

Third party application developers are highly involved in servicThird party application developers are highly involved in service creation as a meanse creation as a means
for operators to deliver innovative services at low cost. In addfor operators to deliver innovative services at low cost. In addition, many operatorsition, many operators

are open to fully outsource service operations as a turnkey soluare open to fully outsource service operations as a turnkey solution.tion.

Page 14© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Operators have distinct approaches for service creation with third
parties

Telecom centricTelecom centric
Define, then sourceDefine, then source

A shift towards a webA shift towards a web--centric approach represents a major change in the waycentric approach represents a major change in the way
that operators attract and work with third parties, and with whothat operators attract and work with third parties, and with whom they work.m they work.

Operator markets itself to 3rd parties
through its brand and customer base

APIs available to strategic partners

Operator-coordinated development

Operator-branded services

Specified quality levels

End users charged on operator bill

Operator markets itself towards 3rd
parties as provider and broker

APIs available online

Developers act independently

3rd party branded services (initially)

Best effort services

Billing decided by third party

2. Different strategies exist regarding third party interaction, and some major
operators are moving towards a web-centric approach.

2. Different strategies exist regarding third party interaction, and some major
operators are moving towards a web-centric approach.

Web centricWeb centric

Expose, then trial and errorExpose, then trial and error

Page 15© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Several examples of operator web-centric approaches

A web centric approach is often accompanied by a strong marketinA web centric approach is often accompanied by a strong marketing effort to attractg effort to attract
third party developers. However, major differences exist regardithird party developers. However, major differences exist regarding the technicalng the technical

expertise required and the ease of establishing a business relatexpertise required and the ease of establishing a business relationship.ionship.

Typical offering to developers:
API and process documentations
SDKs
Discussion forums
Sample applications
UE guidelines
Commercial information
Etc.

Page 16© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Operators’ architectural preferences for exposing service capabilities
are not yet decided

Various operators are already taking steps to openly expose theiVarious operators are already taking steps to openly expose theirr
service capabilities to third parties. The methods, standards, service capabilities to third parties. The methods, standards, and businessand business

models are however not fully determined. models are however not fully determined.

WalkWalk JogJog RunRun
Capabilities shared on as

needed basis with select
strategic partners

Protocols/Methods for
exposing capabilities done
on case-by-case basis

Initial set of capabilities
shared openly with 3rd
parties

Protocols/Methods for
exposing capabilities are
mixed with no standard
prevailing

TodayToday TomorrowTomorrow

Robust set of capabilities
shared openly with 3rd
parties

Protocols/Methods for
exposing capabilities see
standards prevailing

3. Operators are choosing to explore service innovation with third parties while
concurrently evaluating what architecture should support this effort.

3. Operators are choosing to explore service innovation with third parties while
concurrently evaluating what architecture should support this effort.

Page 17© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Operators are interested in web-based service delivery, but continue
to use bespoke handset applications

Operator SC
involvement

YesYesYesNoDedicated server

Mobile operator
WAP portal

Bespoke handset
centric solutions

Service examples

of supporting
handsets

Choice of content

Proxy-based
mobile browser

Web-based
mobile services

4. Many interviewees see a long term trend towards web-based services, but
manipulation of Internet content for mobile will still be required.

4. Many interviewees see a long term trend towards web-based services, but
manipulation of Internet content for mobile will still be required.

There appears to be consensus about the longThere appears to be consensus about the long--term trend towards webterm trend towards web--based mobile based mobile
services. As long as service enablers are not in place, operatorservices. As long as service enablers are not in place, operators continue to work with s continue to work with

bespoke handset software irrespective of their level of webbespoke handset software irrespective of their level of web--centric positioning.centric positioning.

Page 18© 2007 inCode. Proprietary and Confidential. All Rights Reserved

It is still early days for convergence

5. Operators’ intentions for converged services are visible, however many of
their current activities are focused on setting the foundation.

5. Operators’ intentions for converged services are visible, however many of
their current activities are focused on setting the foundation.

“Vodafone IP Phone Professional
is our first IMS-based service

development”
(March 2007)

“TeleCable to launch MVNO
service next year”

(Oct 2006)

“Italian subsidiary of BT UK
secures Italian MVNO deal”

(May 2007)

Operator activities such as M&A, partnerships, IMS trialing, andOperator activities such as M&A, partnerships, IMS trialing, and
service launches reveal converged service intentions. service launches reveal converged service intentions.

“Cingular (now AT&T) to launch
IMS supported video service”

(April 2007)
“02 to launch UK broadband”

(February 2007)

“Telenor first operator in Sweden
to implement IMS”

(July 2007)

BT Fusion
Orange Unik

AT&T 3 Screen

M&A & Partnerships Early Converged Services Examples IMS Trialing

Page 19© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews
• Strategy
• Processes
• Tools

IV. Opportunities and next steps

V. Appendix

Page 20© 2007 inCode. Proprietary and Confidential. All Rights Reserved

As a result of a growing level of third party involvement, service
creation is increasingly being done with “Agile” methods

When developing an operatorWhen developing an operator--specific service, application developersspecific service, application developers
need to accommodate operator processes requirements. need to accommodate operator processes requirements.

Marketing
requirements

Technical
requirements

Business case

Concept Development Launch

Coding

Graphical design

Testing

Debugging

Friendly user test

Soft launch

Commercial launch

Life cycle
management

Post launch

Operators

Application
Developers

6. Operators continue to use traditional “waterfall” process for service creation,
while application developers embrace more “agile” methods.

6. Operators continue to use traditional “waterfall” process for service creation,
while application developers embrace more “agile” methods.

Brainstorming
Problem
description
Brief concept
First demo

Proof of concept
Feedback
Iterations
Refactoring

Beta release to market
Feedback
Iterations
Refactoring

Page 21© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Operator complex organization and heavy processes create
challenges in service creation

Operators struggle with coordinating activities across their orgOperators struggle with coordinating activities across their organization / company.anization / company.

7. A key challenge operators face exists in organization and process execution.7. A key challenge operators face exists in organization and process execution.

The organizational
structure is a key

challenge to achieve
business processes

for introducing
common services.

Operator A

… challenges
related to the

formalized process
of XYZ with heavy

governance
compared to the

more agile process
previously used.

Operator B

Operator C is in a
transition process
of adopting web-
centric processes
for internal service

creation …this
transition takes

time.

Operator C

…Lack of
understanding of

participants’ roles,
project phases and

the scope are
issues we face.

Operator D

…there are no
incentives or
penalties for

meeting or missing
deadlines, and little

motivation for
stakeholders to

deliver on time and
as agreed.

Operator E

Page 22© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Integration with operators’ IT systems is cited as a key challenge in
service creation

Rigid processes, functional complexity, and the service impact oRigid processes, functional complexity, and the service impact onn
operator revenues and customer care slow the service creation properator revenues and customer care slow the service creation process. ocess.

8. Service integration with an operator’s existing IT generally seen as
contributing to long project durations.

8. Service integration with an operator’s existing IT generally seen as
contributing to long project durations.

Launch …and
OSS/BSS

integration are very
lengthy. Even

smaller …changes
are difficult to
implement. We
mostly look at

Internet apps that
have no billing

impact …

Operator A

Billing integration
is a major

challenge, as there
are two billing

systems to
integrate with.

Operator B

Generally, IT often
delays service
creation. For

example, a service
that requires

extraordinary IT
efforts may face
lead times of 1 ½
years until those
can be delivered.

Operator C

The main problems
with billing is the
complexity and

lack of flexibility of
the system; this
limits creative
opportunities.

Operator D

Billing integration
requires rigid

processes to work,
and is not expected
to become easier in

the future.
Interfacing with

service platforms is
another reason for

the challenges.

Operator E

Page 23© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews
• Strategy
• Processes
• Tools

IV. Opportunities and next steps

V. Appendix

Page 24© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Developers give technical issues as major challenges in service
creation

9. Application developers have strong comments about technical issues leading
to high costs, especially on the device side.

9. Application developers have strong comments about technical issues leading
to high costs, especially on the device side.

Key feedback provided includes:

Lack of interoperability in device implementations leads to high development costs
- Operators and developers confirm that testing consumes 30 - 50% of project efforts

Immaturity of handset-centric development tools
- Short life cycles of handset models and even OS releases are seen as reasons

Lack of availability of integrated tools, covering handsets and connections to operator networks
- This becomes a problem for applications that use more sophisticated network resources

These issues lead to increased costs and longer projects for devThese issues lead to increased costs and longer projects for developers,elopers,
which reduces or eliminates the profitability of service developwhich reduces or eliminates the profitability of service development projects.ment projects.

Page 25© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Most operators are neutral about service creation tools, leaving the
choice of solutions to their partners

10.Due to quality and cost reasons, most companies creating mobile services
use open source development software.

10.Due to quality and cost reasons, most companies creating mobile services
use open source development software.

We use both Eclipse and
NetBeans in our service creation.

Software Company A

In general, we find service creation
tools are weak, they don’t keep

up with the pace of handset
developments.

Software Company B

We use a combination of Open
Source and our own developed tools.

Operator B

The operatorsThe operators’’ lack of preference is a consequence of their outsourced servicelack of preference is a consequence of their outsourced service
creation. Developers inCode spoke to mostly use Eclipse, NetBeancreation. Developers inCode spoke to mostly use Eclipse, NetBeans and toolss and tools

provided by the vendors of handsets and handset OS. provided by the vendors of handsets and handset OS.

Development software becomes
commoditized; standardized at

lower levels. We use open source
as we don’t want innovation

at high cost.

Operator A

Page 26© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews

IV. Opportunities and next steps

V. Appendix

Page 27© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Opportunities and areas to address:
Service creation strategy (I)

Leverage the capabilities of development partners and own solutions to provide turn-key
service deployment and operation to operators.

Ericsson should facilitate this move by providing consulting services which demonstrate to
operators the business rationale behind this transition. Ericsson can then drive the
implementation of the web-centric approach through professional services and solutions like
the SDP.

1. Operators rely heavily on 3rd parties for service creation, in particular for the development
portion.

2. Different strategies exist regarding third party interaction, and some major operators are
moving towards a web-centric approach.

Page 28© 2007 inCode. Proprietary and Confidential. All Rights Reserved

inCode believes that opening up capabilities in a web-centric manner
is a logical step in the evolution of the network operator business

Required level
of operator
involvement

in service
creation

High

Medium

Low

Incremental
service

revenues

Number of
services

Core operator revenuesCore operator revenues

VAS revenuesVAS revenues

““Long tailLong tail”” revenuesrevenues

High

Medium

Low

Examples: Premium SMS, MMS, mobile
portal services, Blackberry, mobile TV,

navigation, etc.

Operator “capability retailing”:
Services created by SME, SOHO, individual

developers or private individuals

Voice, data, SMS, voice mail

Page 29© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Ericsson should show operators that web-centric value creation is a
way to avoid the bit-pipe scenario

Operator offering:
• Open API access
• Sample apps, SDKs
• Simple pricing
• Nationwide operator
access

End-to-end services:
• Media downloads
• Content sharing
• Communities
• Navigation (GPS)
• Messaging

New revenues from:
• 3rd parties and
private persons
creating services

• Transforming selected
ideas into own-
branded services

Technology and business Technology and business
enablers for enablers for ““capability capability

retailingretailing””

A: “Bit-pipe” scenario: Device vendors and Internet companies aiming at increasing their share
of customer ownership

A: “Bit-pipe” scenario: Device vendors and Internet companies aiming at increasing their share
of customer ownership

Operator networkOperator network

Data flat rate plansData flat rate plans

B: “Web-centric MNO” scenario: Operators positioning themselves as innovation enablersB: “Web-centric MNO” scenario: Operators positioning themselves as innovation enablers

Example initiatives:
• Nokia Ovi
• Apple iTunes
• Samsung FunClub
• Yahoo Go
• “Google phone”

Operator networkOperator network

Page 30© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Opportunities and areas to address:
Service creation strategy (II)

For the next few years, service architectures that include web proxies or on-device portals will
be preferred over pure browser-based solutions. Ericsson should monetize on this by offering
end-to-end rich media solutions to operators.

Ericsson as a leading IMS provider is well positioned to serve operator needs. In addition,
Ericsson can facilitate these converged services by offering a hosted IMS infrastructure which
pools application developers and operators.

4. Many interviewees see a trend towards web-based services, but manipulation of Internet
content for mobile will still be required.

5. Operators’ intentions for converged services are visible, however many of their current
activities are focused on setting the foundation.

Ericsson should speed and facilitate the architectural decision by also offering a hosted IMS
infrastructure which pools application developers and operators.

3. Operators are choosing to explore service innovation with third parties while concurrently
evaluating what architecture should support this effort.

Page 31© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Opportunities and areas to address:
Service creation process

Although a shift towards “agile” is apparent, services requiring operator IT integration will
continue to be created using waterfall processes. Ericsson should assess the need for tools
supporting the end-to-end development cycle, particularly coordinating 3rd party interactions
with operator processes.

We expect operators to address these issues internally, or use management consultancies to
improve organizational efficiency.

Ericsson is well positioned with an SDP proposition which helps operators to more efficiently
deploy and integrate diverse services and back-office systems.

6. Operators continue to use the traditional “waterfall” process for service creation, while
application developers embrace more “agile” methods.

7. A key challenge operators face exists in organization and process execution.

8. Service integration with an operator’s existing IT generally seen as contributing to long
project durations.

Page 32© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Opportunities and areas to address:
Service creation tools

Although no solution is expected in the short term, Ericsson should intensify discussions with
developers and address issues like inconsistent API implementations and lack of tool quality.

Ericsson’s continued support for open source tools targeted at developers can help further
reduce service development costs. These tools should continue to act as sales facilitators
rather than revenue generators on their own.

9. Application developers have strong comments about technical issues leading to high costs,
especially on the device side.

10. Due to quality and cost reasons, most companies creating mobile services use open
source development software.

Page 33© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Contents

I. About this project

II. Service creation background

III. Key findings from our interviews

IV. Opportunities and next steps

V. Appendix

Page 34© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Overview of Application Developer Companies interviewed for this
study

Core Business: Push-to-Talk-over-Cellular (PoC) applications for
operators, enterprises, and institutions.

Products: PC PoC Dispatcher, Push-to-Talk PC Clients, Consumer
Push-to-Talk, M-Ticketing, and Multimedia Manager.

Web address: www.genaker.net

Core Business: Mobile lifestyle services in Turkey creating mobile
applications and services for mobile information and entertainment
solutions.

Products: Content Management Platforms, VAS, Mobile Content
Services, and Mobile Content Distribution.

Web address: www.tikle.com

Core Business: Standards based rich media solutions for mass
market and Open OS mobile phones.

Products: Client software including Rich Media Client, Multimedia
SVG player, Ikivo SVG player. Tools including Ikivo Animator, Ikivo
IDE, and Ikivo CDK.

Web address: www.ikivo.com

Core Business: Service provider in the field of mobility software for
Java, Symbian, Blackberry, and Windows mobile platforms.

Products: Mobile marketing, Audio Video streaming with DRM, and
WAP Push Server. In addition, provide services in the areas of
project management, technology consulting, feasibility studies, code
reviews, and training.

Web address: www.sic-software.com

Page 35© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Terminology

Service
A service can be any single part of a telecom operator’s offering to end users (consumers or corporate users) or its business partners. The first group of services
covers end user services running on electronic devices such as mobile phones, fixed phones, PCs or set-top boxes. The second group refers to enabling services;
network capabilities that the operator offers to other companies for the creation and provisioning of end user services. Although our study focuses on data-centric
services with a graphical user interface (UI), voice services are also in scope.

Service creation
Service creation (SC) refers to all activities, processes and software tools required in order to develop and launch services.
Software developers creating end user services usually work with Service Creation Environments (SCE). A main element of SCEs are Integrated Development
Environments (IDEs), software suites designed to facilitate service development.

What is IMS?

IMS (IP Multimedia Subsystem) allows services to share a common IP transport mechanism for any type of access. Service creation is enhanced as IMS provides
new network capabilities simplifying development of peer-to-peer services; it also allows for easy combination of multiple sessions. The standardized architecture
separates control from transport, aiming to improve network scalability. Such a horizontal architecture could also lead to shorter time to market for services. IMS
may thus enable flexible development of strategies for different types of business models across and within networks.

What is SDP?

SDP (Service Delivery Platform) is a non-standardized evolution of the service network. It abstracts end-user services from network infrastructure, replacing vertical
“silo” implementations by a common interface that exposes underlying network capabilities to all services using IT technologies (especially SOA). Many SDPs also
enable high-level service composition, partner management, service discovery, and more. SDP provides an operator with better business control over its customer
offerings allowing it to create, launch, sell, charge for, follow up, and retire services as needed - important to drive revenue and control costs.

IMS vs. SDP?

IMS focuses on delivering real-time, session-based, peer-to-peer IP services over any network. From an SDP’s perspective, IMS is another set of network
capabilities in addition to those provided by legacy systems such as IN, CS call control, content download servers, streaming servers, and more.

From an IMS perspective, the presence of an SDP is desirable as an easy way of interconnecting to supporting functionality in OSS, BSS, and the service network.

Page 36© 2007 inCode. Proprietary and Confidential. All Rights Reserved

Appendix B - MMS SMIL from different mobile phones

B. 1. MMS SMIL from Sony Ericsson K800i

<smil>
 <head>
 <layout>
 <root-layout backgroundColor="#FFFFFF" background-
color="#FFFFFF" height="480px" width="640px" />
 <region id="Image" top="0" left="0" height="50%" width="100%"
fit="meet" />
 <region id="Text" top="50%" left="0" height="50%"
width="100%" fit="scroll" />
 </layout>
 </head>
 <body>
 <par dur="4000ms">

 <text src="smil.txt" region="Text">
 <param name="foreground-color" value="#000000" />
 </text>
 </par>
 <par dur="4000ms">
 <text src="smil_2.txt" region="Text">
 <param name="foreground-color" value="#000000" />
 </text>
 </par>
 </body>
</smil>

B. 2. MMS SMIL from Sony Ericsson P990i

B. 3. MMS SMIL from Motorola MotoRAZR V3

<smil>
 <head>
 <layout>
 <root-layout width="240px" height="240px" />
 <region id="Text" left="0%" top="0%" height="33%"
width="100%" fit="meet" />
 <region id="Image" left="0%" top="33%" height="67%"
width="100%" fit="meet" />
 </layout>
 </head>
 <body>
 <par dur="8s">
 <img src="media2.jpeg" type="image/jpeg" region="Image"
alt="media2.jpeg" />
 <text src="media1.txt" type="text/plain" region="Text"
alt="media1.txt" />
 </par>
 </body>
</smil>

<smil>
 <head>
 <meta name="generator" content="SEMC-UIQSMARTPHONE-P990i" />
 <layout>
 <root-layout width="200px" height="200px" background-
color="white" backgroundColor="white" />
 <region id="Image" top="0%" height="50%" fit="meet"
background-color="white" backgroundColor="white" />
 <region id="Text" top="50%" height="50%" fit="meet"
background-color="white" backgroundColor="white" />
 </layout>
 </head>
 <body>
 <par dur="5000ms">

 <text src="text.txt" region="Text">
 <param name="foreground-color" value="black" />
 <param name="textsize" value="normal" />
 </text>
 </par>
 <par dur="5000ms">
 <text src="text_0.txt" region="Text">
 <param name="foreground-color" value="black" />
 <param name="textsize" value="normal" />
 </text>
 </par>

 </body>
</smil>

B. 4. MMS SMIL from Nokia 5140

<smil>
 <head>
 <layout>
 <root-layout width="122" height="96" />
 <region id="Image" width="100%" height="67%" left="0%"
top="0%" fit="meet" />
 <region id="Text" width="100%" height="33%" left="0%"
top="67%" fit="scroll" />
 </layout>
 </head>
 <body>
 <par dur="8000ms">
 <text src="cid:GxIoWErj5N" region="Text" />

 </par>
 <par dur="8000ms">
 <text src="cid:ahWY0uFfUO" region="Text" />
 </par>
 </body>
</smil>

B.5. MMS SMIL from Samsung SGH-Z560

<smil xmlns="http://www.w3.org/2000/SMIL20/CR/Language">
 <head>
 <layout>
 <root-layout width="240" height="432" />
 <region id="Image" width="100%" height="50%" left="0%"
top="0%" fit="meet" />
 <region id="Text" width="100%" height="50%" left="0%"
top="50%" fit="meet" />
 </layout>
 </head>
 <body>
 <par dur="5000ms">
 <text region="Text" src="cid:0_0.txt">
 <param name="textattribute" value="bold" />
 <param name="textsize" value="normal" />
 </text>

 </par>
 <par dur="5000ms">
 <text region="Text" src="cid:1_0.txt">
 <param name="textattribute" value="bold" />
 <param name="textsize" value="normal" />
 </text>
 </par>
 </body>
</smil>

Appendix C – JavaScript Code

C.1. Media player detection scripts

var MpDetect = {

 //var that makes sure check is only performed once
 players : null,

 /*
 Get the URL and as long as it doesn't already contain the
"players"
 attribute, detect media players and reload the page by adding
the
 players attribute.
 */

 detectAndReload : function() {

 var url = location.href;

 if (url.indexOf('?') > -1) { //? indicates get request with
parameters - ok
 //ok, continue
 } else {
 alert('Error! Page was not loaded using GET and parameters.
Can\'t reload using with detected media players');
 return;
 }

 if (url.indexOf('players=') > 0) {
 //For some reason this page was loaded eventhough players
were specified, do nothing to avoid reloading forever
 alert('Players alredy detected, this page should not have
been loaded!');
 return;
 }

 //Detect, append and reload
 url = url + '&players=' + this.getAvailablePlayers();
 location.href = url;
 },

 getAvailablePlayers : function() {

 if (this.players != null)
 return this.players; //Check already performed

 this.players = '';
 var count = 0;
 var playerArray = new Array();

 if (this.detectQuickTime())
 playerArray[count++] = 'QuickTime';
 if (this.detectReal())
 playerArray[count++] = 'RealPlayer';
 if (this.detectWindowsMedia())

 playerArray[count++] = 'WindowsMediaPlayer';

 for (var i = 0; i < count; i++) {
 if (i > 0)
 this.players += ',';
 this.players += playerArray[i];
 }

 return this.players;
 },

 /************* Media player detection scripts *************/

 detectQuickTime : function () {

 var stdPlugs = new Array('QuickTime');
 var iePlugs = new Array('QuickTime.QuickTime');

 return this.detectPlugin(stdPlugs, iePlugs);
 },

 detectReal : function () {

 var stdPlugs = new Array('RealPlayer');
 var iePlugs = new Array('rmocx.RealPlayer G2 Control',
 'rmocx.RealPlayer G2 Control.1',
 'RealPlayer.RealPlayer(tm) ActiveX Control
(32-bit)',
 'RealVideo.RealVideo(tm) ActiveX Control
(32-bit)',
 'RealPlayer');

 return this.detectPlugin(stdPlugs, iePlugs);
 },

 detectWindowsMedia : function() {

 var stdPlugs = new Array('Windows Media');
 var iePlugs = new Array('WMPlayer.OCX');

 return this.detectPlugin(stdPlugs, iePlugs);

 },

 detectPlugin : function(stdPlugs, iePlugs) {

 // allow for multiple checks in a single pass
 var plugins = stdPlugs; //Check for all of

 // if plugins array is there and not fake
 if (navigator.plugins && navigator.plugins.length > 0) {

 var pluginsArrayLength = navigator.plugins.length;
 // for each plugin...
 for (pluginsArrayCounter = 0; pluginsArrayCounter <
pluginsArrayLength; pluginsArrayCounter++) {

 // loop through all desired names and check each against
the current plugin name
 var numFound = 0;

 for(namesCounter=0; namesCounter < plugins.length;
namesCounter++) {
 // if desired plugin name is found in either plugin name
or description

 if((navigator.plugins[pluginsArrayCounter].name.indexOf(plugins[n
amesCounter]) >= 0) ||

(navigator.plugins[pluginsArrayCounter].description.indexOf(plugins[
namesCounter]) >= 0)) {
 // this name was found
 numFound++;
 }
 }

 // now that we have checked all the required names
against this one plugin,
 // if the number we found matches the total number
provided then we were successful
 if(numFound == plugins.length) {
 return true;
 }
 }
 } else if (window.ActiveXObject) {

 plugins = iePlugs; //Check for any of

 for (var i = 0; i < plugins.length; i++) {
 var control;
 try {
 control = new ActiveXObject(plugins[i]);
 } catch (e) {
 }
 if (control)
 return true;
 }
 }

 return false;
 }
}

C.2. HTML+TIME playback scripts

/************ Playback methods **********/

function showSplash() {
 var splashDiv = document.getElementById('splash');
 /* Center vertically */

 splashDiv.style.top =
parseInt((splashDiv.parentNode.clientHeight/2 -
splashDiv.clientHeight/2)) + 'px';
 splashDiv.style.visibility = 'visible';
}

function hideSplash() {
 var splashDiv = document.getElementById('splash');
 splashDiv.style.visibility = 'hidden';
}

function playMms() {

 var playIt = function() {

 //Make sure all sequences are rewound
 document.getElementById('audioseq').seekTo(0,1); //Seek to
iteration 0, second 1
 document.getElementById('textseq').seekTo(0,1); //Seek to
iteration 0, second 1
 document.getElementById('visualseq').seekTo(0,1); //Seek to
iteration 0, second 1

 };

 setTimeout(playIt, 0);

}

function stopMms() {

 //Stop all sequences
 document.getElementById('audioseq').endElement();
 document.getElementById('textseq').endElement();
 document.getElementById('visualseq').endElement();

}

//Image preload method
var preloaded = new Array();

function preload(src) {

 preloaded[preloaded.length] = new Image();
 preloaded[preloaded.length - 1].src = src;

}

//Called by audio t:seq element when playback starts.
function mmsStarted(bgColor) {

 hideSplash();
 var contentDiv = document.getElementById('mms-comp-container');
 contentDiv.style.backgroundColor = bgColor;

}

//Called by audio t:seq element when playback ends.
function mmsStopped() {

 showSplash();
 var contentDiv = document.getElementById('mms-comp-container');
 contentDiv.style.backgroundColor = '';
}

/************ Playback helper methods **********/

/**
 * This method searches for a container parent (at most to document
root).
 * The container is defined by having the class name passed in the
containerClassName arg.
 * If no containerClassName is specified or if it is null, the
element will be used as container
 * Resizes all client nodes of the container to the max clientWidth
of the container, i.e. adjust content if scrollbars are present
 * Only width's in px are supported.
 */
function fitChildElements(el, containerClassName) {

 var theFunction = function() {

 //Because this is an inner function, the arguments el and
containerClassName are available here.

 var container;

 if (containerClassName == null || containerClassName == '') {
 //Class name not passed, use the element as container
 container = el;
 } else {
 //Find parent container, defined by class name matching the
containerClassName argument
 var currEl = el;

 while (true) {
 if (currEl == null) {
 alert('Could not find container with class name: ' +
containerClassName);
 return;
 } else if (currEl.className == containerClassName) {
 container = currEl;
 break;
 }
 //Get next parent node
 currEl = currEl.parentNode;
 }
 }

 //Get container's available width
 var width = container.clientWidth;

 if (width == null) {
 //TODO: Report with AJAX along with all available client data
 alert('Your browser does not support the clientWidth property
of the container, cannot resize elements when window is removed.');
 return;
 }

 //Update width of all child nodes to be max the current
available width
 var level = 0;
 var elements = {};
 var i = {};

 elements[level] = container.childNodes;
 i[0] = 0;

 //Iterate through all child nodes and make sure their width is
'width' if they have a width specified
 //TODO: Excluding option, use class name (you can have several)
 while(true) {

 if (level < 0) //End of element tree is reached
 break;

 if (i[level] >= elements[level].length) {
 //This element does not exist, go down one level and
continue
 level--;
 continue;
 }

 //Get current node
 var currNode = elements[level][i[level]];

 if (currNode.nodeName == '#text') {
 //Text node, ignore it, it doesn't have children
 i[level]++;
 continue;
 }

 //Resize this node if necessary
 var currWidth = null; //Interprets width if nor entered in
pixels, works in IE
 var widthStr = currNode.style.width;

 if (widthStr == null || widthStr == '') {
 currWidth = currNode.width;
 } else if (widthStr != null && widthStr != '') {

 //Only support size entered in pixels
 currWidth = parseInt(widthStr.substring(0, widthStr.length
- 2));
 if (isNaN(currWidth) == 1) {
 alert('Illegal width of element set, only pixels
supported. E.g. width: 100px, found: ' + widthStr);
 }
 } //else ignore node

 if (currWidth != null) {
 //Update width
 currNode.style.width = width + 'px';
 }

 //This node has been processed, update i
 i[level]++;

 //Check if this node has children
 var children = currNode.childNodes;

 if (children != null && children.length > 0) {
 //Node has children, process them
 //Set next level, add the elements and reset i for the next
level
 ++level;
 elements[level] = children;
 i[level] = 0;
 }

 }

 //Make sure the an increase didn't cause scrollbars to appear ->
clientHeight would have decreased
 setTimeout(function() {
 if (parseInt(width) > parseInt(container.clientWidth)) {
 //Do it again
 setTimeout(theFunction, 0);
 }
 }, 0);

 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
}

/*********** QuickTime playback methods *******/

/**
 * Call play on QuickTime embedded element asyncronously
 */
function playQt(player) {

 //Define the function
 var theFunction = function() {
 player.Play();
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
}

/**
 * Asynchronous call to playQt() and fitChildElements() methods.
 */

function playAndResizeQt(player) {

 fitChildElements(player, 'mms-comp-container');
 playQt(player);

}

/**
 * Stop and rewind.
 */
function stopQt(player) {
 player.Stop();
 player.Rewind();
}

/*********** Real Player playback methods *******/

/**
 * Call play on Real Player embedded element asyncronously
 */
function playReal(player) {

 //Define the function
 var theFunction = function() {
 player.DoPlay();
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
}

/**
 * Asynchronous call to playReal() and fitChildElements() methods.
 */
function playAndResizeReal(player) {

 fitChildElements(player, 'mms-comp-container');
 playReal(player);

}

/**
 * Stop and rewind.
 */
function stopReal(player) {
 player.DoStop();
 player.SetPosition(0);
}

/*********** Windows Media Player playback methods *******/

/**
 * Call play on Windows Media Player embedded element asyncronously
 */
function playWmp(player) {

 //Wait for state 4
 var doOverFunc = function() {
 playWmp(player);
 }

 if (player.ReadyState < 4) {
 setTimeout(doOverFunc, 10);
 return;
 }

 //Define the function
 var theFunction = function() {
 player.Play();
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
}

/**
 * Asynchronous call to playWmp() and fitChildElements() methods.
 */
function playAndResizeWmp(player) {

 fitChildElements(player, 'mms-comp-container');
 playWmp(player);

}

/**
 * Stop and rewind.
 */
function stopWmp(player) {
 player.Stop();
}

C.3. DHTML playback scripts

/************* End user JavaScripts *****************/

/* Debug scripts, implement methods to report messages and errors */

//Example JSON object that implements debug and error methods
var MmsDebugListener = {

 debug : function(str) {
 //Implement
 },

 reportError : function(str) {
 //Implement
 }

}

/************* Playback control JavaScripts *************/

var MmsPlayer = {

 //Player variables
 height : 320, //Integer, initialized in init().
 width : 240, //Integer, initialized in init().
 repeatCount : 'indefinite', //Default
 isInitialized : false,
 slides : new Array(),
 preloaded : new Array(), //Preloaded images array

 //Player state variables
 currentCount : 0, //The number of times that the MMS has been
shown
 isPlaying : false, //Boolean indicating playback state
 timerCounter : 0, //Counter for how long to wait for media player
to start playing
 timer : null, //Timer for next slide

 init : function(width, height, repeat) {

 MmsUtils.debug('Initializing MMS player with width: ' + width +
 ', height: ' + height);

 //Init player dimensions
 this.width = parseInt(width);
 this.height = parseInt(height);

 if (this.width.toString() == 'NaN' ||
 this.height.toString() == 'NaN') {

 MmsUtils.error('Player dimensions were not parsable
integers!');
 }

 //Set repeat count
 if (repeat != null)
 this.repeatCount = repeat;

 //Fit splash screen elements
 this.fitElements('mms-player-splash');

 this.isInitialized = true;

 MmsUtils.debug("MMS Player initialized");
 },

 /**
 * Add a slide. All slides must be added using this method
 * and they must be added in order, starting with 0 as the
 * first slide.
 *
 * The duration attribute defines the duration of the slide
 * and is given as an integer with either an 's' or 'ms'

 * suffix.
 *
 * The complexMediaString defines that the slide contains
 * a complex media type such as a video or audio clip, what
 * player the clip is embedded on the slide to play it and
 * the id of the player DOM object.
 * E.g. "video/QuickTime/video1"
 * Supported players are: QuickTime, RealPlayer and
 * WindowsMediaPlayer.
 */
 addSlide : function(slideNo, duration, complexMediaStr) {

 if (! this.isInitialized)
 return {status : 'error', message : 'Mms Player was not
initialized'};

 if (slideNo != this.slides.length)
 return {status : 'error', message : 'Illegal slide order,
slides should be registered in order starting with index 0'};

 MmsUtils.debug('Adding slide: ' + slideNo + ' with duration: ' +
duration + ' and complexMediaStr: ' + complexMediaStr);

 //Create a new slide
 var slide = new MmsSlide();

 //Set duration and complexMediaStr
 slide.duration = duration;
 slide.complexMediaStr = complexMediaStr;

 this.slides[slideNo] = slide;

 //Fit elements on slide
 this.fitElements('mms-player-slide-' + slideNo);

 },

 play : function() {

 if (! this.isInitialized)
 return {status : 'error', message : 'Mms Player was not
initialized'};

 //Make sure player is not playing
 if (this.isPlaying)
 return {status : 'error', message : 'Player already started'};

 if (this.slides.length == 0)
 return {status : 'error', message : 'MMS has no slides'};

 MmsUtils.debug('Starting MMS playback');

 //Update player state
 this.isPlaying = true;
 this.currentSlide = -1; //Indicates that no slide is shown, next
will be the first (index 0)
 this.currentCount = 1; //First time MMS is shown

 //Show first slide
 this.nextSlide();

 return {status : 'ok', message : 'Playback started'};

 },

 stop : function() {

 if (! this.isInitialized)
 return {status : 'error', message : 'Mms Player was not
initialized'};

 //Make sure player is playing
 if (!this.isPlaying)
 return {status : 'error', message : 'Player not started'};

 MmsUtils.debug('Stopping MMS playback');

 //Update player state
 this.isPlaying = false;
 clearTimeout(this.timer); //Remove any pending timer

 this.stopAndShowSplash();

 return {status : 'ok', message : 'Playback stopped'};

 },

 /*********** Internal helper methods *********************/

 //Center an HTML element
 centerElement : function(el, availableWidth) {

 MmsUtils.debug('Centering element');

 if (availableWidth == null) //Not specified, use player width
 availableWidth = this.width;

 var elWidth = parseInt(el.width);

 if (elWidth.toString() == 'NaN') {
 MmsUtils.error('Element didn\'t contain width attribute');
 return;
 }

 //Margins are mms player width - element width
 var margin = Math.floor((availableWidth - elWidth)/2);

 el.style.marginLeft = margin + 'px';
 if (margin > 0)
 //Fix for problem with recent version of FF on Win Vista
(only occurs with uneven widths)
 el.style.marginRight = margin - 1 + 'px';

 else
 el.style.marginRight = margin + 'px';

 MmsUtils.debug('Element centered');

 },

 fitElements : function(containerId) {

 MmsUtils.debug('Centering children of container: ' +
containerId);

 var slide = document.getElementById(containerId);
 var elements = slide.childNodes;

 var imageNode;
 var textNode;
 var videoNode;
 //Audio nodes do not need to fitted

 //Get elements, check for img (image), div (text), object (audio
or video)
 for (var i = 0; i < elements.length; i++) {

 var el = elements[i];

 if (el.nodeName == '#text') {
 //Do nothing, ignore text parts
 } else if (el.nodeName == 'IMG') {
 imageNode = el;
 } else if(el.nodeName == 'DIV') {
 textNode = el;
 } else if (el.nodeName == 'OBJECT') {
 //Object is video or audio

 if (el.id.substring(0, 5).toLowerCase() == 'video')
 videoNode = el; //Object was video

 } else if (el.nodeName == 'SCRIPT') {
 //Do nothing, ignore script parts
 } else if (el.nodeName == 'INPUT') {
 //Do nothing, ignore input parts
 } else {
 MmsUtils.debug('Unknown tag: ' + el.nodeName);
 }

 }

 //Text is never resized but check its height.
 var textHeight = 0;

 if (textNode != null)
 textHeight = textNode.offsetHeight;

 if (imageNode != null) {
 //Fit image node

 MmsUtils.debug('Entering image node resize');

 //Make sure image is not wider than player
 if (imageNode.width > this.width) {
 this.resizeImage(imageNode, this.width, null); //Set new
width
 this.centerElement(imageNode);
 }

 /*
 Decide whether to further downscale the image.

 Image will be downscaled if:
 - There is no text and image height exceeds player height
 - There is text and image height + text height exceeds
 player height. (This causes scrollbars)

 */

 var imageHeight = imageNode.height;
 var verticalTextConsumption = textHeight / this.height;
 //Defines how much of the height is needed for text
 var verticalImageConsumption = imageHeight / this.height;
 //Defines how much of the height is needed for image

 if (textHeight == 0 && imageNode.height > this.height) {
 //Max height will be player height

 this.resizeImage(imageNode, null, this.height); //Set new
height

 MmsUtils.debug('Image resized vertically to fit slide');

 } else if (verticalTextConsumption + verticalImageConsumption
> 1) { //Scrollbars will be added

 //Downscale image vertically

 var newImageHeight = imageHeight;

 if (verticalTextConsumption > 0.5) { // Don't downscale
image height to less than half
 //Set image height to half the
 newImageHeight = Math.floor(this.height / 2);
 } else {
 newImageHeight = this.height - textHeight - 4;
 }

 this.resizeImage(imageNode, null, newImageHeight); //Set
new height

 MmsUtils.debug('Image resized vertically to fit slide
together with text');
 }

 //Compensate width property if scrollbars were added
 if (slide.clientWidth != this.width) {

 //Scrollbars were added
 var newWidth = slide.clientWidth;

 if (imageNode.width > newWidth) {
 //Image must be downscaled
 this.resizeImage(imageNode, newWidth, null);

 MmsUtils.debug('Image resized horizontally to fit within
scroll bars');
 }

 }

 this.centerElement(imageNode, slide.clientWidth); //Center

 }

 if (videoNode != null) {
 //Fit video node

 this.centerElement(videoNode, slide.clientWidth);

 }

 },

 /**
 * Returns the ID of the complex media based on the first
 * last part of the complexMediaStr, as specified when slide
 * as added.
 */

 getComplexMediaId : function(slideNo) {

 var cStr = this.slides[slideNo].complexMediaStr;

 if (cStr == null)
 return null;

 var pos = cStr.lastIndexOf('/');
 if (pos < cStr.length) {

 var result = cStr.substring(pos + 1,
cStr.length).replace(/^\s+|\s+$/g, ''); //replace method trims the
string
 return result;

 }

 return null;

 },

 /**
 * Returns "audio", "video" or null based on the first
 * part of the complexMediaStr as specified when slide

 * as added.
 */

 getComplexMediaType : function(slideNo) {

 var cStr = this.slides[slideNo].complexMediaStr;

 if (cStr == null)
 return null;

 var result = cStr.substring(0,5).toLowerCase();

 if (result == 'audio' ||
 result == 'video') {

 return result;
 } else {
 return null;
 }
 },

 /**
 * Returns "QuickTime", "RealPlayer",
 * "WindowsMediaPlayer" or null based on the first
 * middle part of the complexMediaStr, as specified when slide
 * as added.
 */

 getComplexMediaPlayer : function(slideNo) {

 var cStr = this.slides[slideNo].complexMediaStr;

 if (cStr == null)
 return null;

 var result = '';
 if (cStr.length > 6 && cStr.indexOf('/') > -1)
 result = cStr.substring(6,
cStr.lastIndexOf('/')).replace(/^\s+|\s+$/g, ''); //replace method
trims the string

 if (result == 'QuickTime' ||
 result == 'RealPlayer') {

 return result; //Only return valid Strings

 } else {
 return null;
 }

 },

 /**
 * Displays the next slide to be shown, regardless whether it
 * is the next slide or the first one (because there are no more
 * slides to show). Shows the splash screen if the number of
 * allowed repeats has already been reached.

 */

 nextSlide : function() {

 MmsUtils.debug('Showing next slide');

 var nextSlide = this.currentSlide + 1;
 var stopPlayback = false;

 if (!this.isPlaying)
 return; //Playback has been stopped, don't play next slide

 if (nextSlide >= this.slides.length) {
 //No more slides

 //Check if the slide has been played as many times as it
should.
 if (this.repeatCount.toString().toLowerCase() == 'indefinite')
{
 //The repeat is indefinite, i.e. it has not been exceeded -
do nothing
 } else if (parseInt(this.repeatCount) <= this.currentCount) {
 //There is no next slide, show splash screen
 stopPlayback = true;
 } else if (parseInt(this.repeatCount).toString() == 'NaN') {
 MmsUtils.error('Unknown value for variable repeatCount: ' +
this.repeatCount);
 }

 //Increase current repeat count
 this.currentCount++;

 //Set next slide no to 0
 nextSlide = 0;
 }

 //Hide previous slide (if it exists)
 var prev = document.getElementById('mms-player-slide-' +
this.currentSlide);
 if (prev != null) {
 prev.style.visibility = 'hidden';
 } else {
 //Assume the last "slide" was -1 i.e. the splash screen and
hide it
 var splash = document.getElementById('mms-player-splash');
 splash.style.visibility = 'hidden';
 }

 if (stopPlayback) {
 //Show splash
 var splash = document.getElementById('mms-player-splash');
 splash.style.visibility = 'visible';
 this.isPlaying = false;
 MmsUtils.debug('MMS playback finished');
 } else {
 //Show new slide

 var newSlide = document.getElementById('mms-player-slide-' +
nextSlide);
 newSlide.style.visibility = 'visible';

 //Update current slide
 this.currentSlide = nextSlide;

 //Check for media players and start playback (this means the
slide contains either audio or video)
 var mediaPlayer =
this.getComplexMediaPlayer(this.currentSlide);

 if (mediaPlayer != null) {
 //There is complex media, play it and wait for playback to
complete

 //Get id
 var mediaId = this.getComplexMediaId(this.currentSlide);

 //Play video using the specified media player
 if (mediaPlayer == 'QuickTime') {
 //Play using QuickTime
 QtUtils.play(mediaId);

 } else if (mediaPlayer == 'RealPlayer') {
 //Play using RealPlayer
 RealUtils.play(mediaId);

 } else {
 MmsUtils.error('Unknown media player: ' + mediaPlayer);
 return;//Don't continue processing
 }

 //Reset timer counter
 this.timerCounter = 0;

 //Start waiting function - starts timeout function when the
 //media element has finished loading and is playing.
 //This makes sure the media clip doesn't finish before the
 //next slide is shown.
 timer = setTimeout(this.waitForPlayer, 500); //Give time to
initialize
 return; //Don't start slide timeout

 }

 //TODO: Wait for state: playing
 this.startSlideTimeout();
 }

 },

 preloadImage : function (src) {

 this.preloaded[this.preloaded.length] = new Image();
 this.preloaded[this.preloaded.length - 1].src = src;

 },

 //Resizes image to scale. Use only height OR width and set other
to null
 resizeImage : function(imgEl, width, height) {

 var SET_HEIGHT = 1;
 var SET_WIDTH = 2;
 var SET_BOTH = 3;

 var mode = 0;

 if (height != null && width == null)
 mode = SET_HEIGHT;
 else if (height == null && width != null)
 mode = SET_WIDTH;
 else if (height != null && width != null)
 mode = SET_BOTH;

 MmsUtils.debug('Resizing image: ' + imgEl.src);

 //Initial dimensions, needed to do manual rescaling in IE
 var iWidth = imgEl.width;
 var iHeight = imgEl.height;

 if (iHeight == 0 || iWidth == 0) {
 //Image not properly loaded, report and return
 MmsUtils.error('Image dimensions were 0x0, probably image
wasn\'t loaded');
 return;
 }

 if (mode == SET_HEIGHT) {

 //Clear width style so that image will not change ratio.
 imgEl.style.width = '';

 //Set height to specified height
 imgEl.style.height = height + 'px';

 //Calculate expected value and make sure scale manually if
width wasn't updated automatically
 var scaleFactor = height / iHeight;
 var expectedWidth = Math.floor(scaleFactor * iWidth);

 if (imgEl.width > expectedWidth + 1 || imgEl.width <
expectedWidth - 1) {
 //Not resized horizontally, scale manually.
 imgEl.style.width = expectedWidth + 'px';
 }

 } else if (mode == SET_WIDTH) {

 //Clear height style so that image will not change ratio.
 imgEl.style.height = '';

 //Set width to specified width

 imgEl.style.width = width + 'px';

 //Calculate expected value and make sure scale manually if
height wasn't updated automatically
 var scaleFactor = width / iWidth;
 var expectedHeight = Math.floor(scaleFactor * iHeight);

 if (imgEl.height > expectedHeight + 1 || imgEl.height <
expectedHeight - 1) {
 //Not resized vertically, scale manually.
 imgEl.style.height = expectedHeight + 'px';
 }

 } else if (mode == SET_BOTH) {

 imgEl.style.height = height + 'px';
 imgEl.style.width = width + 'px';

 }

 },

 slideTimeoutHandler : function() {

 MmsPlayer.nextSlide(); //Show next, 'this' doesn't work because
it is used as event method

 },

 startSlideTimeout : function() {

 var dur = this.slides[this.currentSlide].duration;
 var durIntAsStr = parseInt(dur).toString();

 if (durIntAsStr == 'NaN') {

 MmsUtils.debug('Warning, illegal duration: ' + dur + '.
Falling back on default: 10s');

 dur = '10s'; //Fall back on default
 }

 var suffix = dur.substring(durIntAsStr.length, dur.length);

 var delay = 10000; //Default

 if (suffix == 'ms') {
 delay = parseInt(durIntAsStr);
 } else if (suffix == 's') {
 delay = parseInt(durIntAsStr) * 1000;
 }

 MmsUtils.debug('Slide playing, next slide shown in ' + delay +
'ms');

 this.timer = setTimeout(this.slideTimeoutHandler, delay);

 },

 stopAndShowSplash : function () {

 //Hide slide (if it exists)
 var prev = document.getElementById('mms-player-slide-' +
this.currentSlide);

 if (prev != null) {
 prev.style.visibility = 'hidden';
 }

 //Stop any media that is being played

 //Check for media player and stop playback
 var mediaPlayer = this.getComplexMediaPlayer(this.currentSlide);

 if (mediaPlayer != null) {
 //There is complex media, stop it.

 //Get id
 var mediaId = this.getComplexMediaId(this.currentSlide);

 //Play video using the specified media player
 if (mediaPlayer == 'QuickTime') {
 //Play using QuickTime
 QtUtils.stop(mediaId);

 } else if (mediaPlayer == 'RealPlayer') {
 //Play using RealPlayer
 RealUtils.stop(mediaId);

 } else {
 MmsUtils.error('Unknown media player: ' + mediaPlayer);
 return;//Don't continue processing
 }
 }

 //Show splash
 var splash = document.getElementById('mms-player-splash');
 splash.style.visibility = 'visible';

 MmsUtils.debug('Playback stopped');
 },

 /**
 * This function checks if the media player on the current slide
has finished
 * loading the media file and has started playing the file. If not,
the function
 * calls itself after 100ms. If media file has started playing,
this function
 * starts the timeout for this slide.
 */
 waitForPlayer : function() {

 //Get media player

 var mediaPlayer =
MmsPlayer.getComplexMediaPlayer(MmsPlayer.currentSlide);
 var mediaId =
MmsPlayer.getComplexMediaId(MmsPlayer.currentSlide);

 var status;

 //Play video using the specified media player
 if (mediaPlayer == 'QuickTime') {
 //Get status from QuickTime
 status = QtUtils.getPlayerStatus(mediaId);
 } else if (mediaPlayer == 'RealPlayer') {
 //Get status from RealPlayer
 status = RealUtils.getPlayerStatus(mediaId);
 } else {
 MmsUtils.error('Unknown media player: ' + mediaPlayer);
 return;//Don't continue processing
 }

 MmsUtils.debug('Media player status was: ' + status);

 if (status == 'playing') {
 MmsPlayer.startSlideTimeout();
 } else if (status == 'waiting') {
 MmsPlayer.timerCounter++; //We have waited one more time

 MmsUtils.debug(this.timerCounter);
 //wait max 10s = 100 * 100ms
 if (MmsPlayer.timerCounter <= 100) {
 MmsPlayer.timer = setTimeout(MmsPlayer.waitForPlayer, 100);
//wait for 100ms and try again
 } else {
 MmsUtils.error('Media did not start within 10 seconds!');
 }
 }
 //Else, something went wrong, stop playback - do nothing

 }

}

/* Utilities for the MMS components */
var MmsUtils = {

 debug : function (str) {
 try {
 MmsDebugListener.debug(str);
 } catch (e) {
 //Do nothing
 }
 },

 error : function(str) {
 try {
 MmsDebugListener.reportError(str);

 } catch (e) {
 //Do nothing
 }
 }
}

//MMS objects

function MmsSmil() {

 this.layout = 1; //1 -> Image/video on top, 2 -> text on top
 this.slides = new Array();

}

function MmsSlide() {

 //MMS info fields
 this.duration; //Duration for the slide
 this.complexMediaStr; //Complex med info. E.g.
audio/RealPlayer/audio1

}

//Media player utilties

//RealPlayer helper
var RealUtils = {
 play : function(mediaId) {

 //Define the function
 var theFunction = function() {
 try {
 //RealPlayer plugin consists of 1 object tag and one nested
embed
 //tag with ids: <id>-ie and <id>-em. The former plays in
Internet Explorer
 //and the latter in at least Firefox (2.0)

 //Try to get the IE tag and play it
 var player = document.getElementById(mediaId + '-ie');

 try {
 player.DoPlay();
 } catch (e) {

 //Use the embed tag to try to play the file
 player = document.getElementById(mediaId + '-em');
 player.DoPlay();
 }

 MmsUtils.debug('RealPlayer playback started');

 } catch (ex) {
 MmsUtils.error(ex);
 }
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
 },

 /**
 * Get the current status of the media player.
 * Returns one of the values: 'waiting', 'playing' or 'error'
 */
 getPlayerStatus : function(mediaId) {

 //RealPlayer plugin consists of 1 object tag and one nested
embed
 //tag with ids: <id>-ie and <id>-em. The former plays in
Internet Explorer
 //and the latter in at least Firefox (2.0)

 var realStatus;

 //Try to get the IE tag and play it
 var player = document.getElementById(mediaId + '-ie');
 try {
 realStatus = player.GetPlayState();
 } catch (e) {
 //Use the embed tag to try to get the status
 player = document.getElementById(mediaId + '-em');

 try {
 realStatus = player.GetPlayState();
 } catch (ex) {
 MmsUtils.error(ex);
 }
 }

 if (realStatus < 2) {
 return 'waiting';
 } else if (realStatus > 1 && realStatus < 5) {
 return 'playing';
 }

 //Status did not match any of the specified values
 MmsUtils.error('Unexpected play state for RealPlayer: ' +
realStatus);
 return 'error';

 },

 stop : function(mediaId) {

 //Define the function
 var theFunction = function() {

 try {
 //RealPlayer plugin consists of 1 object tag and one nested
embed
 //tag with ids: <id>-ie and <id>-em. The former plays in
Internet Explorer

 //and the latter in at least Firefox (2.0)

 //Try to get the IE tag and stop it
 var player = document.getElementById(mediaId + '-ie');

 try {
 player.DoStop();
 } catch (e) {
 //Use the embed tag to try to stop the file
 player = document.getElementById(mediaId + '-em');
 player.DoStop();
 }

 MmsUtils.debug('RealPlayer playback stopped');
 } catch (e) {
 MmsUtils.error(e);
 }

 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
 }
}

//QuickTime helper
var QtUtils = {

 lastPlayId : '',
 playErrCount : 0,

 /**
 * This function starts playback of the QuickTime media player
with the
 * specified id. An embedded QuickTime media player consists of 2
tags,
 * One for IE and one for standards compliant browsers. The ids of
the
 * actual tags should have "-ie" and "-std" suffixes respectively.
 *
 * If the mediaId is not provided, the previously used ID will be
used.
 *
 * If playback fails, this function will call itself after a
timeout
 * of 100ms. After a maximum of 5 consecutive fails the error will
be
 * reported. This is required because it may take the plugin time
to
 * initialize and before it is initialized it will result in an
error.
 */

 play : function(mediaId) {

 if (mediaId == null) {

 mediaId = this.lastPlayId; //Media ID not specified, use
previous
 } else {
 this.lastPlayId = mediaId; //Media ID specified, update as
last used
 this.playErrCount = 0; //Reset error count
 }

 //Define the function
 var theFunction = function() {

 try {
 //QT plugin consists of 2 nested object tags with ids:
 //<id>-ie and <id>-std. The former plays in Internet
Explorer
 //and the latter in standard compatible browsers

 //Try to get the IE tag and play it
 var player = document.getElementById(mediaId + '-ie');

 try {
 player.Play();
 QtUtils.playErrCount = 0; //Reset error count
 } catch (e) {

 //Assume the player is standard compliant and play
 player = document.getElementById(mediaId + '-std');

 player.Play();
 QtUtils.playErrCount = 0; //Reset error count

 }

 MmsUtils.debug('QuickTime playback started');
 } catch (ex) {
 QtUtils.playErrCount++;
 if (QtUtils.playErrCount > 5)
 MmsUtils.error(ex); // 5 Consecutive errors, stop trying
and report.
 else
 setTimeout(QtUtils.retryPlay, 100); //Try again after
100ms
 }

 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
 },

 retryPlay : function() {

 MmsUtils.debug('Retrying playback start after error ' +
QtUtils.playErrCount);
 QtUtils.play(); //Retry
 },

 /**
 * Get the current status of the media player.
 * Returns one of the values: 'waiting', 'playing' or 'error'
 */
 getPlayerStatus : function(mediaId) {

 //QT plugin consists of 2 nested object tags with ids:
 //<id>-ie and <id>-std. The former plays in Internet Explorer
 //and the latter in standard compatible browsers

 var qtStatus;

 //Try to get the IE tag and play it
 var player = document.getElementById(mediaId + '-ie');

 try {
 qtStatus = player.GetPluginStatus();
 } catch (e) {

 //Assume the player is standard compliant and play
 player = document.getElementById(mediaId + '-std');

 try {
 qtStatus = player.GetPluginStatus();
 } catch (ex) {
 MmsUtils.error(ex);
 }
 }

 if (qtStatus == 'Waiting') {
 return 'waiting';
 } else if (qtStatus == 'Loading') {
 return 'waiting';
 } else if (qtStatus == 'Playable') {
 return 'playing';
 } else if (qtStatus == 'Complete') {
 return 'playing';
 } else if (qtStatus != null && qtStatus.substring(0, 5) ==
'Error') {
 //Report error and return
 MmsUtils.error('QuickTime playback error: ' + qtStatus);
 return 'error';
 }

 //Status did not match any of the specified values
 MmsUtils.error('Unknown plug-in status for QuickTime: ' +
qtStatus);
 return 'error';

 },

 stop : function(mediaId) {

 //Define the function
 var theFunction = function() {

 try {
 //QT plugin consists of 2 nested object tags with ids:
 //<id>-ie and <id>-std. The former plays in Internet
Explorer
 //and the latter in standard compatible browsers

 //Try to get the IE tag and play it
 var player = document.getElementById(mediaId + '-ie');
 try {
 player.Stop();
 player.Rewind();
 } catch (e) {
 //Assume the player is standard compliant and play
 player = document.getElementById(mediaId + '-std');
 player.Stop();
 player.Rewind();
 }

 MmsUtils.debug('QuickTime playback stopped');
 } catch (e) {
 MmsUtils.error(e);
 }
 };

 //Do asynchronous call
 setTimeout(theFunction, 0);
 }
}

C.4. MMS canvas scripts

/********* End user scripts - implement to debug *************/
var MmsDebugListener = {

 debug : function(str) {
 //Do nothing
 },

 reportError : function(str) {
 //Do nothing
 }

}

/********************** INTRODUCTION **********************

 Use JSON singleton "MmsCanvas" to initialize the canvas,
 manipulate MMS and get information about the current
 state of the canvas.

 Initialization method

 init(width, height, Initialize the canvas
 defaultDuration with height and width
 and default duration
 attributes. defaultDuration

 is optional.

 Optional parameter description

 defaultDuration The default duration to
use
 for new slides.

 DEFAULT: '10s'

 Manipulation methods

 Note that manipulation methods always apply to the
 current slide and that removing a slide will decrease
 the indices of succeeding slides.

 addAudio(src) Current slide must not already
 contain a audio or video element.
 src points to image that is
 from the current page

 addImage(src) Current slide must not already
 contain an image or video element.
 src points to the image to add
 (relative on server or whole URL)

 addSlide(duration) No conditions, duration optional

 addText(text) Current slide must not already
 contain a text element.

 addVideo(src, imgSrc)Current slide must not already
 contain an image or video element.
 src points to the video to add
 (relative on server or whole URL).
 imgSrc points to image to display
 on canvas (videos will not be
 embedded on canvas)

 nextSlide() Sets the slide to next slide of
 the MMS unless there are no more
 slides.

 post() Posts the form of the MMS canvas
 to the specified URL. The MMS
 is converted to JSON and specified
 in the paramter "jsonMms". Also
 adds all externally specified
 parameters to the post.

 previousSlide() Sets the slide to previous slide of
 the MMS unless there are no prevoius
 slides.

 removeAudio() Removes audio from current slide.

 removeImage() Removes image from current slide.

 removeSlide() Removes current slide.

 removeText() Removes text from current slide.

 removeVideo() Removes video from current slide.

 setBackgroundColor(color) Sets the background color of the MMS.

 setDuration(newDur) Sets the duration for the current slide.

 setLayout(type) type must be one of: 1 || 2

 setRequestParamter(name, value)
 Sets the request paramter of the
 specified name to the specified
 value. This can be used to add
 surrounding info about how the
 MMS should be handled after it is
 posted and parsed by the
 MmsComposerServlet. Such info is
 for example address of whom to send
 the MMS to.

 setSlide(slideNo) slideNo must be numeric

 setText(text) Set the text for this slide.

 setTextSize(size) Sets the size of the text on this
 slide.

 Manipulation methods are used to add, manipulate,
 remove slides, media elements and attributes from
 the MMS. All manipulation methods return a JSON
 object with two members: status and message.

 status: 'ok'|'error'
 message: A text string explaining the result

 Example use of a manipulation method:

 var res = MmsCanvas.addSlide();
 if(res.result != 'ok')
 alert(res.message);

 State information methods

 State information methods are used to get information
 about the MMS that is being created on the MMS canvas.

 getCurrentSlide() Get the numeric value of the slide
 currently being displayed and edited.

 getDuration() Get the duration of the current slide.

 getLayout() Get the layout of the current slide.

 getNumSlides() Get the number of slides of the MMS.

 getRequestParamter(name)
 Get the value of the parameter with
 the specified name.

 getText() Get the text of the current slide.

 hasAudio() Returns true if the current slide
 contains an audio file.

 hasImage() Returns true if the current slide
 contains an image.

 hasNextSlide() Returns true if there is a next slide.

 hasPreviousSlide() Returns true of there is a previous slide.

 hasText() Returns true if the current slide
 contains text.

 hasVideo() Returns true if the current slide
 contains a video file.

**/

/* JSON implementation of the MMS Canvas*/

var MmsCanvas = {

 isInited : false,

 //Initialization variables
 height : 320, //Integer, initialized in init().
 width : 240, //Integer, initialized in init().
 defaultDuration : '10s', //Default duration for slides
 mms : null, //Really an object, initialized in init().

 //Dynamic variables (changed during MMS composing phase)
 bgColor : '', //Background color, default is white
 reqParams : new Array(),

 //HTML element variables
 canvasDiv : '', //Really a div element, initialized in init().
 currentSlide : 0, //Index of the current slide

 //Exposed methods
 init : function(width, height, defaultDuration) {

 this.mms = new MmsSmil();

 if (defaultDuration != null)
 this.defaultDuration = defaultDuration;

 MmsUtils.debug('Initializing MMS canvas with width: ' + width +
 ', height: ' + height +
 ' and default duration: ' + this.defaultDuration);

 //Init canvas dimensions
 this.width = parseInt(width);
 this.height = parseInt(height);

 if (this.width.toString() == 'NaN' ||
 this.height.toString() == 'NaN') {

 MmsUtils.error('Canvas dimensions were not parsable
integers!');
 }

 //Initialize object representation
 MmsUtils.debug('Initializing MMS object');

 //Initialize HTML elements
 this.canvasDiv = document.getElementById('mms-canvas-container');

 this.isInited = true;

 //Add first slide automatically
 var res = this.addSlide(this.defaultDuration);

 if (res.status != 'ok') {
 MmsUtils.error('Could not add slide');
 }

 MmsUtils.debug('MMS canvas initialized');

 },

 addAudio : function(src) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check that current slide doesn't have video or audio already
 var slide = this.mms.slides[this.currentSlide];

 if (slide.video != null)
 return {status : 'error', message : 'Slide already contains a
video'};
 if (slide.audio != null)
 return {status : 'error', message : 'Slide already contains
audio'};

 //Update object representation
 var audioObj = new MmsAudio();

 audioObj.src = src;

 slide.audio = audioObj;

 //Audio has no HTML node, presentation is up to surrounding page

 MmsUtils.debug('Audio added to slide');

 return {status : 'ok', message : 'Audio added'};

 },

 addImage : function(src) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check that current slide doesn't have video or image already
 var slide = this.mms.slides[this.currentSlide];

 if (slide.video != null)
 return {status : 'error', message : 'Slide already contains a
video'};
 if (slide.image != null)
 return {status : 'error', message : 'Slide already contains
an image'};

 //Update object representation
 var imageObj = new MmsImage();

 imageObj.src = src;

 slide.image = imageObj;

 //Create HTML node and add it to document
 var imageEl = document.createElement('img');

 var slideEl = document.getElementById('mms-canvas-slide-' +
this.currentSlide);

 if (slideEl == null)
 MmsUtils.error('Slide element not found for slide: ' +
this.currentSlide);

 //Insert element according to layout
 this.insertVisual(imageEl, slideEl);

 //Add event listener that will fit the image when it has loaded
 imageEl.onload = this.resizeImageOnLoad;
 imageEl.onerror = this.onImageError; //Reports error

 imageEl.className = 'mms-canvas-image';
 imageEl.id = 'mms-canvas-image-' + this.currentSlide;
 imageEl.src = src; //Set src last because it may fire onload
right away
 imageEl.style.display = 'block'; //Make sure no space is added
after image

 MmsUtils.debug('Image added to slide');

 return {status : 'ok', message : 'Image added'};

 },

 //Add a slide to current MMS
 addSlide : function(duration) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //No restrictions, any number of slides may be added to an MMS.

 //Update MMS object representation
 var slide = new MmsSlide();

 if (duration != null) {
 slide.duration = duration;
 }

 var index = this.mms.slides.length;

 this.mms.slides[index] = slide; //Add last

 //Update HTML and set focus to new slide
 if (document.getElementById('mms-canvas-slide-' +
this.currentSlide))
 document.getElementById('mms-canvas-slide-' +
this.currentSlide).style.visibility = 'hidden';

 var htmlSlide = document.createElement('div');

 htmlSlide.className = 'mms-canvas-slide';
 htmlSlide.id = 'mms-canvas-slide-' + index;
 htmlSlide.style.width = this.width + 'px';
 htmlSlide.style.height = this.height + 'px';
 htmlSlide.style.overflow = 'auto';
 htmlSlide.style.position = 'absolute';

 this.canvasDiv.appendChild(htmlSlide);

 this.currentSlide = index;

 MmsUtils.debug('MMS slide added');

 //Return obj with status ('ok'|'error') and message (text
message)
 return {status : 'ok', message : 'Slide added'};

 },

 addText : function(text) {

 if (! this.isInited)

 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check that current slide doesn't have a text already
 var slide = this.mms.slides[this.currentSlide];

 if (slide.text != null)
 return {status : 'error', message : 'Slide already contains
text'};

 //Update object representation
 var textObj = new MmsText();

 textObj.text = text;

 slide.text = textObj;

 //Create HTML node and add it to document
 var textEl = document.createElement('div');

 textEl.className = 'mms-canvas-text';
 textEl.id = 'mms-canvas-text-' + this.currentSlide;
 textEl.innerHTML = this.plainToHtml(text); //Reformat to HTML
markup

 var slideEl = document.getElementById('mms-canvas-slide-' +
this.currentSlide);

 if (slideEl == null)
 MmsUtils.error('Slide element not found for slide: ' +
this.currentSlide);

 //Insert element according to layout
 this.insertText(textEl, slideEl);

 //Fit elements as good as possible within current boundaries if
the canvas
 this.fitElements();

 MmsUtils.debug('Text added to slide');

 return {status : 'ok', message : 'Text added'};

 },

 addVideo : function(src, imageSrc) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check that current slide doesn't have video, audio or image
element already
 var slide = this.mms.slides[this.currentSlide];

 if (slide.video != null)

 return {status : 'error', message : 'Slide already contains a
video'};
 if (slide.image != null)
 return {status : 'error', message : 'Slide already contains
an image'};
 if (slide.audio != null)
 return {status : 'error', message : 'Slide already contains
audio'};

 //Update object representation
 var videoObj = new MmsVideo();

 videoObj.imageSrc = imageSrc;
 videoObj.src = src;

 slide.video = videoObj;

 //Create HTML node and add it to document
 var imageEl = document.createElement('img');

 var slideEl = document.getElementById('mms-canvas-slide-' +
this.currentSlide);

 if (slideEl == null)
 MmsUtils.error('Slide element not found for slide: ' +
this.currentSlide);

 //Insert element according to layout
 this.insertVisual(imageEl, slideEl);

 //Add event listener that will fit the image when it has loaded
 imageEl.onload = this.resizeImageOnLoad;
 imageEl.onerror = this.onImageError; //Reports error

 imageEl.className = 'mms-canvas-video';
 imageEl.id = 'mms-canvas-video-' + this.currentSlide;
 imageEl.src = imageSrc; //Set src last because it may fire
onload right away
 imageEl.style.display = 'block'; //Make sure no space is added
after image

 MmsUtils.debug('Video added to slide');

 return {status : 'ok', message : 'Video added'};

 },

 nextSlide : function() {

 if (this.hasNextSlide()) {
 return this.setSlide(this.currentSlide + 1);
 }

 return {status : 'error', message : 'There were no more slides'};
 },

 post : function() {

 var form = document.forms['mms-canvas-form'];

 form.jsonMms.value = this.toJsonString();

 //Add hidden inputs for all request parameters
 for (var i = 0; i < this.reqParams.length; i++) {

 var inputEl = document.createElement('input');
 inputEl.type = 'hidden';
 inputEl.name = this.reqParams[i].name;
 inputEl.value = this.reqParams[i].value;
 form.appendChild(inputEl);

 }

 form.submit();
 },

 previousSlide : function() {

 if (this.hasPreviousSlide()) {
 return this.setSlide(this.currentSlide - 1);
 }

 return {status : 'error', message : 'There was no previous
slide'};
 },

 //Remove audio from current slide
 removeAudio : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check existence
 var slide = this.mms.slides[this.currentSlide];

 if (slide.audio == null)
 return {status : 'error', message : 'No audio to remove'};

 //Remove object representation
 slide.audio = null;

 //Audio has not HTML elements to remove

 MmsUtils.debug('Audio removed from slide');

 return {status : 'ok', message : 'Audio removed'};
 },

 //Remove image from current slide
 removeImage : function() {

 if (! this.isInited)

 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check existence
 var slide = this.mms.slides[this.currentSlide];

 if (slide.image == null)
 return {status : 'error', message : 'No image to remove'};

 //Remove object representation
 slide.image = null;

 //Remove HTML element
 var htmlImage = document.getElementById('mms-canvas-image-' +
this.currentSlide);

 var parent = htmlImage.parentNode;
 parent.removeChild(htmlImage);

 MmsUtils.debug('Image removed from slide');

 return {status : 'ok', message : 'Image removed'};

 },

 //Remove slide from MMS. Decrease indices for succeeding slides.
 removeSlide : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Copy slide array but exclude the slide to be removed
 var newArr = new Array();

 for (var i = 0; i < this.mms.slides.length; i++) {

 if (i < this.currentSlide) {
 newArr[i] = this.mms.slides[i];
 } else if (i == this.currentSlide) {
 //Don't copy object representation

 //Remove HTML tag
 var htmlSlide = document.getElementById('mms-canvas-slide-'
+ i);
 var parent = htmlSlide.parentNode;
 parent.removeChild(htmlSlide);

 } else if (i > this.currentSlide) {
 newArr[i - 1] = this.mms.slides[i];

 //Change IDs for HTML elements
 var idBasesArr = ['mms-canvas-slide-',
 'mms-canvas-text-',
 'mms-canvas-image-',
 'mms-canvas-audio-',
 'mms-canvas-video-'];

 //Change index from i to i -1
 this.changeIdIndices(idBasesArr, i, i - 1);
 }

 }

 this.mms.slides = newArr;

 //Add slide if the last one was removed
 if (this.mms.slides.length == 0)
 this.addSlide();

 //Update current slide
 if (this.currentSlide > 0)
 this.currentSlide--; //Show previous slide

 //Make sure slide is visible
 var newHtmlSlide = document.getElementById('mms-canvas-slide-' +
this.currentSlide);
 newHtmlSlide.style.visibility = 'visible';

 MmsUtils.debug('Slide removed from MMS');

 return {status : 'ok', message : 'Slide removed'};

 },

 //Remove text from current slide
 removeText : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check existence
 var slide = this.mms.slides[this.currentSlide];

 if (slide.text == null)
 return {status : 'error', message : 'No text to remove'};

 //Remove object representation
 slide.text = null;

 //Remove HTML element
 var htmlText = document.getElementById('mms-canvas-text-' +
this.currentSlide);

 var parent = htmlText.parentNode;
 parent.removeChild(htmlText);

 this.fitElements();

 MmsUtils.debug('Text removed from slide');

 return {status : 'ok', message : 'Text removed'};

 },

 //Remove video from current slide
 removeVideo : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Check existence
 var slide = this.mms.slides[this.currentSlide];

 if (slide.video == null)
 return {status : 'error', message : 'No video to remove'};

 //Remove object representation
 slide.video = null;

 //Remove HTML element
 var htmlVideo = document.getElementById('mms-canvas-video-' +
this.currentSlide);

 var parent = htmlVideo.parentNode;
 parent.removeChild(htmlVideo);

 MmsUtils.debug('Video removed from slide');

 return {status : 'ok', message : 'Video removed'};

 },

 setBackgroundColor : function(bgColor) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Set Background color in object representation
 this.bgColor = bgColor;

 //Set background color of HTML element
 var el = document.getElementById('mms-canvas-container');

 el.style.backgroundColor = bgColor;

 MmsUtils.debug('Background color updated to: ' + bgColor);

 return {status : 'ok', message : 'Background color set'};

 },

 /**
 * Set duration for the current slide.
 */
 setDuration : function(newDur) {

 if (! this.isInited)

 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 this.mms.slides[this.currentSlide].duration = newDur;

 MmsUtils.debug('Duration set to: ' + newDur);

 return {status : 'ok', message : 'Duration set'};
 },

 //Set layout type. type is on of:
 //1 - Visual media on top
 //2 - Text on top
 setLayout : function(type) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //type must be 1 or 2
 type = parseInt(type);

 if (type.toString() == 'NaN'){
 return {status : 'error', message : 'Layout type was not
numeric'};
 } else if (type < 1 || type > 2) {
 return {status : 'error', message : 'Layout type was not
valid: ' + type};
 }

 if (this.mms.layout == type)
 return {status : 'ok', message : 'Layout type already: ' +
type};

 this.mms.layout = type;

 return this.changeLayout(type);

 },

 setRequestParameter : function(name, value) {

 //Check for existing parameter
 var existingParam = this.getRequestParameter(name);

 if (existingParam != null) {
 //Parameter exists, update content
 MmsUtils.debug('Updating: ' + value);
 existingParam.value = value;

 } else {
 //Parameter does not exist, add it
 MmsUtils.debug('Adding: ' + value);
 this.reqParams[this.reqParams.length] = {name : name, value :
value};
 }

 },

 //Set current slide no
 setSlide : function(slideNo) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 slideNo = parseInt(slideNo);

 //slideNo must be numeric and valid index.
 if (slideNo.toString() == 'NaN'){
 return {status : 'error', message : 'Slide number was not
numeric'};
 } else if (slideNo < 0 || slideNo >= this.mms.slides.length) {
 return {status : 'error', message : 'Slide number was not
valid: ' + slideNo};
 } else if (slideNo == this.currentSlide) {
 return {status : 'ok', message : 'Slide already set'};
 }

 //MMS object representation needs no update

 //Update HTML and set focus to new slide
 var htmlSlide = document.getElementById('mms-canvas-slide-' +
slideNo);

 if (htmlSlide == null)
 return {status : 'error', message : 'Could not find slide: '
+ slideNo};

 //Hide previous slide
 document.getElementById('mms-canvas-slide-' +
this.currentSlide).style.visibility = 'hidden';

 this.currentSlide = slideNo;

 //Show new slide
 htmlSlide.style.visibility = 'visible';

 MmsUtils.debug('MMS slide set, current slide is: ' +
this.currentSlide);

 //Return obj with status ('ok'|'error') and message (text
message)
 return {status : 'ok', message : 'Slide set'};

 },

 setTextColor : function(color) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Get slide
 var slide = this.mms.slides[this.currentSlide];

 if (slide.text == null)
 return {status : 'error', message : 'Slide has no text, text
color cannot be set'};

 //Update object representation
 slide.text.color = color;

 //Update HTML element
 var htmlText = document.getElementById('mms-canvas-text-' +
this.currentSlide);

 htmlText.style.color = color;

 MmsUtils.debug('Text color updated to: ' + color);

 return {status : 'ok', message : 'Text color updated'};
 },

 /**
 * Set a new text size.
 */
 setTextSize : function(size) {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 //Get slide
 var slide = this.mms.slides[this.currentSlide];

 if (slide.text == null)
 return {status : 'error', message : 'Slide has no text, text
size cannot be set'};

 //Update object representation
 slide.text.size = size;

 //Update HTML element
 var htmlText = document.getElementById('mms-canvas-text-' +
this.currentSlide);

 htmlText.style.fontSize = size;

 MmsUtils.debug('Text size updated to: ' + size);

 return {status : 'ok', message : 'Text size updated'};
 },

 /*********** Info methods *********************************/

 getCurrentSlide : function() {

 if (! this.isInited)

 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 return this.currentSlide;

 },

 getDuration : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 return this.mms.slides[this.currentSlide].duration;
 },

 getLayout : function() {

 return this.mms.layout;

 },

 getNumSlides : function() {

 if (! this.isInited)
 return {status : 'error', message : 'MMS canvas was not
initialized!'};

 return this.mms.slides.length;

 },

 getRequestParameter : function(name) {

 this.reqParams;

 for (var i = 0; i < this.reqParams.length; i++) {

 var param = this.reqParams[i];

 if (param.name == name)
 return param;

 }

 return null;

 },

 //Returns the current text
 getText : function() {

 var slide = this.mms.slides[this.currentSlide];

 if (slide.text == null)
 return '';

 return slide.text.text;
 },

 //Returns a boolean indicating whether the current slide has audio
or not
 hasAudio : function() {

 var slide = this.mms.slides[this.currentSlide];

 if (slide.audio == null)
 return false;

 return true;
 },

 //Returns a boolean indicating whether the current slide has an
image or not
 hasImage : function() {

 var slide = this.mms.slides[this.currentSlide];

 if (slide.image == null)
 return false;

 return true;

 },

 /**
 * Boolean indicating whether there is a next slide after current
one.
 */
 hasNextSlide : function() {

 if (this.currentSlide < this.mms.slides.length -1)
 return true;

 return false;
 },

 /**
 * Boolean indicating whether there is a previous slide before
current one.
 */
 hasPreviousSlide : function() {

 if (this.currentSlide > 0)
 return true;

 return false;
 },

 //Returns a boolean indicating whether the current slide has text
or not
 hasText : function() {

 var slide = this.mms.slides[this.currentSlide];

 if (slide.text == null)
 return false;

 return true;

 },

 //Returns a boolean indicating whether the current slide has video
or not
 hasVideo : function() {

 var slide = this.mms.slides[this.currentSlide];

 if (slide.video == null)
 return false;

 return true;

 },

 /*********** Internal helper methods
*********************************/

 //Center an HTML element
 centerElement : function(el, availableWidth) {

 if (availableWidth == null) //Not specified, use canvas width
 availableWidth = this.width;

 var elWidth = parseInt(el.width);

 if (elWidth.toString() == 'NaN') {
 MmsUtils.error('Element didn\'t contain width attribute');
 return;
 }

 //Margins are mms canvas width - element width
 var margin = Math.floor((availableWidth - elWidth)/2);

 el.style.marginLeft = margin + 'px';
 el.style.marginRight = margin + 'px';

 MmsUtils.debug('Element centered');

 },

 changeIdIndices : function(idBases, oldIndex, newIndex) {

 for (var i = 0; i < idBases.length; i++) {
 var el = document.getElementById(idBases[i] + oldIndex);

 if (el != null)
 el.id = idBases[i] + newIndex;
 }
 },

 changeLayout : function(newType) {

 //Go through all slides and all slides that have both text and
 //visual media will be rearranged.

 var slides = this.mms.slides;

 for (var i = 0; i < slides.length; i++) {

 if ((slides[i].text != null && slides[i].image != null) ||
 (slides[i].text != null && slides[i].video != null)) {

 //Slide contained both text and visual media. Move text
 //to match new layout.
 var text = document.getElementById('mms-canvas-text-' + i);
 var parent = text.parentNode;

 //Remove from previous location - Not required?
 //parent.removeChild(text);

 //MmsUtils.debug('Text node removed');

 this.mms.layout = newType;

 //Move node
 this.insertText(text, parent);
 }
 }

 return {status : 'ok', message : 'Layout type changed'};
 },

 fitElements : function() {

 var parent = document.getElementById('mms-canvas-slide-' +
this.currentSlide);
 var elements = parent.childNodes;

 var imageNode; //Video nodes are also represented as images
 var textNode;

 //Get elements, one img (image or video) and one div (text)
 for (var i = 0; i < elements.length; i++) {

 var el = elements[i];

 if (el.nodeName == 'IMG') {
 imageNode = el;
 } else if(el.nodeName == 'DIV') {
 textNode = el;
 }

 }

 //Text is never resized but check its height.
 var textHeight = 0;

 if (textNode != null)
 textHeight = textNode.offsetHeight;

 if (imageNode != null) {
 //Fit image node

 MmsUtils.debug('Entering image node resize');

 //Make sure image is not wider than canvas
 if (imageNode.width > this.width) {
 this.resizeImage(imageNode, this.width, null); //Set new
width
 this.centerElement(imageNode);
 }

 //If image size was reduced earlier dur to a text that has
been removed,
 //increase its size again
 if(imageNode.width < this.width &&
 textNode == null) {

 this.resizeImage(imageNode, this.width, null);

 }

 /*
 Decide whether to further downscale the image.

 Image will be downscaled if:
 - There is no text and image height exceeds canvas height
 - There is text and image height + text height exceeds
 canvas height. (This causes scrollbars)

 */

 var imageHeight = imageNode.height;
 var verticalTextConsumption = textHeight / this.height;
 //Defines how much of the height is needed for text
 var verticalImageConsumption = imageHeight / this.height;
 //Defines how much of the height is needed for image

 if (textHeight == 0 && imageNode.height > this.height) {
 //Max height will be canvas height

 this.resizeImage(imageNode, null, this.height); //Set new
height

 MmsUtils.debug('Image resized vertically to fit slide');

 } else if (verticalTextConsumption + verticalImageConsumption
> 1) { //Scrollbars will be added

 //Downscale image vertically

 var newImageHeight = imageHeight;

 if (verticalTextConsumption > 0.5) { // Don't downscale
image height to less than half
 //Set image height to half the
 newImageHeight = Math.floor(this.height / 2);
 } else {
 newImageHeight = this.height - textHeight - 4;
 }

 MmsUtils.debug(newImageHeight);

 this.resizeImage(imageNode, null, newImageHeight); //Set
new height

 MmsUtils.debug('Image resized vertically to fit slide
together with text');
 }

 //Compensate width property if scrollbars were added
 if (parent.clientWidth != this.width) {

 //Scroll bars were added
 var newWidth = parent.clientWidth;

 if (imageNode.width > newWidth) {
 //Image must be downscaled
 this.resizeImage(imageNode, newWidth, null);

 MmsUtils.debug('Image resized horizontally to fit within
scroll bars');
 }

 }

 this.centerElement(imageNode, parent.clientWidth); //Center

 }

 },

 //Inserts text according to current layout
 insertText : function(el, parent) {

 var layout = this.mms.layout;

 if (layout == 1) {
 //Text at the bottom, do an append
 parent.appendChild(el);
 } else if (layout == 2) {
 //Locate video/image node
 var children = parent.childNodes;
 var otherNode = null;

 for (var i = 0; i < children.length; i++) {
 if (children[i].className == 'mms-canvas-image' ||
 children[i].className == 'mms-canvas-video') {

 otherNode = children[i];

 break;

 }
 }

 parent.insertBefore(el, otherNode); //If otherNode is still
null the text is put last

 }

 },

 //Inserts visable media according to current layout
 insertVisual : function(el, parent) {

 var layout = this.mms.layout;

 if (layout == 2) {
 //Visual media at the bottom, do an append
 parent.appendChild(el);
 } else if (layout == 1) {
 //Locate text node
 var children = parent.childNodes;
 var textNode = null;

 for (var i = 0; i < children.length; i++) {
 if (children[i].className == 'mms-canvas-text') {

 textNode = children[i];
 break;

 }
 }

 parent.insertBefore(el, textNode); //If textNode is null, the
visual media element is put last

 }

 },

 onImageError : function() {
 MmsUtils.error('Could not load image');
 },

 //Resizes image to scale. Use only height OR width and set other
to null
 resizeImage : function(imgEl, width, height) {

 var SET_HEIGHT = 1;
 var SET_WIDTH = 2;
 var SET_BOTH = 3;

 var mode = 0;

 if (height != null && width == null)
 mode = SET_HEIGHT;

 else if (height == null && width != null)
 mode = SET_WIDTH;
 else if (height != null && width != null)
 mode = SET_BOTH;

 MmsUtils.debug('Resizing image element with scaling setting: ' +
mode);

 //Initial dimensions, needed to do manual rescaling in IE
 var iWidth = imgEl.width;
 var iHeight = imgEl.height;

 if (iHeight == 0 || iWidth == 0) {
 //Image not properly loaded, report and return
 MmsUtils.error('Image dimensions were 0x0, probably image
wasn\'t loaded');
 return;
 }

 if (mode == SET_HEIGHT) {

 //Clear width style so that image will not change ratio.
 imgEl.style.width = '';

 //Set height to specified height
 imgEl.style.height = height + 'px';

 //Calculate expected value and make sure scale manually if
width wasn't updated automatically
 var scaleFactor = height / iHeight;
 var expectedWidth = Math.floor(scaleFactor * iWidth);

 if (imgEl.width > expectedWidth + 1 || imgEl.width <
expectedWidth - 1) {
 //Not resized horizontally, scale manually.
 imgEl.style.width = expectedWidth + 'px';
 }

 } else if (mode == SET_WIDTH) {

 //Clear height style so that image will not change ratio.
 imgEl.style.height = '';

 //Set width to specified width
 imgEl.style.width = width + 'px';

 //Calculate expected value and make sure scale manually if
height wasn't updated automatically
 var scaleFactor = width / iWidth;
 var expectedHeight = Math.floor(scaleFactor * iHeight);

 if (imgEl.height > expectedHeight + 1 || imgEl.height <
expectedHeight - 1) {
 //Not resized vertically, scale manually.
 imgEl.style.height = expectedHeight + 'px';
 }

 } else if (mode == SET_BOTH) {

 imgEl.style.height = height + 'px';
 imgEl.style.width = width + 'px';

 }

 },

 /**
 * This function converts plain text to HTML text, replacing
special
 * characters and line breaks
 */
 plainToHtml : function(str) {

 var resultStr = '';

 for (var i = 0; i < str.length; i++) {

 var char = str.charAt(i);

 if (char == '\n')
 resultStr += '
';
 else if (char == '<')
 resultStr += '<';
 else if (char == '>')
 resultStr += '>';
 else if (char == '"')
 resultStr += '"';
 else if (char == '&')
 resultStr += '&'
 else if (char == 'å')
 resultStr += 'å'
 else if (char == 'Å')
 resultStr += 'Å'
 else if (char == 'ä')
 resultStr += 'ä'
 else if (char == 'Ä')
 resultStr += 'Ä';
 else if (char == 'ö')
 resultStr += 'ö';
 else if (char == 'Ö')
 resultStr += 'Ö';
 else
 resultStr += char; //Default

 }

 return resultStr;

 },

 //This method handles resizing of an image after it has finished
loading
 //Note that it seemingly does nothing but the fitElements method
cannot be

 //set directly as event listener or its variables will not be
available.
 resizeImageOnLoad : function(e) {

 MmsCanvas.fitElements();

 },

 toJsonString : function() {

 //Initialize and add MMS properties
 var jsonStr = '{\r\n' +
 '\t\"width\" : \"' + this.width + '\",\r\n'+
 '\t\"height\" : \"' + this.height + '\",\r\n' +
 '\t\"layout\" : \"' + this.mms.layout + '\",\r\n' +
 '\t\"backgroundColor\" : \"' + this.bgColor +
'\",\r\n' +
 '\t\"slides\" : [\r\n';

 //Add slides
 for (var i = 0; i < this.mms.slides.length; i++) {

 var hasPrevEl = false; //Indicated if an element has been
added to this slide (requires a comma)

 if (i > 0) //There were slides before, add comma
 jsonStr += '\t\t,\r\n';

 jsonStr += '\t\t{\r\n'; //Start JSON el

 jsonStr += '\t\t\t\"duration\" : \"' +
this.mms.slides[i].duration + '\"\r\n';

 if (this.mms.slides[i].audio != null) {

 jsonStr += '\t\t\t\,\r\n'; //add comma

 jsonStr += '\t\t\t\"audio\" : \"' +
this.mms.slides[i].audio.src + '\"\r\n';

 }

 if (this.mms.slides[i].image != null) {

 jsonStr += '\t\t\t\,\r\n'; //add comma

 jsonStr += '\t\t\t\"image\" : \"' +
this.mms.slides[i].image.src + '\"\r\n';

 }

 if (this.mms.slides[i].text != null) {

 jsonStr += '\t\t\t\,\r\n'; //add comma

 jsonStr += '\t\t\t\"text\" : {\r\n'; //Start text el

 jsonStr += '\t\t\t\t\"text\" : \"' +
this.mms.slides[i].text.text + '\",\r\n';
 jsonStr += '\t\t\t\t\"color\" : \"' +
this.mms.slides[i].text.color + '\",\r\n';
 jsonStr += '\t\t\t\t\"size\" : \"' +
this.mms.slides[i].text.size + '\"\r\n';

 jsonStr += '\t\t\t}\r\n'; //End text el

 }

 if (this.mms.slides[i].video != null) {

 jsonStr += '\t\t\t\,\r\n'; //add comma

 jsonStr += '\t\t\t\"video\" : \"' +
this.mms.slides[i].video.src + '\"\r\n';

 }

 jsonStr += '\t\t}\r\n'; //End JSON el

 }

 jsonStr += '\t]\r\n' +
 '}';

 return jsonStr;
 }

}

/* Utilities for the MMS components */
var MmsUtils = {

 debug : function (str) {
 try {
 MmsDebugListener.debug(str);
 } catch (e) {
 //Do nothing
 }
 },

 error : function(str) {
 try {
 MmsDebugListener.reportError(str);
 } catch (e) {
 //Do nothing
 }
 }
}

//MMS objects

function MmsSmil() {

 this.layout = 1; //1 -> Image/video on top, 2 -> text on top
 this.slides = new Array();

}

function MmsSlide() {

 //MMS info fields
 this.duration = "10s"; //Duration for the slide
 this.text; //Reference to an MmsText JS obj
 this.image; //Reference to an MmsImage JS obj
 this.video; //Reference to an MmsVideo JS obj
 this.audio; //Reference to an MmsAudio JS obj

 //JavaScript-only fields
 this.id;

}

function MmsText() {

 this.text;
 this.color;
 this.size;

}

function MmsImage() {

 this.src;

}

function MmsVideo() {

 this.src; //Src attribute for the video file on the server, not
displayed
 this.imageSrc; //The src attribute to the image that is displayed
for this video

}

function MmsAudio() {

 this.src;

}

Appendix D – E-mail correspondence with Eric Hyche
Appendix F contains e-mail correspondence between the author of this master’s thesis (Kristofer
Borgström) and Real Networks employee Eric Hyche.

E-mail 1, sent by Kristofer Borgström 2007-08-17

Hi

I noticed something that seems like a bug while trying to embed a SMIL presentation using RealPlayer
(Helix Powered).

If you try to open a SMIL file in an embedded RealPlayer Window, relative URLs within the SMIL are
not interpreted properly and you get an error saying something like:

"A general error has occurred"
mem://03D4FAD0/localhost:8080/embedded/smil/msg2/bigfish.jpg

I.e. the player tries to read this file rather than the file relative to the original document which would be:
http://localhost:8080/embedded/smil/msg2/bigfish.jpg.

Is this a bug in the Helix renderer or in RealPlayer? Is there a known solution short of changing all the src
attributes to absolute URLs? If this is not the place to report this, where should I?

========= Reproduction ==========
The problem can not be reproduced by opening the SMIL in RealPlayer directly because that actually
works. Therefore I added a small demo to one of my sites so that you can see what happens.

The following link has a basic SMIL presentation embedded in it and does not play...
http://www.asia06.com/smil/real.jsp

The HTML on that page references the SMIL file below, which when opened in RealPlayer directly plays
fine.
http://www.asia06.com/smil/smil/msg2/hello.smil
=============================

Best regards
Kristofer

E-mail 2, sent by Eric Hyche 2007-08-23

What happens when you indirectly reference the SMIL file
through a .ram file? For instance, try having your
.jsp script output the following:

- <embed src="smil/msg2/hello.smil" type="audio/x-pn-realaudio-plugin" ...
+ <embed src="smil/msg2/hello.ram" type="audio/x-pn-realaudio-plugin" ...

and then hello.ram would just have one line:

http://www.asia06.com/smil/msg2/hello.smil

Does this work?

Eric

===
Eric Hyche (ehyche@real.com)
Technical Lead
RealNetworks, Inc.

E-mail 3, sent by Kristofer Borgström 2007-09-20

That may or may not work, but it doesn't solve my problem. When this embed tag is generated (using JSP),
the absolute URL of the SMIL file is not know so I couldn't generate this .ram file even if I wanted to.
Also, I am skeptical to implement proprietary solutions because it leads to too much work when
supporting many different players.

In conclusion I suppose you are aware of this weakness although you don't necessarily see it as a bug.
Well, due partly to this limitation but mostly due to the very strange behavior of scroll bars when text is
displayed, support for RealPlayer has been put at the bottom of my priority list and I am forced to
implement a simple SMIL player in HTML/JavaScript. This was a real shame because apart from scroll
bars and text (which is central to my solution) the I found the SMIL rendering in RealPlayer to be the best
I have found.

/Kristofer

Appendix E – User guide
Appendix E contains the user guides written to describe setup and usage of the MMS components
proposed in this master’s thesis. This user guide is directed at the Java developer community and puts
emphasis is on readability and ease of use. As such, this guide should not be considered a technical report.

MMS Components for Web 2.0

User Guide

Copyright

© Ericsson AB 2007 – All Rights Reserved

Disclaimer
No part of this document may be reproduced in any form without the written
permission of the copyright owner.

The contents of this document are subject to revision without notice due to
continued progress in methodology, design and manufacturing. Ericsson shall
have no liability for any error or damage of any kind resulting from the use of this
document.

Trademark List
JAVA™ is a trademark of SUN Microsystems inc.

Windows® is a registered trademark of the Microsoft Corporation

Apache™ is a trademark of The Apache Software Foundation

Abstract
This document gives an introduction to MMS messaging and describes how to
install and use the MMS Components for Web 2.0 in a web application.

Contents
1 Introduction ... 4
1.1 Scope .. 4
1.2 Purpose ... 5
1.3 Target group.. 5
1.4 Document disposition.. 6
1.5 Compliancy ... 6
1.6 Features .. 6

2 A brief introduction to MMS messages.. 8
2.1 What is an MMS?.. 8
2.2 How is an MMS structured?.. 9
2.2.1 MMS SMIL .. 9
2.2.2 Media file references... 9
2.3 How are MMS messages sent?.. 10
2.4 What MMS SDKs are available? .. 12
2.4.1 Ericsson MM7 SDK... 12
2.4.2 Telecom Web Services SDK (Parlay X) ... 12

3 How to use the MMS Components.. 13
3.1 Getting started... 13
3.1.1 Adding the components to a web application... 13
3.1.2 Installing JSTL... 14
3.2 Using the viewer components... 14
3.2.1 Introduction to the viewer components... 14
3.2.2 Using the MMS viewer custom JSP tag ... 15
3.2.3 Setting up the MmsTransformationServlet ... 19
3.2.4 Customizing look and feel... 25
3.3 Using the composer components ... 26
3.3.1 Introduction to the composer components ... 26
3.3.2 Embedding the MMS canvas.. 27
3.3.3 Configuring the MmsComposerServlet .. 30
3.3.4 Using the MMS canvas... 31
3.4 Authoring MMS messages from Java code.. 36

4 Known issues .. 37
4.1 RealPlayer plug-in together with Opera and Safari browsers................ 37
4.2 QuickTime 7.1.6 and Firefox... 37

5 Glossary... 38

6 References... 39

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

4 (39)

1 Introduction

1.1 Scope
MMS Components for Web 2.0 is used to add MMS capabilities to web sites. The
components support both displaying MMS messages as well as creating MMS
messages. The components also include support for MMS SMIL, as defined by Open
Mobile Alliance [1], which allows MMS messages to be displayed as they would be on
a mobile terminal and also ensures that MMS messages that are composed on the
web are displayed properly when sent to a mobile terminal.

The components are designed for Java web applications. As such, it contains
Servlets and JSP tags that simplify the integration of the components on the web.

The components also include a Java object representation of MMS which can be
used to author MMS messages in any context, not just the web. This object
representation can then be transformed to an MMS SMIL, thus providing any Java
application with an easy way of composing MMS messages.

This document gives a brief introduction to MMS messages in general, thus helping
the reader understand what an MMS message is, how it is structured and how it is
handled by mobile networks. It also gives a brief introduction to the different
components, describes their features and provides examples of how to integrate
them on a web page.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

5 (39)

Other pages
Other pages

Java web application

MVC JSF ServletsJSP

MMS Components for Web 2.0

Viewer page Other pagesComposer page

Display MMS Create MMS
Interact

Mobile Network

Parlay X MM7 SMTP

Send and
Receive MMS

Receive
MMS

Figure 1 Java web application architecture.

1.2 Purpose
The purpose of the components is to simplify integration of MMS messages on the
web. The components are a contribution to Web 2.0 that aims to help bridging the
telecom world and the web.

1.3 Target group
This document is for developers who want to add MMS functionality to a web site. It
can also benefit people who want a general understanding of MMS messages.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

6 (39)

1.4 Document disposition
This document contains two major sections:

• Introduction to MMS messaging

• A description of the components and how to use them.

This section should be read selectively unless a more complete understanding of
the components is desired.

• Compatibility issues

The following layout conventions are used:

• Italics
Sections marked in italics contain background and troubleshooting
information – not required reading.

• Courier New, font size 8
This typeface is used for code-related text, parameters, catalog names and
file names.

1.5 Compliancy
The MMS components are compliant with all major modern browsers (Internet
Explorer, Firefox, Opera and Safari). The components rely on external media players
(QuickTime and/or RealPlayer) to play video and audio files. There are some minor
known issues regarding browser/media player compatibility which are discussed in
section 4.

1.6 Features
The features of the components are listed below.

Table 1 Features of the emulator.

Feature Description

MMS transformation
components

Allows the following transformations:
• MMS SMIL to Java object representation
• Java object representation to MMS SMIL
• Java object representation to DHTML
• Java object representation to HTML+TIME (Internet

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

7 (39)

Explorer only)

MMS transformation Servlet A servlet that uses the transformation components to
create an appropriate HTML view of an MMS.

MMS viewer JSP tag A JSP custom tag that enables MMS messages to be
added to a JSP page using a single line of code.

MMS composer Servlet A servlet that creates a Java object representation of an
MMS sent as a JSON string. The object representation is
then saved to disk (or other persistent storage) as MMS
SMIL. Finally the MMS composer servlet dispatches the
HTTP request to any page or Servlet.

MMS canvas The MMS canvas consists of a container element of
variable size and a set of JavaScript methods used to
manipulate the MMS that is “drawn” on the canvas. The
resulting MMS message is shown in real time on the
canvas as it is composed. Further more, the canvas has
JavaScript methods that can be used to post the MMS
(preferably to the MMS composer Servlet) and also to add
additional parameters to the request.

MMS canvas JSP tag Allows the MMS canvas to be added to a JSP page using
a single line of code. Note that the canvas does not
include any graphical interface that calls the JavaScript
methods which are used to compose the MMS. Thus
allowing the developer to implement their own look and
feel.

Open implementation The source code of the components is included.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

8 (39)

2 A brief introduction to MMS messages

2.1 What is an MMS?
Multimedia Messaging Service (MMS) is multimedia messaging format designed for
mobile terminals. An MMS message can contain text, images, audio clips and video
clips. An MMS message consists of the media files of the message and an MMS
SMIL file that defines how the message should be displayed.

MMS SMIL is based on the XML based Synchronized Multimedia Integration
Language (SMIL) as defined by the World Wide Web Consortium (W3C) [2]. There
are several profiles (subsets) of the SMIL specification. However, none of them were
considered suited to multimedia messaging between mobile terminals. Thus, the
Open Mobile Alliance (OMA) [1] defined a new subset of the SMIL specification
known as MMS SMIL and described it in the MMS Conformance Document [3].

The most notable characteristics of an MMS message are:

• It consists of a series of slides

• Each slide is displayed for a set period of time (its duration)

• A slide may contain only the following visible media elements: one text and one
image or one video clip (images and video clips are not allowed on the same
slide).

• The same “layout” applies for all slides. This basically means that there are two
layout modes that apply to the entire MMS messages: 1 – text on top, 2 – images
and video clips on top.

• The slide may also contain background audio if it does not also contain a video
clip.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

9 (39)

2.2 How is an MMS structured?

2.2.1 MMS SMIL

As mentioned in section 2.1, an MMS message is defined by its media files and an
MMS SMIL template that defines how the media elements should be presented. The
following example shows an MMS SMIL file that defines layout and timing for a
presentation including all allowed types of media elements (text, images, audio and
video):

<smil>
 <head>
 <layout>
 <root-layout width="240" height="432" />
 <region id="Image" width="100%" height="50%" left="0%" top="0%" fit="meet" />
 <region id="Text" width="100%" height="50%" left="0%" top="50%" fit="meet" />
 </layout>
 </head>
 <body>
 <par dur="5240ms">
 <text region="Text" src="0_0.txt" />

 <audio src="0_2.amr" dur="5240ms" />
 </par>
 <par dur="7320ms">
 <text region="Text" src="1_0.txt" />
 <video region="Image" src="1_1.3gp" dur="7320ms" />
 </par>
 </body>
</smil>

As seen in the example, an MMS SMIL file contains a head section where the layout
of the MMS is defined by specifying areas for the regions Image and Text (the region
ids may not assume any other values). The head section is followed by a body section
that defines timing for each slide (one slide is defined within one par tag) and region
assignment for the media elements. Each slide is defined by a par tag and the media
elements within it will be presented simultaneously within each element’s specified
region.

Note that according to the MMS Conformance Document, an MMS SMIL player is
not required to follow the layout strictly. This is because the layout of an MMS may
not match the physical limitations (e.g. resolution) of the device that it is displayed
on.

2.2.2 Media file references

The different media element tags of MMS SMIL all have a src attribute. This attribute
defines which media file should be presented by the tag. The media files themselves
are also included when an MMS message is sent and each of the media files has a
set of headers that describes that file. The src attribute may reference the media file
in one of two ways as shown in the following code snippets:

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

10 (39)

<text region="Text" src="hello.txt" />

<text region="Text" src="cid:hello.txt" />

The first snippet contains the location (URI) of the media file. Specifying only a URI in
the MMS SMIL file means that the file referenced by that element should be identified
by the HTTP header Content-Location. The second tag has a src attribute that
contains a cid: prefix before what appears to be a file name. This prefix specifies that
the media is referenced by the Content-ID MIME header. It should also be noted that
the Content-ID header may not contain a valid file name, in which case a file name will
have to be generated based on the Content-Type header of the file before it can be
saved to disk. An example MMS message sent using MM7 is given in section 2.3.

2.3 How are MMS messages sent?
There are several protocols used to transfer MMS messages. They include but are
not limited to: MM7, Parlay X Web Services and SMTP. What they share in common
is that they all send MMS messages as MIME encoded multipart messages. The
multipart message contains one part that is specific to the protocol and another part
which contains the MMS message including the MMS SMIL file.

This is illustrated in the following example which contains a trace of an MMS sent
using MM7:

POST /mms/mm7 HTTP/1.1

Accept: text/xml, text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Content-Type: multipart/related; type="text/xml"; boundary="----
=_Part_0_25199001.1192611773065"

Authorization: Basic bW9iaWxpdHlfd2hiuGQ6bGQ1eG05SjVPNg==

Cache-Control: no-cache

Pragma: no-cache

User-Agent: Java/1.6.0

Host: mm7.provider.com

Connection: keep-alive

Content-Length: 2011

------=_Part_0_25199001.1192611773065

Content-Type: text/xml; charset=utf-8

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-
ENV:Header><mm7:TransactionID
xmlns:mm7="http://www.3gpp.org/ftp/Specs/archive/23_series/23.140/schema/REL-6-MM7-1-
2">TransactionID-1</mm7:TransactionID></SOAP-ENV:Header><SOAP-ENV:Body><mm7:SubmitReq
xmlns:mm7="http://www.3gpp.org/ftp/Specs/archive/23_series/23.140/schema/REL-6-MM7-1-
2"><mm7:MM7Version>6.5.0</mm7:MM7Version><mm7:SenderIdentification><mm7:VASPID>vasp-

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

11 (39)

id</mm7:VASPID><mm7:SenderAddress><mm7:ShortCode>71160</mm7:ShortCode></mm7:SenderAddr
ess></mm7:SenderIdentification><mm7:Recipients><mm7:To><mm7:Number>123</mm7:Number></m
m7:To></mm7:Recipients><mm7:ServiceCode>tariffClass=SEK0</mm7:ServiceCode><mm7:Deliver
yReport>true</mm7:DeliveryReport><mm7:Subject>Ericsson IPX</mm7:Subject><mm7:Content
href="cid:attachement_1"/></mm7:SubmitReq></SOAP-ENV:Body></SOAP-ENV:Envelope>

------=_Part_0_25199001.1192611773065

Content-Type:
 multipart/mixed; boundary="----=_Part_0_1484678.1192611773018"

Content-ID: <attachement_1>

------=_Part_0_1484678.1192611773018

Content-Type: application/smil

Content-ID: <smil_1.smil>

<smil>
 <head>
 <layout>
 <root-layout height="240px"width="160px"/>
 <region id="Image" top="0" left="0" height="50%"width="100%" fit="hidden"/>
 <region id="Text" top="50%" left="0" height="50%"width="100%" fit="hidden"/>
 </layout>
 </head>
 <body>
 <par dur="3s">
 <text src="cid:text_1.txt"region="Text"></text>
 </par>
 <par dur="3s">
 <text src="cid:text_2.txt" region="Text"></text>
 </par>
 </body>
</smil>

------=_Part_0_1484678.1192611773018

Content-Type: text/plain

Content-ID: <text_1.txt>

MM sent using Ericsson IPX

------=_Part_0_1484678.1192611773018

Content-Type: text/plain

Content-ID: <text_2.txt>

All for now

------=_Part_0_1484678.1192611773018--

------=_Part_0_25199001.1192611773065--

As mentioned above, the message contains an MM7-specific multipart request which
contains MM7 data such as who the MMS was sent from, to etc.. The MM7 multipart
request in turn, contains another nested multipart encoded part which is the actual
MMS message. As seen in the example, each media element in the MMS has the
Content-Type and the Content-ID headers.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

12 (39)

As described in section 2.2.2, when the src attribute of a media element in an MMS
SMIL file has a cid: prefix, as is the case in the previous example, a media file is
referenced by its Content-ID header (not necessarily a valid file name). It should be
noted that the Content-ID header has the ID enclosed within brackets which need to
be stripped away before it is matched against the src attribute.

If the src attributes would not have contained cid: prefixes, the Content-Location
header would be present for all files. The Content-Location does not have any
surrounding brackets as the Content-ID does. The following code snippet shows what
the first text might have looked like if the src attribute in the MMS SMIL file would not
have had the cid: prefix:

------=_Part_0_1484678.1192611773018

Content-Type: text/plain

Content-Location: text_1.txt

MM sent using Ericsson IPX

------=_Part_0_1484678.1192611773018

2.4 What MMS SDKs are available?

2.4.1 Ericsson MM7 SDK

The Ericsson MM7 SDK is a Java SDK that simplifies sending and receiving MMS
messages using the MM7 protocol. It also includes an emulator that enables testing
without a live network. The SDK can be downloaded for free from Ericsson
Developer Program:
http://www.ericsson.com/mobilityworld/sub/open/technologies/mms_mm7/tools/mm7
_sdk.

2.4.2 Telecom Web Services SDK (Parlay X)

The Telecom Web Services SDK is a Java SDK that simplifies access to telecom
network capabilities using Parlay X Web Services. The SDK includes support for
sending and receiving MMS messages and it also includes an emulator which
enables testing without a live network. It can be downloaded from Ericsson
Developer Program
http://www.ericsson.com/mobilityworld/sub/open/technologies/parlayx/tools/tc_ws_sd
k_3_0 (released Q1 2008). This is SDK contains two kits that were previously
released separately: Java SE Components for Telecom Web Services and Telecom
Web Services Network Emulator.

The emulator included in this SDK also utilizes the MMS Components for Web 2.0
and can be used as a reference for how to use the components.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

13 (39)

3 How to use the MMS Components

3.1 Getting started

3.1.1 Adding the components to a web application

The following section describes how to add the components to a Java web
application. The folder of the web application will be referred to as <WEB_APP_HOME>.

• Extract the components to a folder of your choice, this folder will be referred to as
<COMP_HOME>.

• Add the <COMP_HOME>/dist/mms-components.jar to the classpath of the web
application. One way of doing this is by copying it to the lib folder of the web
application. For example: <WEB_APP_HOME>/web/WEB-INF/lib/.

• Copy the contents of the <COMP_HOME>/web/mms-resources/ folder to a folder within
the web content directory of the web application. For example:
<WEB_APP_HOME>/web/mms-resources/.

This is the resource directory for the MMS components and it contains
JavaScripts, stylesheets and images for the playback control. Make sure to
maintain the folder structure within the resource directory.

• To enable the use of the JSP custom tags, copy the viewer.tag and composer.tag
files from the <COMP_HOME>/web/WEB-INF/tags/ folder to a folder within the WEB-INF
folder of the web application. For example: <WEB_APP_HOME>/web/WEB-INF/tags.

Note that the tags require that there is an implementation of the Java Standard
Tag Library (JSTL) available in the web container. If there is no such
implementation currently installed in the web container that will be used, please
refer to section 3.1.2 for details on how to install it.

• To enable the default configuration for the components, copy the
<COMP_HOME>/web/WEB-INF/mms-media-mappings.xml to the WEB-INF folder of the web
application. For example: <WEB_APP_HOME>/web/WEB-INF/mms-media-mappings.xml.

• To use the default alternate views (see section 3.2.3.2 for more information) copy
mms-loading.jsp, mms-error.jsp and mms-no-player.jsp from <COMP_HOME>/web/ to the
web root of the application, for example: <WEB_APP_HOME>/web/.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

14 (39)

3.1.2 Installing JSTL

If there is no JSTL implementation installed in the web container that the web
application will be deployed to, one needs to be installed. The following steps
describe how to install Apache’s JSTL implementation in a Java web container:

1 Download the Standard Taglib 1.1.2 libraries from
http://jakarta.apache.org/site/downloads/downloads_taglibs-standard.cgi.

2 Extract the contents to a directory to a directory of your own choice. This
directory will from here on be referred to as <JSTL_HOME>, for example,
c:\java\jstl.

3 Copy <JSTL_HOME>/lib/jstl.jar and <JSTL_HOME>/lib/standard.jar to the lib folder of
the web container. For example: <TOMCAT6_HOME>/lib.

3.2 Using the viewer components

3.2.1 Introduction to the viewer components

The MMS viewer components are used to display MMS messages on a web page by
transforming an MMS message from MMS SMIL to an HTML view. The
transformation of the MMS to an HTML view is performed in real time.

If an MMS contains either audio or video clips, the client’s browser is checked for
available media player plug-ins and the result of this check is used to decide which
media player will be embedded on the page. Possible media players include
QuickTime and RealPlayer.

The area within which an MMS message is displayed using the viewer components
has a fixed dimension. Playback of an MMS follows the following sequence if
playback controls are displayed:

1 The splash screen and playback controls are displayed.

2 When the play button is pushed the playback of the MMS starts and continues as
long as its number of set iterations is not exceeded.

3 When the number of iterations of on an MMS is exceeded or when the stop
button is pushed, the splash screen is displayed again.

This sequence is depicted in Figure 2.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

15 (39)

Figure 2 Playback sequence of an MMS with playback controls.

If playback controls are disabled, the MMS will start as soon as it is loaded and when
its set number of iterations is exceeded, the splash screen will be displayed. An
example of the playback sequence of the same MMS message without playback
controls is shown in Figure 3.

Figure 3 Playback sequence of an MMS without playback controls

3.2.2 Using the MMS viewer custom JSP tag

The following section describes how to add an MMS message to a JSP page. The
MMS viewer tag uses the mms.components.presentation.web.MmsTransformationServlet
class to transform an MMS SMIL file to HTML format and display it on a web page.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

16 (39)

At the top of the JSP page, the folder that contains the viewer.tag file needs to be
declared as a tag file directory and assigned a prefix. Assuming that the viewer.tag
file has been copied to the WEB-INF/tags folder as described in section 3.1.1 this can
be done using the following line of JSP code:

<%@ taglib prefix="mms" tagdir="/WEB-INF/tags" %>

This line of code enables the viewer tag to be added using the mms prefix. At this
point, an MMS can be added anywhere on the JSP page by adding an mms viewer
tag. This is depicted in the following code snippet:

<mms:viewer height="320px"

 width="240px"
 mmsDir="/mms/mms1"
 servletPath="MmsTransformationServlet"
 smil="s.smil"
 resourceDir="/mms-resources">

</mms:viewer>

This example uses the mms.components.presentation.web.MmsTransformationServlet to
locate the MMS SMIL file available at /mms/mms1/s.smil (relative to context root). The
MMS SMIL file will then be transformed to an HTML view that is 240x320 pixels and
embedded on the page using an IFrame. The result will be similar to what is
displayed in Figure 4.

Figure 4 Playback of an MMS using a JSP custom tag.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

17 (39)

The MMS viewer tag has a number of attributes that allows the web developer
customize which MMS should be displayed and how it should be displayed. All
attributes of the MMS viewer tag are described in Table 2. Note that attributes that
are not mandatory can be set for all MMS by configuring the
mms.components.presentation.web.MmsTransformationServlet, see section 3.2.3.

Table 2 Attributes of the MMS viewer custom tag

Attribute Description

height The height of the MMS that will be added to the page. Should
always be specified in pixels and with a “px” suffix.

Mandatory: YES

Example: 320px

width The width of the MMS that will be added to the page. Should
always be specified in pixels and with a “px” suffix.

Mandatory: YES

Example: 240px

mmsDir Specifies the directory of the MMS SMIL file relative to the
context root of the web application. Must start with a slash.

Mandatory: YES

Example: /mms/mms1

smilFile Specifies the name of the MMS SMIL file in the mmsDir
directory.

Mandatory: YES

Example: s.smil

servletPath Specifies the path to Servlet that is used to generate the HTML
view, i.e. the path to
mms.components.presentation.web.MmsTransformationServlet.

Mandatory: YES

Example: MmsTransFormationServlet

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

18 (39)

resourceDir Specifies the directory where the external resources
(JavaScripts, images and stylesheets) for the MMS viewer
components are located. The directory must start with a slash
and is relative to the context root.

Note: To avoid setting this property to a custom value for each
MMS, this property could be set for all MMS using the
properties file for the
mms.components.presentation.web.MmsTransformationServlet,
see section 3.2.3.

Mandatory: NO

Default: /mms-resources

Example: /data/mms-resources

repeat Specifies the number of times to play the MMS before the
splash screen is displayed. Possible values include positive
integers and the keyword indefinite to specify that the MMS
should play forever.

Mandatory: NO

Default: indefinite

Example: 2

videoScaling Specifies a custom value for the video scaling property.

Mandatory: NO

Possible values:
original - Use original video resolution.
stretch - Stretch to media player area.
stretch-keep-aspect - Stretch to media player area but retain
aspect ratio. (Default)

controls A Boolean value specifying whether to show the playback
controls below the MMS. If set to false, the MMS will start
playing as soon as it loads.

Mandatory: NO

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

19 (39)

Default: true

controlsHeight Specifies the height of the playback controls. Height is
specified in pixels and should always have a “px” suffix.

Mandatory: NO

Default: 30px

3.2.3 Setting up the MmsTransformationServlet

3.2.3.1 General setup

The MmsTransformationServlet is basically a wrapper for the transformation
components that allows it to be called directly from a web browser.

To be able to use the Servlet, first make sure that the mms-components.jar file is in the
class path as described in section 3.1.1. Then, it must be declared and mapped in
the deployment descriptor of the web application. The following code snippet shows
how the mms.components.presentation.web.MmsTransformationServlet could be declared
and mapped in the WEB-INF/web.xml deployment descriptor of the web application:

...
<servlet>
 <servlet-name>MmsTransformationServlet</servlet-name>
 <servlet-class>mms.components.presentation.web.MmsTransformationServlet</servlet-
class>
</servlet>
<servlet-mapping>
 <servlet-name>MmsTransformationServlet</servlet-name>
 <url-pattern>/MmsTransformationServlet</url-pattern>
</servlet-mapping>
...

This is the only required configuration for the MmsTransformationServlet although there
are a lot of customization possibilities explained in sections 3.2.3.2 and 3.2.3.3.

3.2.3.2 Setting up optional init parameters

The mms.components.presentation.web.MmsTransformationServlet has a number of init
parameters that can be specified to customize its behavior. This section describes
how to set init parameters for a Servlet and what init parameters are supported by
the mms.components.presentation.web.MmsTransformationServlet.

To add an init parameter to a Servlet, modify the declaration of the Servlet in the
deployment descriptor (WEB-INF/web.xml) by adding nested init-param elements as
depicted in the following example:

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

20 (39)

<servlet>
 <servlet-name>MmsTransformationServlet</servlet-name>
 <servlet-class>mms.components.presentation.web.MmsTransformationServlet</servlet-
class>
 <init-param>
 <param-name>data-source-folder</param-name>
 <param-value>package.DataSourceFolderImpl</param-value>
 </init-param>
</servlet>

The above example shows how to specify a custom data source folder class. For a
list of all init parameters and descriptions thereof, please refer to Table 3. The data
source folder class is used to perform file serving to the transformation components.
This enables the developer to use any type of persistence strategy for the MMS
messages. By default the mms.components.FileDataSourceFolder class is used. This
class serves files directly from the file system of the web container and can be used
when no advanced persistence-strategy is employed. For information about how to
implement a custom data source folder, please refer to the design guide of the MMS
Components for Web 2.0.

The result of a request to the mms.components.presentation.web.MmsTransformationServlet
is not always going to result in a successfully generated MMS view. To handle these
cases, there are several alternative pages that will be used to display messages to
the user and also to detect which media players are available in the current browser
configuration. These pages are listed and described in Table 3.

Table 3 MmsTransformationServlet init parameters

Init parameter Description

data-source-folder This init parameter is used to specify a class name of a custom
data source folder implementation. The data source folder is
responsible for serving files to the transformation components
from any source such as a database or directly from the file
system. The data source folder must implement the interface
mms.components.DataSourceFolder.

If left empty or not specified, the
mms.components.FileDataSourceFolder is used to serve files
directly from the file system which may be sufficient for basic
web applications.

Example: package.DbDataSourceFolderImpl

loading-page This init parameter is used to specify what page is responsible
for detecting which media players are available and report this to
the
mms.components.presentation.web.MmsTransformationServlet.
While doing so, it should also display a message to the end user
saying that the MMS is loading.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

21 (39)

The value of this parameter is a URI relative to the current
context root. It must start with a slash.

The default page (/mms-loading.jsp, see section 3.1.1) will
probably be sufficient in most scenarios and it can easily be
modified with a custom look and feel.

Example: /data/mms/mms-loading.jsp

error-page This init parameter is used to specify the page that is shown if
the transformation fails for some reason.

The value of this parameter is a URI relative to the current
context root. It must start with a slash.

The default page (/mms-error.jsp, see section 3.1.1) will
probably be sufficient in most scenarios and it can easily be
modified with a custom look and feel.

Example: /data/mms/mms-error.jsp

no-player-page This init parameter is used to specify the page that is displayed
if no media player is available to play a certain media file that is
part of an MMS.

Note that the no-player-page will only be displayed if the
transformation configuration parameter that specifies that the
transformer throws a
mms.components.transformation.PlayerNotAvailableException is
set to true (this is the default value). If this parameter is set to
false, the media file will instead be excluded from the MMS and
an MMS view with the rest of the content will be displayed.

The value of this parameter is a URI relative to the current
context root. It must start with a slash.

The default page (/mms-no-player.jsp, see section 3.1.1) will
probably be sufficient in most scenarios and it can easily be
modified with a custom look and feel.

Example: /data/mms/mms-no-player.jsp

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

22 (39)

3.2.3.3 Specifying custom transformation properties

There is a large set of configuration properties that can be specified in order to
customize the output of the MMS transformations (some of these properties, for
example repeat count and resource directory, can be specified directly using the JSP
custom tag as described in section 3.2.2.).

The custom transformation settings can be customized by adding the property file
WEB-INF/mms-transformation.properties to the web application. The properties that are
specified in this property file correspond to the settings that are defined in the
mms.components.transformation.TransformationConfiguration class. The following code
snippet shows an example extract from this properties file:

mms.components.players.order=RealPlayer,QuickTime
mms.components.view.order=HtmlTime,Dhtml

All the possible transformation parameters that can be customized using the
WEB-INF/mms-transformation.properties file are listed in Table 4 along with a description
of each property.

Table 4 Transfomation properies listing

Property name Property description

mms.components.players.order This property defines which media players may be
embedded on a generated HTML page. The order
of the media players defined by this property will
affect which media player is embedded if several
are available and able to play a certain media file.

Example: RealPlayer,QuickTime (Default)

mms.components.controls.height This property defines the height in pixels reserved
for playback controls (must have a px suffix).

Example: 30px (Default)

mms.components.background.color This property defines the background color used
for the generated HTML view. The background
color only applies when the splash screen is
displayed. During MMS playback, the background
color defined in the MMS (or white by default) will
be used.

Example: black (Default)

mms.components.repeat This property defines the number of times to play
the MMS before the splash screen is displayed.
Possible values include positive integers and the
keyword indefinite to specify that the MMS

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

23 (39)

should play forever (or until manually stopped).

Example: indefinite (Default)

mms.components.resource.directory This property defines the resource directory for the
MMS components. This directory should contain
images, scripts and style sheets for the MMS
components. The value should be relative to the
current context root and must start with a slash.

Example: /mms-resources (default)

mms.components.controls This property defines whether or not to display
playback controls for MMS messages. Possible
values include true and false.

Example: true (Default)

mms.components.player.not.available
.exception

This property defines whether or not to throw an
exception if no media player was found that could
play a specific media file. Possible values include
true and false. If set to true, then the
mms.components.presentation.web.MmsTransformat

ionServlet will dispatch the request to the no-
player-page (see section 3.2.3.2). If set to false
then any media file for which no media player was
found will be excluded from the generated HTML
version of the MMS.

Example: true (Default)

mms.components.video.scaling This property defines the video scaling setting.
Possible values include:

• original - Use original video resolution.
• stretch - Stretch to media player area.
• stretch-keep-aspect - Stretch to media player

area but retain aspect ratio. (Default)

mms.components.view.order This property defines the order of priority for HTML
views. Values are comma-separated. Possible
values include:

• Dhtml
• HtmlTime

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

24 (39)

Example: Dhtml,HtmlTime (Default)

3.2.3.4 Editing the configuration file

The mms.components.transformation.MmsTransformationServlet uses an external
configuration file to determine what media players can play what types of content,
what media players are compatible with what browsers etc. This configuration file
should be located in the WEB-INF directory of the web application and should be
named mms-components-conf.xml. The default configuration, which was copied in
section 3.1.1, should be sufficient in most cases. However, to simplify custom
configuration, this section describes the different parts of this configuration file and
how to customize them.

The User-Agent HTTP header is used to determine which browser was used to
request an HTML view. Any number of browsers can be defined in the configuration
file. Each defined browser has a name, one or more strings to match against the
User-Agent header (if several, all must match) as well as elements to define which
media players it is compatible with. If none of the defined browsers match the current
User-Agent header, the default one will be used. This is depicted in the following
extract from the default configuration file:

<default-browser>Firefox</default-browser>

<browser name="Firefox">
 <user-agent-match-string>Firefox</user-agent-match-string>
 <compatible-view>Dhtml</compatible-view>
 <compatible-player>QuickTime</compatible-player>
 <compatible-player>RealPlayer</compatible-player>
</browser>

<browser name="InternetExplorer">
 <user-agent-match-string>MSIE</user-agent-match-string>
 <compatible-view>HtmlTime</compatible-view>
 <compatible-view>Dhtml</compatible-view>
 <compatible-player>QuickTime</compatible-player>
 <compatible-player>RealPlayer</compatible-player>
</browser>

Furthermore, each media player is defined in the configuration. Included in such a
definition is which media formats (identified by the file extension) are supported by
the media player and which level of support the media player has for each media
type. The different support levels include: direct, auto-download and none. Direct
support indicates that the media player has full support for the specified file type.
Auto-download support indicates that the media player supports the media file but
may require an automatic codec download which may interrupt the user experience.
Support level none indicates that the media type is not supported by the media player.
The following code snippet shows the default configuration for RealPlayer:

<player name="RealPlayer">

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

25 (39)

 <media-support>
 <media-type ext="amr" support="auto-download"/>
 <media-type ext="aac" support="auto-download"/>
 <media-type ext="au" support="direct"/>
 <media-type ext="wav" support="direct"/>
 <media-type ext="mp3" support="direct"/>
 <media-type ext="mp4" support="direct"/>
 <media-type ext="mid" support="auto-download"/>
 <media-type ext="3gp" support="auto-download"/>
 <media-type ext="3g2" support="auto-download"/>
 <media-type ext="avi" support="auto-download"/>
 <media-type ext="m4a" support="none"/>
 </media-support>
</player>

3.2.4 Customizing look and feel

There are several ways of customizing the look and feel of generated MMS
messages. This section describes how to do the following customizations:

• Setting CSS style for text in MMS messages

• Customizing the splash screen

• Customizing the playback control bar

3.2.4.1 Customizing CSS attributes for text

To customize set the CSS style for text in MMS messages, locate the file css/mms-
style.css in the resource directory for the MMS components and open it. To
customize text style, modify the style definition for the class mms-comp-text. For
example, to increase the size of the text and set the color to blue, change the style
definition as depicted in the following code snippet:

.mms-comp-text {
 padding: 5px;
 font-size: large;
 color: blue;
}

3.2.4.2 Customizing the splash screen

Customizing the splash screen for the MMS components can be done in two ways:
changing the image that is displayed (and centered) as the splash screen and
changing the background color of the splash screen. The image is specified by
replacing the images/splash.jpg file in the resource directory of the MMS components.
The background color of the splash screen can be specified using the
mms.components.background.color property of the
mms.components.transformation.MmsTransformationServlet, see section 3.2.3.3 for details
on how to specify this property.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

26 (39)

3.2.4.3 Customizing the playback control bar

The look and feel of playback control bar can be customized by replacing the images
that are used for the bar. The bar contains one play button, one stop button and a
spacer between them. The play and stop buttons have three representations. One
that is displayed by default, one that is displayed when the mouse hovers over the
button and one that is displayed when the button is clicked. These buttons should
have the same height and width because the height and width of them will both be
specified to match the height of the specified height for the playback control bar. The
images used by the playback control bar include (within the resource directory of the
MMS components):

• images/play.jpg

• images/play-over.jpg

• images/play-click.jpg

• images/space.jpg

• images/stop.jpg

• images/stop-over.jpg

• images/stop-click.jpg

3.3 Using the composer components

3.3.1 Introduction to the composer components

The composer components are used to embed an MMS canvas on a web page. On
the MMS canvas an MMS message can be “drawn” in real-time using a set of
JavaScript methods. When the MMS is finished it is converted to a JSON string and
posted to the mms.components.composer.web.MmsComposerServlet class. This class creates
a Java object representation (a mms.components.mms.MmsMessage object) of the MMS and
saves it as an MMS SMIL file. The HTTP request is then dispatched to a page or a
Servlet that is responsible for displaying a message to the user.

Figure 5 below shows an example of an MMS message being “drawn” on the MMS
canvas. This example is taken from the Telecom Web Services Emulator which is
part of the Telecom Web Services SDK which is available through Ericsson’s
Developer Program [4].

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

27 (39)

Figure 5 MMS canvas example.

3.3.2 Embedding the MMS canvas

The MMS canvas consists of small snippet of HTML code that is used as a container
when “drawing” the MMS message on it and also of a large set of JavaScript
methods that can be used to add or remove elements from the MMS, navigate
between MMS slides, as well as to get the state of the MMS. There are also methods
to add custom request parameters to the request and post the MMS to the
mms.components.composer.web.MmsComposerServlet.

To simplify the process of embedding the HTML code of the MMS canvas, there is a
JSP custom tag that can be used to automate this process. Unlike the MMS viewer
HTML code, the MMS canvas is not embedded as an IFrame, but instead as a
seamless part of the HTML page. The following section describes how to embed the
MMS canvas using the JSP custom tag.

At the top of the JSP page, the folder that contains the composer.tag file needs to be
declared as a tag file directory and assigned a prefix. Assuming that the composer.tag
file has been copied to the WEB-INF/tags folder as described in section 3.1.1 this can
be done using the following line of JSP code:

<%@ taglib prefix="mms" tagdir="/WEB-INF/tags" %>

When the custom tag has been defined, the MMS canvas can be embedded on a
page as depicted in the following code snippet:

<mms:composer height="320px"
 width="240px"

 servletPath="MmsComposerServlet"
 forwardPath="mms-composer-ok.jsp"

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

28 (39)

 smilFile="s.smil"
 targetDir="/mms/mmstest"
 resourceDir="/mms-resources" />

This example will embed the MMS canvas on the web page on area 240 by 320
pixels. The path to the mms.components.composer.web.MmsComposerServlet is specified as
well as the forward path that specifies to what page the request should be forwarded
when the MMS has been composed and saved. The targetDir attribute specifies
which directory the MMS should be saved to (relative to context root and starting with
a slash) and the smilFile attribute specifies the name of the saved MMS SMIL file.

The MMS composer tag has a number of attributes that allows the web developer
customize how the MMS message is composed. All such attributes are described in.
Note that attributes that are not mandatory can be set globally by configuring the
mms.components.composer.web.MmsComposerServlet, see section 3.3.3.

Table 5 Attributes for the MMS composer custom tag

Attribute Description

height The height of the MMS canvas that will be added to the

page. Should always be specified in pixels and with a
“px” suffix.

Mandatory: YES

Example: 320px

width The width of the MMS canvas that will be added to the

page. Should always be specified in pixels and with a
“px” suffix.

Mandatory: YES

Example: 240px

targetDir Specifies the directory that the resulting MMS SMIL file

will be saved to relative to the context root of the web
application. Must start with a slash.

Mandatory: YES

Example: /mms/mms1

smilFile Specifies the name of the MMS SMIL file in the

targetDir directory.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

29 (39)

Mandatory: YES

Example: s.smil

forwardPath
Specifies the path, relative to the MmsComposerServlet,
to the page that is responsible for displaying the result
of the composed MMS.

Mandatory: YES

Example: mms-composer-ok.jsp

servletPath Specifies the path to Servlet that is used to compose

the MMS SMIL file, i.e. the path to the
mms.components.composer.web.MmsComposerServlet.

Mandatory: YES

Example: MmsComposerServlet

resourceDir Specifies the directory where the external resources

(JavaScripts) for the MMS composer components are
located. The directory must start with a slash and is
relative to the context root.

Mandatory: NO

Default: /mms-resources

Example: /data/mms-resources

baseDir Specifies the logical directory from where the MMS was

composed (src attributes are resolved relative to this
directory). This directory must be relative to the current
context root and start with a slash.

Mandatory: NO

Default: /

defaultDur Specifies the default duration for new slides.

Mandatory: NO

Default: 10s

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

30 (39)

3.3.3 Configuring the MmsComposerServlet

3.3.3.1 General setup

The mms.components.composer.web.MmsComposerServlet is basically a wrapper for the
transformation components that allows it to be called directly from a web browser.

To be able to use the Servlet, first make sure that the mms-components.jar file is in the
class path as described in section 3.1.1. Then, it must be declared and mapped in
the deployment descriptor of the web application. The following code snippet shows
how the mms.components.composer.web.MmsComposerServlet could be declared and
mapped in the WEB-INF/web.xml deployment descriptor of the web application:

...
<servlet>
 <servlet-name>MmsComposerServlet</servlet-name>
 <servlet-class>mms.components.composer.web.MmsComposerServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>MmsComposerServlet</servlet-name>
 <url-pattern>/MmsComposerServlet</url-pattern>
</servlet-mapping>
...

This is the only required configuration for the MmsComposerServlet although there are
customization possibilities that are explained in section 3.3.3.2.

3.3.3.2 Setting up optional init parameters

The mms.components.composer.web.MmsComposerServlet has a number of init parameters
that can be specified to customize its behavior. This section describes how to set init
parameters for a Servlet and what init parameters are supported by the
mms.components.composer.web.MmsComposerServlet.

To add an init parameter to a Servlet, modify the declaration of the Servlet in the
deployment descriptor (WEB-INF/web.xml) by adding nested init-param elements as
depicted in the following example:

<servlet>
 <servlet-name>MmsComposerServlet</servlet-name>
 <servlet-class>mms.components.composer.web.MmsComposerServlet</servlet-class>
 <init-param>
 <param-name>data-source-folder</param-name>
 <param-value>package.DataSourceFolderImpl</param-value>
 </init-param>
</servlet>

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

31 (39)

The above example shows how to specify a custom data source folder class. For a
list of all init parameters and descriptions thereof, please refer to Table 6. The data
source folder class is used to perform file serving to the composer components (it is
also used to save files). This enables the developer to use any type of persistence
strategy for the MMS messages. By default the mms.components.FileDataSourceFolder
class is used. This class serves files directly from the file system of the web container
and can be used when no advanced persistence-strategy is employed. For
information about how to implement a custom data source folder, please refer to the
design guide of the MMS Components for Web 2.0.

Table 6 Init parameters for MmsComposerServlet

Init parameter Description

data-source-folder This init parameter is used to specify a class name of a custom

data source folder implementation. The data source folder is
responsible for serving files to the MMS components from any
source such as a database or directly from the file system. The
data source folder must implement the interface
mms.components.DataSourceFolder.

If left empty or not specified, the
mms.components.FileDataSourceFolder is used to serve files
directly from the file system which may be sufficient for basic
web applications.

Example: package.DbDataSourceFolderImpl

copy This init parameter specifies whether to copy media files to the

target directory along with the resulting MMS SMIL and text files.
This enables the src attributes of the generated MMS SMIL file
to only contain the file name (not the entire URL) and it is
strongly recommended to set it to true.

Default: true

3.3.4 Using the MMS canvas

In order to be able to make use of the MMS canvas, a graphical interface needs to
be implemented. This graphical interface will be used to add and remove content
from the MMS canvas and to post the MMS when it is finished. The JavaScript
methods used to compose an MMS are available after the onload event is triggered
on the page.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

32 (39)

All JavaScript methods that are used to compose an MMS message are children of
the MmsCanvas JavaScript object. Thus “MmsCanvas.“ precedes all method calls. For
example, the following JavaScript code snippet shows how to add a new slide and
add an image and a text to it:

MmsCanvas.addSlide();
MmsCanvas.addImage(‘images/myimage.jpg’);
MmsCanvas.addText(‘Hello World!’);

There is a large set of methods that can be used to edit the MMS, navigate within it,
get the current state of it, set custom request parameters and post the MMS to the
mms.composer.composer.web.MmsComposerServlet. All the methods of the MMS canvas are
listed in Table 7 along with a description of each method.

The methods that affect the state of the MMS all return a JSON object with two
members: status and message. This object can be used to determine whether the
method call was successful or not and to display a message to the end user
describing the performed action. The status member will have one of the values: ok
or error. The message member contains the end user message. The following code
snippet depicts how this JSON object could be used to display the result of an action
to the end user:

var result = MmsCanvas.addImage(‘images/myimage.jpg’);
if (result.status == ‘ok’) {
 notifyUser(result.message); //Method used to notify the end user
} else if (result.status == ‘error’) {
 alert(result.message); //Show a dialog with the error message
}

Table 7 MMS canvas JavaScript methods.

Method Description
init(width, height, defaultDuration) This method should not be called as it is called

directly by the HTML code that is used to embed
the MMS canvas.

Initializes the MMS canvas with height and width
and default duration attributes.

defaultDuration is optional.

addAudio(src) Add an audio clip to the current slide of the MMS.

Current slide must not already
contain a audio or video element. src attribute
points to an audio clip (relative to the current
page on server or absolute URL).

Audio clips will not be visible or audible on the

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

33 (39)

MMS canvas.

Returns a JSON object.

addImage(src) Add an image to the current slide of the MMS.

Current slide must not already contain an image
or video element. src attribute points to the
image to add (relative to the current page on
server or absolute URL).

Returns a JSON object.

addSlide(duration) Add a slide to the MMS.

duration attribute is optional.

Returns a JSON object.

addText(text) Add a text to the current slide of the MMS.

Current slide must not already contain a text
element.

Returns a JSON object.

addVideo(src, imgSrc) Add a video clip to the current slide of the MMS.

Current slide must not already contain an image
or video element. src points to the video to add
(relative to the current page on server or absolute
URL). imgSrc points to an image to display on the
MMS canvas where the video is placed in the
resulting MMS (the video files themselves will not
be displayed on the canvas).

Returns a JSON object.

getCurrentSlide() Gets the index of the current slide.

Returns an integer.

getDuration() Gets the duration of the current slide.

Returns a string.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

34 (39)

getLayout() Gets the current layout of the MMS.

1 – Visual media on top (image/video)
2 – Text on top

Returns an integer.

getNumSlides() Gets the total number of slides.

Returns an integer.

getRequestParamter(name) Gets the current value of a request parameter.

Returns a string

getText() Gets the text on the current slide.

Returns a string

hasAudio() Returns true if the current slide contains an audio
clip.

Returns a boolean.

hasImage() Returns true if the current slide contains an
image.

Returns a boolean.

hasNextSlide() Returns true if there is a next slide.

Returns a boolean.

hasPreviousSlide() Returns true of there is a previous slide.

Returns a boolean.

hasText() Returns true if the current slide contains text.

Returns a boolean.

hasVideo() Returns true if the current slide contains a video
clip.

Returns a boolean.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

35 (39)

nextSlide() Navigates to the next slide unless there are no
more slides.

Returns a boolean.

post() Posts the form of the MMS canvas to the
specified URL.

previousSlide() Navigates to the previous slide unless there are
no previous slides.

Returns a JSON object.

removeAudio()
 Removes audio from current slide.

Returns a JSON object.

removeImage()
 Removes image from current slide.

Returns a JSON object.

removeSlide() Removes current slide.

Returns a JSON object.

removeText() Removes text from current slide.

Returns a JSON object.

removeVideo() Removes video from current slide.

Returns a JSON object.

setBackgroundColor(color)
 Sets the background color of the MMS.

Returns a JSON object.

setDuration(newDur) Sets the duration of the current slide.

Returns a JSON object.

setLayout(type) Set the layout type of the MMS.

1 – Visual media on top (image/video)
2 – Text on top

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

36 (39)

Returns a JSON object.
setRequestParameter(name, value) Sets the request paramter of the specified name

to the specified value. This can be used to add
surrounding info about how the MMS should be
handled after it is posted and parsed by the
mms.components.composer.web.MmsComposerServle

t. Such info is for example the number of whom
to send the MMS to.

Returns a JSON object.

setSlide(slideNo)
 Sets the current slide. slideNo must be numeric.

Returns a JSON object.

setTextColor(text) Set the text color the text on this slide.

Returns a JSON object.

setTextSize(size) Sets the size of the text on this slide.

Returns a JSON object.

3.4 Authoring MMS messages from Java code
The components include Java class representations of MMS messages. This class
representation enables Java developers to create MMS SMIL in a simple manner
using a few lines of Java code. The following code snippet shows how to create an
MMS SMIL and save it to disk:

mms.components.mms.MmsMessage mms = new mms.components.mms.MmsMessage();

//Initialize the MMS
mms.createRegions(); //Automatically create MMS regions

//Create a slide with duration 15 seconds and add it to the MMS
mms.components.mms.MmsSlide slide1 = new mms.components.mms.MmsSlide("15s", mms);
mms.getSlides().add(slide1);

//Add an image to the slide
mms.components.mms.MmsImage image1 = new mms.components.mms.MmsImage();
image1.setSrc("image.jpg");
slide1.setVisualMedia(image1);

//Add a text file to the slide
mms.components.mms.MmsText text1 = new mms.components.mms.MmsText();
text1.setSrc("text.txt");
slide1.setText(text1);

//Save the file to s.smil
FileOutputStream out = new FileOutputStream("s.smil");
mms.marshallTo(out);

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

37 (39)

4 Known issues
This section contains descriptions of the known issues of the MMS components.

4.1 RealPlayer plug-in together with Opera and Safari
browsers
The Opera and Safari (at least on Windows) browsers do not support JavaScript
access to the RealPlayer plug-in. Therefore, in the original configuration, a
QuickTime plug-in will be required to play video and audio content of MMS
messages in these browsers.

4.2 QuickTime 7.1.6 and Firefox
There are some compatibility issues when running QuickTime 7.1.6 plug-in together
with Mozilla Firefox. The reason is some known, but yet unfixed bugs in QuickTime
7.1.6. These bugs occasionally result in error messages and even browser crashes.

This is mostly an issue for people running Windows 2000 because on Windows XP
and Windows Vista, QuickTime can be updated to a more recent version.

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

38 (39)

5 Glossary
DHTML Dynamic HyperText Markup Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

JSP Java Server Pages

JSTL Java Standard Tag Library

MIME Multipurpose Internet Mail Extensions

MMS Multimedia Messages Service

SMIL Synchronized Multimedia Integration Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML eXtensible Markup Lanugage

MMS Components for Web 2.0

 2008-01-10 © Ericsson AB 2007

39 (39)

6 References
[1] Open Mobile Alliance, http://www.openmobilealliance.org.

[2] World Wide Web Consortium, http://www.w3.org/

[3] OMA Multimedia Messaging Service V1.3, release date: 2005-09-27,
Specification - Multimedia Messaging Service Conformance Document,
http://www.openmobilealliance.org/release_program/mms_archive.html -
OMA-TS-MMS-CONF-V1_3-20050927-C.pdf

[4] Ericsson Mobility World Developer Program,
http://www.ericsson.com/mobilityworld.

[5] Mozilla Firefox, http://www.mozilla.com/firefox/.

[6] Ericsson IPX, http://www.ericsson.com/solutions/ipx/.

Appendix F – Javadoc

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 6 2008-02-05 12:40

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class AbstractMmsContent
java.lang.Object
 mms.components.mms.AbstractMmsContent

Direct Known Subclasses:
MmsAudio, MmsText, VisualMmsMedia

public abstract class AbstractMmsContent
extends java.lang.Object

This class is an abstract implementation for media content. It defines the fields listed below as well as
getters and setters for these.

Field Description

alt Alternative text for the content.

begin Defines the start time for this content.

contentType Defines the Content-Type for this content.

dur Defines the duration for this content.

end Defines the end time for this content.

region Defines which region this content should be displayed within. Not applicable for audio.

sizeInKb Defines the size of this content in kilobytes.

src Defines the file name of the content. Sometimes with the prefix "cid:"

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary
protected

 java.lang.String
alt
 Alternative text for the content.

protected
 java.lang.String

begin
 Defines the start time for this content.

protected
 java.lang.String

contentType
 Defines the Content-Type for this content.

protected
 java.lang.String

dur
 Defines the duration for this content.

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 6 2008-02-05 12:40

protected
 java.lang.String

end
 Defines the end time for this content.

protected
 java.lang.String

region
 Defines which region this content should be displayed within.

protected
 java.lang.String

src
 Defines the file name of the content.

Constructor Summary
AbstractMmsContent()

Method Summary
 java.lang.String getAlt()

 Get the alt attribute value.
 java.lang.String getBegin()

 Get the begin attribute value.
 java.lang.String getContentType()

 Get the Content-Type .
 java.lang.String getDur()

 Get the dur attribute value.
 java.lang.String getEnd()

 Get the end attribute value.
 java.lang.String getRegion()

 Get the region attribute value.
 java.lang.String getSrc()

 Get the src attribute value.
 void setAlt(java.lang.String alt)

 Set the alt attribute.
 void setBegin(java.lang.String begin)

 Set the begin attribute.
 void setContentType(java.lang.String contentType)

 Set the Content-Type
 void setDur(java.lang.String dur)

 Set the dur attribute.
 void setEnd(java.lang.String end)

 Set the end attribute.
 void setSrc(java.lang.String src)

 Set the src attribute.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 6 2008-02-05 12:40

Field Detail

alt

protected java.lang.String alt

Alternative text for the content.

begin

protected java.lang.String begin

Defines the start time for this content.

contentType

protected java.lang.String contentType

Defines the Content-Type for this content.

dur

protected java.lang.String dur

Defines the duration for this content.

end

protected java.lang.String end

Defines the end time for this content.

region

protected java.lang.String region

Defines which region this content should be displayed within. Not applicable for audio.

src

protected java.lang.String src

Defines the file name of the content. Sometimes with the prefix "cid:"

Constructor Detail

AbstractMmsContent

public AbstractMmsContent()

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 6 2008-02-05 12:40

Method Detail

getAlt

public java.lang.String getAlt()

Get the alt attribute value.

Returns:
The alt attribute value.

getBegin

public java.lang.String getBegin()

Get the begin attribute value.

Returns:
The begin attribute value.

getContentType

public java.lang.String getContentType()

Get the Content-Type .

Returns:
The Content-Type

getDur

public java.lang.String getDur()

Get the dur attribute value.

Returns:
The dur attribute value.

getEnd

public java.lang.String getEnd()

Get the end attribute value.

Returns:
The end attribute value.

getRegion

public java.lang.String getRegion()

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

5 av 6 2008-02-05 12:40

Get the region attribute value.

Returns:
The region attribute value.

getSrc

public java.lang.String getSrc()

Get the src attribute value.

Returns:
The src attribute value.

setAlt

public void setAlt(java.lang.String alt)

Set the alt attribute.

Parameters:
alt - The new value of the alt attribute.

setBegin

public void setBegin(java.lang.String begin)

Set the begin attribute.

Parameters:
begin - The new value of the begin attribute.

setContentType

public void setContentType(java.lang.String contentType)

Set the Content-Type

Parameters:
contentType - The new Content-Type.

setDur

public void setDur(java.lang.String dur)

Set the dur attribute.

Parameters:
dur - The new value of the dur attribute.

setEnd

AbstractMmsContent file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

6 av 6 2008-02-05 12:40

public void setEnd(java.lang.String end)

Set the end attribute.

Parameters:
end - The new value of the end attribute.

setSrc

public void setSrc(java.lang.String src)

Set the src attribute.

Parameters:
src - The new value of the src attribute.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

DataSourceFolder file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 09:53

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components
Interface DataSourceFolder

All Known Implementing Classes:
FileDataSourceFolder

public interface DataSourceFolder

A DataSourceFolder
is linked to a folder. The folder may simply be a folder on the local hard drive, it may also not be an actual
folder but instead the data may come from another type of data source such as a database or directly from
memory. A DataSourceFolder has a method that allows a javax.activation.DataSource to be retrieved
relative to the folder the DataSourceFolder represents.

Version:
1.0

Author:
Kristofer Borgstrom

Method Summary
 javax.activation.DataSource getDataSource(java.net.URI relativeUri)

 Returns the javax.activation.DataSource for the specified file
relative to directory of this DataSourceFolder or null if no such file was
found.

 java.net.URL getFolderUrl()
 Gets the complete URL for this DataSourceFolder.

 void init(java.lang.String relativeDir,
javax.servlet.ServletContext ctx)
 Initiates the DataSourceFolder with context information.

Method Detail

init

void init(java.lang.String relativeDir,
 javax.servlet.ServletContext ctx)
 throws java.io.IOException

Initiates the DataSourceFolder with context information. The base folder will be the folder referenced by
the specified relative directory. The directory will be relative to context path of the specified
ServletContext and must start with a forward slash.

Parameters:
relativeDir -
ctx -

Throws:

DataSourceFolder file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 09:53

java.io.IOException

getDataSource

javax.activation.DataSource getDataSource(java.net.URI relativeUri)
 throws java.io.IOException

Returns the javax.activation.DataSource for the specified file relative to directory of this
DataSourceFolder or null if no such file was found.

Parameters:
relativeUri - The name of the file. For example: "image.jpg".

Returns:
The javax.activation.DataSource of the specified resource or null if not found.

Throws:
java.io.IOException - For I/O errors.

getFolderUrl

java.net.URL getFolderUrl()
 throws java.net.MalformedURLException

Gets the complete URL for this DataSourceFolder.

Returns:
the URL

Throws:
java.net.MalformedURLException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

DhtmlGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-02-05 12:44

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Class DhtmlGenerator
java.lang.Object
 mms.components.transformation.DhtmlGenerator

All Implemented Interfaces:
HtmlViewGenerator

public class DhtmlGenerator
extends java.lang.Object
implements HtmlViewGenerator

This class is used to generate DHTML web pages that represent MMS messages.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
DhtmlGenerator()
 Create a new DhtmlGenerator instance.

Method Summary
 void generate(MmsMessage message, java.io.OutputStream output,

TransformationConfiguration config)
 Generate the DHTML output and write it to the specified OutputStream.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

DhtmlGenerator

public DhtmlGenerator()

Create a new DhtmlGenerator instance.

Method Detail

DhtmlGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-02-05 12:44

generate

public void generate(MmsMessage message,
 java.io.OutputStream output,
 TransformationConfiguration config)
 throws MmsTransformationException,
 PlayerNotAvailableException,
 java.io.IOException

Generate the DHTML output and write it to the specified OutputStream.

Specified by:
generate in interface HtmlViewGenerator

Parameters:
message - The MmsMessage for which to generate a new view.
output - The OutputStream to write the result to.
config - The TransformationConfiguration to use.

Throws:
java.lang.IllegalStateException - If the MediaUtils class has not been initialized.
MmsTransformationException - If there was an error during transformation.
PlayerNotAvailableException
- If no media player was available to play a certain media file and the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting has been set to "true".
java.io.IOException - If there is an error while writing to the OutputStream.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

FileDataSourceFolder file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 3 2008-01-17 09:53

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components
Class FileDataSourceFolder
java.lang.Object
 mms.components.FileDataSourceFolder

All Implemented Interfaces:
DataSourceFolder

public class FileDataSourceFolder
extends java.lang.Object
implements DataSourceFolder

This class is an implementation of the DataSourceFolder interface which can be used for all resources that
can be referenced by a java.io.File object.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
FileDataSourceFolder()

Method Summary
 javax.activation.DataSource getDataSource(java.net.URI relativeUri)

 Returns the javax.activation.DataSource for the specified file
relative to directory of this DataSourceFolder or null if no such file was
found.

 java.net.URL getFolderUrl()
 Gets the complete URL for this DataSourceFolder.

 void init(java.io.File dir)

 void init(java.lang.String relativeDir,
javax.servlet.ServletContext ctx)
 Initiates the DataSourceFolder with context information.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

FileDataSourceFolder file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 3 2008-01-17 09:53

FileDataSourceFolder

public FileDataSourceFolder()

Method Detail

getDataSource

public javax.activation.DataSource getDataSource(java.net.URI relativeUri)
 throws java.io.IOException

Description copied from interface: DataSourceFolder
Returns the javax.activation.DataSource for the specified file relative to directory of this
DataSourceFolder or null if no such file was found.

Specified by:
getDataSource in interface DataSourceFolder

Parameters:
relativeUri - The name of the file. For example: "image.jpg".

Returns:
The javax.activation.DataSource of the specified resource or null if not found.

Throws:
java.io.IOException - For I/O errors.

init

public void init(java.lang.String relativeDir,
 javax.servlet.ServletContext ctx)
 throws java.io.IOException

Description copied from interface: DataSourceFolder

Initiates the DataSourceFolder with context information. The base folder will be the folder referenced by
the specified relative directory. The directory will be relative to context path of the specified
ServletContext and must start with a forward slash.

Specified by:
init in interface DataSourceFolder

Throws:
java.io.IOException

init

public void init(java.io.File dir)
 throws java.io.IOException

Throws:
java.io.IOException

getFolderUrl

public java.net.URL getFolderUrl()
 throws java.net.MalformedURLException

Description copied from interface: DataSourceFolder
Gets the complete URL for this DataSourceFolder.

FileDataSourceFolder file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 3 2008-01-17 09:53

Specified by:
getFolderUrl in interface DataSourceFolder

Returns:
the URL

Throws:
java.net.MalformedURLException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

HtmlTimeGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 09:54

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Class HtmlTimeGenerator
java.lang.Object
 mms.components.transformation.HtmlTimeGenerator

All Implemented Interfaces:
HtmlViewGenerator

public class HtmlTimeGenerator
extends java.lang.Object
implements HtmlViewGenerator

This class is used to generate HTML+TIME web pages that represent MMS messages.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
HtmlTimeGenerator()
 Create a new HtmlTimeGenerator instance.

Method Summary
 void generate(MmsMessage message, java.io.OutputStream output,

TransformationConfiguration config)
 Generate the HTML+TIME output and write it to the specified OutputStream.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

HtmlTimeGenerator

public HtmlTimeGenerator()

Create a new HtmlTimeGenerator instance.

Method Detail

HtmlTimeGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 09:54

generate

public void generate(MmsMessage message,
 java.io.OutputStream output,
 TransformationConfiguration config)
 throws MmsTransformationException,
 PlayerNotAvailableException,
 java.io.IOException

Generate the HTML+TIME output and write it to the specified OutputStream.

Specified by:
generate in interface HtmlViewGenerator

Parameters:
message - The MmsMessage for which to generate a new view.
output - The OutputStream to write the result to.
config - The TransformationConfiguration to use.

Throws:
java.lang.IllegalStateException - If the MediaUtils class has not been initialized.
MmsTransformationException - If there was an error during transformation.
PlayerNotAvailableException
- If no media player was available to play a certain media file and the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting has been set to "true".
java.io.IOException - If there is an error while writing to the OutputStream.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

HtmlViewGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 09:54

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Interface HtmlViewGenerator

All Known Implementing Classes:
DhtmlGenerator, HtmlTimeGenerator

public interface HtmlViewGenerator

This interface defines a method that is used to generate different MMS views such as HTML+TIME for
example.

Version:
1.0

Author:
Kristofer Borgstrom

Method Summary
 void generate(MmsMessage message, java.io.OutputStream output,

TransformationConfiguration config)
 Generate an MMS HTML view from the specified MmsMessage using the specified
TransformationConfiguration.

Method Detail

generate

void generate(MmsMessage message,
 java.io.OutputStream output,
 TransformationConfiguration config)
 throws MmsTransformationException,
 PlayerNotAvailableException,
 java.io.IOException

Generate an MMS HTML view from the specified MmsMessage using the specified
TransformationConfiguration. The result will be written to the specified OutputStream.

Parameters:
message - The MmsMessage for which to generate a new view.
output - The OutputStream to write the result to.
config - The TransformationConfiguration to use.

Throws:
MmsTransformationException - If there was an error during transformation.
PlayerNotAvailableException
- If no media player was available to play a certain media file and the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting has been set to "true".
java.io.IOException - If there is an error while writing to the OutputStream.

HtmlViewGenerator file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 09:54

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

IoUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 3 2008-01-17 09:55

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components
Class IoUtils
java.lang.Object
 mms.components.IoUtils

public class IoUtils
extends java.lang.Object

This is a utility class with methods to do basic IO functions such as read/write to files and streams.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
IoUtils()

Method Summary
static java.lang.String readInputStream(java.io.InputStream in)

 Reads the specified InputStream using a 10KB buffer and then converts the
read byte data to a String using the platform's default charset.

static java.lang.String readTextFile(java.io.File file)
 Read a text file to a String using the platforms default charset.

static java.lang.String toHtmlText(java.lang.String plainText)
 This method converts a plain text string to one that can be displayed in a web
browser with text formatting intact.

static void transferStream(java.io.InputStream in, java.io.OutputStream out)
 Reads the specified InputStream and writes to the specified OutputStream
using a 10KB buffer.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

IoUtils

public IoUtils()

IoUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 3 2008-01-17 09:55

Method Detail

transferStream

public static void transferStream(java.io.InputStream in,
 java.io.OutputStream out)
 throws java.io.IOException

Reads the specified InputStream and writes to the specified OutputStream using a 10KB buffer. Both
InputStream and OutputStream will be closed by this method.

Parameters:
in - The InputStream from which to read data.
out - The OutputStream to which data is written.

Throws:
java.io.IOException

readInputStream

public static java.lang.String readInputStream(java.io.InputStream in)
 throws java.io.IOException

Reads the specified InputStream
using a 10KB buffer and then converts the read byte data to a String using the platform's default charset.

Parameters:
in - The InputStream to read.

Returns:
The String data of the InputStream.

Throws:
java.io.IOException

readTextFile

public static java.lang.String readTextFile(java.io.File file)
 throws java.io.IOException

Read a text file to a String using the platforms default charset.

Parameters:
file - The file to read.

Returns:
The String data of the file.

Throws:
java.io.IOException

toHtmlText

public static java.lang.String toHtmlText(java.lang.String plainText)

This method converts a plain text string to one that can be displayed in a web browser with text
formatting intact. This implementation only changes line breaks from "\n" or "\r\n" to "
\r\n".

Parameters:

IoUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 3 2008-01-17 09:55

plainText - The plain text string.
Returns:

The text as HTML.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MediaUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 4 2008-01-17 09:57

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components
Class MediaUtils
java.lang.Object
 mms.components.MediaUtils

public class MediaUtils
extends java.lang.Object

This class is a utility class used to get information about browsers, media types and media players. Included methods
provide features that allow Content-Type lookup based on file extension and vice versa as well as methods that determine
what type of support a given media player has for a certain file extension and what browsers are compatible with what
media players and views.

The results from method calls on this class are all based on an XML configuration file which is specified in the
constructor. An XML schema for for the XML configuration file is available here An example of such a file is given
below:

 <media-conf>
 <default-browser>Firefox</default-browser>

 <browser name="Firefox">
 <user-agent-match-string>Firefox</user-agent-match-string>
 <compatible-view>Dhtml</compatible-view>
 <compatible-player>QuicktTime</compatible-player>
 <compatible-player>RealPlayer</compatible-player>
 </browser>

 <player name="QuickTime">
 <media-support>
 <media-type ext="amr" support="direct" />
 </media-support>
 </player>
 <content-type-mappings>
 <type ext="sms" description="SMS over MMS">
 <content-type>application/x-sms</content-type>
 <content-type>application/vnd.3gpp.sms</content-type>
 </type>
 </content-type-mappings>
 </media-conf>

Version:
1.0

Author:
Kristofer Borgstrom

Method Summary
static java.lang.String getBrowserByUserAgent(java.lang.String userAgent)

 Returns the browser associated with the specified user agent string or
the default browser user agent string does not match any of the defined
browsers.

static java.util.List<java.lang.String> getCompatiblePlayersByBrowser(java.lang.String browser)
 Returns a list of the media players that are compatible with this browser
or an empty list if the browser was not found.

static java.util.List<java.lang.String> getCompatibleViewsByBrowser(java.lang.String browser)
 Returns a list of the views that are compatible with this browser or an
empty list if the browser was not found.

MediaUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 4 2008-01-17 09:57

static java.lang.String getContentTypeByExtension(java.lang.String extension)
 Get the first Content-Type type matching a given extension.

static java.lang.String getContentTypeByExtension(java.lang.String extension,
java.lang.String prefix)
 Get the first Content-Type matching a given extension.

static java.lang.String getExtensionByContentType(java.lang.String contentType)
 Get the extension for a given Content-Type.

static void init(java.io.File file)
 Initialize MediaUtils with the specified file as configuration file.

static boolean supportsExtDirectly(java.lang.String playerName,
java.lang.String extension)
 Returns true if the player supports the given extension directly.

static boolean supportsExtThroughAutoDownload(java.lang.String playerName,
java.lang.String extension)
 Returns true if the player supports the given extension through
automatic download or directly.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

init

public static void init(java.io.File file)

Initialize MediaUtils with the specified file as configuration file.

Parameters:
file - The configuration file, a basic example is given in the class summary.

getBrowserByUserAgent

public static java.lang.String getBrowserByUserAgent(java.lang.String userAgent)

Returns the browser associated with the specified user agent string or the default browser user agent string does not
match any of the defined browsers.

Parameters:
userAgent - User-Agent string

Returns:
Browser name. For example: "Firefox"

getCompatiblePlayersByBrowser

public static java.util.List<java.lang.String> getCompatiblePlayersByBrowser(java.lang.String browser)

Returns a list of the media players that are compatible with this browser or an empty list if the browser was not
found.

Parameters:
browser - For example: "Firefox"

Returns:

getCompatibleViewsByBrowser

MediaUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 4 2008-01-17 09:57

public static java.util.List<java.lang.String> getCompatibleViewsByBrowser(java.lang.String browser)

Returns a list of the views that are compatible with this browser or an empty list if the browser was not found.

Parameters:
browser - For example: "Firefox"

Returns:

getContentTypeByExtension

public static java.lang.String getContentTypeByExtension(java.lang.String extension)
 throws ContentTypeNotFoundException,
 java.lang.IllegalStateException

Get the first Content-Type type matching a given extension.

Parameters:
extension - For example: "jpg"

Returns:
Content-Type - For example: "image/jpeg"

Throws:
ContentTypeNotFoundException - If the content type was not found.
java.lang.IllegalStateException - If this class has not been initialized.

getContentTypeByExtension

public static java.lang.String getContentTypeByExtension(java.lang.String extension,
 java.lang.String prefix)
 throws ContentTypeNotFoundException,
 java.lang.IllegalStateException

Get the first Content-Type matching a given extension.

Parameters:
extension - For example: "3gp"
prefix - The prefix is must match the start of the Content-Type. For example: "video"

Returns:
Content-Type - For example: "video/3gpp".

Throws:
ContentTypeNotFoundException - If the content type was not found.
java.lang.IllegalStateException - If this class has not been initialized.

getExtensionByContentType

public static java.lang.String getExtensionByContentType(java.lang.String contentType)
 throws ExtensionNotFoundException,
 java.lang.IllegalStateException

Get the extension for a given Content-Type.

Parameters:
contentType - For example: "image/jpeg"

Returns:
The extension, for example: "jpg"

Throws:
ExtensionNotFoundException - If no extension was found for the specified Content-Type.
java.lang.IllegalStateException - If this class has not been initialized.

supportsExtDirectly

public static boolean supportsExtDirectly(java.lang.String playerName,
 java.lang.String extension)
 throws PlayerNotFoundException,

MediaUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 4 2008-01-17 09:57

 java.lang.IllegalStateException

Returns true if the player supports the given extension directly.

Parameters:
playerName - For example: "QuickTime"
extension - For example: "3gp"

Returns:
true if the player supports the given extension directly.

Throws:
PlayerNotFoundException - If no media player with the specified name was found.
java.lang.IllegalStateException - If this class has not been initialized.

supportsExtThroughAutoDownload

public static boolean supportsExtThroughAutoDownload(java.lang.String playerName,
 java.lang.String extension)
 throws PlayerNotFoundException,
 java.lang.IllegalStateException

Returns true if the player supports the given extension through automatic download or directly.

Parameters:
playerName - For example: "QuickTime"
extension - For example: "3gp"

Returns:
true if the player supports the given extension through automatic download or directly.

Throws:
PlayerNotFoundException - If no media player with the specified name was found
java.lang.IllegalStateException - If this class has not been initialized.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsAudio file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 09:57

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsAudio
java.lang.Object
 mms.components.mms.AbstractMmsContent
 mms.components.mms.MmsAudio

public class MmsAudio
extends AbstractMmsContent

This class represents an audio file that can be added to an MmsSlide.

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary

Fields inherited from class mms.components.mms.AbstractMmsContent
alt, begin, contentType, dur, end, region, src

Constructor Summary
MmsAudio()
 Creates a new MmsAudio instance.

Method Summary
 java.lang.String getId()

 Get the ID.
 void setId(java.lang.String id)

 Set the ID.

Methods inherited from class mms.components.mms.AbstractMmsContent
getAlt, getBegin, getContentType, getDur, getEnd, getRegion, getSrc, setAlt, setBegin,
setContentType, setDur, setEnd, setSrc

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

MmsAudio file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 09:57

Constructor Detail

MmsAudio

public MmsAudio()

Creates a new MmsAudio instance.

Method Detail

getId

public java.lang.String getId()

Get the ID.

Note that this ID is only applicable when HTML is generated from the MMS. and that when HTML
is being generated this the ID must exist and be unique within the current MMS.

Returns:
The id.

setId

public void setId(java.lang.String id)

Set the ID.

Note that this ID is only applicable when HTML is generated from the MMS. and that when HTML
is being generated this the ID must exist and be unique within the current MMS.

Parameters:
id - The new ID.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 7 2008-01-17 09:57

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.composer.web
Class MmsComposerServlet
java.lang.Object
 javax.servlet.GenericServlet
 javax.servlet.http.HttpServlet
 mms.components.composer.web.MmsComposerServlet

All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class MmsComposerServlet
extends javax.servlet.http.HttpServlet
implements javax.servlet.Servlet

This servlet handles incoming MMS composer requests and will write an MMS SMIL file to the specified
target directory.

All file I/O operations will be performed using the specified DataSourceFolder implementation (specified
as init parameter). If not specified, the default FileDataSourceFolder will be used.

NOTE The DataSourceFolder
must have a constructor that takes a String and a ServletContext in that order. The String defines the
directory relative to the context root and the ServletContext may used to determine context information.

If the copy
property for the MMS is set to true, all media sources will be resolved and copied to the target directory.

Version:
1.0

Author:
Kristofer Borgstrom

See Also:
Serialized Form

Field Summary
static java.lang.String INIT_PARAM_COPY_CONTENT

 This static field defines whether to copy the contents (media files) of
composed MMS messages to the target directory.

static java.lang.String INIT_PARAM_CUSTOM_DATA_SOURCE_FOLDER
 This static field contains the class name of the servlet init param that can
be used to set a custom DataSourceFolder from which is used as an I/O base
for reading and writing to files.

static java.lang.String INIT_PARAM_ERROR_PAGE
 This static field defines the name of the servlet init param that can be
used to set a custom error page that will be shown when error occurs while

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 7 2008-01-17 09:57

composing the MMS.
static java.lang.String REQUEST_ATTRIBUTE_MMS

 This static field defines the name of the request attribute that is set by
this servlet to temporarily store an MmsMessage instance that represents the
generated MMS message.

static java.lang.String REQUEST_ATTRIBUTE_SMIL_FILE
 This static field defines the name of the request attribute that is set by
this servlet to indicate the resulting name of the MMS SMIL that was created.

static java.lang.String REQUEST_PARAM_BASE_DIR
 This static field contains the parameter name of the URI of the base
directory for this MMS (This is the URI of the directory of the composer page.

static java.lang.String REQUEST_PARAM_FORWARD_PATH
 This static field contains the parameter name of parameter that defines
what page the request will be forwarded or redirected to if the MMS is
successfully composed.

static java.lang.String REQUEST_PARAM_MMS_AS_JSON
 This static field contains the parameter name of the parameter that
contains the MMS in JSON format.

static java.lang.String REQUEST_PARAM_TARGET_DIR
 This static field contains the parameter name of the URI of the target
directory for this MMS (This is the URI of the directory where the the SMIL
and text files are saved, if init parameter INIT_PARAM_COPY_CONTENT is set to
true then media files are also copied to this directory.)

static java.lang.String SMIL_FILE_PARAM_NAME
 This static field defines the parameter name ("smilFile") to use for
requests to this servlet.

Constructor Summary
MmsComposerServlet()

Method Summary
protected

 void
dispatch(java.lang.String page, javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Dispatch to the specified page.

protected
 void

doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

protected
 void

doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

protected
 void

handleRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

 void init()

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 7 2008-01-17 09:57

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface javax.servlet.Servlet
destroy, getServletConfig, getServletInfo, init, service

Field Detail

INIT_PARAM_CUSTOM_DATA_SOURCE_FOLDER

public static final java.lang.String INIT_PARAM_CUSTOM_DATA_SOURCE_FOLDER

This static field contains the class name of the servlet init param that can be used to set a custom
DataSourceFolder
from which is used as an I/O base for reading and writing to files. If not set, the files will be read
from disk on the web server using the FileDataSourceFolder class.

Init param name: "data-source-folder"

Use: OPTIONAL

Default: FileDataSourceFolder

See Also:
Constant Field Values

INIT_PARAM_COPY_CONTENT

public static final java.lang.String INIT_PARAM_COPY_CONTENT

This static field defines whether to copy the contents (media files) of composed MMS messages to
the target directory. Src attributes in the resulting MMS SMIL will also be affected by this option. If
true then src attributes will only be the file names of the media files. If false then the src attribute
will contains relative to the server root and start with a '/' (if relative e.g. "../a.jpg") or it will contain
the absolute path to the media file (if absolute e.g. "http://a.com/b.jpg").

Init param name: "copy"

Use: OPTIONAL

Default: true

See Also:

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 7 2008-01-17 09:57

Constant Field Values

REQUEST_ATTRIBUTE_MMS

public static final java.lang.String REQUEST_ATTRIBUTE_MMS

This static field defines the name of the request attribute that is set by this servlet to temporarily
store an MmsMessage
instance that represents the generated MMS message. This attribute can be used on the page that the
request is dispatched to after an MMS SMIL was successfully composed.

See Also:
Constant Field Values

REQUEST_ATTRIBUTE_SMIL_FILE

public static final java.lang.String REQUEST_ATTRIBUTE_SMIL_FILE

This static field defines the name of the request attribute that is set by this servlet to indicate the
resulting name of the MMS SMIL that was created. This attribute can then be used on the page that
the request is dispatched to after an MMS SMIL was successfully composed.

Note that request parameters such as baseDir and targetDir will still be available and can be used
to determine more exact path info of the MMS SMIL file.

See Also:
Constant Field Values

INIT_PARAM_ERROR_PAGE

public static final java.lang.String INIT_PARAM_ERROR_PAGE

This static field defines the name of the servlet init param that can be used to set a custom error page
that will be shown when error occurs while composing the MMS.

Init param name: "error-page"

Use: OPTIONAL

NOTE! The pathname specified may be relative, although it cannot extend outside the current
servlet context. If the path begins with a "/" it is interpreted as relative to the current context root.

Default: /mms-composer-error.jsp

See Also:
Constant Field Values

REQUEST_PARAM_MMS_AS_JSON

public static final java.lang.String REQUEST_PARAM_MMS_AS_JSON

This static field contains the parameter name of the parameter that contains the MMS in JSON
format.

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

5 av 7 2008-01-17 09:57

Request param name: "jsonMms"

Use: MANDATORY

Default: -

See Also:
Constant Field Values

REQUEST_PARAM_FORWARD_PATH

public static final java.lang.String REQUEST_PARAM_FORWARD_PATH

This static field contains the parameter name of parameter that defines what page the request will be
forwarded or redirected to if the MMS is successfully composed.

Request param name: "okPage"

Use: OPTIONAL

NOTE! The pathname specified may be relative, although it cannot extend outside the current
servlet context. If the path begins with a "/" it is interpreted as relative to the current context root.

Default: /mms-composer-ok.jsp

See Also:
Constant Field Values

REQUEST_PARAM_BASE_DIR

public static final java.lang.String REQUEST_PARAM_BASE_DIR

This static field contains the parameter name of the URI of the base directory for this MMS (This is
the URI of the directory of the composer page. I.e. the page that sent the request to this servlet).

Request param name: "baseDir"

Use: OPTIONAL

NOTE! The URI must be relative to context root and start with a '/'.

Default: /

See Also:
Constant Field Values

REQUEST_PARAM_TARGET_DIR

public static final java.lang.String REQUEST_PARAM_TARGET_DIR

This static field contains the parameter name of the URI of the target directory for this MMS (This is
the URI of the directory where the the SMIL and text files are saved, if init parameter
INIT_PARAM_COPY_CONTENT is set to true then media files are also copied to this directory.)

Request param name: "targetDir"

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

6 av 7 2008-01-17 09:57

Use: OPTIONAL

NOTE! The URI must be relative to context root and start with a '/'.

Default: /

See Also:
Constant Field Values

SMIL_FILE_PARAM_NAME

public static final java.lang.String SMIL_FILE_PARAM_NAME

This static field defines the parameter name ("smilFile") to use for requests to this servlet.

See Also:
Constant Field Values

Constructor Detail

MmsComposerServlet

public MmsComposerServlet()

Method Detail

init

public void init()
 throws javax.servlet.ServletException

Overrides:
init in class javax.servlet.GenericServlet

Throws:
javax.servlet.ServletException

doGet

protected void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Overrides:
doGet in class javax.servlet.http.HttpServlet

Throws:
javax.servlet.ServletException
java.io.IOException

doPost

protected void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)

MmsComposerServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

7 av 7 2008-01-17 09:57

 throws javax.servlet.ServletException,
 java.io.IOException

Overrides:
doPost in class javax.servlet.http.HttpServlet

Throws:
javax.servlet.ServletException
java.io.IOException

handleRequest

protected void handleRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Throws:
javax.servlet.ServletException
java.io.IOException

dispatch

protected void dispatch(java.lang.String page,
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws javax.servlet.ServletException,
 java.io.IOException

Dispatch to the specified page.

Parameters:
page - The page to which to dispatch.
req - The HttpServletRequest.
res - The HttpServletResponse.

Throws:
javax.servlet.ServletException
java.io.IOException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsImage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 3 2008-01-17 09:58

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsImage
java.lang.Object
 mms.components.mms.AbstractMmsContent
 mms.components.mms.VisualMmsMedia
 mms.components.mms.MmsImage

public class MmsImage
extends VisualMmsMedia

This class represents an image file that can be added to an MmsSlide.

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary

Fields inherited from class mms.components.mms.AbstractMmsContent
alt, begin, contentType, dur, end, region, src

Constructor Summary
MmsImage()
 Creates a new MmsImage instance.

Method Summary
 int getHeight()

 Get the height of the image in pixels.
 int getWidth()

 Get the width of the image in pixels.
 void setHeight(int height)

 Set the height of the image in pixels.
 void setWidth(int width)

 Set the width of the image in pixels.

Methods inherited from class mms.components.mms.AbstractMmsContent
getAlt, getBegin, getContentType, getDur, getEnd, getRegion, getSrc, setAlt, setBegin,
setContentType, setDur, setEnd, setSrc

MmsImage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 3 2008-01-17 09:58

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MmsImage

public MmsImage()

Creates a new MmsImage instance.

Method Detail

getHeight

public int getHeight()

Get the height of the image in pixels.

Returns:
The height of the image in pixels.

getWidth

public int getWidth()

Get the width of the image in pixels.

Returns:
The width of the image in pixels.

setHeight

public void setHeight(int height)

Set the height of the image in pixels.

Parameters:
height - The height of the image in pixels.

setWidth

public void setWidth(int width)

Set the width of the image in pixels.

Parameters:
width - The width of the image in pixels.

MmsImage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 3 2008-01-17 09:58

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsLayout file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 09:58

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | ENUM CONSTANTS | FIELD | METHOD DETAIL: ENUM CONSTANTS | FIELD | METHOD

mms.components.mms
Enum MmsLayout
java.lang.Object
 java.lang.Enum<MmsLayout>
 mms.components.mms.MmsLayout

All Implemented Interfaces:
java.io.Serializable, java.lang.Comparable<MmsLayout>

public enum MmsLayout
extends java.lang.Enum<MmsLayout>

This enum represents different layouts for MMS messaages.

Version:
1.0

Author:
Kristofer Borgstrom

Enum Constant Summary
TEXT_ON_TOP

VISUAL_MEDIA_ON_TOP

Method Summary
static MmsLayout valueOf(java.lang.String name)

 Returns the enum constant of this type with the specified name.
static MmsLayout[] values()

 Returns an array containing the constants of this enum type, in the order they are
declared.

Methods inherited from class java.lang.Enum
clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString,
valueOf

Methods inherited from class java.lang.Object
getClass, notify, notifyAll, wait, wait, wait

Enum Constant Detail

VISUAL_MEDIA_ON_TOP

public static final MmsLayout VISUAL_MEDIA_ON_TOP

MmsLayout file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 09:58

TEXT_ON_TOP

public static final MmsLayout TEXT_ON_TOP

Method Detail

values

public static MmsLayout[] values()

Returns an array containing the constants of this enum type, in the order they are declared. This method
may be used to iterate over the constants as follows:

for (MmsLayout c : MmsLayout.values())
 System.out.println(c);

Returns:
an array containing the constants of this enum type, in the order they are declared

valueOf

public static MmsLayout valueOf(java.lang.String name)

Returns the enum constant of this type with the specified name. The string must match exactly an identifier
used to declare an enum constant in this type. (Extraneous whitespace characters are not permitted.)

Parameters:
name - the name of the enum constant to be returned.

Returns:
the enum constant with the specified name

Throws:
java.lang.IllegalArgumentException - if this enum type has no constant with the specified name
java.lang.NullPointerException - if the argument is null

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | ENUM CONSTANTS | FIELD | METHOD DETAIL: ENUM CONSTANTS | FIELD | METHOD

MmsMessage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 5 2008-01-17 09:58

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsMessage
java.lang.Object
 mms.components.mms.MmsMessage

public class MmsMessage
extends java.lang.Object

This class represents an MMS message.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
MmsMessage()
 Create a new MmsMessage.

Method Summary
 void createRegions()

 This method automatically creates region elements according to
height and width attributes and current layout, effectively replacing any
existing regions.

 java.util.List<AbstractMmsContent> getAllMediaContent()
 Returns a List of all the media content elements of this MMS
including text, audio, image and video elements.

 java.lang.String getBackgroundColor()
 Get the background color of this MMS.

 java.lang.String getHeight()
 Get the height of the MMS.

 MmsLayout getLayout()
 Get the layout for this MMS.

 DataSourceFolder getMmsFolder()
 Get the DataSourceFolder for this MMS.

 java.util.List<MmsRegion> getRegions()
 Get a List of MmsRegion objects for this MMS.

 java.util.List<MmsSlide> getSlides()
 Get a List of MmsSlide objects for this MMS.

 java.lang.String getWidth()
 Get the width of the MMS.

 boolean hasComplexContent()
 Returns true if the MMS contains any audio or video.

MmsMessage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 5 2008-01-17 09:58

 void marshallTo(java.io.OutputStream out)
 Marshall this MMS as MMS SMIL to the specified OutputStream
using compiled JAXB stubs.

 void setBackgroundColor(java.lang.String backgroundColor)
 Set the background color of this MMS.

 void setHeight(java.lang.String height)
 Set the height of the MMS.

 void setLayout(MmsLayout layout)
 Set the layout of this MMS.

 void setMmsFolder(DataSourceFolder mmsFolder)
 Set the DataSourceFolder for this MMS.

 void setWidth(java.lang.String width)
 Set the width of the MMS.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

MmsMessage

public MmsMessage()

Create a new MmsMessage.

Method Detail

createRegions

public void createRegions()

This method automatically creates region elements according to height and width attributes and current
layout, effectively replacing any existing regions.

getMmsFolder

public DataSourceFolder getMmsFolder()

Get the DataSourceFolder for this MMS.

The folder is required to read files referenced by the SMIL.

Returns:
The DataSourceFolder for this MMS.

setMmsFolder

public void setMmsFolder(DataSourceFolder mmsFolder)

Set the DataSourceFolder for this MMS.

The folder is required to read files referenced by the SMIL.

MmsMessage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 5 2008-01-17 09:58

Parameters:
mmsFolder - The new DataSourceFolder for this MMS.

getRegions

public java.util.List<MmsRegion> getRegions()

Get a List of MmsRegion objects for this MMS.

Returns:
The regions for this MMS.

getAllMediaContent

public java.util.List<AbstractMmsContent> getAllMediaContent()

Returns a List of all the media content elements of this MMS including text, audio, image and video
elements.

Returns:
A List of media content elements.

getSlides

public java.util.List<MmsSlide> getSlides()

Get a List of MmsSlide objects for this MMS.

Returns:
the slides

getBackgroundColor

public java.lang.String getBackgroundColor()

Get the background color of this MMS.

Returns:
The background color

getLayout

public MmsLayout getLayout()

Get the layout for this MMS.

Returns:
The layout of the MMS.

getHeight

public java.lang.String getHeight()

Get the height of the MMS. Must have a "px" suffix.

MmsMessage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 5 2008-01-17 09:58

Note that this is the height of the MMS as added in the SMIL file, it will not affect how the MMS is
presented when transformed to HTML.

Returns:
The height of the MMS.

getWidth

public java.lang.String getWidth()

Get the width of the MMS. Must have a "px" suffix.

Note that this is the width of the MMS as added in the SMIL file, it will not affect how the MMS is
presented when transformed to HTML.

Returns:
The width of the MMS.

hasComplexContent

public boolean hasComplexContent()

Returns true if the MMS contains any audio or video.

Returns:
true if the MMS contains any audio or video.

marshallTo

public void marshallTo(java.io.OutputStream out)
 throws javax.xml.bind.JAXBException

Marshall this MMS as MMS SMIL to the specified OutputStream using compiled JAXB stubs.

Parameters:
out - the OutputStream to marshall to.

Throws:
javax.xml.bind.JAXBException - for JAXB related errors.

setBackgroundColor

public void setBackgroundColor(java.lang.String backgroundColor)

Set the background color of this MMS.

Parameters:
backgroundColor - The new background color.

setLayout

public void setLayout(MmsLayout layout)

Set the layout of this MMS.

Parameters:
layout - The new layout.

MmsMessage file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

5 av 5 2008-01-17 09:58

setHeight

public void setHeight(java.lang.String height)

Set the height of the MMS. Must have a "px" suffix

Note that this is the height of the MMS as added in the SMIL file, it will not affect how the MMS is
presented when transformed to HTML.

Parameters:
height - The new height with "px" suffix.

setWidth

public void setWidth(java.lang.String width)

Set the width of the MMS. Must have a "px" suffix.

Parameters:
width - The new width with "px" suffix.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsRegion file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 4 2008-01-17 09:59

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsRegion
java.lang.Object
 mms.components.mms.MmsRegion

public class MmsRegion
extends java.lang.Object

This class represents a region in an MMS SMIL.

Note that an MmsRegion is only applicable in MMS SMIL and not for the HTML version of the MMS.

Author:
Kristofer Borgstrom

Constructor Summary
MmsRegion()

Method Summary
 java.lang.String getFit()

 Get the fit attribute for this region.
 java.lang.String getHeight()

 Get the height of the region.
 java.lang.String getId()

 Get the ID of the region.
 java.lang.String getLeft()

 Get the offset to the left.
 java.lang.String getTop()

 Get the offset to the top.
 java.lang.String getWidth()

 Get the width of the region.
 void setFit(java.lang.String fit)

 Set the fit attribute.
 void setHeight(java.lang.String height)

 Set the height of the region.
 void setId(java.lang.String id)

 Set the ID of the region.

MmsRegion file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 4 2008-01-17 09:59

 void setLeft(java.lang.String left)
 Set the offset to the left.

 void setTop(java.lang.String top)
 Set the offset to the top.

 void setWidth(java.lang.String width)
 Set the width of the region.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MmsRegion

public MmsRegion()

Method Detail

getLeft

public java.lang.String getLeft()

Get the offset to the left.

Returns:
The offset to the left.

getTop

public java.lang.String getTop()

Get the offset to the top.

Returns:
The offset to the top.

getHeight

public java.lang.String getHeight()

Get the height of the region.

Returns:
The height of the region.

getWidth

MmsRegion file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 4 2008-01-17 09:59

public java.lang.String getWidth()

Get the width of the region.

Returns:
The width of the region.

getFit

public java.lang.String getFit()

Get the fit attribute for this region.

Returns:
The fit attribute.

getId

public java.lang.String getId()

Get the ID of the region.

Must be one of:

"Image"
"Text"

Returns:
The ID of the region.

setLeft

public void setLeft(java.lang.String left)

Set the offset to the left.

Parameters:
left - The new offset to the left.

setTop

public void setTop(java.lang.String top)

Set the offset to the top.

Parameters:
top - The new offset to the top.

setHeight

public void setHeight(java.lang.String height)

MmsRegion file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 4 2008-01-17 09:59

Set the height of the region.

Parameters:
height - The new height.

setWidth

public void setWidth(java.lang.String width)

Set the width of the region.

Parameters:
width - The new width.

setFit

public void setFit(java.lang.String fit)

Set the fit attribute.

Parameters:
fit - The new fit attribute.

setId

public void setId(java.lang.String id)

Set the ID of the region.

Must be one of:

"Image"
"Text"

Parameters:
id - The new ID of the region.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsSlide file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 4 2008-01-17 09:59

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsSlide
java.lang.Object
 mms.components.mms.MmsSlide

public class MmsSlide
extends java.lang.Object

This class represents an MMS slide that can be added to an MmsMessage.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
MmsSlide(MmsMessage mms)
 Creates a new MmsSlide instance.

MmsSlide(java.lang.String duration, MmsMessage mms)
 Creates a new MmsSlide instance with the specified duration.

Method Summary
 MmsAudio getAudio()

 java.lang.String getDuration()

 MmsMessage getMms()

 Get the MmsMessage of this slide.
 MmsText getText()

 VisualMmsMedia getVisualMedia()

 void setAudio(MmsAudio audio)

 void setDuration(java.lang.String duration)

 void setText(MmsText text)

MmsSlide file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 4 2008-01-17 09:59

 void setVisualMedia(VisualMmsMedia visualMedia)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MmsSlide

public MmsSlide(MmsMessage mms)

Creates a new MmsSlide instance.

Parameters:
mms - The MmsMessage of this slide.

MmsSlide

public MmsSlide(java.lang.String duration,
 MmsMessage mms)

Creates a new MmsSlide instance with the specified duration.

Parameters:
duration -
mms - The MmsMessage of this slide.

Method Detail

getMms

public MmsMessage getMms()

Get the MmsMessage of this slide.

Returns:
the MmsMessage

getText

public MmsText getText()

Returns:
the text

getVisualMedia

MmsSlide file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 4 2008-01-17 09:59

public VisualMmsMedia getVisualMedia()

Returns:
the visualMedia

getAudio

public MmsAudio getAudio()

Returns:
the audio

getDuration

public java.lang.String getDuration()

Returns:
the duration

setText

public void setText(MmsText text)

Parameters:
text - the text to set

setVisualMedia

public void setVisualMedia(VisualMmsMedia visualMedia)

Parameters:
visualMedia - the visualMedia to set

setAudio

public void setAudio(MmsAudio audio)

Parameters:
audio - the audio to set

setDuration

public void setDuration(java.lang.String duration)

Parameters:
duration - the duration to set

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

MmsSlide file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 4 2008-01-17 09:59

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsText file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 3 2008-01-17 09:59

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsText
java.lang.Object
 mms.components.mms.AbstractMmsContent
 mms.components.mms.MmsText

public class MmsText
extends AbstractMmsContent

This class represents a text file that can be added to an MmsSlide.

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary
protected

 java.lang.String
foregroundColor
 Defines an optional text color parameter for text.

protected
 java.lang.String

textSize
 Defines an optional text size parameter for text.

Fields inherited from class mms.components.mms.AbstractMmsContent
alt, begin, contentType, dur, end, region, src

Constructor Summary
MmsText()
 Creates a new MmsText instance.

Method Summary
 java.lang.String getForegroundColor()

 Get text color.
 java.lang.String getTextSize()

 Gets the text size.
 void setForegroundColor(java.lang.String foregroundColor)

 Set text color.
 void setTextSize(java.lang.String textSize)

 Sets the text size.

MmsText file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 3 2008-01-17 09:59

Methods inherited from class mms.components.mms.AbstractMmsContent
getAlt, getBegin, getContentType, getDur, getEnd, getRegion, getSrc, setAlt, setBegin,
setContentType, setDur, setEnd, setSrc

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

textSize

protected java.lang.String textSize

Defines an optional text size parameter for text.

NOTE! Not part of the OMA MMS Conformance Document.

foregroundColor

protected java.lang.String foregroundColor

Defines an optional text color parameter for text.

NOTE! Not part of the OMA MMS Conformance Document.

Constructor Detail

MmsText

public MmsText()

Creates a new MmsText instance.

Method Detail

getTextSize

public java.lang.String getTextSize()

Gets the text size.

Returns:
text size

setTextSize

public void setTextSize(java.lang.String textSize)

MmsText file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 3 2008-01-17 09:59

Sets the text size.

Parameters:
textSize - text size

getForegroundColor

public java.lang.String getForegroundColor()

Get text color.

Returns:
text color

setForegroundColor

public void setForegroundColor(java.lang.String foregroundColor)

Set text color.

Parameters:
foreGroundColor - text color

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 6 2008-01-17 10:00

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.presentation.web
Class MmsTransformationServlet
java.lang.Object
 javax.servlet.GenericServlet
 javax.servlet.http.HttpServlet
 mms.components.presentation.web.MmsTransformationServlet

All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class MmsTransformationServlet
extends javax.servlet.http.HttpServlet

This class handles incoming requests for MMS messages using HTTP GET.

An HTML version of the MMS will be returned if one can be generated. Otherwise the request will be dispatch ed to another page that is responsible for displaying a message to
the client.

This servlet should be called in the same folder as the SMIL file that defines the MMS. To avoid setting up several servlet mappings it is suggested that this servlet is mapped to
*.mms. An MMS could then be transformed with the following GET request:

http://localhost:8080/mms/user/mms23/servlet.mms?smil=s.smil

If a request does not contain the players
parameter which defines what media players are available and the MMS contains audio or video media, the req uest will be dispatched to the loading-page. The default
loading-page is /mms-loading.jsp (must start with "/" and is relative to context root) but this can be customized by specifying a different page with the init parameter
loading-page. The loading MMS page is responsible for detecting which media players are available and then automaticall y calling this servlet again with the players parameter
specified (even if it is empty to indicate that no players were available).

If the MMS contains complex content, i.e. audio or video that requires embedding of media players, and the available players have been defined with the players parameter but no
media player is capable of playing one or more elements of the MMS a check is performed. More specifically, the current TransformationConfiguration (discussed below) is
checked for the THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting. If it is set to "true" the MmsTransformer will throw an exception and this servlet will handle the exception by
dispatching to the no-player-page ("/mms-no-player.jsp" by default but can be set with the no-player-page init parameter). Before the dispatch is performed, and in intance of
the PlayerNotAvailableBean will be added as a request attribute with the key "playerInfo". This bean contains info about media type extension and which media players were
available so that the no-player-page can display a valid message to the end user with information about how to download a media player. If on t he other hand the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting is set to "false" any unsupported media will not be added to the HTML version of the SMIL.

If something else goes wrong with the transformation the request is dispatched to the error-page. The default error-page is "/mms-error.jsp" but this can be changed by
specifying the error-page init parameter.

The TransformationConfiguration that will be used for the transformation will be read from a properties file if one is found (the properti es file should be located at:
WEB-INF/mms-transformation.properties). This properties file takes precedence over the default values.

In addition to specifying custom TransformationConfiguration
settings in a properties file, some settings can and some must be set as parameters to this servlet. These parameters are listed and explained in the handleRequest method.

Author:
Kristofer Borgstrom

See Also:
Serialized Form

Field Summary
static java.lang.String CUSTOM_DATA_SOURCE_FOLDER_INIT_PARAM

 This is static field contains the class name of the servlet init param that can be used to set a custom DataSourceFolder from which is used as an
I/O base for reading and writing to files.

static java.lang.String DETECTION_SCRIPT_SRC_INFO_KEY
 The key: "detectScriptSrc" is used to store a string with the source of the media player detection s script in the request scope if a the MMS
contained complex media and the media player configuration has not been detected in this session.

static java.lang.String ERROR_PAGE_INIT_PARAM
 This is static field contains the name of the servlet init param that can be used to set a custo m error page that will be shown when transformation
fails.

static java.lang.String LOADING_PAGE_INIT_PARAM
 This is static field contains the name of the servlet init param that can be used to check for a loading page that is shown while available media
players are checked.

static java.lang.String NO_PLAYER_FOUND_INFO_KEY
 The key: "playerInfo" is used to store a PlayerNotAvailableBean in the request scope if a PlayerNotFoundException was thrown.

static java.lang.String NO_PLAYER_PAGE_INIT_PARAM
 This is static field contains the name of the servlet init param that can be used to set a custo m no-player-available page that will be shown when
transformation fails with a PlayerNotAvailableException.

Constructor Summary
MmsTransformationServlet()
 Creates a new MmsTransformationServlet.

Method Summary
protected

 void
dispatch(java.lang.String page, javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse res)
 Dispatch to the specified page.

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 6 2008-01-17 10:00

protected
 void

doGet(javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse resp)
 See handleRequest(HttpServletRequest, HttpServletResponse).

protected
 void

doNoPlayerPage(javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse res, PlayerNotAvailableException ex)
 Creates a new PlayerNotAvailableBean using data from the specified PlayerNotAvailableException and sets it as a request scope attribute using the key
"playerInfo".

protected
 void

doPost(javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse resp)
 Not supported.

protected
 void

doSendMms(byte[] mmsData, javax.servlet.http.HttpServletResponse res)
 Writes the byte data to the specified HttpServletResponse's OutputStream.

protected
 void

handleRequest(javax.servlet.http.HttpServletRequest req, javax.servlet.http.HttpServletResponse res)
 Handles both GET and POST Parameters: (See TransformationConfiguration for more info and default values for optional parameters).

 void init()
 Performs the following init actions: Loads the init paramaters (see class description above) Read s the transformation properties file at
/WEB-INF/mms-transformation.properties Determines which DataSourceFolder to use based on whether the data-source-folder init parameter has been set.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext, getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

CUSTOM_DATA_SOURCE_FOLDER_INIT_PARAM

public static final java.lang.String CUSTOM_DATA_SOURCE_FOLDER_INIT_PARAM

This is static field contains the class name of the servlet init param that can be used to set a custom DataSourceFolder from which is used as an I/O base for reading and
writing to files. If not set, the files will be read from disk on the web server using the FileDataSourceFolder class.

Init param name: "data-source-folder"

Use: OPTIONAL

See Also:
Constant Field Values

LOADING_PAGE_INIT_PARAM

public static final java.lang.String LOADING_PAGE_INIT_PARAM

This is static field contains the name of the servlet init param that can be used to check for a loading pa ge that is shown while available media players are checked.

Init param name: "loading-page"

Use: OPTIONAL

NOTE! The path must begin with a "/" and is interpreted as relative to the current context root.

If not set the following page will be used: /mms-loading.jsp

See Also:
Constant Field Values

ERROR_PAGE_INIT_PARAM

public static final java.lang.String ERROR_PAGE_INIT_PARAM

This is static field contains the name of the servlet init param that can be used to set a custom error pag e that will be shown when transformation fails.

Init param name: "error-page"

Use: OPTIONAL

NOTE! The path must begin with a "/" and is interpreted as relative to the current context root.

If not set the following page will be used: /mms-error.jsp

See Also:
Constant Field Values

NO_PLAYER_PAGE_INIT_PARAM

public static final java.lang.String NO_PLAYER_PAGE_INIT_PARAM

This is static field contains the name of the servlet init param that can be used to set a custom no-player -available page that will be shown when transformation fails with a
PlayerNotAvailableException.

Init param name: "no-player-page"

Use: OPTIONAL

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 6 2008-01-17 10:00

NOTE! The path must begin with a "/" and is interpreted as relative to the current context root.

If not set the following page will be used: /mms-no-player.jsp

See Also:
Constant Field Values

NO_PLAYER_FOUND_INFO_KEY

public static final java.lang.String NO_PLAYER_FOUND_INFO_KEY

The key: "playerInfo" is used to store a PlayerNotAvailableBean in the request scope if a PlayerNotFoundException was thrown. Thus, this bean will be available on the
defined no-player-page (default: /mms-no-player.jsp).

See Also:
Constant Field Values

DETECTION_SCRIPT_SRC_INFO_KEY

public static final java.lang.String DETECTION_SCRIPT_SRC_INFO_KEY

The key: "detectScriptSrc" is used to store a string with the source of the media player detection s script in the request scope if a the MMS contained complex media and
the media player configuration has not been detected in this session. This script is used on the no-player-page (default: /mms-no-player.jsp).

See Also:
Constant Field Values

Constructor Detail

MmsTransformationServlet

public MmsTransformationServlet()

Creates a new MmsTransformationServlet.

Method Detail

init

public void init()
 throws javax.servlet.ServletException

Performs the following init actions:
Loads the init paramaters (see class description above)
Reads the transformation properties file at /WEB-INF/mms-transformation.properties
Determines which DataSourceFolder to use based on whether the data-source-folder init parameter has been set.
Creates a new TransformerPool.

Overrides:
init in class javax.servlet.GenericServlet

Throws:
javax.servlet.ServletException

doGet

protected void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp)
 throws javax.servlet.ServletException,
 java.io.IOException

See handleRequest(HttpServletRequest, HttpServletResponse).

Overrides:
doGet in class javax.servlet.http.HttpServlet

Throws:
javax.servlet.ServletException

java.io.IOException

doPost

protected void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse resp)
 throws javax.servlet.ServletException,
 java.io.IOException

Not supported.

Overrides:
doPost in class javax.servlet.http.HttpServlet

Throws:
javax.servlet.ServletException - Always.
java.io.IOException

handleRequest

protected void handleRequest(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws javax.servlet.ServletException,
 java.io.IOException

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 6 2008-01-17 10:00

Handles both GET and POST

Parameters: (See TransformationConfiguration for more info and default values for optional parameters).

Parameter Mandatory Description

smil YES The name of the smil file in the current directory.

mms-dir YES The directory of the MMS relative to context root. Must start with a forward slash ('/')

players CONDITIONALLY
Mandatory if MMS contains complex content (audio or video). A string defining which media players are avail able. If not
specified, MMS may not be generated depending on MMS content and current settings. Corresponds to the AVAILABLE_PLAYERS
setting.

resources NO A string defining where MMS resources are located relative to current dir or to server root if it starts wi th a "/". Corresponds to
the RESOURCE_DIR setting.

height NO A string defining the height of the MMS display area, must have a "px" suffix. Corresponds to the OUTPUT_HEIGHT setting.

width NO A string defining the width of the MMS display area, must have a "px" suffix. Corresponds to the OUTPUT_WIDTH setting.

video-scaling NO A string defining the video scaling setting to use. Corresponds to the VIDEO_SCALING setting.

image-scaling NO A string defining the image scaling setting to use. Corresponds to the IMAGE_SCALING setting.

repeat NO A string defining the number of times to iterate the MMS or "indefinite" to play forever. Corresponds to th e REPEAT_COUNT
setting.

controls NO A boolean string defining whether to add playback controls to MMS. Corresponds to the SHOW_PLAYBACK_CONTROLS setting.

controls-height NO A string defining the height of the playback controls, must have a "px" suffix. Corresponds to the PLAYBACK_CONTROLS_HEIGHT
setting.

The following activity diagram shows the steps performed by the handleRequest method

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

5 av 6 2008-01-17 10:00

Parameters:
req - An HttpServletRequest object that contains the request the client has made of the servlet.
res - An HttpServletResponse object that contains the response the servlet sends to the client.

Throws:
javax.servlet.ServletException

java.io.IOException

doNoPlayerPage

MmsTransformationServlet file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

6 av 6 2008-01-17 10:00

protected void doNoPlayerPage(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res,
 PlayerNotAvailableException ex)
 throws javax.servlet.ServletException,
 java.io.IOException

Creates a new PlayerNotAvailableBean using data from the specified PlayerNotAvailableException and sets it as a request scope attribute using the key "playerInfo".
The request is then dispatched to the no-player-page.

Parameters:
req - The HttpServletRequest
res - The HttpServletResponse
ex - The PlayerNotAvailableException to use to create the PlayerNotAvailableBean.

Throws:
javax.servlet.ServletException

java.io.IOException

dispatch

protected void dispatch(java.lang.String page,
 javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws javax.servlet.ServletException,
 java.io.IOException

Dispatch to the specified page.

Parameters:
page - The page to which to dispatch.
req - The HttpServletRequest.
res - The HttpServletResponse.

Throws:
javax.servlet.ServletException

java.io.IOException

doSendMms

protected void doSendMms(byte[] mmsData,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException

Writes the byte data to the specified HttpServletResponse's OutputStream.

Parameters:
mmsData - The data.
res - The HttpServletResponse.

Throws:
java.io.IOException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsTransformer file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 3 2008-01-17 10:00

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Class MmsTransformer
java.lang.Object
 mms.components.transformation.MmsTransformer

public class MmsTransformer
extends java.lang.Object

This class provides methods to perform transformation of MMS messages between different markup
languages such as MMS SMIL and HTML+TIME and also to and from a Java object representation
(MmsMessage).

Version:
1.0

Author:
Kristofer Borgstrom

Method Summary
static MmsTransformer newInstance()

 Create a new MmsTransformer instance.
 MmsMessage parseMmsSmil(java.io.InputStream smilStream)

 This method parses an MMS SMIL file and creates an MmsMessage
representation of the MMS.

 void transform(java.io.InputStream smilStream, DataSourceFolder mmsFolder,
java.io.OutputStream output, TransformationConfiguration config)
 This method parses an MMS SMIL file and then transforms it to a HTML
view of the MMS and writes it to the specified OutputStream.

 void transform(MmsMessage mms, java.io.OutputStream output,
TransformationConfiguration config)
 This method transforms the MmsMessage to a HTML version of the MMS and
writes it to the specified OutputStream.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Method Detail

newInstance

public static MmsTransformer newInstance()
 throws javax.xml.parsers.ParserConfigurationException,
 org.xml.sax.SAXException

MmsTransformer file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 3 2008-01-17 10:00

Create a new MmsTransformer instance. This operation is expensive and MmsTransformer instances
should be reused. It is recommended to use the TransformerPool class to handler instances.

Returns:
A new MmsTransformer instance.

Throws:
javax.xml.parsers.ParserConfigurationException - If the SAXParserFactory has not been
properly configured.
org.xml.sax.SAXException - For SAX errors.

parseMmsSmil

public MmsMessage parseMmsSmil(java.io.InputStream smilStream)
 throws java.io.IOException,
 org.xml.sax.SAXException

This method parses an MMS SMIL file and creates an MmsMessage representation of the MMS. The
DataSourceFolder
is required to extract data from the different media files that are referenced by the SMIL (mainly used to
read text files and get dimension of images).

Parameters:
smilStream - An InputStream containing the MMS SMIL to be parsed.

Returns:
A new MmsMessage

Throws:
java.io.IOException - If a read error occurs while reading the input stream.
org.xml.sax.SAXException - For SAX errors.

transform

public void transform(java.io.InputStream smilStream,
 DataSourceFolder mmsFolder,
 java.io.OutputStream output,
 TransformationConfiguration config)
 throws org.xml.sax.SAXException,
 java.io.IOException,
 MmsTransformationException,
 PlayerNotAvailableException,
 java.lang.IllegalStateException

This method parses an MMS SMIL file and then transforms it to a HTML view of the MMS and writes
it to the specified OutputStream. The settings from the specified TransformationConfiguration is
used. The MediaUtils
is used to determine which media players can be used to play which files based on an XML
configuration file.

Parameters:
smilStream - An input stream containing the MMS SMIL to be parsed.
mmsFolder - A DataSourceFolder
representation of the folder where the content of the MMS is located.
output - The OutputStream to write the result to.
config - The TransformationConfiguration to use.
mediaUtil - The MediaUtils instance to use.

Throws:
org.xml.sax.SAXException - For SAX errors.
java.io.IOException - For I/O errors.
MmsTransformationException - If the transformation could not be performed.

MmsTransformer file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 3 2008-01-17 10:00

PlayerNotAvailableException
- If no media player was available to play a certain media file and the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting has been set to "true".
java.lang.IllegalStateException - If the MediaUtils class has not been initialized.

transform

public void transform(MmsMessage mms,
 java.io.OutputStream output,
 TransformationConfiguration config)
 throws org.xml.sax.SAXException,
 java.io.IOException,
 MmsTransformationException,
 PlayerNotAvailableException,
 java.lang.IllegalStateException

This method transforms the MmsMessage to a HTML version of the MMS and writes it to the specified
OutputStream. The settings from the specified TransformationConfiguration is used. The
MediaUtils
is used to determine which media players can be used to play which files based on an XML
configuration file.

Note that this method requires that a DataSourceFolder has been set on the MmsMessage.

Parameters:
mms - The MMS to transform, must have a valid DataSourceFolder set.
output - The OutputStream to write the result to.
config - The TransformationConfiguration to use.

Throws:
org.xml.sax.SAXException - For SAX errors.
java.io.IOException - For I/O errors.
MmsTransformationException - If the transformation could not be performed.
PlayerNotAvailableException
- If no media player was available to play a certain media file and the
THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting has been set to "true".
java.lang.IllegalStateException - If the MediaUtils class has not been initialized.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 10:01

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsUtils
java.lang.Object
 mms.components.mms.MmsUtils

public class MmsUtils
extends java.lang.Object

This class is a utility class for MMS messages.

Version:
1.0

Author:
Kristofer Borgstrom

Constructor Summary
MmsUtils()

Method Summary
static MmsMessage createMmsFromJson(JsonObject jsonMms, DataSourceFolder dataFolder)

 This method is used to create a new MmsMessage from a JsonObject.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MmsUtils

public MmsUtils()

Method Detail

createMmsFromJson

public static MmsMessage createMmsFromJson(JsonObject jsonMms,
 DataSourceFolder dataFolder)
 throws java.io.IOException

MmsUtils file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 10:01

This method is used to create a new MmsMessage from a JsonObject.

Parameters:
jsonMms - The JsonObject representation of the MMS
dataFolder - The DataSourceFolder that text will be saved to.

Returns:
The MmsMessage

Throws:
java.io.IOException - If an error occurred while writing text to the DataSourceFolder

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MmsVideo file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 10:01

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class MmsVideo
java.lang.Object
 mms.components.mms.AbstractMmsContent
 mms.components.mms.VisualMmsMedia
 mms.components.mms.MmsVideo

public class MmsVideo
extends VisualMmsMedia

This class represents a video file that can be added to an MmsSlide.

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary

Fields inherited from class mms.components.mms.AbstractMmsContent
alt, begin, contentType, dur, end, region, src

Constructor Summary
MmsVideo()
 Creates a new MmsVideo instance.

Method Summary
 java.lang.String getId()

 Get the ID.
 void setId(java.lang.String id)

 Set the ID.

Methods inherited from class mms.components.mms.AbstractMmsContent
getAlt, getBegin, getContentType, getDur, getEnd, getRegion, getSrc, setAlt, setBegin,
setContentType, setDur, setEnd, setSrc

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

MmsVideo file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 10:01

Constructor Detail

MmsVideo

public MmsVideo()

Creates a new MmsVideo instance.

Method Detail

getId

public java.lang.String getId()

Get the ID.

Note that this ID is only applicable when HTML is generated from the MMS. and that when HTML
is being generated this the ID must exist and be unique within the current MMS.

Returns:
The ID.

setId

public void setId(java.lang.String id)

Set the ID.

Note that this ID is only applicable when HTML is generated from the MMS. and that when HTML
is being generated this the ID must exist and be unique within the current MMS.

Parameters:
id - The new ID.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 7 2008-01-17 10:01

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Class TransformationConfiguration
java.lang.Object
 java.util.Dictionary<K,V>
 java.util.Hashtable<java.lang.Object,java.lang.Object>
 java.util.Properties
 mms.components.transformation.TransformationConfiguration

All Implemented Interfaces:
java.io.Serializable, java.lang.Cloneable, java.util.Map<java.lang.Object,java.lang.Object>

public class TransformationConfiguration
extends java.util.Properties

This class defines a TransformationConfiguration which must be supplied every time an MMS is transformed.
This class extends java.util.Properties
and has static fields specifying which settings can be used during transformation as well as what their default
values are.

Version:
1.0

Author:
Kristofer Borgstrom

See Also:
Serialized Form

Field Summary
static java.lang.String ACTION_SERVLET

 Standard property: URL to action servlet.
static java.lang.String AVAILABLE_PLAYERS

 Standard property: Comma separated values containing available media
players.

static java.lang.String BROWSER
 Standard property: Browser name.

static java.lang.String IMAGE_SCALING
 Standard property: Image scaling.

static java.lang.String MEDIA_PLAYER_PRIORTY_ORDER
 Standard property: A comma separated list of allowed media players and their
order of priority.

static java.lang.String MMS_DIRECTORY
 Standard property: Path to MMS directory.

static java.lang.String OUTPUT_HEIGHT
 Standard property: The height property in pixels (must have the "px" suffix).

static java.lang.String OUTPUT_WIDTH
 Standard property: The width property in pixels (must have the "px" suffix).

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 7 2008-01-17 10:01

static java.lang.String PLAYBACK_CONTROLS_HEIGHT
 Standard property: The height in pixels reserved for playback controls (must
have the "px" suffix).

static java.lang.String PLAYER_BACKGROUND_COLOR
 Standard property: The background color for the playback area when splash
screen is shown.

static java.lang.String REPEAT_COUNT
 Standard property: The exact string use as repeatCount property.

static java.lang.String REQUIRE_AUTO_CODEC_DOWNLOAD_MEDIA_SUPPORT
 Standard property: Require the player to media support through an automatic
codec download.

static java.lang.String REQUIRE_DIRECT_MEDIA_SUPPORT
 Standard property: Require direct support for a media types by to use a player.

static java.lang.String RESOURCE_DIR
 Standard property: Resource directory, relative to the context root, that
contains scripts, stylesheets, and images that are used for playback control.

static java.lang.String SHOW_PLAYBACK_CONTROLS
 Standard property: Show playback controls for the MMS presentation.

static java.lang.String THROW_PLAYER_NOT_AVAILABLE_EXCEPTION
 Standard property: Defines what the generator should do when an MMS
contains media elements for which there is no media player available of the required
level of support.

static java.lang.String VIDEO_SCALING
 Standard property: Video scaling.

static java.lang.String VIEW_PRIORITY_ORDER
 Standard property: The order of priority for HTML views.

Fields inherited from class java.util.Properties
defaults

Constructor Summary
TransformationConfiguration()
 Create a TransformationConfiguration with default settings.

Method Summary

Methods inherited from class java.util.Properties
getProperty, getProperty, list, list, load, load, loadFromXML, propertyNames, save,
setProperty, store, store, storeToXML, storeToXML, stringPropertyNames

Methods inherited from class java.util.Hashtable
clear, clone, contains, containsKey, containsValue, elements, entrySet, equals, get,
hashCode, isEmpty, keys, keySet, put, putAll, rehash, remove, size, toString, values

Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 7 2008-01-17 10:01

Field Detail

ACTION_SERVLET

public static final java.lang.String ACTION_SERVLET

Standard property: URL to action servlet. The action servlet is responsible for serving the viewer
components with content in the form of generated JavaScript snippets and .ram files.

The URL is embedded into the MMS and it should therefore be relative to the Servlet that was used to
generate the MMS view.

Typically, the MmsTransformationServlet
is used as action servlet but any other servlet could be used as well.

Example value: "MmsTransformationServlet" (DEFAULT)

See Also:
Constant Field Values

AVAILABLE_PLAYERS

public static final java.lang.String AVAILABLE_PLAYERS

Standard property: Comma separated values containing available media players. This should match the
players available in the user's browser.

This property must be set because it has no default value.

Possible values include:

"QuickTime"
"RealPlayer"
"WindowsMediaPlayer"

See Also:
MEDIA_PLAYER_PRIORTY_ORDER, Constant Field Values

BROWSER

public static final java.lang.String BROWSER

Standard property: Browser name. Possible values include but are not limited to:

"InternetExplorer"
"Firefox"
"Safari"
"Opera"

See Also:
Constant Field Values

IMAGE_SCALING

public static final java.lang.String IMAGE_SCALING

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 7 2008-01-17 10:01

Standard property: Image scaling. Possible values:

"fit" - Stretch to presentation area but retain aspect ratio. (DEFAULT)

See Also:
Constant Field Values

MEDIA_PLAYER_PRIORTY_ORDER

public static final java.lang.String MEDIA_PLAYER_PRIORTY_ORDER

Standard property: A comma separated list of allowed media players and their order of priority. Possible
values include:

"InternetExplorer"
"QuickTime"
"RealPlayer"
"WindowsMediaPlayer"

DEFAULT: "InternetExplorer,QuickTime,RealPlayer,WindowsMediaPlayer"

See Also:
Constant Field Values

MMS_DIRECTORY

public static final java.lang.String MMS_DIRECTORY

Standard property: Path to MMS directory.

This property is mandatory and has no default value.

See Also:
Constant Field Values

OUTPUT_HEIGHT

public static final java.lang.String OUTPUT_HEIGHT

Standard property: The height property in pixels (must have the "px" suffix).

For example: "320px" (DEFAULT)

See Also:
OUTPUT_WIDTH, Constant Field Values

OUTPUT_WIDTH

public static final java.lang.String OUTPUT_WIDTH

Standard property: The width property in pixels (must have the "px" suffix).

For example: "240px" (DEFAULT)

See Also:

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

5 av 7 2008-01-17 10:01

OUTPUT_HEIGHT, Constant Field Values

PLAYBACK_CONTROLS_HEIGHT

public static final java.lang.String PLAYBACK_CONTROLS_HEIGHT

Standard property: The height in pixels reserved for playback controls (must have the "px" suffix).

For example: "30px" (DEFAULT)

See Also:
Constant Field Values

PLAYER_BACKGROUND_COLOR

public static final java.lang.String PLAYER_BACKGROUND_COLOR

Standard property: The background color for the playback area when splash screen is shown.

For example: "black" (DEFAULT)

See Also:
Constant Field Values

REPEAT_COUNT

public static final java.lang.String REPEAT_COUNT

Standard property: The exact string use as repeatCount property.

For example: "indefinite" (DEFAULT)
For example: "1"

See Also:
Constant Field Values

REQUIRE_DIRECT_MEDIA_SUPPORT

public static final java.lang.String REQUIRE_DIRECT_MEDIA_SUPPORT

Standard property: Require direct support for a media types by to use a player. If such a player does not
exist, either a PlayerNotAvailableException will be thrown or the media will be left out (depending on
the THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting).

Possible values: "true"|"false" (DEFAULT: "false")

See Also:
REQUIRE_AUTO_CODEC_DOWNLOAD_MEDIA_SUPPORT, THROW_PLAYER_NOT_AVAILABLE_EXCEPTION,
Constant Field Values

REQUIRE_AUTO_CODEC_DOWNLOAD_MEDIA_SUPPORT

public static final java.lang.String REQUIRE_AUTO_CODEC_DOWNLOAD_MEDIA_SUPPORT

Standard property: Require the player to media support through an automatic codec download. If such a

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

6 av 7 2008-01-17 10:01

player does not exist, either a PlayerNotAvailableException will be thrown or the media will be left out
(depending on the THROW_PLAYER_NOT_AVAILABLE_EXCEPTION setting).

Possible values: "true"|"false" (DEFAULT: "true")

See Also:
REQUIRE_DIRECT_MEDIA_SUPPORT, THROW_PLAYER_NOT_AVAILABLE_EXCEPTION, Constant Field
Values

RESOURCE_DIR

public static final java.lang.String RESOURCE_DIR

Standard property: Resource directory, relative to the context root, that contains scripts, stylesheets, and
images that are used for playback control. Must start with a slash.

The following resources are required within the resource directory:

css/html-time.css
scripts/html-time.js
scripts/show-mms.js
images/play.jpg
images/play-over.jpg
images/play-click.jpg
images/space.jpg
images/stop.jpg
images/stop-over.jpg
images/stop-click.jpg

Example value: "/mms-resources/" - (DEFAULT)

See Also:
Constant Field Values

SHOW_PLAYBACK_CONTROLS

public static final java.lang.String SHOW_PLAYBACK_CONTROLS

Standard property: Show playback controls for the MMS presentation.

Possible values: "true"|"false" (DEFAULT: "true")

See Also:
Constant Field Values

THROW_PLAYER_NOT_AVAILABLE_EXCEPTION

public static final java.lang.String THROW_PLAYER_NOT_AVAILABLE_EXCEPTION

Standard property: Defines what the generator should do when an MMS contains media elements for
which there is no media player available of the required level of support.

"true" - Throw PlayerNotAvailableException if MMS contains media elements that are not
supported by the current media player configuration.
"false" - Perform generation anyway but leave out unsupported content. (DEFAULT)

TransformationConfiguration file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

7 av 7 2008-01-17 10:01

See Also:
REQUIRE_DIRECT_MEDIA_SUPPORT, REQUIRE_AUTO_CODEC_DOWNLOAD_MEDIA_SUPPORT, Constant Field
Values

VIDEO_SCALING

public static final java.lang.String VIDEO_SCALING

Standard property: Video scaling. Note that this setting will not effect the amount of space the embedded
media player will occupy on the page (It will always occupy half of the height of the presentation area or
the whole area if there is no text on the current slide). Rather, this setting defines the scaling within the
area of the embedded media player.

Possible values:

"original" - Use original video resolution.
"stretch" - Stretch to media player area.
"stretch-keep-aspect" - Stretch to media player area but retain aspect ratio. (DEFAULT)

See Also:
Constant Field Values

VIEW_PRIORITY_ORDER

public static final java.lang.String VIEW_PRIORITY_ORDER

Standard property: The order of priority for HTML views. Possible values (one or several, separated by
commas):

"HtmlTime"
"Dhtml"

Example value: "Dhtml,HtmlTime" - (DEFAULT)

See Also:
Constant Field Values

Constructor Detail

TransformationConfiguration

public TransformationConfiguration()

Create a TransformationConfiguration with default settings.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

TransformerPool file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 4 2008-01-17 10:02

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.transformation
Class TransformerPool
java.lang.Object
 mms.components.transformation.TransformerPool

public class TransformerPool
extends java.lang.Object

This pool implementation is allowed to vary in size between its set MAX_POOL_SIZE and MIN_POOL_SIZE.

Transformers that have not been used within the REMOVE_UNUSED_DELAY will be removed from the queue if
the pool size is larger than the minimum pool size.

Transformers that have not been returned within the RECLAIM_DELAY will automatically be removed from the
pool. This is done regardless of minimum pool size.

Version:
1.0

Author:
Kristofer Borgstrom

Field Summary
static java.lang.String CLEANUP_CHECK_INTERVAL

 This is the properties key that is used to define the pool cleanup interval
in milliseconds.

static java.lang.String MAX_POOL_SIZE
 This is the properties key that is used to define maximum pool size.

static java.lang.String MIN_POOL_SIZE
 This is the properties key that is used to define minimum pool size.

static java.lang.String RECLAIM_DELAY
 This is the properties key that is used to define the RECLAIM_DELAY
in milliseconds.

static java.lang.String REMOVE_UNUSED_DELAY
 This is the properties key that is used to define the
REMOVE_UNUSED_DELAY in milliseconds.

Constructor Summary
TransformerPool(int initialPoolSize, java.util.Properties props)
 Creates a new TransformerPool instance with the specified initial size and properties.

Method Summary

TransformerPool file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 4 2008-01-17 10:02

 MmsTransformer getTransformer()
 Gets an MmsTransformer from the pool.

 void returnTransformer(MmsTransformer transformer)
 Return an MmsTransformer to the pool.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

MAX_POOL_SIZE

public static final java.lang.String MAX_POOL_SIZE

This is the properties key that is used to define maximum pool size.

Default: 100

Example use:

properties.put(TransformerPool.MAX_POOL_SIZE, "100");

See Also:
Constant Field Values

MIN_POOL_SIZE

public static final java.lang.String MIN_POOL_SIZE

This is the properties key that is used to define minimum pool size.

Default: "1"

Example use:

properties.put(TransformerPool.MIN_POOL_SIZE, "1");

See Also:
Constant Field Values

CLEANUP_CHECK_INTERVAL

public static final java.lang.String CLEANUP_CHECK_INTERVAL

This is the properties key that is used to define the pool cleanup interval in milliseconds. This is the
interval that defines how often to check for unused and unreturned transformers.

Default: "2000" (2s)

Example use:

properties.put(TransformerPool.CLEANUP_CHECK_INTERVAL, "2000");

TransformerPool file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

3 av 4 2008-01-17 10:02

See Also:
Constant Field Values

REMOVE_UNUSED_DELAY

public static final java.lang.String REMOVE_UNUSED_DELAY

This is the properties key that is used to define the REMOVE_UNUSED_DELAY in milliseconds.
This delay is the maximum amount of time that a transformer is kept in pool if it is unused.

Default: "10000" (10s)

Example use:

properties.put(TransformerPool.REMOVE_UNUSED_DELAY, "10000");

See Also:
Constant Field Values

RECLAIM_DELAY

public static final java.lang.String RECLAIM_DELAY

This is the properties key that is used to define the RECLAIM_DELAY in milliseconds. This delay is
the maximum amount of time that a transformer can be used before it is returned, after this delay has
passed the transformer is removed from the pool.

Default: "120000" (2min)

Example use:

properties.put(TransformerPool.RECLAIM_DELAY, "120000");

See Also:
Constant Field Values

Constructor Detail

TransformerPool

public TransformerPool(int initialPoolSize,
 java.util.Properties props)
 throws javax.xml.parsers.ParserConfigurationException,
 org.xml.sax.SAXException

Creates a new TransformerPool instance with the specified initial size and properties.

Throws:
org.xml.sax.SAXException
javax.xml.parsers.ParserConfigurationException

Method Detail

getTransformer

TransformerPool file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

4 av 4 2008-01-17 10:02

public MmsTransformer getTransformer()
 throws javax.xml.parsers.ParserConfigurationException,
 org.xml.sax.SAXException

Gets an MmsTransformer from the pool.

Returns:
An available MmsTransformer.

Throws:
javax.xml.parsers.ParserConfigurationException
org.xml.sax.SAXException

returnTransformer

public void returnTransformer(MmsTransformer transformer)

Return an MmsTransformer to the pool.

Parameters:
transformer - The MmsTransformer to return to the pool.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

VisualMmsMedia file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

1 av 2 2008-01-17 10:02

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

mms.components.mms
Class VisualMmsMedia
java.lang.Object
 mms.components.mms.AbstractMmsContent
 mms.components.mms.VisualMmsMedia

Direct Known Subclasses:
MmsImage, MmsVideo

public class VisualMmsMedia
extends AbstractMmsContent

This interface defines a visual media object.

Author:
Kristofer Borgstrom

Field Summary

Fields inherited from class mms.components.mms.AbstractMmsContent
alt, begin, contentType, dur, end, region, src

Constructor Summary
VisualMmsMedia()

Method Summary

Methods inherited from class mms.components.mms.AbstractMmsContent
getAlt, getBegin, getContentType, getDur, getEnd, getRegion, getSrc, setAlt, setBegin,
setContentType, setDur, setEnd, setSrc

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

VisualMmsMedia

VisualMmsMedia file:///C:/projects/mms-components/components/trunk/doc/api/mms/c...

2 av 2 2008-01-17 10:02

public VisualMmsMedia()

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 67

[54] J2EE Web Application Template – Ericsson Developer Program,
http://www.ericsson.com/mobilityworld/sub/open/technologies/open_development_tips/t
ools/j2ee_web_app (last viewed 2007-09-04)

[55] W3Schools – Browser statistics,
http://www.w3schools.com/browsers/browsers_stats.asp (last viewed 2008-01-16)

[56] Microsoft – ASP.NET Developer Center, http://msdn2.microsoft.com/en-
us/netframework/aa336522.aspx (last viewed 2008-01-31)

[57] PHP: Hypertext Preprocessor, http://www.php.net/ (last viewed 2008-01-31)

www.kth.se

COS/CCS 2008-01

	Kristofer_Borgstroem-Final_Report-Appendix-20080205.pdf
	Final Report - appendix start
	MMS Components for Web 2.0 - User Guide.pdf
	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 Target group
	1.4 Document disposition
	1.5 Compliancy
	1.6 Features

	2 A brief introduction to MMS messages
	2.1 What is an MMS?
	2.2 How is an MMS structured?
	2.2.1 MMS SMIL
	2.2.2 Media file references

	2.3 How are MMS messages sent?
	2.4 What MMS SDKs are available?
	2.4.1 Ericsson MM7 SDK
	2.4.2 Telecom Web Services SDK (Parlay X)

	3 How to use the MMS Components
	3.1 Getting started
	3.1.1 Adding the components to a web application
	3.1.2 Installing JSTL

	3.2 Using the viewer components
	3.2.1 Introduction to the viewer components
	3.2.2 Using the MMS viewer custom JSP tag
	3.2.3 Setting up the MmsTransformationServlet
	3.2.3.1 General setup
	3.2.3.2 Setting up optional init parameters
	3.2.3.3 Specifying custom transformation properties
	3.2.3.4 Editing the configuration file

	3.2.4 Customizing look and feel
	3.2.4.1 Customizing CSS attributes for text
	3.2.4.2 Customizing the splash screen
	3.2.4.3 Customizing the playback control bar

	3.3 Using the composer components
	3.3.1 Introduction to the composer components
	3.3.2 Embedding the MMS canvas
	3.3.3 Configuring the MmsComposerServlet
	3.3.3.1 General setup
	3.3.3.2 Setting up optional init parameters

	3.3.4 Using the MMS canvas

	3.4 Authoring MMS messages from Java code

	4 Known issues
	4.1 RealPlayer plug-in together with Opera and Safari browsers
	4.2 QuickTime 7.1.6 and Firefox

	5 Glossary
	6 References

	AbstractMmsContent
	DataSourceFolder
	DhtmlGenerator
	FileDataSourceFolder
	HtmlTimeGenerator
	HtmlViewGenerator
	IoUtils
	MediaUtils
	MmsAudio
	MmsComposerServlet
	MmsImage
	MmsLayout
	MmsMessage
	MmsRegion
	MmsSlide
	MmsText
	MmsTransformationServlet
	MmsTransformer
	MmsUtils
	MmsVideo
	TransformationConfiguration
	TransformerPool
	VisualMmsMedia

	Text1: Figure 10 Viewer components sequence diagram. This sequence diagram illustrates the interaction between a browser and different parts of the MMS components that are used to transform an MMS message to HTML when the available media players must be detected.

