

EasyWeb:

A Software Engineering Environment

for Developing Web Applications in .Net

A M I R T A L A E I – K H O E I

Master of Science Thesis

Stockholm, Sweden, 2007

ICT/ECS-2007-134

Master of Science Thesis

AMIR TALAEI-KHOEI

Supervised by Prof. Claude Petitpierre (EPFL/IC/ISIM/LTI)

Examined by: A/Prof. Vladimir Vlassov (KTH/ICT/ECS)

Stockholm, Sweden, November 2007.

i

Abstract

Web applications are ubiquitous on the Internet, and almost

every type of business now needs to be able to quickly develop

their own applications, but as web applications become more

complex, developers look for more systematic ways to build

quality applications with minimum effort.

This thesis proposes an environment that focuses on

generating the first draft of a web application for an

architectural-based system model design. Since the description

is high level, it’s easy to produce and it only needs the basic

knowledge of web application development, additionally

because the chosen architecture is very close to the way that

the most of web applications are developed the generated code

is still easy to change in .Net platform.

iii

Acknowledgment

I’m extremely grateful for kind consideration of a person, who guided me during the

whole project, from its very beginning to the end; Olivier Buchwalder, a PhD student at

LTI. He made me interested in the topic, and helped me a lot with theoretical issues, as

well as with problems that arose during the implementation.

Finally, I would be pleased to dedicate this work to my parents because of their loves.

v

TABLE OF CONTENTS

ABSTRACT .. I

1 CHAPTER 1: INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 2

1.2 GOALS .. 2

1.3 BRIEF DESCRIPTION .. 2

1.3.1 Roadmap of Work ... 3

1.3.2 Limitations .. 4

1.4 THESIS OUTLINES ... 4

2 CHAPTER 2: BACKGROUND .. 7

2.1 MODEL DRIVEN DEVELOPMENT (MDD) ... 7

2.1.1 Modeling Rationale and MDD ... 8

2.2 MODEL DRIVEN ARCHITECTURE (MDA) .. 12

2.3 SOFTWARE FACTORY .. 14

2.3.2 Software Factory Templates .. 16

2.3.3 Systematic Reuse .. 17

2.4 DOMAIN SPECIFIC MODELING AND LANGUAGE (DSM & DSL) .. 17

2.4.1 Basic Concepts ... 18

2.4.2 Migration from Abstract to Real and from Meta to Instance ... 19

2.5 COMPARISON OF MDA AND SF .. 21

2.6 MICROSOFT VISUAL STUDIO DSL TOOLS ... 22

2.6.1 Building a Designer using Microsoft DSL Tools .. 23

2.7 RELATED WORKS ... 26

2.7.1 AndroMDA (Bhatia 2006) ... 26

2.7.2 Web Relational Blocks (WebRB) .. 27

2.7.3 WebLang ... 29

2.8 STATE OF ART ... 31

2.9 SUMMARIZING TERMS .. 31

3 CHAPTER 3: METHODS ... 33

3.1 EASYWEB ... 33

3.1.1 Requirements .. 33

3.2 DSL DEVELOPMENT METHODOLOGY ... 35

3.2.1 Analysis... 36

3.2.2 Implementation ... 36

3.2.3 Test ... 37

3.3 CUSTOMARY ARCHITECTURE FOR MODELING ENVIRONMENTS IN MICROSOFT VISUAL STUDIO .. 37

vi

3.3.1 Microsoft DSL Tools: Worthy to Catch on? ... 39

3.4 EASYWEB GRAPHICAL DESIGNER .. 39

3.5 EASYWEB PROGRAMMING EDITOR ... 41

4 CHAPTER 4: IMPLEMENTATION .. 43

4.1 LANGUAGES .. 43

4.1.1 Domain Model for Web Applications ... 43

4.1.2 Intermediate Language ... 44

4.1.3 Modeling Language .. 45

4.1.4 Simple Example .. 46

4.2 IMPLEMENTATION OF GRAPHICAL DESIGNER ... 48

4.2.1 Domain modeling in Microsoft DSL Tools ... 48

4.2.2 Implementation of DSL+ .. 49

4.2.3 Implementation of Template Generator .. 49

4.3 IMPLEMENTATION OF PROGRAMMING EDITOR .. 51

4.4 IMPLEMENTATION OF INTERPRETER .. 53

4.4.1 Structure ... 53

4.4.2 Overview of Datatypes and Generated Codes .. 53

5 CHAPTER 5: ANALYSIS ... 55

5.1 VALIDATION ... 55

5.2 EVALUATION METHOD ... 56

5.2.1 Using as a Requirement Engineering tool .. 56

5.2.2 Computational Model ... 56

5.2.3 Technological Model Independency ... 56

5.2.4 Graphical Designer .. 57

5.2.5 Quality of Generated Codes ... 57

6 CHAPTER 6: CASE STUDY: COURSE MANAGEMENT SYSTEM 59

6.1 BRIEF DESCRIPTION OF SYSTEM REQUIREMENTS ... 59

6.2 DESIGNING .. 60

6.2.1 Designing with Programming Editor ... 60

6.2.2 Designing with Graphical Designer ... 64

7 CHAPTER 7: CONCLUSION ... 69

7.1 SUMMARY OF CONTRIBUTIONS ... 69

7.2 FUTURE WORKS .. 69

BIBLIOGRAPHY .. 71

APPENDIX A ... 75

APPENDIX B .. 87

vii

INDEX OF FIGURES

FIGURE 1. ROLES FOR DEVELOPING WEB APPLICATION USING EASYWEB.. 3

FIGURE 2. ROADMAP FOR DEVELOPING IN EASYWEB ... 4

FIGURE 3. DIFFERENT WAYS OF SYNCHRONIZATION OF CODE AND MODEL (BROWN 2004) 9

FIGURE 4. SEQUENCE OF MDD (H. N. PHAM 2007).. 11

FIGURE 5. PROCESS MODEL OF MDA (BROWN 2004) ... 13

FIGURE 6. SOFTWARE FACTORY (GREENFIELD 2007) ... 15

FIGURE 7. REUSABILITY OF SOFTWARE FACTORY (GREENFIELD 2007) .. 17

FIGURE 8. MODEL MIGRATION (KOVARI 2004) .. 19

FIGURE 9. A MICROSOFT VISUAL STUDIO GRAPHICAL DESIGNER, BUILT BY DSL TOOLS 23

FIGURE 10. WHERE MICROSOFT DSL TOOLS SEAT.. 24

FIGURE 11. MICROSOFT VISUAL STUDIO MODELING PLATFORM .. 25

FIGURE 12. TEMPLATE BASED CODE GENERATION ... 25

FIGURE 13. ILLUSTRATION DIAGRAM FOR ROADMAP ... 26

FIGURE 14. ANDROMDA ARCHITECTURE (BHATIA 2006) ... 27

FIGURE 15. WEBRB: BLOCKS AND WIRES (J. RAYFIELD 2007) .. 28

FIGURE 16. WEBLANG: WEBAPPLICATION DEVELOPMENT IDE (C. PETITPIERRE 2006) 29

FIGURE 17. HOW WEBLANG MAPPED J2EE COMPONENTS (C. PETITPIERRE 2006) 30

FIGURE 18. WEBLANG CODEGEN (O. BUCHWALDER 2006) ... 30

FIGURE 19. SCOPE OF EASYWEB ... 34

FIGURE 20. EASYWEB DETAIL REQUIREMENTS .. 35

FIGURE 21. CUSTOMARY ARCHITECTURE OF MICROSOFT DSL TOOLS ... 38

FIGURE 22. EASYWEB GRAPHICAL DESIGNER ARCHITECTURE ... 41

FIGURE 23. CONCEPTUAL DIAGRAM FOR LANGUAGES USED IN EASYWEB ... 44

FIGURE 24. A SIMPLE WEB APPLICATION ... 46

FIGURE 25. ABSTRACT MODEL OF SIMPLE EXAMPLE .. 47

FIGURE 26. SYSTEM MODEL IN PROGRAMMING EDITOR FOR A SIMPLE EXAMPLE 47

FIGURE 27. INTERMEDIATE CODE FOR SIMPLE EXAMPLE .. 48

FIGURE 28. DOMAIN MODELING IN MICROSOFT DSL TOOLS FOR EASYWEB ... 49

FIGURE 29. A DIALOG FOR SELECTING A .TT FILE TO GENERATE TEMPLATE INSIDE.................................... 50

FIGURE 30. CHOOSING MODE FOR GENERATING TEMPLATE ... 50

FIGURE 31. EASYWEB GRAPHICAL DESIGNER .. 51

FIGURE 32. DEFINITION OF APPLICATION THAT IT CONSISTS OF DATABASES AND WEBPAGES 52

FIGURE 33. METHODS GENERATED FOR MODULE APPLICATION IN CODEGEN ... 52

FIGURE 34. MDD SAVING AND BENEFITS (SIEGEL 2005) ... 56

FIGURE 35. COURSE MANAGEMENT SCENARIO ... 59

FIGURE 36. DATABASE DESIGN IN PROGRAMMING EDITOR .. 60

viii

FIGURE 37. WEBPAGE DESIGN IN PROGRAMMING EDITOR .. 61

FIGURE 38. SKELETON OF BUSINESS LOGIC IN PROGRAMMING EDITOR .. 62

FIGURE 39. DEFINING OPERATIONS IN PROGRAMMING EDITOR .. 63

FIGURE 40. DEFINING INITIALIZATION IN PROGRAMMING EDITOR .. 63

FIGURE 41. DESIGNING OUTPUT IN PROGRAMMING EDITOR .. 64

FIGURE 42. SPECIFYING THE APPLICATION NAME AND THE SERVER ... 65

FIGURE 43. SPECIFYING TABLES IN GRAPHICAL EDITOR ... 65

FIGURE 44. DEFINING WEBPAGES IN GRAPHICAL DESIGNER .. 66

FIGURE 45. SKELETON OF BUSINESS LOGIC DESIGN IN GRAPHICAL DESIGNER ... 66

FIGURE 46. DESIGN GETLIST OPERATION .. 67

FIGURE 47. INITIALIZATION OF COURSEPAGE: COURSEPAGEINI ... 68

FIGURE 48. CREATING THE PROJECT .. 76

FIGURE 49. SELECTING DOMAIN SPECIFIC LANGUAGE OPTIONS ... 77

FIGURE 50. DEFINING NEW MODEL FILE TYPE ... 77

FIGURE 51. SPECIFY PRODUCT DETAILS.. 78

FIGURE 52. DESIGNER DIAGRAM (JAMES 2007) .. 78

FIGURE 53. CUSTOM DESIGNER (JAMES 2007) .. 79

FIGURE 54. A COMPLICATED CONNECTED DIAGRAM (JAMES 2007) ... 85

ix

INDEX OF TABLES

TABLE 1. KEYWORDS IN INTERMEDIATE LANGUAGE .. 44

TABLE 2. KEYWORDS OF MODELING LANGUAGE .. 45

x

1

Chapter 1

1 Introduction

As Web applications grow in size, the size of development projects grows as well, and it

becomes more and more critical to support modular application design and parallel

development. The challenge lies in meeting a few unique requirements.

The most important requirement to be met is that the solution supports the appropriate

division of the development effort into smaller and different kinds of tasks that can be

performed by various kinds of developers, such as architects, screen designers, and

business logic programmers. It must then support the efficient integration of the many

outputs from these different tasks. There must also be a cost-effective method of unit

and integration testing if we are to maximize the parallel progress of the tasks that are

inherently dependent upon one other.

Most of the technology is here to implement systems that exploit the web paradigm, but

the effective design of Web applications is still a concern. The complexity and

requirements on web applications are constantly growing, while the supporting

technologies and platforms rapidly evolve.

Web applications are quite common now, though the development and specially

requirement analysis phase of them are still a big challenge. Such a situation is

attributable to the flood of technologies and lack of standards.

At the time, most of web application developers and companies involved in this

industry need some facilities to rapid prototyping and tools for easy design web

application not only in case of interface but also for developing a web applications with

all links, operations in a speedy architectural design, actually considering amount of

strong tools in interface deign for web applications the point of interface is doesn’t

matter for developers specially when they want to make a prototype and deliver it to

customer as soon as possible.

In this work I have tried to present a tool for developing the first draft web application

or prototype which can be used by persons who has basic knowledge about web

applications and how they can be developed. In this case if we can find a person with

this amount of knowledge in the customer side which is not really far from of

imagination, the tool can be counted as a user development environment which is

important in the recent aspects of software engineering to find the requirements as better

as possible.

2

EasyWeb, the tool that I am going to release can help .Net developers to make their own

web application just with architecture design which is possible in graphical user friendly

designer or programming editor with the user assist abilities. In this work I have tried

and make much more efforts on simplicity to generate web application easily and

rapidly with architectural design.

1.1 Problem Statement

When you are using .Net environment to develop web applications, you have a very

strong IDE to design your web pages and coding inside with another strong

programming language (ASP.Net), but actually which is needed for rapid first draft

development and also needed for designing web application is an environment that you

can have an architectural design and then generate the application.

.Net Environment with a lot of facilities and components needs an expert programmer

to use and develop applications but unfortunately we can see the opposite in reality that

most of time designers know the basics but they are not expert in programming.

Therefore EasyWeb has been developed for designers to design the system architecture

and then they can generate executable end user application, however this one is not

deliverable to market but it can show the functionality and structure.

1.2 Goals

EasyWeb as a tool for developing web application has been goaled for developing first draft

web application coded in ASP.Net and not goaled for developing ready market application or

interface design because as we have described in pervious section we have already strong tools

and IDE such as .Net to do these kinds of stuffs.

To sum up the goals for EasyWeb tool is speeding up the following items in the web application
development life cycle:

• Developing the first draft of web applications

• Clarifying the architecture

• Justification the operations

This Tool has to be made developer friendly environment for rapid development however it

doesn’t need to consider about the interface design.

The scenario has been designed for developing web applications using this tool for requirement

engineering and especially for prototyping then using .Net IDE for release the market ready

version of end application. Figure 1 shows this life cycle or scenario which is proposed for
developing web applications, for the first draft, designer uses EasyWeb for simple architectural
design which can generate executable code for web application, this version is also useful for

clarifying the architecture.

1.3 Brief Description

As far as we said in pervious sections, I’m going to have a tool for simplification of web

application development in .Net with architectural design. EasyWeb as my tool and which I will

3

propose in this work tries to provide a graphical designer and also a programming environment
with user assistance ability for developing these kinds of application.

Figure 1. Roles for developing web application using EasyWeb

1.3.1 Roadmap of Work

Figure 2 tries to show the roadmap of this work for developing EasyWeb. In this work

we have described a language consists of datatypes and their properties for describing a

web application and using this language developer can model their systems in two

different environments:

• A Graphical Designer: meta developer (in this case I am) using the Microsoft

DSL tools defined a language which is used for modeling systems and run the

Microsoft DSL Tools, then the result was a Microsoft VS Designer for

developing web applications, this environment has some drag and drop facilities

for describing entities of mentioned application and also it has some wizards for

determining properties of these entities. In designer tool I have tried to make

some facilities for simplification of properties determination.

• A Programming Editor: EasyWeb has also a programming completion-enabled

editor for modeling systems with programming. In this case I have used a tool

developed in LTI
1
 to define the different language (but with the same concepts

of pervious one) in graphical editor and also produced an editor. Designers can

model their systems in this editor simply and then after compilation, it will be

transformed to language designed in Microsoft DSL Tools.

So both graphical and programmed model produced by designer should be transformed

to a machine enabled language and then Code Gen will be used for generating

executable codes for end application. EasyWeb Code Gen read the machine enabled

program and then generate .aspx and .cs files, which are executable and then it is also

possible to change in Microsoft .Net Environment.

1
 Lab. Teleinformatique located at Department of Computer and Communication Sciences, EPFL,

Switzerland and where WebLang has been also developed. You can find its web site on ltiwww.epfl.ch

4

Figure 2. Roadmap for Developing in EasyWeb

1.3.2 Limitations

As far as I have to use Microsoft DSL Tools and WebLang CodeGen tool I will face to

some limitations that these tools force:

• Microsoft DSL Tools: Microsoft DSL Tools are designed to develop product line

and not executable end application and actually for developing end application.

We also need some properties which should be advised and manage by some

wizard to make their specification more easily than just entering some

properties. But architecture of these tools however allows defining properties but

it’s hard to generate some wizard for getting data.

• WebLang CodeGen: WebLang doesn’t allow us to generate graphical designer so

to generate this kind of designer for who think it’s easier, we should use

Microsoft DSL Tools however I believe programming environments are much

easier and more efficient.

1.4 Thesis Outlines

The rest of the report has been organized as follows:

• Chapter 2, Background: It gives the reader brief explanation of Model Driven

Development and its approaches, and then it explains the much more details in

Software Factory as a used concept in EasyWeb. It also has a introduction on

Microsoft DSL Tools and WebLang as tools that I have used in this work.

• Chapter 3, Methods: This chapter presents the usecases and design of EasyWeb,

it also covers the architecture of this tool.

• Chapter 4, Implementation: All Design methods need implementation to create
the tool, this chapter is specified for explaining my implementation and how I

have actually created EasyWeb.

5

• Chapter 5, Analysis: Firstly, it discusses about how our roadmap and activities to
achieve a Domain Specific Language is valid, and then it covers the evaluation

of EasyWeb and its compression to other tools in this area.

• Chapter 6, Case Study: This chapter explains a simple web application has been
developed with EasyWeb. Chapter can also be used as a tutorial of EasyWeb.

• Chapter 7, Conclusion: This chapter sums up the all I have achieved in this
project and also it clarifies directions have been opened in my works.

• Some Appendices: During the report we have pointed to some information that it
can be read only as a reference so I have put them at the end of the report.

Please consider that references are presented in Chicago Style. Therefore the name of

author and year inside of the parentheses mean a reference which can be found in

biography part of report.

6

7

Chapter 2

2 Background

This chapter covers the theory of Model Driven Development (MDD) that readers need

to know for understanding my work. In following sections, we will have an overview on

Model Driven Development and its strategies; Model Driven Architecture and Software

Factory, then we will focus on Domain Specific Language, its Microsoft DSL Tools and

we will also explain WebLang.

2.1 Model Driven Development (MDD)

In recent years many organizations have begun to focus attention on Model Driven

Development (MDD) as an approach to application design and implementation. This is

a very positive development for several reasons. This approach encourages efficient use

of system models in the software development process, and it supports reuse of best

practices when creating families of systems.

As Pham said, “Since the introduction of high-level programming languages like C,

C++ and Java, software developers have seen a big breakthrough in productivity.

Instead of having to construct their applications from primitives like load, store and

jump, developers are able to express their logic using higher and more natural

programming constructs like loops, conditionals, etc., and then call upon a compiler to

generate (virtual) machine-level code. Also, using these languages, the task of porting

software to a new execution platform when it comes along involves only a recompile, as

opposed to a rewrite or a redesign, of the programs in the system. These benefits came

from the basic idea that, by raising the abstraction level of the language used by

developers, and by automating the process of transforming code from the raised

abstraction level to the target (lower) abstraction level, productivity in both software

development and maintenance can be significantly improved” (H. N. Pham 2007).

MDD is a software engineering methodology with particular focus on models,

automation and code generation. The difference to traditional software development is

that MDD proposes to leverage models to generate the specified software system. Two

currently dominant approaches to MDD are Model-Driven Architecture (MDA) (J.

Mukerji 2003) and Software Factories (SF) (J. Greenfield 2004).

The concept of model-driven development (MDD) is really starting to catch on because

of its promise to increase the productivity of those charged with the task of developing

and maintaining application systems. But what exactly is MDD?

8

MDD is a development practice where high-level, agile, and iterative software models

are created and evolved as software design and implementation takes place. The key

defining characteristic of MDD is that the model literally becomes part of the

development process. Contrast this with an approach such as the waterfall development

process where modeling appears as a separate step in the process and tends to get left

behind once the development proceeds to the next phase (Schwaderer 2006).

Models are used to specify software systems, but unfortunately these models mostly

serve only for the purpose of documentation and comprehending the system. Changing

this fact by using these existent models to generate the application, software

development can easily be automated. By automatic code generation, the quality of an

application can be increased, due to the fact that code is produced according to a certain

structure, scheme or rules. In this way the generated code will precisely match the

models. Further on this road the evolution could lead to the fact that modeling

languages replace the implementation languages, just like the way third-generation

languages replaced the assembly languages through the introduction of compilers

(Demir 07).

2.1.1 Modeling Rationale and MDD

Referring to oxford dictionary;” Model is a simplified mathematical description of a

system or process, used to assist calculations and predictions” and Fishery Glossary

says “Models help to show relationships between processes (physical, economic or

social) and may be used to predict the effects of changes in land use” and it also defines

Modeling as “The construction of physical, conceptual or mathematical simulations of

the real world”.

The concept of the model and the modeling in the IT area is focusing. In this field a

model represents a part of reality (target) which was specified by a modeling view and

described by modeling facilities in order to the purposes for recognition, understanding,

and manipulation of the target.

A model is a form of abstraction that allows real-world entities to be represented in a

simplified manner, so that they can be dealt with in safer, cheaper and easier ways

(Rothenberg 1989).

Finally, by IBM definition; Models provide abstractions of a physical system that allow

engineers to reason about that system by ignoring extraneous details while focusing on

relevant ones. All forms of engineering rely on models to understand complex, real-

world systems. Models are used in many ways: to predict system qualities, reason about

specific properties when aspects of the system are changed, and communicate key

system characteristics to various stakeholders. The models may be developed as a

precursor to implementing the physical system, or they may be derived from an existing

system or a system in development as an aid to understanding its behavior (Brown

2004).

In the software engineering world, modeling has a rich tradition of programming. The

most recent innovations have focused on notations and tools that allow users to express

system perspectives of value to software architects and developers in ways that are

readily mapped into the programming language code that can be compiled for a

particular operating system platform. The current state of this practice employs the

9

Unified Modeling Language (UML) as the primary modeling notation. The UML

allows development teams to capture a variety of important characteristics of a system

in corresponding models. Transformations among these models are primarily manual.

UML modeling tools typically support requirements traceability and dependency

relationships among modeling elements, with supporting documents and

complementary consulting offerings providing best practice guidance on how to

maintain synchronized models as part of a large-scale development effort (Brown

2004).

Figure 3. Different ways of synchronization of code and model (Brown 2004)

Code Only: Today, a majority of software developers still take this approach and do not

use separately defined models at all. They rely almost entirely on the code they write,

and they express their model of the system they are building directly in a third-

generation programming language such as Java, C++, or C# within an Integrated

Development Environment (IDE) such as Visual Studio .Net. Any "modeling" they do

is in the form of programming abstractions embedded in the code (e.g., packages,

modules, interfaces, etc.), which are managed through mechanisms such as program

libraries and object hierarchies. Any separate modeling of architectural designs is

informal and intuitive, and lives on whiteboards, in PowerPoint slides, or in the

developers' heads. While this approach may be adequate for individuals and very small

teams, it makes it difficult to understand key characteristics of the system among the

details of the implementation of the business logic. Furthermore, it becomes much more

difficult to manage the evolution of these solutions as their scale and complexity

increases, as the system evolves over time, or when the original members of the design

team are not directly accessible to the team maintaining the system (Brown 2004).

Code Visualization: As developers create or analyze an application, they often want to

visualize the code through some graphical notation that aids their understanding of the

code's structure or behavior. It may also be possible to manipulate the graphical notation

as an alternative to editing the text-based code, so that the visual rendering becomes a

direct representation of the code. Such rendering is sometimes called a code model, or

an implementation model (although many feel it is appropriate to call these artifacts

"diagrams" and reserve the use of "model" for higher levels of abstraction). In tools that

allow such diagrams (e.g., IBM WebSphere Studio and Borland Together/J), the code

view and the model view can be displayed simultaneously; as the developer manipulates

either view, the other is immediately synchronized with it. In this approach, the

10

diagrams are tightly coupled representations of the code and provide an alternative way

to view and possibly edit at the code level (Brown 2004).

Roundtrip Engineering (RTE): This approach is a functionality of software development

tools that provides generation of models from source code and generation of source

code from models; this way, existing source code can be converted into a model, be

subjected to software engineering methods and then be converted back. Round-trip

engineering encompasses two engineering practices, forward engineering and reverse

engineering. And what are these? In short, they are terms that represent a relationship

between diagrams and code. The idea of Roundtrip Engineering is closely related to

reverse engineering. Reverse engineering can be defined as the process of

reconstructing the design of a product from the product itself. Assume that there is a

reverse engineering procedure that is always able to give the design of a given product.

Now assume that there is a procedure that will always generate the product from a given

design. If a design is reverse engineered from a product, used to generate a product and

the generated product is identical to the original product then this is a roundtrip

engineering system (A. Henriksson 2003).

Model Centric: In this approach, the system models have sufficient detail to enable the

generation of a full system implementation from the models themselves. To achieve

this, the models may include, for example, representations of the persistent and non-

persistent data, business logic, and presentation elements. If there is any integration with

legacy data and services, the interfaces to those elements may also need to be modeled.

The code generation process may then apply a series of patterns to transform the models

to code, frequently allowing the developer some choice in the patterns that are applied

(e.g., among various deployment topologies). This approach frequently makes use of

standard or proprietary application frameworks and runtime services that ease the code

generation task by constraining the styles of applications that can be generated. Hence,

tools using this approach typically specialize in the generation of particular styles of

applications (e.g., IBM Rational Rose Technical Developer for real-time embedded

systems and IBM Rational Rapid developer for enterprise IT systems). However, in all

cases the models are the primary artifact created and manipulated by developers (Brown

2004).

A model-only: In this approach developers use models purely as aids to understanding

the business or solution domain, or for analyzing the architecture of a proposed solution.

Models are frequently used as the basis for discussion, communication, and analysis

among teams within a single organization, or across multi-organizational projects.

These models frequently appear in proposals for new work, or adorn the walls of offices

and cubes in software labs as a way to promote understanding of some complex domain

of interest, and to establish a shared vocabulary and set of concepts among disparate

teams. In practice, the implementation of a system, whether from scratch or as an update

to an existing solution, may be disconnected from the models. An interesting example

of this is the growing number of organizations that outsource implementation and

maintenance of their systems while maintaining control of the overall enterprise

architecture (Brown 2004).

There is a significant question, which explores that which of these approaches is

adapted by MDD; unfortunately none there isn’t an exact answer, it could be some

11

things same as Model Centric approach but it should generate code directly and

automatically from a visualized model.

What exactly do you mean by "visualize" a model? It's basically to graphically represent

code syntax and code concepts or domain concepts and structures. A picture is worth a

thousand words. It's much better to see a UML diagram with a bunch of boxes with

lines connecting them than to try and read through source code. Domain visualization is

basically going beyond the code to model more abstract concepts, such as 'what is a

customer,' 'what is a purchase order' and 'what is an address.' The idea is to come up

with a domain-specific language. This is a specialized notation that enables you to have

the business analyst communicate in a very intuitive fashion. For instance, you wouldn't

use UML to prove a calculus theorem; you would use the domain-specific language of

calculus.

The model should be platform independent, which basically decouples you from

underlying technology and buffers you from changes in the technology. And it allows

you to redeploy on different technology, like the ability to deploy onto Java or .Net.

Then you bind that platform independent representation to a specific technology and

you create a platform-specific model such as .Net.

From a MDA perspective, it all is about creating usable models that allow you to know

about your code assets because it's very easy to inventory and visualize them. And then

you can extend those assets through creating inheritance and derived models.

Model-Driven Development is a software engineering approach that aims to push this

idea one step further. It proposes a software development methodology in which

software is developed not by writing code directly in implementation languages, but by

constructing high level models that can be transformed into code by automated

transformation engines and code generators, as illustrated in Figure 3 below (H. N.

Pham 2007).

Figure 4. Sequence of MDD (H. N. Pham 2007)

As you can see in the diagram, firstly, we have to figure out a model from our system

which should be visualized by business analysis and then generate the program which

will be compiled and produce the machine executable code.

2.1.1.1 Benefits of MDD

Following the concept of high level programming languages; we can point on three

benefits of MDD (H. N. Pham 2007):

• Easier software specification, understanding, and development: high-level

modeling concepts, as compared to those found in implementation languages,

are much closer to the real concepts in the problem domain, so we could have

much easier development.

12

• The ability to generate any where: since the concepts used in the models are less
bound to the underlying implementation technology, software is less susceptible

to technological change. This makes software maintenance easier and more

economical.

• Reusable: since expert implementation knowledge is encoded into the

transformer, it can easily be reused and shared between different projects and

teams, increasing both the productivity and quality of software development.

2.1.1.2 MDD’s Approaches

Two MDD’s approaches are the Model Driven Architecture (MDA) by the Object

Management Group (OMG), and the Software Factories framework (SF) by Microsoft

Corporation. Both of these methodologies call for the treatment of models as the

primary artifacts – as opposed to an overhead that consumes development resources – in

the software development process. They differ however, on how general (or specific)

those artifacts should be, and how they are to be transformed to produce the actual

implementation of the system (H. N. Pham 2007).

MDA proposes to apply the Unified-Modeling Language (UML). Due to aspects like

platform independence and reusability, the software system is supposed to be modeled

in three major steps, described further down. SF, as proposed by Microsoft, is an entire

software development paradigm, which makes use of Domain Specific Modeling

(DSM) (DSM Publication 2007).

2.2 Model Driven Architecture (MDA)

Referring the idea that models are vital and necessary to handle complexity in software

development, Model-Driven Architecture (MDA) specifies a process for creating

models.

As Brown Said “There are many views and opinions about what MDA is and is not.

However, the most authoritative view is provided by the Object Management Group

(OMG). Why does the OMG's view of MDA matter so greatly? As an emerging

architectural standard, MDA falls into a long tradition of OMG support and codification

of numerous computing standards over the past two decades. The OMG has been

responsible for the development of some of the industry's best-known and most

influential standards for system specification and interoperation, including the Common

Object Request Broker Architecture (CORBA), OMG Interface Definition Language

(IDL), Internet Inter-ORB Protocol (IIOP), Unified Modeling Language (UML), Meta

Object Facility (MOF), XML Metadata Interchange (XMI), Common Warehouse Model

(CWM), and Object Management Architecture (OMA). In addition, OMG has enhanced

these specifications to support specific industries such as healthcare, manufacturing,

telecommunications, and others (Brown 2004).”

As a glance on Processes of MDA in Figure 5 we can understand that three principles

underlie the OMG's view of MDA (Brown 2004):

• Computation Independent Model (CIM): Models expressed in a well-defined

notation are a cornerstone to understanding systems for enterprise-scale

solutions.

13

• Platform Independent Model (PIM): The building of systems can be organized

around a set of models by imposing a series of transformations between models,

organized into an architectural framework of layers and transformations.

• Platform Specific Model (PSM): A formal underpinning for describing models in

a set of meta-models facilitates meaningful integration and transformation

among models, and is the basis for automation through tools.

Figure 5. Process Model of MDA (Brown 2004)

Three ideas are important here with regard to the abstract nature of a model and the

detailed implementation it represents (Brown 2004):

• Model classification: We can classify software and system models in terms of

how explicitly they represent aspects of the platforms being targeted. In all

software and system development there are important constraints implied by the

choice of languages, hardware, network topology, communications protocols

and infrastructure, and so on. Each of these can be considered elements of a

solution "platform." An MDA approach helps us to focus on what is essential to

the business aspects of a solution being designed, separate from the details of

that "platform."

• Platform independence: The notion of a "platform" is rather complex and highly
context dependent. For example, in some situations the platform may be the

operating system and associated utilities; in some situations it may be a

technology infrastructure represented by a well-defined programming model

such as J2EE or .Net; in other situations it is a particular instance of a hardware

topology. In any case, it is more important to think in terms of what models at

different levels of abstraction are used for what different purposes, rather than to

be distracted with defining the "platform."

• Model transformation and refinement: By thinking of software and system

development as a set of model refinements, the transformations between models

become first class elements of the development process. This is important

because a great deal of work takes places in defining these transformations,

14

often requiring specialized knowledge of the business domain, the technologies

being used for implementation, or both. We can improve the efficiency and

quality of systems by capturing these transformations explicitly and reusing

them consistently across solutions. If the different abstract models are well-

defined, we can use standard transformations. For example, between design

models expressed in UML and implementations in J2EE, we can, in many cases,

use well-understood UML-to-J2EE transformation patterns that can be

consistently applied, validated, and automated.

2.3 Software Factory

Increasingly complex and rapidly changing requirements and technologies are making

development increasingly difficult. Promising advances have been made, however, in

component based and model driven architecture, software architecture, aspect oriented

programming, and requirements, process and software product line engineering. We

will present Software Factories, a paradigm for automating software development that

integrates these advances to increase agility, productivity, and predictability across the

software life cycle. We will show a worked example of a software factory and perform

small group exercises that help participants explore this approach. Participants will

learn about the software factory schema, a graph of viewpoints used to separate

concerns, relating work done at one level of abstraction, in one part of a system, or in

one phase of the life cycle, to work done at other levels, or in other parts and phases,

and about how the schema can be used to deliver guidance and to support its enactment

through model transformation, constraint checking and other techniques. We will also

describe the software factory life cycle and show how software factories can be

specialized and composed. Finally, we will discuss software supply chains and show

how Software Factories compose across organizational boundaries.

Microsoft introduces Software Factories (SF) as a new software development paradigm.

SF primarily focuses on product Line Development, which copes with developing a set

of similar but distinct products. In this context SF relies heavily on models and

automation, which are basic concerns of MDD. This paper will focus on the MDD

concerned aspects of SF (Demir 07).

A Software Factory is a Software Product Line that configures extensible tools,

processes, and content using a software factory template based in a software factory

schema to automate the development and maintenance of variants of an archetypical

product by adapting, assembling, and configuring framework based components [3].

A Software Factory has two central elements, a Software Factory Schema and a

Software Factory Template. A SF Schema defines, categorizes and summarizes the

artifacts and assets required to build a software product line. It can be seen as a recipe

listing ingredients, tools and the application process. A SF Template is based on the SF

Schema and represents the implementation of the SF Schema that means that all defined

assets and artifacts have to be built and made available. The implementation comprises

among others developing DSLs. The SF Template can be seen as a bag of groceries

containing the ingredients listed in the recipe (SF Schema) (Demir 07).

15

2.3.1.1 Software Factory Schema (Greenfield 2007)

A software factory schema is a document that categorizes and summarizes the artifacts

used to build and maintain a system, such as XML documents, models, configuration

files, build scripts, source code files, SQL files, localization files, deployment manifests

and test case definitions, in an orderly way, and that defines relationships between them,

so that we can maintain consistency among them.

A software factory schema is represented as a directed graph whose nodes are

viewpoints and whose edges are computable relationships between viewpoints called

mappings. This allows nodes that would not be adjacent in a grid representation to be

related. Also, it relaxes the artificial constraint imposed by a grid that the viewpoints

must fit into neat classification schemes, creating rows and columns. Finally, and most

importantly, it allows the schema to reflect the software architecture. So, for example, a

schema for a family of business applications might contain several clusters of

viewpoints, one for each subsystem like customer management, catalog management, or

order fulfillment. The viewpoints in each cluster might then be further grouped into

subsets reflecting the layered architecture of each subsystem, as illustrated in Figure 6.

Figure 6. Software Factory (Greenfield 2007)

A software factory schema describes the artifacts that comprise a software product, just

as an XML schema describes the elements and attributes that comprise a document, and

a database schema describes the rows and columns that comprise a database. Like an

Architectural Description Standard (ADS), a software factory schema is a template for

describing the members of a software product family. Despite this similarity, however,

there are several major differences between a software factory schema and ADS:

While an ADS deals only with architecture, a software factory schema deals with many

other aspects of a software product family, such as requirements, executables, source

code, test harnesses and deployment artifacts. While an ADS organizes design

documentation, a software factory schema organizes development artifacts.

While an AD implies a software product family, it does not explicitly identify one, or

incorporate mechanisms to support family based development, such as a way to express

how the members of the family differ from a family archetype. A software factory

16

schema, on the other hand, targets a specific software product family and can be

instantiated and customized to describe a specific family member in terms of its

differences from the family archetype.

While an ADS does not necessarily support automation, a software factory schema can

be implemented by a software factory template to automate software development tasks,

as we shall see shortly.

Of course, the essential property of a software factory schema is that it provides a multi

dimensional separation of concerns based on various aspects of the artifacts being

organized, such as their level of abstraction, position within architecture, functionality

or operational qualities. According to Coplien (Coplien 1999):

We can analyze the application domain using principles of commonality and variation

to divide it into sub domains, each of which may be suitable for design under a specific

paradigm.

We can now see the grid as a two dimensional projection of the graph that plots one or

more aspects on the horizontal axis and different levels of abstraction on the vertical

axis. Another two-dimensional projection is an aspect plane, which projects related

viewpoints onto part of the product architecture, providing a consolidated view from

that viewpoint. Examples of aspects planes include logical data, security policy and

transaction planes.

A software factory schema essentially defines a recipe for building members of a

software product family. Clearly, the viewpoints describe the ingredients and the tools

used to prepare them, but where is the process of preparing them described? Recall that

a process framework is constructed by attaching a micro process to each viewpoint,

describing the development of conforming views, and by defining constraints like

preconditions that must be satisfied before a view is produced, post conditions that must

be satisfied after it is produced, and invariants that must hold when the views have

stabilized. This framework defines the space of possible processes that could emerge,

depending on the needs and circumstances of a given project. Clearly, there is a

resemblance between a process framework and a software factory schema. The

viewpoints of a software factory schema already define micro processes for producing

the artifacts they describe. Adding constraints to a software factory schema to govern

the order of execution makes it a process framework, as well. We now have a recipe for

the members of a product family. It defines the ingredients, the tools used to prepare

them and the process of preparing them.

2.3.2 Software Factory Templates (Greenfield 2007)

As Greenfield said “If all we have is the software factory schema, then we can describe

the assets used to build family members, but we do not actually have the assets. Before

we can build any family members, we must implement the software factory schema,

defining the DSLs, patterns, frameworks and tools it describes, packaging them, and

making them available to product developers. Collectively, these assets form a software

factory template.

A software factory template includes code and metadata that can be loaded into

extensible tools, like an Interactive Development Environment (IDE), or an enterprise

life cycle tool suite, to automate the development and maintenance of family members.

17

We call it a software factory template because it configures the tools to produce a

specific type of software, just as a document template loaded into a tool like Microsoft

Word or Excel configures it to produce of a specific type of document.”

2.3.3 Systematic Reuse (Greenfield 2007)

One of the most important innovations in software development is defining a family of

software products, whose members vary, while sharing many common features. A

family provides a context in which problems common to the family members can be

solved collectively. This enables a more systematic approach to reuse, by letting us

identify and differentiate between features that remain more or less constant over

multiple products and those that vary. A software product family may consist of either

components or whole products.

Software product lines exploit product families, identifying common the features and

recurring forms of variation in specific domains to make the production of family

members faster, cheaper, and less risky. Products developed as family members reuse

requirements, architectures, frameworks, components, tests and many other assets.

Figure 7 describes the key tasks performed and artifacts produced and consumed in a

product line. Product line developers build production assets applied by product

developers to produce family members in much the same way that platform developers

build device drivers and operating systems used by application developers. A key step

in developing the production assets is to produce one or more domain models that

describe the common features of problems in domains addressed by the product line,

and the recurring forms of variation. These models collectively define the scope of the

product line, are used to qualify prospective family members. Requirements for family

members are derived from them, providing a way to map variations in requirements to

variations in architecture, implementation, executables, development process, project

environment, and many other parts of the software life cycle.

Figure 7. Reusability of Software Factory (Greenfield 2007)

2.4 Domain Specific Modeling and Language (DSM & DSL)

We are not interested in using the general purposed languages (GPL) (Garwick 1968)

because, GPLs, compared with DSLs, use a vocabulary that is simple and basic enough

18

to describe any domain without the specifics. The same level of expression and

understanding of a domain is possible using GPLs, but the expected level of knowledge

regarding the domain and the general language is considerably higher compared to a

DSL approach. A major advantage of a DSL is that it requires significantly less time to

understand and to communicate details of a domain. It also requires less time to learn to

use the pertinent tooling (Kovari 2004).

For example, business applications are often implemented using complex software

solutions, but most of the solutions use the same building blocks (patterns) to deliver

business functions. A DSL enables you to abstract the software solution and hide the

implementation details. A DSL can also use the vocabulary from the business domain

and provide the translation for the IT domain.

We are also not interested in models rendered by hand on white boards, or on note pads.

We are interested in models that can be processed by tools, and we propose to use them

in the same way that we currently use source code. Models used in this way cannot be

written in languages designed for documentation. They must be precise and

unambiguous. In order to raise the level of abstraction, a modeling language must

therefore target a narrower domain than a general purpose programming language. We

find that the Unified Modeling Language (UML), in particular, is suitable for sketching,

but not for the capture of high fidelity metadata used to generate models, code and other

software development artifacts. A detailed discussion of the issues around using UML

as language for MDD is beyond the scope of this article, but Cook provides a cogent

analysis, and Fowler adds several insights on his blog page.

A language that meets these criteria is called a Domain Specific Language (DSL),

because it models concepts found in a specific domain. A DSL is defined with much

greater rigor than a general purpose modeling language. Like a programming language,

it may have either textual or graphical notation.

A core principle of the SF approach is to enable a high degree of reuse of existing assets

and development of new reusable assets. The development of a specific member of a

product family comprises reusing existing assets and developing variable assets for that

specific member. The SF approach uses the concept of Domain-Specific Modeling

(DSM), which utilizes Domain-Specific Languages (DSLs) for modeling (Demir 07).

2.4.1 Basic Concepts

In the scope of engineering we have two approaches:

Generic approach: providing the general solution for many problems in a certain area

(A. V. Deursen 2000).

Specific approach: searching for specific solutions in smaller area (A. V. Deursen

2000).

It’s clear that when we want to be more general we should cover much more points,

instances, cases and even exceptions so absolutely our solution is hard to be optimal but

when we are in specific concept we can be more optimal than the pervious approach.

Currently, we can have three approaches in solving problems in a well-defined

application domain:

19

Subroutine libraries contain subroutines that perform related tasks in well-defined

domains like, for instance, differential equations, graphics, user-interfaces and

databases. The subroutine library is the classical method for packaging reusable

domain-knowledge (A. V. Deursen 2000).

Object-oriented frameworks and component frameworks continue the idea of subroutine

libraries. Classical libraries have a flat structure, and the application invokes the library.

In object-oriented frameworks it is often the case that the framework is in control, and

invokes methods provided by the application-specific code (A. V. Deursen 2000), (R.

E. Johnson 1988), (M. E. Fayad 1997) .

Domain Specific Languages are small, usually declarative, languages that offer

expressive power focused on a particular problem domain. In many cases, DSL

programs are translated to calls to a common subroutine library and the DSL can be

viewed as a means to hide the details of that library (A. V. Deursen 2000).

2.4.2 Migration from Abstract to Real and from Meta to Instance

As you can see in Figure 8, first of all we should define a meta and abstract language to

develop a model that the language is called Domain Specific Language (DSL) and the

model is Domain Specific Model (DSM).

DSL: A domain-specific language is a programming language or executable

specification language that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a particular problem domain (A.

V. Deursen 2000).

Figure 8. Model Migration (Kovari 2004)

For advantages of DSL we can name (M. E. Fayad 1997):

• DSLs allow solutions to be expressed in the idiom and at the level of abstraction
of the problem domain. Consequently, domain experts themselves can

20

understand, validate, modify, and often even develop DSL programs (M. E.

Fayad 1997).

• DSL programs are concise, self-documenting to a large extent, and can be reused
for different purposes (D. A. Ladd 1994).

• DSLs enhance productivity, reliability, maintainability (M. E. Fayad 1997), (E. K.

A. V. Deursen 1998), (R. B. Kieburtz 1996) and portability (R. M. Herndon

1988).

• DSLs embody domain knowledge, and thus enable the conservation and reuse of
this knowledge (M. E. Fayad 1997).

• DSLs allow validation and optimization at the domain level (A. Basu 1997),
(Bruce 1998), (V. Menon 1999).

• DSLs improve testability following approaches such as (E. G. Sirer 1999).

Its disadvantages are (M. E. Fayad 1997):

• The costs of designing, implementing and maintaining a DSL.

• The costs of education for DSL users.

• The limited availability of DSLs (Krueger 1992).

• The difficulty of finding the proper scope for a DSL.

• The potential loss of efficiency when compared with hand-coded software
engineering

Modeling with DSL and UML are at the opposite ends of the spectrum, in some

respects. UML is a unified (or general) modeling language; it can support literally any

model. DSM is a domain specific modeling language. It can only support specific types

of models (M. E. Fayad 1997). Considering the concept of DSL and UML we can mark

the DSL as more practical approach than UML and absolutely when you use UML you

can reach the Model Centric Approach or maybe also roundtrip but as far as you see

DSL tries to visualize the concept with code generation including some aspects of

business logics.

DSM (Kovari 2004): In engineering sciences like IT, experts use models, diagrams, and

sketches to describe specific details of a problem or a solution. The need for visual

representation arises from the high degree of complexity surrounding the industry.

Abstraction and automation justify the need for visual modeling.

Engineers in IT work with various inputs, outputs, work products, and deliverables. One

output may become the input for another work product. Models and diagrams are often

part of or are the actual work products. The flow of information, the reuse of previous

results, and the automation of the workflow justify the use of models over simple

diagrams.

21

Figure 2 shows the most basic approach for building an application for modeling,

modeling itself, and producing various artifacts from the models in domain specific

areas.

According Figure 2, starting from the meta-model, the developer has to establish the

meta-model or language for the specific domain. Constraints can enrich the meta-model

to ensure the semantic correctness and validation of the model instances. Most of the

graphical editor can be generated from the meta-model, but other parts have to be

manually defined. A new set of constraints can be specified for the graphical editor

because the graphical representation may use different constructs for modeling than the

original meta-model. Model instances can be created and edited using the graphical

editor. These models are the results of model-driven development. Models become the

input to transformations to generate the final artifacts (code, for example).

2.5 Comparison of MDA and SF (Demir 07)

As Demir Said “The MDA solution shows that productivity can be increased by

applying the MDA approach. Certainly, the utilized tool plays an important role, but a

better productivity can be achieved particularly due to the omission of the

implementation phase. A disadvantage in this case is that the learning phase for the

MDA tool is due to its complexity and individuality very time-consuming.

Nevertheless, the modeling process can be started immediately, since the modeling

language (UML) is already provided, apart from the fact that specific UML Profiles are

needed and not granted by the MDA tool.

The SF solution shows that the SF methodology can increase productivity as well,

basically for the same reason as in the case of MDA, the implementation part is omitted.

But, before reaching this point, the expense for the SF approach is much higher, because

the DSL has to be developed first, which is time-consuming and sophisticated, and

requires expert knowledge about the problem and the solution domain. This fact delays

the start of the modeling process.

Once a DSL is created, a better efficiency can be achieved, because a DSL comprises

domain concepts and thus it is closer to the problem domain. This fact facilitates

involving business stake holders into the specification process to avoid

misinterpretation and confusion. This is an advantage for DSLs, since the

comprehension of UML models require UML experts.

Quality and reliability of a software system can be improved as well in both approaches,

particularly due to the reason that the generated code is less error prone, because of its

generation according to a scheme, rules or code-templates. Provided that the model

interpreter works properly, the generated code is more reliable than handcrafted code

that usually contains bugs, because a developer tends to make mistakes. Furthermore,

the generated applications exactly meet their specification in form of models, since they

are generated according to them.

Certainly, MDA and SF apply similar methods and techniques for modeling and

mapping, but they have distinct objectives. Due to the high expense of developing a

DSL and a code generator, the SF approach is only recommendable for developing

Product Lines, because this expense has to be compensated somehow. However, once a

DSL and the code generator are developed, the costs for generating the product line

22

members are very low due to their similarity. The overall costs of a product line

development can then be distributed on the amount of all members, which makes the SF

approach productive. Otherwise, for One-Off development, the SF approach would be

expensive in terms of time, budget and resources. MDA on the contrary can be used for

One-Off Development and Product Line development, since there is no additional

expense to compensate. Product Line development with the MDA approach would even

increase the regular expected degree of productivity, because the first model could be

reused for the other product line members.

Fact is that MDA is a pure MDD approach and focuses on platform independence,

while SF is an entire software development methodology and focuses on product line

development. UML as the standard modeling language for MDA is a general purpose

language, which has to be specialized and constrained with Profiles to be appropriate for

MDD. A DSL in contrary is supposed to be developed for a specific domain from

beginning, without specializing and constraining afterwards, in this manner DSLs can

be very efficient within that domain, but also very useless in other domains.

On the whole, both approaches have their strengths and weaknesses; none of them is

clearly in advance. Depending on the purpose they are applied for, they demonstrate

different strengths and weaknesses. An appropriate problem domain, professional

developers, a suitable tool and a precise idea of the intended products or product family,

can guarantee each approach’s benefits.”

2.6 Microsoft Visual Studio DSL Tools

Domain-Specific Language Tools allow Visual Studio 2005 developers to create their

own graphical designers and code generation tools like the ones you find in Visual

Studio today, such as the Class Designer.

You can use Domain-Specific Language Tools to generate visual designers that are

customized for your problem domain. For example, you can create a tool to describe

concepts that are specific to how your organization models business processes. If you

are building a state chart tool, you can describe what a state is, what properties a state

has, what kinds of states exist, how transitions between states are defined, and so on. A

state chart that describes the status of contracts in an insurance company is superficially

similar to a state chart that describes user interaction among pages on a Web site.

However, their underlying concepts differ significantly. By creating your own domain-

specific language and custom generated designer, you can specify exactly what state

chart concepts you need in your tool (Domain-Specific Language Tools 2007).

DSL Tools takes a graphical approach to DSL construction. When you start a new DSL

project what you are provided with is a DSL Designer that allows you to create a

“diagram editor” in the form of a generated VS Designer. This might seem confusing

because what you have is a Designer of Designer which you use to create a custom

Designer which the end user then uses to create a diagram and generate code. It begins

to make more sense when you start to make use of it, but it helps to realize that you first

use the DSL Designer to specify the type of diagram the user can create – a flow chart,

class diagram, workflow diagram – essentially any collection of boxes and arrows

subject to the rules that you specify for how they can be arranged to create a diagram

(James 2007).

23

Once you have used the DSL Designer to specify your custom designer you use the

standard templates to generate code which you then run. The generated code creates

your custom designer which you can run in VS. It has a toolbox full of the entities you

specified and you can use it to create an instance of the type of diagram you specified

(James 2007).

2.6.1 Building a Designer using Microsoft DSL Tools

The goal of this activity is developing an environment such as one shows in Figure 9, to

enable developer for modeling his/her system and then generated directly the code.

Figure 9. A Microsoft Visual Studio Graphical Designer, built by DSL Tools

As you can see, we have following parts in these kinds of modeling environments:

Toolbox: as far as you may familiar with visual environments specially .Net’s ones for

doing stuffs of modeling we may have some toolboxes which help us to develop and

represent our intention and what are in our mind.

Drawing Surface: this part takes a place for your model and then the environment

supposes that your model is entirely summarized in this place.

 Property Browser: in this part the environment shows the defined properties of selected

component in the drawing surface.

Explorer: explorer part of the environment can show and brow all components that you

have defined in the drawing surface using toolbox.

Validation: to be sure about the validity of your model this is a tool helps you to check

your model before generating codes.

24

After illustrating the goal, we can focus on the structure of Microsoft DSL Tools and

where they are located. Fist of all, at the base of structure we can see modeling platform

of VS which can generate all modeling platforms in Visual Studio, so to achieve our

desired environment we should develop our libraries on this platform. What the DSL

Tools can do for us is presenting an environment that we should use it for more high

level work than using the modeling platform for itself. Figure 10, tries to clarify this

concept.

As far as you can see in Figure 10, DSL tools are developed to produce new designer on

the .Net framework using modeling platform libraries. In this case for defining your

language with tools have been proposed in DSL and running the program we could have

such an environment.

to four libraries and one engine as follows:

Figure 10. Where Microsoft DSL tools seat.

Figure 11 presents modeling platform structure and which parts it has. In this case we

can divide this platform

Shell Framework: The Premier Partner Edition (PPE) provides a version of Visual

Studio that includes the Visual Studio IDE, the debugger, and source code control

integration. No programming languages are included. Although PPE does not include

programming languages, PPE does provide a framework that lets you add programming

languages (Microsoft 2005). This framework provides a core IDE for users to develop

their own custom programming language or development tools, so it doesn't provide

languages or compilers, or a lot of the content of Visual Studio and it will be available

in two modes, integrated and isolated (Frye 2007).

Validation Framework: These libraries can be used for applying reusable and

customizable rules to properties and methods to provide validation for your strongly

typed business objects.

25

Domain Model Framework: These libraries consist of some non-accessible classed used

for developing design surface libraries and template engine.

Design Surface Framework: These libraries use the domain model framework and build

the graphical designer specified for your language.

Figure 11. Microsoft Visual Studio Modeling Platform

Template Engine: First of all, let us to explain what a template is? The templates can

access the meta objects directly; properties of the meta objects can be used to provide

data for template evaluation as shown in the pervious illustration, and then generate

some codes. To generate the end application we should run a code like one is showed in

Figure 12, which is divided in two types of code; the first one is more standard stuffs

and the second one is model dependent stuffs. For more clear words we must call them

the constant part and the dynamic part.

Figure 12. Template Based Code Generation

To sum up the Microsoft DSL Tools, you may consider the illustration diagram in

Figure 13 which provides a high-level overview of how you can design, customize, test,

and deploy a domain-specific language. As you can see in this figure, first of all we

should define our language and with pressing the F5, you can see a graphical

environment that designer can use it to model his/her system. Then with using template

files (.tt files) you can read the model and then based on what you have read generate

codes.

26

Figure 13. Illustration Diagram for Roadmap in Microsoft DSL tools (Microsoft, Microsoft DSL Tools

2005)

For more technical things about the Microsoft DSL tools please go to Technical Tutorial

Appendix in this report.

2.7 Related Works

In this section we are going to explain some of works with the same goal as ours,

actually we want to present the tools and frameworks that they have already existed in

generating web applications.

2.7.1 AndroMDA (Bhatia 2006)

AndroMDA (pronounced "Andromeda") is an extensible generator framework that

adheres to the Model Driven Architecture (MDA) paradigm. It transforms UML models

into deployable components for your favorite platform. While AndroMDA ships with

cartridges that can generate code for several platforms and technologies, this tutorial

will focus on generating a Java application.

During development of large applications, most architects and developers already create

class diagrams and data diagrams. These diagrams are usually made in tools like Visio,

and the resulting artifacts are static pictures. When code changes, the diagrams must be

updated. With AndroMDA, these diagrams become a living part of your application --

they are used to generate large portions of your application, and hence always reflect the

current state of the system. When you need to modify your application, you change the

model first, regenerate the code, and then add or update custom code as necessary.

Thus, you get a production quality application out of assets that you had to create

anyway.

According Figure 14 AndroMDA provides several cartridges out-of-the-box. For

example, the Hibernate and Spring cartridges generate robust service and data layers for

your application. In addition, database schema can be exported to script files to allow

the creation of your application's database. There is also an easy way to map your model

27

to an existing schema if your database has already been defined. If you wish to generate

custom artifacts from your model, you can write a custom cartridge to accomplish this.

Figure 14. AndroMDA Architecture (Bhatia 2006)

2.7.1.1 Evaluation of AndroMDA

Remarkably, the AndroMDA (Bhatia 2006), (Kozikowski 2005) is an open source

MDA generator also proposes a so-called cartridge that is able to generate very

sophisticated Java Struts web applications from UML Activity Diagrams. It is called

Bpm4Struts. However, Bpm4Struts expects input models with a much higher

detailedness. I believe that business users – who are targeted as application engineers

would be overextended when asked to use AndroMDA. Furthermore, AndroMDA does

not address the concept of software product lines at all.

Understanding new tools and technologies can be a daunting task, and AndroMDA is no

exception, but when you will take a look at this environment you can find how it’s

complicated and how much efforts need to understand and be professional, so we can’t

imagine this environment with a lot of abilities can use as much as very simple tools for

developing web applications.

2.7.2 Web Relational Blocks (WebRB) (A. Leff 2007)

Web Relational Blocks (WebRB) is a browser-based visual editor and run-time

environment that enables developers to visually assemble Web applications without

adding any imperative code. WebRB is made for developers of "enterprise" Web

applications: multi-page applications, containing non-trivial GUI (graphical user

interface) and business logic, whose data reside in relational databases.

WebRB increases Web developer productivity in the following ways:

• The application's GUI is developed visually (no imperative code) by dragging
HTML widgets off a palette. The entire application is assembled in the visual

editor.

28

• All the application's components ("blocks") use the same API and have the same
visual representation. Because blocks have a common interface, they are easily

combined to produce the desired effect. In contrast with languages such as

HTML and PHP, developers use a single API for all parts of the application and

assemble the application at a higher level of abstraction.

• The "code, test, and debug" development cycle is improved because applications
are directly executed from the visual editor.

Incremental construction is encouraged because only a small set of blocks is required

for starting a working application. Blocks can be added, removed, or rewired at any

time, and the application can be immediately validated and re-executed.

Every element in a WebRB application is represented as a block with optional input and

output pins. Wires are used to connect blocks, and represent data-flow between the

connected blocks. Figure 15 shows how wires are used to specify relational data-flow

between two blocks. Wires connect input pins to output pins: in this Figure, the two

text-input blocks on the left – each with an output pin named “outputValue” – transmit

data to the JOIN block’s two input pins (“input0” and “input1”). The result of the JOIN

block is available from its “output” pin. An input pin implies that a block can receive

relation-valued input from other blocks. An output pin implies that the block can

transmit relation-valued output to other blocks. Blocks often have an “enable” pin: these

are boolean-valued relations, and imply that the block operates only if some other block

enables this block. An input pin can be connected to at most one output pin but need not

be directly connected to that pin. For example, input pin A may be connected to input

pin B which, in turn, is connected to output pin C. Data will flow from pin C to pin A,

and from pin C to pin B. The only requirements are that an input pin must be connected

directly or indirectly to a single output pin, and output pins may not be directly or

indirectly connected to other output pins. No other restrictions are imposed on the

circuit topology. A block’s semantics specify a well-defined functional transformation

over their inputs to their outputs. Blocks use relational algebra to perform operations

on relational data. For example, the JOIN block computes the relational AND of two

input relations and places the result on its output pin. The WebRB visual editor contains

a set of pre-supplied block prototypes, which can be in one of three flavors: model,

widget, and algebra. These correspond, respectively, to the well-known

Model/View/Controller paradigm. An application is simply a set of pages – graphs built

from the WebRB pre-supplied block instances. Pages are blocks: i.e., they have exactly

the same relational API and visual representation as pre-supplied blocks. Pages can

therefore be hierarchically embedded in other pages in a recursive process (J. Rayfield

2007).

Figure 15. WebRB: Blocks and Wires (J. Rayfield 2007)

29

2.7.2.1 Evaluation of WebRB

As far as we have described this framework and tool, we can see that using this tool is

not in that much easy for designers and if you want to use it as prototype development

or as a user development environment users should be introduced with logic basics and

absolutely relational theory. So I believe that WebRB is not adaptable with our goals,

however it has a lot of facilities and powerful tools.

2.7.3 WebLang

WebLang is a Domain-Specific Language, developed in LTI that makes possible to

define web applications with high level design. The main motivation behind WebLang

is to abstract the application components with a useful model, but to remain sufficiently

close to the technology to reduce the enormous gap that exists between a PIM model

and implementation. The WebLang approach expects to provide a simple and realistic

method for designing the architecture of a web application and a usable tool for

generating a testable prototype. The WebLang development process follows the MDD

approach and brings a language model as key element of the development. The

language syntax is oriented towards being naturally editable for a human in comparison

with XML, which is more adapted to the machine. A WebLang application is defined

by the assembling of several components that can specify each structural properties,

business logic, and interconnections with other components. The WebLang tool checks

and compiles the model, and then generates the application in one atomic action. This

approach is easier to implement than the incremental generation of application

fragments. Furthermore, it provides the developers with a well-defined environment,

where the whole application is defined with a unique and centralized model. All the

generated files are standard and can be freely modified by the developer. The tool is

integrated in the IBM Eclipse IDE (Figure 16), and is currently available for the J2EE

JBoss platform, but the approach is extendable to other servers or technologies, by

extending the templates or implementing new adapted modules (O. Buchwalder 2006).

Figure 16. WebLang: Webapplication Development IDE (C. Petitpierre 2006)

All J2EE components more or less are in the form of a simple object containing

attributes and methods. LTI has proposed a language, WebLang, which emphasizes this

30

aspect. Some of the J2EE components are accessed directly by the user through a

browser or a GUI, Regarding Figure 17 WebLang compiler directly creates the

corresponding human machine interface. Some components (channels) depend on other

components, and in that case WebLang offers statements to integrate them in the

components they are linked. Finally, some components have an existence of their own.

Then, WebLang offers some supports to access them (C. Petitpierre 2006).

Figure 17. How WebLang mapped J2EE components (C. Petitpierre 2006)

WebLang compiler can generate files in a Java project as well as in a setting made and

managed by WTP, which allows a developer to start his or her prototype with WebLang

and to handle the details and maintain the application with the help of WTP later on. In

most cases, both the Run XDoclet and Run As > Run On Server commands of WTP can

be used instead of CGxdoclet.xml and CGpackaging.xml scripts (C. Petitpierre 2006).

The WebLang compiler uses Jet templates to produce the files composing an

application. It is very easy to get these templates in the developer's environment, to

modify and to use them to produce files better adapted to one's own requirements (C.

Petitpierre 2006).

LTI has developed a code gen Eclipse plugin, which has been used in Defining

WebLang. This plugin provides structured and partial automatic methods to develop

and use Parser, Generator and Editor for Domain-Specific Languages (DSL), then we

can develop a real Eclipse editor for our language with following features (C.

Petitpierre 2006): Outline view, Completion, Syntax highlighting and Syntax error

warning

As you can finf in Figure 18 shows for defining new language and then having a real

Eclipse editor you should define your DSL very easily in this environment and just

compile it, then you will have an editor with mentioned features.

The tutorial of WebLang can be found on (C. Petitpierre 2006).

Figure 18. WebLang Codegen (O. Buchwalder 2006)

31

2.7.3.1 Evaluation of WebLang

As far as LTI’s feedback in some experiences for developing web applications, it could

meet the mentioned requirements for being as a very easy and rapid environment to

develop prototypes. LTI believes to use such these kinds of environments we should

make it easy to learn for designers.

2.8 State of Art

As far as we have described in this chapter, for developing we application we have

possibility to use some tools developed before such as WebRB or AndroMDA but the

point is most of these tools are designed for developing market ready version

application and supporting every thing thus they are so complicated and complex to use

so to make the development easy as much as possible we have an idea to make the

development in two phase one for designers and one for developers. WebLang has

followed this idea but the point is WebLang can generate java codes and not cs. and

.jspx ones and also it’s so close to technology model. I believe we should be some more

far from technology model. In EasyWeb we have graphical designer which has been

developed by Microsoft DSL tools but I have changed the customary architecture of this

tool because generating end applications needs some meta data which should be

recommended or generated by some helping wizards. It has also a programming editor

to develop the model in high level specified language, which has been developed by

WebLang Code Gen.

2.9 Summarizing Terms

In this section we are going to summarize terms that we will use in the report as

follows:

• Meta-Meta Language: a language that enables us to define domain specific

language and in this case we will call the person who do it the Mate-Meta

Developer.

• Meta Language: domain specific language which can model the domain with

entities, properties, validations and etc. The person who does it is called Meta

Developer

• Domain Specific Model (DSM): A system model or instantiation of DSL for

modeling your system, some times we call DSM to Domain Specific Modeling.

The person in charge of this modeling is Designer who will model the system

and then generate the executable code.

• Developer: A person who has generated codes and he should develop the market
ready version of application.

• Meta-Data: Data about entities of end application to describe how we can develop

them. For example name, size, file growth and etc. can be meta data for a

database.

32

33

Chapter 3

3 Methods

Regarding related works described in section 2.7, LTI motivated to have tools for

developing web application supporting Software Factory to make it easy as much as

possible. Our goal was laid on developing an environment to program web applications

in high level approach however this environment had to be easy to learn, too.

3.1 EasyWeb

In EasyWeb the designer should be able to model the structure of his/her web

application and then add some meta-data which describe the features of mentioned

application. Finally EasyWeb will generate the codes of the end web application in .Net.

The goal of EasyWeb isn’t supporting the interface design because as we know

Microsoft has very good and helpful IDE for developing the presentation layer of web

applications. It focuses on code generating for operations and functions. EasyWeb is

designed and developed for the first draft or as a tool for generating the prototypes in

customer side. Considering the easy scenario of the web application development in this

environment, if customer has a person who is familiar with basic concepts of web

applications, we can count EasyWeb as a User Development Environment.

3.1.1 Requirements

Regarding to roadmap diagram presented in Figure 2, we designed a life cycle for

developing web applications including the following phases:

• Developing tools and language for programmed web applications with high level
approach.

• These tools should support architectural design to present the structure of web
application and generate executable code which can be used as the first draft or

prototype.

• Market Ready Development to deliver the product to market should be done by

developer who is a professional in .Net and knows details about the developing a

web application in this IDE.

Figure 19 tries to clarify the scope of EasyWeb as an architectural designer with the

goal of code generation so it may be so different with normal procedure to design the

34

architecture. In the case of architectural design in EasyWeb we should cover three

phases:

Entity Design: Designer is asked to introduce the entities and their properties. EasyWeb

should help the designer and simplify the property definition.

Business Design: To develop an executable prototype, designer should determine the

business logic, also in this phase EasyWeb should help designer to program the business

logic of application.

Executable Code Generation: Finally, EasyWeb should deliver the executable code

after pervious activities.

Figure 19. Scope of EasyWeb

To meet the mentioned goals and simplify the procedure for designers as much as

possible we should design two possibilities to produce their system model which we call

it DSM as we have defined in section 2.9:

Graphical Modeling: In this case EasyWeb will provide an environment with drag and

drop tools defining entities and some wizards for determining properties of these

entities and designing the business logic. Goal of these wizards is user assistance

development with some offers in designing procedure.

Programming Modeling: EasyWeb also provides an editor for human-usable language

which should be able to complement, keyword highlighting and other usual facilities for

programming editors.

35

Figure 20. EasyWeb Detail Requirements

3.2 DSL Development Methodology

In developing a DSL we should answer the following questions as well as respecting to

requirement engineering (E. K. A. V. Deursen 1998):

• Who will be writing the Domain Specific Descriptions (DSD)? What is the

expected domain-specific background, and how much programming knowledge

is required?

• How many DSDs will there be needed, and how long will they be? It may be
possible to validate the correctness of three pages of DSL code, but who is going

to predict the impact of a change in one out of 100 DSDs, each 25 pages long?

• Which (decidable) forms of static analysis and which integrity checks on DSDs

are anticipated?

• What should happen if it turns out that the language requires new data types or

new functionality?

• Does the DSL support user-definable syntax for, e.g., naming procedures? This
may increase the readability, an important issue in DSLs, but it seriously

complicates the construction of DSPs, including analysis tools that are needed

during later maintenance phases.

• Is the main library written in the DSL or written in the target language? Who will

be responsible for maintaining the library?

• Is the interface (data representation) to other systems easily adaptable or is it
hidden inside the implementation of the DSL compiler?

36

• Who will be responsible for maintaining the DSPs? Is the knowledge about the

domain sufficiently stable such that changes in the design of the DSL or the DSP

are not to be expected?

So for answering these questions we should develop a DSL in three phases which have

also several steps (P. K. A. V. Deursen 2000), (Cleaveland 1988), (E. K. A. V.

Deursen 1998):

3.2.1 Analysis

This phase raise the important question how to recognize a domain, and how to

determine the scope of a domain. Two definitions of domain could be used. The first is

generally used in the artificial intelligence and object-oriented communities. It lets a

domain correspond to the “real world”, without direct relation to software systems it

might be encoded in. The second definition comes from the systematic software reuse

research community. It defines a domain as “a set of systems including common

functionality in a specified area” (Simos 1995), but according to (E. K. A. V. Deursen

1998), most benefits in terms of reducing maintenance costs, however, are to be

expected from the “domain as a set of systems” approach. Candidate domains should be

• Mature, i.e., a set of legacy systems exists

• Reasonably stable, i.e., certain aspects of these systems are satisfactory and worth
studying

• Economically viable, i.e., new systems are anticipated in the domain.

The pieces of functionality in the legacy systems will help to identify the domain.

Furthermore, modification requests from the past, or differences between the various

systems, will help to identify the variability in the domain. The DSL should then be

designed such that it is expressive over this variability (Simos 1995).

Hence, we consider following steps for this phase (P. K. A. V. Deursen 2000):

• Identify the problem domain.

• Gather all relevant knowledge in this domain.

• Cluster this knowledge in a handful of semantic notions and operations on them.

• Design a DSL that concisely describes applications in the domain.

In addition to clarifying the concept of Domain Analysis we should say it means

examining needs and requirements of a collection of systems which seem "similar" (P.

(R. N. Taylor 1995), (K. A. V. Deursen 2000).

3.2.2 Implementation

After domain analysis we should implement the obtain knowledge about the mentioned

and chosen environment, in this phase we have these steps to achieving the goal which

is a Domain Specific Language:

• Construct a library that implements the semantic notions (P. K. A. V. Deursen
2000).

37

• Design and implement a compiler that translates DSL programs to a sequence of
library calls (P. K. A. V. Deursen 2000).

According (P. K. A. V. Deursen 2000), implementation phase can be done in four ways:

• Interpretation or compilation: This is the classical approach to implementing a
new language. Standard compiler tools (P. K. A. V. Deursen 2000), (A.V. Aho

1986), (Bentley 1986)

• Embedded languages / domain specific libraries: In this approach, existing
mechanisms such as definitions for functions or operators with user-defined

syntax are used to build a library of domain-specific operations. The syntactic

mechanisms of the base language are used to express the idiom of the domain .

• Preprocessing or macro processing: In this approach the new constructs are
translated to statements in the base language by a preprocessor.

• Extensible compiler or interpreter: This approach is similar to the previous one,
but the preprocessing phase is now integrated in the compiler.

To compare these approaches, we should consider that the main advantage of building a

compiler or interpreter is that the implementation is completely tailored towards the

DSL and no concessions are necessary regarding notation, primitives and the like. Also,

error detection, static analysis, and optimizations can be done at the domain level.

Clearly, an important problem is the cost of building such a compiler or interpreter from

scratch, and the lack of reuse from other (DSL) implementations, although some DSL

tool sets (for example Microsoft DSL Tools) are particularly designed to overcome such

problems. An advantage of the second approach is that the compiler or interpreter of the

base language is reused as is for the DSL. The main limitation is in the expressiveness

of the syntactic mechanisms in the base language. In many cases, the optimal domain-

specific notation has to be compromised to fit the limitations of the base language. The

main advantage of third one is simplicity. Its main disadvantage is that static checking

and optimization are not done at the domain level. Consequently, generated code is

error prone, and the user is provided with feedback on these errors at the level of the

base language, or only at run-time. The advantage of the last approach is that more type

checking and better optimization is possible.

3.2.3 Test

In this phase, we want to be sure about the performance of our design and implemented

language, such as other softwares we should write at least one example for all desired

domain and recognized application types.

3.3 Customary Architecture for Modeling Environments in
Microsoft Visual Studio

Modeling environments such as EasyWeb Graphical Designer have a special

architecture supported with Microsoft Visual Studio Modeling Platform and Microsoft

DSL Tools which we have described in section 2.6.1. In other hand to develop a

graphical designer in Visual Studio you should follow the architecture presented in

Figure 21.

38

Figure 21. Customary Architecture of Microsoft DSL Tools

As you can see in Figure 21, A Graphical Designer when it was developed in MS-VS

has three separated layers as follows:

• MS-VS Modeling Platform: Libraries that Microsoft DSL Tools uses for

generating these kinds of designers. This layer consists of four frameworks and

one engine described in section 2.6.1.

• Meta Developer Environment(Microsoft DSL Tools): These tools that lie on the

Modeling Platform is made up from three components:

- Shell: Instance of Shell framework and it’s used for integrity of

components.

- Validation Objects: Instances of Validation Framework, and they are used

to validate your model and its entities, you should consider that here you

will write your business logic for validating objects. In Microsoft DSL

Tools if you need some business logic to add your graphical designer to

make it more dynamic this is a trick that you can use for adding codes inside

of MS-VS DSL Tools.

- Domain Specific Language (DSL): Microsoft DSL tools provide a meta-

meta language for defining a DSL. But this language has a graphical

interface and you can use the drag and drop toolbox to develop your

language.

39

• Graphical Designer Used by Developer: This is exactly the product that we
expected. Designer can use the toolbox produced by DSL tools and dependent on

defined language. In other hand in this tool box you will have customized tools for

entities defined in DSL. Designer should define following items:

- Domain Specific Model (DSM): Here, using graphical designer modeling

the system is possible, in fact designer uses the drag and drop toolbox, and

then sets the properties of each entity.

- Template: As we have described in section 2.6.1, as template is used for

generating codes, so here in produced graphical designer we also need

template to generate end application from our system model. Therefore

designer should write his/her expected codes to generate in this tool.

Template works as an interpreter of your system model and for each entity

type it should generate different kinds of code.

3.3.1 Microsoft DSL Tools: Worthy to Catch on?

After using DSL tools for a while, I’m not completely convinced that they are really

right tools and worthy to use. For a code generation environment to catch on it has to be

significantly easier than the task it replaces. At the moment DSL Tools are difficult to

use for designers who are not in that much professional that I expect them to write their

codes in a not user assistance environment and without some of data types and in other

side visual programming IDEs such as .Net are fairly easy to use. Therefore a rational

decision for software companies between using Microsoft DSL tools and writing its

codes in template or using visual programming IDEs would be expected to be the

second choice. However this comment can’t make doubt or hesitation on Software

Factory Theory truth, I should consider that Microsoft DSL tools are not the right ones

for this goal. They have been designed for developing product line and not end

applications, so if we want to use them we should change their customary architecture.

3.4 EasyWeb Graphical Designer

To develop EasyWeb Graphical Designer, we should use advices explained in section

3.3.1, so I have planned to change customary architecture of MS-VS Modeling

Environments.

Figure 22 shows how EasyWeb changed this architecture. Using EasyWeb Graphical

Designer web application generation will be done in three phases:

• Step 1: System Modeling: In this phase designer models his/her system, and

as we said it can be done with drag and drop and also following wizards and

windows forms.

In fact, generating code for an end application needs more than entities

name and we should have some data about their properties, called metadata.

EasyWeb gets them in Wizards and then stores in database.

40

Getting data in Wizards is accomplished by model checking and validation,

this ability is possible because validation objects have access to definition of

language (DSL) and also have access to metadata.

 These two activities will be done with a new component that I have added

to Microsoft DSL tools and we call it DSL+. As far as we have explain we

should add all of our code in validation framework so we have developed

this component which is made of some windows forms as a validation

object.

• Step 2: Intermediate Code Generation: we have an intermediate code that

we read the model from DSM and Meta-Data then generate Program which

includes all data to generate end web application.

Program is written in a machine-enable language that we don’t need to

compile and just read as a text file because it was generated automatically

and we are sure that it’s correct, in addition it is a little bit same as xml and

uses the same idea (entities and properties).

First of all we will read DSM and Meta-Data by Template Generator (It’s

also a validation object) and then generate template. First part of this

template is related to generating Program and the second part is related to

reading the Program and generating end web application. There is clear

question about the reason for generating Program and then read it, let us to

explain that this file can be used for generating end application even the

entry is not graphical designer. We mean you may change this file in

Programming Editor and then generate code.

Step 3: Web Application Generation: In this step we will read Program and

then generate the executable code. As we said, we don’t need to compile it

because we are sure that it’s correct and we have always entities and

properties same as xml.

41

 Step 1. System Modeling
 Step 2. Intermediate Code Generation

 Step 3. Web Application Generation

Figure 22. EasyWeb Graphical Designer Architecture

3.5 EasyWeb Programming Editor

I have designed another interface to model systems, for who likes programming instead

of graphical modeling. In this editor, designers model their systems with a human-

usable language and completion, keyword highlighting and user-assist facilities.

Developing this editor can be done by WebLang Codegen in two steps:

• Step1: Defining the Language: we should introduce the domain for which

you want to define specific language (in this case, it is web application).

The domain definition is important and will directly influence the scope of

our language. In this step we will introduce our keywords, language

structure and etc.

• Step 2: Generating Program: To generate Program we should use WebLang

Codegen Template. In this tool, templates can be defined for each module,

submodule and global singleton. The BNF syntax for template definition is

available and we can use it.

When we have Program, as I have develop its engine in graphical designer we can read

it and generate end application.

42

43

Chapter 4

4 Implementation

This chapter covers important details of the performed implementation, including

descriptions of languages and how they have been developed and also brief details of

added objects in mentioned customary architecture, explained in section 3.3. We will try

to clarify implementation limitations that we have faced during the doing this work,

which can be useful for persons who want to continue this idea.

4.1 Languages

EasyWeb as we have described uses two languages; Intermediate language and human-

usable one. These two languages, actually use the same concept and definition but in

different presentation. In other hand they use the same entities and relations but because

of two goal that they follow, we have different presentation; one should be used for

machine must be readable line by line for getting entities and properties (the idea is the

same as xml) and one should be used by designers must be much easier and

understandable. An important point that we should consider is that we have to develop a

user assist enable editor for the second one.

4.1.1 Domain Model for Web Applications

A model which wants to describe a domain of web application is a model consists of all

entity and relationships that any application in this domain conducts their business. This

model for all of them is the same. But actually different people have different ideas

about a domain (such as web applications), but it could be raised from different

concepts when they look at the web application topic in detail or for more clear words

these drive from how the model is used in the context of particular families of

methodologies.

Here, we have defined a domain model for web application in the context of producing

system model in high level approach without taking time on details.

Figure 23 tries to clarify our domain model of web applications. Actually a web

application is consists of Databases and Web Pages and a database can include Tables

which have Columns for itself. Then a Web application may be built of Links, also an

Initialization, Operations and an Output. An initialization is a component that

initializes web page with some data from database. For example when we want to

present editable personal information of a specified person we can use initialization.

Initializations are will be coded in the load event of page and it can be consists of query

44

statement of SQL. Operations present submit buttons in web pages so each operation

needs its variables which can be submitted by pervious page or presented in current

page as input it also can described Business Logic for non-query tasks on database and

some codes. Operation’s business logics will be coded in click event of submit button.

Output is a component to present a report of chosen fields in database with delete, edit

and select facilities.

Figure 23. Conceptual Diagram for Languages used in EasyWeb

4.1.2 Intermediate Language

We will transfer our system model in graphical designer and even in programming

editor to a program with in the Intermediate Language as we can see it’s totally for

machine to read entities and properties all together. This language should be easy to

read for machine so it could be nice if we can present data line by line. We don’t need

any editor or syntax error checking because it will be generated by machine

automatically.

Table 1 shows keywords used in this language and their concepts, as you can see we

have twenty five keywords and because of easy readability for machines we always

close an statement with different end-clause.

Table 1. Keywords in Intermediate Language

Keyword Concept Keyword Concept

APP Application SQL sql statement

END_APP end of application END_SQL end of sql statement

45

DB Database BL business logic

END_DB end of database END_BL end of business logic

TABLE Table OP operation

END_TABLE end of table END_OP end of operation

COLUMN Column OUT output

WEBPAGE Webpage END_OUT end of output

END_WEBPAGE end of webpage WHERE condition for output

PRE Initialization DEL delete button for output

END_PRE end of initialization EDIT edit button for output

IN Input SEL select button for output

COND
condition for doing

business logic

In addition we have two operators; ^ for values passed to page from pervious page and

@ for values can be accessed from inputs in the page. Keywords plus to these two

operators are reserved words in this language.

4.1.3 Modeling Language

For who believe that coding is much easier than graphics, we have designed a human-

usable language, which can be translated to intermediate one. Keywords of this

language is presented in Table 2.

Table 2. Keywords of Modeling Language

Keyword Concept Keyword Concept

Application Application title title of webpage

Database Database dir
ltr or rtl for direction of

page

Table Table bgColor Background color

webpage Webpage edit edit button of output

link Link del delete button of output

initialization Initialization sel sel button of output

input Input where condition of output

output Output server server of database

operation Operation typeOfFileGrowth
type of file growth in

database

sql Sql fileGrowth file growth in database

46

c# c# code Size size of database

logic business logic source

source of data in

output:

server_name.database_

name

sqlString sql code condition
condition of doing

business logic

destionationPage
page that server

should be transfer

The same as intermediate language we have @ and ^ operation to access values. they

plus keywords make the reserved words set.

The use of our human-usable language provides freely property determination of

technologies specified as entity. We present entities in a format same as class which can

be inline or not and we also use functions to getting some properties. I have tried to

change intermediate language for normal GPLs such as C++ or Java.

4.1.4 Simple Example

Figure 1 present a simple web application which needs a report from three fields in

database with edit, delete and select facilities.

Figure 24. A Simple Web Application

This application is built by three object; Persons, Report and ListOfPersons which are

entity, page and output respectively. Figure 25 show the abstract model of this example.

47

Figure 25. Abstract Model of Simple Example

Figure 26 tries to show how we can model the simple example presented in pervious

figures in our human-usable language. Please consider we can skip some information

such as bgColor, dir and etc.

Figure 26. System Model in Programming Editor for a simple example

48

Then after compilation of this code we can have Program.txt as our intermediate code.

Code generated by our editor in intermediate language is presented in.

APP EASYWEB_simpleExample
DB people LTIPC14 % 10 UNRestricted
TABLE Persons
COlUMN Name varchar(30) * *
COlUMN LastName varchar(30) * *
COlUMN Tel varchar(30) * *
END_TABLE
END_DB
WEBPAGE Report report ltr #FFFFFF
OUT ListOfPersons people.LTIPC14
Persons.LastName *
Persons.Name
Persons.LastName
Persons.Tel
DEL
EDIT
SEL Report
END_OUT
END_WEBPAGE
END_APP

Figure 27. Intermediate Code for Simple Example

4.2 Implementation of Graphical Designer

Graphical designer consists of several components that some of them will be also used

for Programming Editor. First of all we should define our domain and then add DSL+

and Template Generator to Microsoft DSL tools.

4.2.1 Domain modeling in Microsoft DSL Tools

As we have explained before, first of all we should introduce and define our domain

with a graphical tool in Microsoft DSL to model the domain of web applications (Figure

28). As you can see we have two kinds of objects; one for domain entities (Classes and

Relationships in the figure) and one for tool (Diagram Elements in the figure) in

graphical interface we should connect our tools to related entities in a our domain

model.

49

Figure 28. Domain Modeling in Microsoft DSL Tools for EasyWeb

4.2.2 Implementation of DSL+

For developing DSL+ (some Wizards to get metadata) I should develop validation

objects. These objects that have been defined for database and operation open a

windows form and with an easy to use procedure helps designer to define business logic

and properties of entities.

We also have two entities for editor and CodeGenerator. With editor tool we can open

our programming editor to program our model in designed editor, which is not related to

graphical designer and with CodeGenerator we should define a Template Generator.

4.2.3 Implementation of Template Generator

Template Generator made up by three components:

• Interface: this component first asks from designer to select his/her .tt file that
he/she wants to generate template inside (Figure 29) by a .net open dialog.

50

Figure 29. A Dialog for Selecting a .tt file to generate Template inside.

After selecting a .tt file, Interface component asks for mode of generation; the first

item is related to programming mode and the second one is for graphical

designing (Figure 30).

Figure 30. Choosing Mode for Generating Template

• Program Generator: template generator after getting mode call Generator Class
and pass a parameter to call programGenerate() method or not. This method is used

when you select Graphical mode and generate a code in mentioned .tt file to read

system model and metadata for generating Program.txt. Structure that we use in this

component is figured out in the following pattern:

 //Reading System model and metadata

templateGeneratorObject.WriteLine(ProgramWriterObject.WriteLine(programCode));

51

• Interpreter Generator: Interpreter is not only to read the Program but it also used
for generation codes. Code generation means generating a string inside of Write or

WriteLine functions in the text template which can write in a .cs or .aspx file as

follows:

WriteLine (writerObject.WriteLine(C# or ASP code));

So we should generate in .tt file a switch-case inside of each item; there is an

ability to generate some string related to what has been read. Thus we should

interpret the Program and then generate some codes inside of WriteLine(). We

will explain interpreter in section 4.4. But here we generate the second part of .tt

file that includes the interpreter. So we should use the following structure:

templateGeneratorObject.WriteLine(interpreterCode);

Finally, with running Microsoft DSL tools we have a graphical environment which can

also help designers using wizards ().

Figure 31. EasyWeb Graphical Designer

4.3 Implementation of Programming Editor

Programming Editor has been written on the WebLang Codegen, and with a code base

definition of language. Then with compiling this definition we had an editor with

complementing and keyword highlighting features. But we should get objects from the

compiled programmed in editor and write an intermediate code in Program.txt.

Figure 32 shows the definition of application that it consists of databases and webpages

as you can see we can define 0-n database and 0-n webpages and syntax is highly

human preferable following such Java or C++ style. In this definition you have only one

module and inside of our module we have our submodules. And for each module or

submodule we have to define a parser to introduce our style. Please consider that ()*,

()+ and [] mean repeatability 0-n, 1-n and 0-1 respectively.

52

Figure 32. Definition of application that it consists of databases and webpages

Then compiling this file generate all of our submodules in a java file, we can define

check () in each one for checking the entry of designer and some concentrates. in this

java file you can find set and get methods for properties that you have defined in your

module or sub-module.

For example Figure 33 shows all methods that have been generated from Application

module. You can find check() or get and set for properties that you have defined. so you

can have access to values defined by designers in editor.

Figure 33. Methods generated for module Application in Codegen

The next step is getting data from editor as we have described and writing them in

Program.txt for generating codes WebLang Codegen provides a template and you can

generate your code much easier than Microsoft DSL without Write or WriteLine and

just with <%= %> for dynamic entries and for other one you can just write them. To add

some dynamic processes on entries in editor you should use <% %> these dynamic

53

processes can be a for-loop or some things such as that. For example for generating

APP for application entry I have used following code:

APP EASYWEB_<%= application.getName() %>

and for tracing all databases I have also used a for loop as follows:

<% for (int i = 0 ; i <application.getDatabases().size() ; i++){ %>

Finally, to have an editor you should just set a file in a defined java project to run

considering codegen.

4.4 Implementation of Interpreter

Interpreter as we have discussed is not only an interpreter but it also is a codegen to read

Program line by line and sensitively to keywords generate codes to write in end

application .cs and .aspx files.

4.4.1 Structure

 Functionality of interpreter can be done a loop to read the Program line by line and

check the keywords to how many properties it should be expected in this line, to

achieve this ability I use a variable which shows the status of reader and current

keyword, then regarding this keyword and read properties, we should generate different

codes. Generally, its structure is as follows:

while ((line = readline()) != null){

 switch (line){

 case [KEYWORD]:

 //reading related properties

 //generation of WriteLine (writeObject.WriteLine(C# or ASP code))

 break;

 …

}

}

4.4.2 Overview of Datatypes and Generated Codes

Components used in web applications are more or less can be modeled by inner classes.

In other hand a web application in EasyWeb is included some inner objects. Here we

will describe datatypes used in EasyWeb and what we generate in interpreter.

4.4.2.1 Application

This datatype introduces a web application including databases and webpages. You can

have just one instant of this type and in fact this object makes some initialization of our

variables.

4.4.2.2 Database

Each web application can have one or more database. Databases include tables and

generate a webpage that if you run it on server and click the button you can create

database. In the clicking event of this button you will have “CREATE DATABASE”

statement for mentioned database.

54

4.4.2.3 Table

Tables are located in databases and they includes with columns. Each columns has

name, type, nullability (NULL or *) and id (* or name of coulmn). We will generate

“CREATE TABLE” statement in the clicking event.

4.4.2.4 Webpage

Each application can also have one or more webpage and it can be included by outputs,

initialization and operation. This datatype makes creating .cs and .aspx files and writing

primary includes and headers. Please note that when we use webpage term we mean a

webform.

4.4.2.5 Output

A powerful datatype to present a report from mentioned fields of database that and

ability to delete, edit and select. An object of this datatype makes <asp:SqlDataSource>

and <asp:GridView> .

4.4.2.6 Initialization

This datatype may be used for filling inputs in the webpage. Initialization is a query

based sql that it will be generated in the load event of webpage. So it could have a sql

object.

4.4.2.7 Operation

Each webpage may have one or more Operations and they will be presented in end

application by submit button. In fact, an operation is a non-query sql and c# code run in

the clicking event of the button. Each operation includes sql and c# objects.

4.4.2.8 Sql

Both initialization and operation can have sql objects which present a server, database

and sqlstring. We should generate a code that opens a connection and do the sqlstring

then closes it.

4.4.2.9 C#

This is freely c# code that can be added before and after sql object in an operation to run

in the clicking event of related submit button.

55

Chapter 5

5 Analysis

This chapter enumerates the validation what we have done to develop EasyWeb and

also it covers the evaluation of EasyWeb in the aspect of a MDD Environment and

quality of web applications can be developed with this tool.

5.1 Validation

Here we are going to explain our roadmap mathematically, and why we need to define

an interpreter. Our method to explain is browed from (A. Moss 2005).

According to Equation 1, if we have a language D and its interpreter to transform it to

tool language (T) then you can run the interpreter on a program which has been written

in D (PD) and obtain a program written in T (PT).

 Equation 1

But composition of two interpreters means running an interpreter on definition of

another language, for example according Equation 2, if we have an end application

language (M) and run interpreter of programs written in tool language to M () on

the definition of then in opposite of usual mistake we will not get because we

have run it on an interpreter definition and not on a program written in T so we will

obtain .

 Equation 2

Then when we run on a program written in language D (PD), we will get a

language written in (Equation 3)

 Equation 3

The next step is designing an interpreter with ability to transfer programs written in

to M one and run it on .

 Equation 4

So if we let as switch-case interpreter our cycle is exactly follows to what we have

showed mathematically.

56

5.2 Evaluation Method

In this section we will describe, some criteria that we can evaluate this system in

compression of the mentioned environments in pervious sections. But actually, because

of lack of batch data I didn’t do it and here, I will just explain some reasonable points

that we can expect.

5.2.1 Using as a Requirement Engineering tool

Regarding Figure 34, current code generators are highly effective on implementation,

test, deploy and maintenance but they don’t seem they work well for analysis/Design

and specially for Requirement Engineering as we have explained in section 1.2 we have

designed EasyWeb as prototyping tool, to fill this gap, and I believe with skipping

interface design and forget to generate a market ready application we can simplify

producing system model and use it as a tool for requirement engineering. EasyWeb is

totally usable for a person who has only knows basic concept of web applications and

finding these kind of professions in customer side is not always far from reality, so if

you can find this amount of knowledge you can count EasyWeb as tool for user

development environment, which can be effectively decreases the effort in requirement

engineering phase. Both WebRB and AndroMDA because of idea to cover every things

are so complex to use in compression of EasyWeb and it takes much more time to

design a system model.

Figure 34. MDD Saving and Benefits (Siegel 2005)

5.2.2 Computational Model

EasyWeb tries to use of a very close to reality computational model, and easy to map

from which in designers’ mind and what they want to develop, for example when a

designer wants to add a functionality to a webpage, it’s easy to map to an operation, but

in this case WebRB model of computation closely following the relational concept of

web application which is not in that much easy to understand.

5.2.3 Technological Model Independency

EasyWeb tries to be independent from the technology as much as possible but in this

deal we face to a trade off between complexity of modeling and technological

57

dependency, for example when you want to use a sql statement in some occasions, the

easiest way is getting as a sql code, or in the case of business logic if we wanted to be

independent from the technology and target language we had to use some ideas same as

WebRB, and increase the complexity of system modeling. Technology dependency in

EasyWeb for sure is more than WebRB or AndroMDA, but WebLang uses the same

idea as EasyWeb.

5.2.4 Graphical Designer

However EasyWeb has a graphical designer but I believe that wizard modeling is much

more difficult than using a good and user assistance enable programming editor. To use

graphical designer we should consider to following items:

• Using wizards is too limited.

• Wizards usually are not good enough because designing habits are so different.

• Maintenance is not so confusable, but in programming editor it may be possible

just with a copy and paste, or deleting a one line of code.

• Using wizards decreases the design flexibility.

In the term of Graphical Designer WebLang is totally on a human-usable language but

WebRB and AndroMDA try to use graphical interface for modeling systems, and you

can feel the complexity in their design process in compersion of EasyWeb.

5.2.5 Quality of Generated Codes

Unfortunately, rapid development of EasyWeb makes the generated codes not very

qualified in compression of WebLang, WebRB and AndroMDA, which can be solved in

next versions of EasyWeb. But I have tried to solve some common problems in

developing web application without any extra stuff for designers.

5.2.5.1 Double Clicking and Back Button Problem

One of the most common problems of web applications specially ones in shop payment

systems is double clicking on submit buttons and also back button on the internet

explorer, solving this problem in AndroMDA is really a big job with a lot of design

stuffs but in EasyWeb we never make designer any awareness to manage it, because I

just use two session variables in each page; one with the name of page and one with

name of “click”. In operators I check that the value of “click” is the same as webpage

and then firstly before do any thing in clicking event I make it to the name of

destination page. So when we click more than one time, or when we come back to page

with back button business logic will not be run. In addition we transfer server with

value of this session so if you come back with back button after the click the submit

button you will be transfer to pervious page but an interesting point is business logics

that have any non-query effect will not be run but you can change parameters used in

initialization and queries and then see the different selection in the next page, this

strategy can satisfy user as much as possible and in other side makes the application

secure in the danger of double click or back button problem. Another session is used for

initializing this one in load event.

58

5.2.5.2 Security

All operations and value passing are implemented in “server transfer” and “Context”

respectively so you can’t see any changing in url that can be used for some security

attacks.

59

Chapter 6

6 Case Study: Course Management System

In this chapter we will do a simple and typical web application using EasyWeb and

show how it works. We cover an experiment for both graphical designer and

programming editor to develop this application. The chapter also can be used as a

tutorial.

6.1 Brief Description of System Requirements

A Web based Course Management System will be consider as a web application which

has a capability to get the list of students in each course with their grades and also

change the detail information of a course such a presentation room, department or etc.

these activities can be accessed by person who has password of the mentioned course.

Figure 35 shows the scenario for our web application. This figure clarifies fistly user

should login and then he has two options to update or getting list of students. For the list

option he can edit each student’s information such as his/her grade, use also have

capability in List page to delete a student.

Figure 35. Course Management Scenario

60

6.2 Designing

Design process using EasyWeb has three steps; Database Design, Webpage Design and

Business Logic Design. Generated codes with EasyWeb can have one or more databases

with their own tables, and then you can design webpages and connect them to desired

database. Finally you should design your business logic which is possible by links,

operations, outputs and initializations.

In following firstly we describe the designing by programming editor and then we will

switch to graphical designer and show how you can design graphically.

6.2.1 Designing with Programming Editor

Firstly, you should create a java project in Eclispe and configure it to use our language

definition, so please follow the instruction:

1. Create a new Java Project with the Codegen nature.

2. Go into the project's properties, and select as specific engine the location of the

newly generated the Project.

3. Create a new cg file called, open it and press CTRL + SPACE, the only

available module is a page. Therefore enter a set of Page instances.

4. Control that all default Codegen functionalities are available, syntax

highlighting of keywords, completion, structure visualization-selection and

syntax error displaying.

Now, you are ready to start to design your system model. As we have already

explained, it can be done in three steps:

6.2.1.1 Database Design

We can find two entities in our project and we don’t need more than one database (for

such a small application). Figure 36 shows the code should be used for modeling.

Figure 36. Database Design in Programming Editor

61

6.2.1.2 Webpage Design

We have Home, LoginPage, CoursePage, ListPage and Updated pages, so the best way

is firstly creating all of them.

 Figure 37. Webpage Design in Programming Editor

6.2.1.3 Business Logic Design

You should consider the relationship between web pages, which can be link or

operation. During our design we need to specified data from input in page by @ and

data from previous page by ^.

First let us to the skeleton of business logic, our system has links, operations, outputs

and initialization as Figure 38:

62

Figure 38. Skeleton of Business Logic in Programming Editor

Finally, you should add details of business logic. In this case, we need to design

operations; login, Update and getList. Please, consider operations Edit, Update and

Delete can be done with outputs(Figure 39).

63

Figure 39. Defining Operations in Programming Editor

We have also an initialization in CoursePage, in our initialization we have tried to fill

the inputs by course information (Figure 40).

Figure 40. Defining Initialization in Programming Editor

The last part of model is output in ListPage, it should have delete and edit facilities, too

and it presents data from StudentID, StudentName, StudentLastName, CourseName and

64

StudentGrade fields of table Marks. As you can see in Figure 41 criteria to select from

table Marks was borrowed from CoursePage (^CourseName).

Figure 41. Designing output in Programming Editor

Whole of model can be found in Appendix B.

After Finishing your Model you should Transform it to Program and then generate

codes, so go to EasyWeb and drag CodeGenerator Tools then validate it and you will

see an open dialog same as Figure 29, so choose your .tt file and then in the next form

(Figure 30) choose your mode as Programming Mode. Then with saving mentioned .tt

file or Run it as Custom Tool, you can generate Course Management System’s

executable code.

6.2.2 Designing with Graphical Designer

Graphical designer follows steps same as Programming Editor. Here we will show how

you can design a web application such as Course Management System by graphical

designer but actually, you can feel even for very simple applications graphical designer

has a lot of limitations which has been raised from wizard nature and its restrictions.

6.2.2.1 Database Design

We want to design our database and two mentioned entities in pervious section, so

please follow the steps:

1. Drag a Database entity from toolbox and then by right clicking on it and

choosing properties, you can change its name.

2. Right click on your database and choose validation you will see a windows

form ask you application name and server of your application. The server here is

not server of your database but it’s a server that metadata will be stored there, so it

will be used by EasyWeb through the designing (Figure 42).

65

Figure 42. Specifying the Application Name and the Server that EasyWeb should use in Graphical

Designer

3. Create your database by specifying the properties asked in the next form and

click on Create.

4. Go to Tables Tab and create your tables or edit the created ones. Please note

creating database here means storing metadata in EasyWeb.

5. Specify all columns or delete a table in the form which will be appeared

after clicking Create Button (Figure 43).

Figure 43. Specifying Tables in Graphical Editor

66

6.2.2.2 Webpage Design

The same as Programming Editor, it’s a good tip that we first define all our webpages,

so for the next step we have defined all of our webpages Figure 44.

Figure 44. Defining Webpages in Graphical Designer

Now, we should define our business logics in our system, here business logic design is

the same as what we have described in programming editor.

6.2.2.3 Business Logic Design

Firstly, we should design the relations of webpages, which can be link or operation

(Figure 45).

Figure 45. Skeleton of Business Logic Design in Graphical Designer

67

The next step is defining operations and what exactly we expect from an operation.

Firstly, we should design login with adding CourseName and Password inputs. Then we

can do exactly the same for getList to define CourseName input because in these two

operations we just need to pass parameters and there isn’t any business logic inside.

Finally we have to define Update operation, so right click on this operation and choose

validate then add CourseName, Password, Department, Teacher and Room as inputs.

To add logic of update you should write your SQL in SQL Stmt and add it, helping

available inputs and loaded values Comboboxes for @ and ^ values can be useful

(Figure 46). Update SQL string that you should write is :

UPDATE Courses SET CourseName = @CourseName , Password = @Password , Teacher = @Teacher ,

Department = @Department , Room = @Room WHERE CourseName = ^CourseName ;

Figure 46. Design getList Operation

Initializations which are called Predefined variables now are ready to define, and we

have one case of this kind of entities; CoursePageIni .To define CoursePageIni, go to

login operation and choose the name, and the table. Then you should assign fields of

table to your variables, in the case of this initialization we should add CourseName,

Password, Department, Room and Teacher (Figure 47). Finally you have to define your

SQL automatically and you should add it the following condition:

WHERE CourseName = ^CourseName AND Password = ^Password

68

Figure 47. Initialization of CoursePage: CoursePageIni

The last step is defining the Output, so you should go to getList operation and press the

Outputs Tab. Then choose the Marks Table and add all fields (in the case of this

example), you also have to choose an id and you may want to define a where clause (in

this case: CourseName = ^CourseName). After choosing Edit and Delete checkboxes, press

OK to create output.

Now you have already modeled your system and only things that have been remained is

instantiating a Code Generator tool, choosing .tt file and Graphical Generation (as your

mode) and finally, save .tt file or Run as a Custom tool to generate codes.

You can find the Intermediate code for Course Management System in Appendix B,

please consider that this code is the same for both graphical and programming

environment.

69

Chapter 7

7 Conclusion

This chapter presents the most important points and contributions that I have obtained

and also propose next steps to continue this project.

7.1 Summary of Contributions

To sum up all we can count as my contributions, we should say I have developed a

prototyping tool for first draft web applications in .Net environment, which can be used

for faster and much easier requirement engineering and architectural design. The most

important point of this tool is the goal for being easy to use, and not covering all stuffs

with complexity of design.

I have tried to decreases the design and analysis phases time and make them much

closer to implementation of application with generating codes from architectural design.

In this case developers don’t need to be busy by some configuration and boring stuffs.

During this Project, I have studied the Model Driven Development, its approaches and

Domain Specific Languages then chosen Software Factory for my tool. I have tried to

modify the customary architecture of Microsoft DSL tools. I have also developed a

Programming Editor with WebLang Codegen.

Generated codes however are not comparable with strang codes in WebLang, WebRB

or AndroMDA but it can solve common problems such as double clicking of submit

buttons or url security without any extra stuff for designer.

7.2 Future Works

There are few aspects of EasyWeb that I have not studied deeply and they open new

directions to continue for next versions of this tool:

• Ability to generate webservices: nowadays, web service are going to be most
important architecture of web applications, so supporting it is necessary for each

tool wants to be used by designers and developers.

• Generating human-usable code from Program.txt: If this ability was possible in
this version I could use graphical interface for very fast design and then insert all

details with programming editor, so developing this possibility can be helpful.

70

• Improving generated codes: As I have mentioned before, generated codes are not
strong as much as other tools in this area, so it seems useful if I will improve the

quality of generated codes.

• Ability to generate databases from logical design: currently, EasyWeb supports

physical design and it’s really needed to use logical design for generating databases

because the goal of EasyWeb is making the system design easy as much as possible,

but now there is a person who works on this ability in LTI, I hope I can add this

feature soon.

In summary the final goal of my project is developing an easy to use tool which should

cover most technologies in this area. To achieve this goal we should define different

tools but not include them in a one environment because it can be resulted in complexity

and much more parameters for design a simple application.

71

Bibliography

A. Basu, M. Hayden, G. Morrisett, T. von Eicken. "A language-based approach to

protocol construction." The First ACM SIGPLAN Workshop on Domain-Specific

Languages. ACM, 1997. 1-15.

A. Henriksson, H. Larsson. A Definition of Round-trip Engineering. Technical Report,

Sweden: Linkopings Universitet, 2003.

A. Leff, J. Rayfield. "What is Web Relational Blocks?" IBM. 2007.

http://services.alphaworks.ibm.com/webrb/ (accessed November 1, 2007).

A. Moss, H. Muller. " Efficient Code Generation for a Domain Specific Language."

Generative Programming and Component Engineering Conference. Springer Verlag,

2005. 47-62.

A. V. Deursen, E. Klint. "Little languages: Little maintenance? ." Journal of Software

Maintenance, 1998: 75-92.

A. V. Deursen, P. Klint, J. Visser. "Domain-specific languages: an annotated

bibliography." ACM SIGPLAN Noti, Volume 35 , Issue 6, ISSN:0362-1340 , 2000: 26-

36.

A.V. Aho, R. Sethi, J.D. Ullman. Compiler: Principles, Techniques and Tools.

Addison-Wesley, 1986.

Bentley, J. L. "Programming pearls: Little languages." ACM Communications, 1986:

711-721.

Bhatia, Naresh. "AndroMDA Introduction." AndroMDA. 2006.

http://galaxy.andromda.org/index.php?option=com_content&task=view&id=104&Itemi

d=89 (accessed November 1, 2007).

Brown, A. "An introduction to Model Driven Architecture." IBM. 2004.

http://www.ibm.com/developerworks/rational/library/3100.html (accessed November 1,

2007).

Bruce, D. "What makes a good domain-specific language? ." Symposium of APOSTLE,

and its approach to parallel discrete event simulation. 1998.

72

C. Petitpierre, O. Buchwalder, P-L Meylan. "WebLang: Web-Applications

Development IDE for Eclipse and JBoss ." LTI. 2006. http://ltiwww.epfl.ch/WebLang/

(accessed november 2, 2007).

Cleaveland, J. C. "Building application generators." IEEE Software, 1988: 25-33.

Coplien, J. "Multi-paradigm Design." Generative and Component-Based Software

Engineering (GCSE99). Germany, 1999.

D. A. Ladd, J. C. Ramming. "Two application languages in software production."

USENIX Very High Level Languages Symposium. 1994. 169-178.

Demir, A. "Comparison of Model-Driven Architecture and Software Factories in the

Context of Model-Driven Development." The Fourth Workshop on Model-Based

Development of Computer-Based Systems and Third International Workshop on Model-

Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06).

IEEE 0-7695-2538-5 /06, 2006.

"Domain-Specific Language Tools." MSDN. 2007. http://msdn2.microsoft.com/en-

us/library/bb126235(vs.80).aspx (accessed November 1, 2007).

DSM Publication. 2007. http://www.dsmforum.org/publications.html (accessed

November 1, 2007).

E. G. Sirer, B. N. Bershad. "Using production grammars in software testing." The

second USENIX Conference on Domain-Specific Languages. USENIX Association,

1999.

Frye, Colleen. "A look at Visual Studio Shell." TechTarget. 2007.

http://searchvb.techtarget.com/originalContent/0,289142,sid8_gci1273412,00.html

(accessed November 1, 2007).

Garwick, J. V. "Programming Languages: GPL, a truly general purpose language."

ACM Communications, Volume 11 Issue 9 , 1968.

Greenfield, J. "Software Factories." MSDN. 2007. http://msdn2.microsoft.com/en-

us/library/ms954811.aspx (accessed November 1, 2007).

H. N. Pham, Q. H. Mahmoud, A. Ferworn, A. Sadeghia. "Applying Model-Driven

Development to Pervasive System Engineering." First International Workshop on

Software Engineering for Pervasive Computing, Applications, Systems, and

Environments (SEPCASE'07). IEEE 0-7695-2970-4/07, 2007.

J. Greenfield, K. Short. Software Factories. Wiley Publishing, ISBN 0-471-20284-3,

2004.

J. Mukerji, J. Miller. OMG: MDA Guide V1.0.1. 2003. http://www.omg.org (accessed

October 31, 2007).

73

J. Rayfield, A. Leff. IBM Web Relational Blocks Developer’s Manual. Developer’s

Manual, IBM Corp, 2007.

James, M. "Visual Studio Domain Specific Language tools." IT Architecture. 2007.

http://www.itarchitect.co.uk/articles/display.asp?id=334 (accessed October 31, 2007).

Kovari, P. "Explore model-driven development (MDD) and related approaches:

Applying domain-specific modeling to Model-Driven Architecture." IBM. 2004.

http://www.ibm.com/developerworks/architecture/library/ar-

mdd4/?S_TACT=105AGX78&S_CMP=HP (accessed November 1, 2007).

Kozikowski, J.l. "A Bird’s Eye View of AndroMDA." AndroMDA. 2005.

http://galaxy.andromda.org/docs- 3.1/contrib/birds-eye-view.html (accessed November

1, 2007).

Krueger, C. W. "Software reuse." ACM Computing Surveys, 1992: 131-183.

M. E. Fayad, D. C. Schmidt. "Object-oriented application frameworks." ACM

Communications, 1997: 22-35.

Microsoft. "Features in the Visual Studio Premier Partner Edition." MSDN. 2005.

http://msdn2.microsoft.com/en-us/library/bb129445(VS.80).aspx (accessed November

1, 2007).

"Microsoft DSL Tools." MSDN. 2005. http://msdn2.microsoft.com/en-

us/library/bb126327(VS.80).aspx (accessed October 31, 2007).

O. Buchwalder, C. Petitpierre. "WebLang: A Language for Modeling and Implementing

Web Applications." 18th International Conference on Software Engineering and

Knowledge Engineering. 2006.

R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P. Oliva, T.

Sheard, I. Smith, L. Walton. "A software engineering experiment in software

component generation." The 18th International Conference on Software

Engineering(ICSE-18). IEEE, 1996. 542-553.

R. E. Johnson, B. Foote. "Designing reusable classes." Journal of Object-Oriented

Programming, 1(2):22-35, 1988.

R. M. Herndon, V. A. Berzins. " The realizable benefits of a language prototyping

language." Transactions on Software Engineering, 1988: 803-809.

R. N. Taylor, W. Tracz, L. Coglianese. "Software Development Using Domain-Specific

Software Architectures." ACM SIGSOFT Software Engineering Notes, 1995: 27- 37.

Rothenberg, J. The Nature of Modeling. New York, USA: John Wiley and Sons, Inc. ,

1989.

Schwaderer, C. "Pioneering model driven development." 2006. http://www.compactpci-

systems.com/columns/software_corner/pdfs/2006,10.pdf (accessed November 1, 2007).

74

Siegel, J. Introduction to OMG's Model Driven Architecture . Presentation, OMG, 2005.

Simos, M. "Organization domain modeling (ODM): Formalizing the core domain

modeling life cycle." The Symposium on Software Reusability (SSR95). ACM Software

Engineering Notes, 1995. 196–205.

V. Menon, K. Pingali. "A case for source-level transformations in MATLAB." The

second USENIX Conference on Domain-Specific Languages. USENIX Association,

1999.

75

Appendix A

Technical Tutorial of Microsoft DSL Tools

Considering the lack of good technical tutorials for MS- DSL Tools, in this appendix we

will describe how we can technically develop a designer environment. Firstly, we will

consider the environmental setup and then describe the language definition, capable to

write hello world.

Environmental Setup

1. Install Visual Studio .NET 2005.

2. Install Visual Studio SDK (Software Development Kit), which contains the DSL
Tools plug-in.

Language Definition

Open Visual Studio 2005, select New Project and then navigate to Other Project Types,

Extensibility and select Domain-Specific Language Designer. Assign the new project

the name “HelloModel” and a suitable storage location (Figure 48).

76

Figure 48. Creating the project

Select a suitable template for the custom Designer. In our case the very basic Minimal

Language template will do, and we can also accept the default name “HelloModel” for

the DSL generated (Figure 49).

77

Figure 49. Selecting Domain Specific Language Options

Specify an extension to be associated with the custom editor – enter .HELLO in this

case – and leave everything else as the default (Figure 50).

Figure 50. Defining New Model File Type

Set details of the names and namespace used by the model (Figure 51).

78

Figure 51. Specify Product Details

The final page of the Wizard generates a strong name key file and completes the

specification of the project. If you click finish the project will be generated.

Then you can see the DSLDefinition.dsl file displayed as a designer diagram. If you

make any changes you might well need to re-generate the code by transforming before

running the project. If you examine the diagram your first thoughts might be that this

looks complicated.

Figure 52. Designer Diagram (James 2007)

79

You can see that the diagram is made up of a number of “blocks” or Domain Classes

linked by a number of Domain Relationships. The first block is called “ExampleModel”

– you can think of this as the topmost block that contains all of the other blocks that the

user might put on the diagram. These other blocks are related to the ExampleModel

block by the ExampleModelHasElements relationship. If you look closely at Elements

end of this relationship you will see the notation 0..*, which means that there can be 0

or many Elements connected to the ExampleModel. At the other end of the relationship

you will see the notation 1..1, meaning that there is just 1 ExampleModel block, i.e. this

relationship is one-many which is what you would expect (James 2007).

Moving on you can also see that there is an ExampleElement block with a single

property “Name”. This just means that the user can place this block on the diagram and

assign each one a name. You can add other user-settable properties to blocks, but for the

moment a Name property is sufficient. Each ExampleElement can be related to other

example elements by an ExampleElementReferencesTargets DomainRelationship. You

can also see that in this case both Targets and Sources are set to be “many”, and this

allows the user to place multiple ExampleElement blocks on the diagram and link them

using this relationship in a many-to-many way. If you are finding this hard to follow it

becomes a lot easier once you have seen the generated custom Designer. Exactly how

the custom Designer’s code is generated will also become clear once we have added

some generated code of our own (James 2007).

Now we can move to the next stage of creating a custom Designer. Make sure that all of

the generated code is up-to-date – in the Solution Explorer click the new Transform All

Templates button. Next start the project running using Debug, Start Debugging or press

F5. What happens next might be slightly unexpected. A new copy of Visual Studio

opens with your custom Designer already loaded plus a sample and a test diagram. To

see how things work, open the Test.hello file using the Solution Explorer (Figure 53).

You will see a blank diagram, and if you open the Toolbox you will see that it contains

ExampleElement and ExampleRelationship. You can now drag ExampleElements onto

the diagram and connect them up using the ExampleRelationship. You will discover

that you can use the ExampleRelationship to create many-to-many connections (James

2007).

Figure 53. Custom Designer (James 2007)

80

The key to code generation in all DSL models is the use of TextTempate or .tt files.

These can contain a mixture of code which is executed to generate more code, and code

which can be simply quoted into the generated code. This “dual use” makes the

TextTemplate difficult to fathom at first, but if you have had any encounters with meta-

languages, or indeed with the way that HTML is generated using PHP or the DOM, then

you should be in a better position to follow what is going on (James 2007).

Another puzzle to solve is exactly where the TextTemplates should be included in the

project – in the original DSL Designer or in the custom Designer that it generated?

Clearly the answer is that if you want to modify or augment the code generated by the

DSL Designer, add to the large number of TextTemplates it already has. If you want to

add code generation to the custom Designer then the TextTemplate needs to be included

in the generated project. It seems obvious when put so clearly, but it is a little odd to be

adding files to a generated project. The good news is that any files you do add are

preserved if you re-generate the custom Designer (James 2007).

To add a TextTemplate to the project simply use the Add,New Item in the Solution

Explorer and create a Text File called Hello.tt. You don’t have to use the .tt extension,

but if you do, two things happen automatically. The first is that the files “Custom Tool”

is set to TextTemplatingFileGenerator, and second this custom tool is run on the file to

generate some code. If you use any other extension for the TextTemplate then you have

to manually set the CustomTool property to the template processor – usually

TextTemplatingFileGenerator (James 2007).

In this case of course the TextTemplate is blank and hence so is the generated code file.

If you look in the Solution Explorer you should see Hello.cs just below Hello.tt in the

hierarchy. By default generated code files are .cs files and are supposed to contain C#

code – but you can change this (James 2007).

TextTemplate: To set the scene, templates consist of some directives followed by a

mixture of literal blocks and control blocks. Literal blocks are just plain text in the

template that you want to pass straight through to the output. Control blocks are things

with some kind of <% %> marker around them. The content of these blocks in your

template contributes to a static class which the templating system generates. This class

has at least one static method, which when executed writes out the desired output of the

transformation of the template. In the parlance of the current March release we'd call

this the generated code, but we're moving the naming over to be 'Text Templating' and

"Transformation" as it's not just code you can generate, rather it is any text-based

artefact. If you do nothing else in your template, the static method will write out all of

the text in literal blocks by simply writing out the raw text using a simple WriteLine()

type statement. There can only be one class feature block and it must come immediately

after the directives.

<% %> - Regular control block: Embeds some control code in the static method.

Regular control blocks affect the literal blocks that they surround by means of the flow

of control within them. This happens because the regular blocks' code is written

verbatim into the static method. So if you have a regular block that begins a for loop

that loops five times, then have a static block, then have another regular block that

closes the for loop, you'll get the contents of the static block written into the final output

text five times. You'd typically use some expression blocks inside this loop to do

81

something interesting with the loop variable. You can put anything in a regular block

that you can put in the body of a static method.

 <%! %> - Class features control block: Embeds control code at the static class scope.

This block allows you to add new static methods, static fields, static properties etc to the

static class. You can then use these from regular and expression control blocks. Trying

to write all of your control code inside one static function can be tiresome if you have a

big model to traverse - especially if the model has a recursive structure like a tree in it.

Class features blocks allow you to add further static methods to the static class to make

this sort of thing easier and to structure your control code well. You can also add static

fields and properties to support those methods if you wish.

Directives: Directives provide instructions to the templating engine.

<%@ directiveName parameter="Value" %>: The current set for any template file is

named in following:

<%@ generatedFile extension=".cs" %>: Specify the extension of the file that gets

generated.

<%@ assembly name="System.Drawing.dll" %>: Reference the assembly in

compilation of control blocks.

<%@ import namespace="System.Collections" %>: Import the namespace in

compilation of control blocks. (i.e. a C# using statement)

<%@ modelFile path="UtilitiesModel.dmd" %>: Load the given domain model and

provide a reference to it in the property Model on the context object.

<%@ modelFile path="xxx.yy" %>: Load the given designer definition and provide a

reference to it in the property Definition on the context object.

The simplest code generator we can implement produces a single HTML page with no dynamic code, i.e.

no code that depends on the diagram the user has created. The first thing we have to do is change the

extension of the generated code file:

<#@ output extension=”.htm” #>

This is an example of one of the five built-in directives that change the way the code is

generated. In this case the output directive can change the extension, and optionally the

encoding, used for the output file.

The remainder of the TextTemplate takes the form of HTML that is simply quoted directly into the

generated code:

<html

xmlns=”http://www.w3.org/1999/xhtml” >

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <h1>Hello World</h1>

 </body>

</html>

82

If you enter the directive and the quoted HTML into the Hello.tt file, right-click and

select Run Custom Tool, you will see that the Hello.cs file has turned into a Hello.htm

file and if you right-click on this and select View in Browser you will see the Hello

World Web page.

If this is as far as code generation goes it isn’t very impressive, and certainly doesn’t

need the custom Designer! To do anything meaningful we really need to involve the

diagram of the model that the user has created and use dynamic code generation. A

TextTemplate can contain a number of different types of dynamic code generation. As

already mentioned if you have text enclosed by <# and #> then the text is interpreted as

code (C# by default) to be executed during code generation. For example, if you

include:

<# WriteLine(“Hello”); #>

…then the generated code contains the text Hello. An expression is an even more direct

way of generating dynamic code. If you use

<#= ExpressionCode #>

This is all very well and you can probably now see how to generate code dynamically from the template,

but how do you access details of the diagram the user has created?

The answer is that when the user creates a diagram the system creates a “directive processor” which

contains classes and methods that give access to the model as created by the user. Before you can use

these classes and methods you have to call the generated directive processor to add them to your template.

The only problem with this task is the complexity of the names involved. The directive processor is by

default called DirectiveProcessor.cs and stored in the GeneratedCode directory of the project,

HelloModel\Dsl\GeneratedCode in the case of our example. The directive processor is used as a custom

directive:

<#@ DSLname processor=

 “DSLnameDirectiveProcessor”

 requires=”fileName=’diagram.ext’” #>

The DSLname is replaced by the name of your custom DSL – HelloModel in this case.

The “requires” clause specifies the instance of the custom diagram that you want to

process e.g. Test.hello. You can also specify a “provides” clause to specify what the

resulting generated class model should be called. By default it’s given the same name as

the DSL, i.e. DSLname. To make use of the generated class we also need to specify a

base class that it will be derived from and this requires a “template” directive.

So to add access the model in the generated code we need to first add two lines to the start of the Hello.tt

file:

<#@ template inherits=

 ”Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation”#>

<#@ HelloModel processor=“HelloModelDirectiveProcessor” requires=”fileName=’Test.hello’” #>

Now the code within the template can access the model corresponding to the diagram

that the user has drawn in Test.hello.

Now we can write a simple loop that retrieves the name of each box placed on the diagram by the user

and uses it to create a “Hello World” message from each box:

<html xmlns=

 ”http://www.w3.org/1999/xhtml” >

83

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <#

 foreach(ExampleElement box in

 this.ExampleModel.Elements)

 {

 #>

 <p>Hello World from

 <#=box.Name#></p>

 <#

 }

 #>

 </body>

</html>

Notice that we have a mixture of static and dynamic code generation. The first part of

the template always produces the same HTML. The dynamic generation starts at the

foreach loop. Notice that the “this” is necessary to make it work with the diagram

instance, and that the ExampleModel is the topmost domain class as specified in the

DSL designer. The ExampleModel has an Elements collection, which contains all of the

ExampleElement domain classes corresponding to each block the user has placed on the

diagram. We simply step through each one and use an expression to insert the block’s

name into the HTML code generated. If you select the TextTemplate, right click and

select Run Custom Tool then a new HTML file will be generated, and if the user has

placed three blocks on the diagram it will contain:

<html xmlns=

 ”http://www.w3.org/1999/xhtml” >

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <p>Hello World from

 ExampleElement1</p>

 <p>Hello World from

 ExampleElement2</p>

 <p>Hello World from

 ExampleElement3</p>

 </body>

</html>

84

The next step is to look into ways of using the generated model in more sophisticated

ways. For example, we could write code that generates greetings in the order that the

blocks are joined together. This raises a few practical problems because in this case the

relationships can be many-to-many, and it is possible to draw a diagram with no unique

single route through from block to block. Such problems can be overcome either by

making the code clever or by going back to the DSL Designer and putting restrictions

on the type of diagram the user can generate, e.g. by making the links one-to-one, say.

There is also the more prosaic reason that moving on to work with more sophisticated

aspects of the model is more difficult than you might think. There is virtually no

documentation of the class structure, only very specific examples that really don’t help.

The only solution I’ve found to the documentation problem is to read the generated

code files in the DSL Designer. For example, if you open the file DomainClasses.cs in

the original project you will find the definition for the classes ExampleModel and

ExampleElement. Looking closely at ExampleElement reveals that it has a Targets

property which returns a LinkedElementCollection. If you lookup the definition of

LinkedElementCollection you will further discover that this is a collection of

ExampleElement objects. With this information we can now generate code that lists all

of the elements that each element is linked to.

The changes needed to the generated code are:

<body>

 <#

 foreach(ExampleElement box in

 this.ExampleModel.Elements)

 {

 #>

 <p>Hello World from

 <#=box.Name#></p>

 <#

 foreach(ExampleElement targ in

 box.Targets)

 {

 #>

 <p> is connected to

 <#=targ.Name#></p>

 <#

 };

 }

 #>

</body>

Notice that the outer foreach loop still steps through each of the blocks placed on the

diagram, but the second foreach loop uses each block’s Targets property to list all of the

blocks it is connected to.

85

Figure 54. A Complicated Connected Diagram (James 2007)

For example, if the user draws the diagram shown in Figure 19 then the resulting generated HTML is:

<html xmlns=

 ”http://www.w3.org/1999/xhtml” >

 <head>

 <title>Hello World</title>

 </head>

 <body>

 <p>Hello World from

 ExampleElement1</p>

 <p> is connected to

 ExampleElement3 </p>

 <p> is connected to

 ExampleElement2 </p>

 <p>Hello World from

 ExampleElement2</p>

 <p> is connected to

 ExampleElement3 </p>

 <p> is connected to

 ExampleElement4 </p>

 <p>Hello World from

 ExampleElement3</p>

 <p> is connected to

 ExampleElement4 </p>

 <p>Hello World from

 ExampleElement4</p>

 <p> is connected to

 ExampleElement1 </p>

 </body>

</html>

86

Similarly, by reading the other generated code files you should be able to work out how

to generate code based on just about any aspect of the diagram. Notice that it’s very

easy to add custom properties to the model elements and to use this to change the

generated code. For example, adding a “country” property to the ExampleElement

allows the code generator to test it and generate a “Hello World” in the appropriate

language (James 2007).

87

Appendix B

Course Management System Models

Model in Human-Usable Language

application CourseMng {
 database CourseMngDB{
 server = "LTIPC14" ;
 table Courses {

 CourseName ("varchar(50)", "*", "*");
 Password ("varchar(50)", "*", "*");
 Teacher ("varchar(50)", "*", "*");
 Department ("varchar(50)", "*", "*");
 Room ("varchar(50)", "*", "*");
 }
 table Marks {

 StudentID ("varchar(50)", "*", "ID");
 StudentName ("varchar(50)", "*", "*");
 StudentLastName ("varchar(20)", "*", "*");
 CourseName ("varchar(50)", "*", "*");
 StudentGrade ("varchar(50)", "*", "*");
 }
 }
 webpage Home {
 title = "Home";
 link Login ("LoginPage.aspx");

 }
 webpage LoginPage {
 title = "LoginPage" ;
 operation login {
 destinationPage = "CoursePage";
 input CourseName;
 input Password;

 }
 }
 webpage CoursePage {
 title = "CoursePage";
 initialization CoursePageIni {
 input CourseName ;
 input Password ;
 input Teacher;
 input Department ;
 input Room ;
 sql coursePageIniSql {
 server = "LTIPC14";
 database = "CourseMngDB";

88

 sqlString = "SELECT CourseName, Password, Teacher,

Department, Room FROM Courses WHERE CourseName = ^CourseName AND
Password = ^Password;";
 }
 }
 operation Update {
 destinationPage = "Updated";
 input CourseName ;
 input Password ;
 input Teacher;
 input Department ;
 input Room ;
 logic updateLogic {
 sql updateSQL {
 server = "LTIPC14";
 database = "CourseMngDB";
 sqlString = "UPDATE Courses SET CourseName =

@CourseName , Password = @Password , Teacher = @Teacher , Department =
@Department , Room = @Room WHERE CourseName = ^CourseName ;";
 }
 }
 }
 operation getList {
 destinationPage = "ListPage";
 input CourseName ;

 }
 }

 webpage ListPage {
 title = "ListPage" ;
 outputs list {
 source = LTIPC14.CourseMngDB;
 id = Marks.StudentID ;

 Marks.StudentID ;
 Marks.StudentName ;
 Marks.CourseName ;
 Marks.StudentLastName ;
 Marks.StudentGrade ;
 where "CourseName = ^CourseName" ;
 del(true);
 edit(true);

 }
 }
 webpage Updated {
 link HomePage ("Home.apsx");
 link LoginPage ("LoginPage.aspx");

 }

}

Intermediate Code

APP EASYWEB_CourseMng
DB CourseMngDB LTIPC14 % 10 UNRestricted
TABLE Courses
COlUMN CourseName varchar(50) * *
COlUMN Password varchar(50) * *
COlUMN Teacher varchar(50) * *
COlUMN Department varchar(50) * *

89

COlUMN Room varchar(50) * *
END_TABLE
TABLE Marks
COlUMN StudentID varchar(50) * ID
COlUMN StudentName varchar(50) * *
COlUMN StudentLastName varchar(20) * *
COlUMN CourseName varchar(50) * *
COlUMN StudentGrade varchar(50) * *
END_TABLE
END_DB
WEBPAGE Home Home ltr #FFFFFF
LINK Login LoginPage.aspx
END_WEBPAGE
WEBPAGE LoginPage LoginPage ltr #FFFFFF
OP LoginPage_login CoursePage
IN CourseName
IN Password
END_OP
END_WEBPAGE
WEBPAGE CoursePage CoursePage ltr #FFFFFF
PRE
IN CourseName
IN Password
IN Teacher
IN Department
IN Room
SQL LTIPC14 CourseMngDB SELECT CourseName, Password, Teacher,
Department, Room FROM Courses WHERE CourseName = ^CourseName AND
Password = ^Password;
END_PRE
OP CoursePage_Update Updated
IN CourseName
IN Password
IN Teacher
IN Department
IN Room
BL
SQL LTIPC14 CourseMngDB UPDATE Courses SET CourseName = @CourseName ,
Password = @Password , Teacher = @Teacher , Department = @Department ,
Room = @Room WHERE CourseName = ^CourseName ;
END_BL
END_OP
OP CoursePage_getList ListPage
IN CourseName
END_OP
END_WEBPAGE
WEBPAGE ListPage ListPage ltr #FFFFFF
OUT list CourseMngDB.LTIPC14
Marks.StudentID *
Marks.StudentID
Marks.StudentName
Marks.CourseName
Marks.StudentLastName
Marks.StudentGrade
WHERE CourseName = ^CourseName;
DEL
EDIT
END_OUT
END_WEBPAGE

90

WEBPAGE Updated untitled ltr #FFFFFF
LINK HomePage Home.apsx
LINK LoginPage LoginPage.aspx
END_WEBPAGE
END_APP

91

