

Information Aggregation for Load
Balancing in a Distributed System of

Web (Grid) Services

M A R C S C H N E I D E R

Master of Science Thesis
Stockholm, Sweden 2007

ICT/ECS-2007-60

A Framework of Aggregation Algorithms

Information Aggregation for
Load Balancing in a Distributed
System of Web (Grid) Services

A Framework of Aggregation Algorithms

Marc Schneider

Examiner
Vladimir Vlassov

Department of Electronic, Computer and
Software Systems (ECS)
School of Information Technology and
Communication Technology
Royal Institute of Technology KTH

Industrial Supervisor
Konstantin Popov

Swedish Institute of Computer Science
SICS

The Royal Institute of Technology
Stockholm, April 2007

1

Table of Contents
1 Abstract..1
2 Acknowledgements..1
3 Introduction..2

3.1 Goals and Expected Results...2
4 Background study on P2P, Web Services & Grids..4

4.1 P2P Systems (overlay network)...4
4.1.1 P2P overlay network structure..4
4.1.2 General Classification of P2P systems: Structured and Unstructured......................5
4.1.3 P2P algorithms: Centralized-, Flooding- and Document Routing Model6
4.1.4 Distributed Hash Table DHT..7
4.1.5 Distribute K-ary Search (DKS)..8
4.1.6 Common Based Peer Production..8

4.2 Web Service and Service Oriented Architecture SOA...9
4.2.1 Definition Web Services...9
4.2.2 Messaging SOAP..11
4.2.3 Service Description WSDL..12
4.2.4 Discovering and Publishing Services...13

4.3 Grid Service..15
4.3.1 Open Grid Services Architecture..18
4.3.2 Web Services Resource Framework...19

4.4 Grid Service versus Web Service...20
4.5 Grid Software...20

4.5.1 Globus Toolkit 4 and GRAM...21
4.6 Engaging Grid and P2P..24

5 Survey of Load Balancing in Distributed Systems..25
5.1 Active Object Migrations ..25
5.2 Load movement in a P2P structured network..26
5.3 Grid Load Balancing using intelligent agents..28
5.4 Load Balancing with a Swarm of Ants..30
5.5 Summary of Survey..33

6 Design..36
6.1 Concept of Request Routing...36

6.1.1 Life cycle of a request...36
6.1.2 Creating and issuing a request..37
6.1.3 Request Routing..37
6.1.4 Request Routing Types...38
6.1.5 Accepting a request..40
6.1.6 Balancing requests is balancing load ...40

6.2 System Model ...40
6.2.1 The system model...41
6.2.2 Inspiration from the survey...43

7 The structured aggregation scheme..44
7.1 Introduction..44

7.1.1 System model..44
7.1.2 Algorithmic Notations..45

7.2 The Structured Aggregation Scheme ..45

2

7.2.1 Underlying Structured Overlay...45
7.2.2 Structuring the gossip...46
7.2.3 Data Structures used in the Algorithms..49
7.2.4 Simple scheme: Symmetric Scheme...50
7.2.5 Simple Asymmetric Scheme...52
7.2.6 Improvement of the asymmetric/symmetric scheme..53

8 Evaluation..56
8.1 Definition of metrics and measurement...56
8.2 Precision of the estimates...57
8.3 convergence..60
8.4 DHT hops, messages and cost..64

8.4.1 messages...64
8.5 overlay cost ..67

8.5.1 overlay cost per message...69
8.6 churn...71

9 Conclusion..75
9.1 Future Work ..75

10 References..76

Table of Figures
Figure 1: An Abstract P2P Overlay Network Structure (layers)..5
Figure 2 API for a structured DHT-based Overlay System..7
Figure 3: General Process of Engaging a Web Service [18]..10
Figure 4: WS interoperability stack..11
Figure 5: The WSDL Specification...12
Figure 6: VO sharing resources R from organizations O..15
Figure 7: A simple Grid on a local organization. ...16
Figure 8: Grid Architecture and its mapping to Internet Protocol..17
Figure 9: The hourglass model of GRAM..22
Figure 10: FIFO discipline on a resource with GRAM ..23
Figure 11: Different states of a job in the GRAM scheduling model......................................23
Figure 12: Hierarchical structure ...28
Figure 13: Messor Architecture..31
Figure 14: Consumer Request...36
Figure 15: components of request routing..37
Figure 16: Request Routing types...38
Figure 17: Information Lookup approaches..39
Figure 18: request balancing enforcement points...40
Figure 19: Components of a node...41
Figure 20: VO using a DHT overlay as the communication substrate.43
Figure 21: finger pointers for node 0 in a ring with N=64..46
Figure 22: Interval levels (shown only in the right half), in a ring of N=6447
Figure 23: Discretization of the protocol in the simulator..57
Figure 24: Discretization of the protocol in the simulator for churn..72

3

Table of Tables
Table 1: Characteristics of surveyed load balancing solutions...35
Table 2: symmetric scheme, number of cycles s.t std deviation < 1, and aggregation value. . .61
Table 3: Jelasity scheme, number of cycles s.t std deviation < 1, and aggregation value........62
Table 4: expected number of messages per cycle...64
Table 5: expected number of messages per full aggregation..64
Table 6: comparing #messages for Jelasity and asymmetric with b=16...................................66
Table 7: comparing #messages for Jelasity and symmetric with b=16.....................................66
Table 8: comparing #hops of Jelasity and asymmetric together with graph 9..........................67
Table 9: comparing #hops of Jelasity and symmetric together with graph 10..........................69
Table 10: std deviation in a population of n=2048 (N=65536)...74

Table of Graphs
Graph 1: precision: std deviation for the asymmetric scheme..57
Graph 2: precision: std deviation for the symmetric scheme..58
Graph 3: precision: std deviation for the Jelasity scheme...58
Graph 4: convergence for the asymmetric scheme where b = 16..60
Graph 5: convergence for the symmetric scheme for where b = 16...61
Graph 6: convergence for the Jelasity scheme where b = 16. N is a upper bound.................63
Graph 7: message complexity, comparing asymmetric and Jelasity...65
Graph 8: message complexity, comparing symmetric and Jelasity..65
Graph 9: #hops used to deliver all messages ...68
Graph 10: #hops used to deliver all messages ...68
Graph 11: cost per message in a full aggregation...70
Graph 12: cost per message in a full aggregation...70
Graph 13: Churn, comparing Jelasity, asymmetric and symmetric..73

4

Abstract

1 Abstract
Grid computing is the next logical step in distributed computing. The Grid allows us to
share resources across administrative boundaries. The Open Grid Service Architecture
OGSA defines Grid Services based on Web Service technology. The overall usage of Grid
is expanding very fast and indulge large-scale systems spanning many organizational
borders. To solve scalability issue of future Grid systems, technology as known from P2P
systems can be engaged. Even though P2P and Grid systems have different origins, they
tend to converge towards each other facing a common future in large scale resource
sharing technology.

Through a background study, the thesis lightens up and discusses properties and
architecture of P2P, Web Services and Grids. A survey of load balancing systems in the
area of Distributed Systems will bring us into the context of real applications. The
surveyed systems are discussed briefly and compared with each other.
I define a system model based on request routing in the problem space for large dynamic
systems with the focuses on the European project Grid4All. I demonstrate that the model
can be achieved in two components, where the first is gathering the information and the
latter uses that information for load balancing.
I propose and evaluate practical algorithms for information aggregation in a structured P2P
overlay. The aggregated information is the future input for load balancing algorithms.
Actual load balancing is kept as a future work, where the contribution of this thesis goes to
the aggregation of information algorithms.

2 Acknowledgements
I wish to thank my examiner Vladimir Vlassov and my industrial supervisor Konstantin
Popov for their valuable comments, guidance and work we conducted together. I
appreciated very much working close with them; they are leading researchers in the P2P
field. Many thanks to the fantastic environment and people at SICS. I enjoyed a lot being
part of this unique institute, which indulged my work in many aspects.
In the same go I would like to thank KTH which offers opportunities for international
students participating a full MSc course. Its a “once in a life time opportunity” which has
to be retained.
Special thanks goes to my parents Kathrin and Fritz, which supported me to make this
education possible.

1

Introduction

3 Introduction
Sharing resources among organizational and institutional boundaries needs an
infrastructure to coordinate resources of boundaries within so called virtual organizations.
Grid technology builds the infrastructure for virtual organization. Such infrastructure
should offer a easy management of forming virtual organizations, sharing resources,
discovering services and consuming services.

To solve these requirements, open and extensible standards must be employed. Thus
allowing a broad interoperability and allowing the overall Grid technology being
developed and evolved. Attractive technologies from Web Services are adapted:
Discovering, look-up and invocation of services. In the recent years Web Services became
the drive of Grid infrastructure.

Grid systems are becoming commercial and changing their face to a main-stream alike
paradigm. Companies hiring out storage and computational power. Many research projects
going on, which intend to compound computational power between research institutes.
Grid systems are growing fast in the recent years. Centralized management of Grid systems
are not scalable, and must be evolved using scalable technologies such as known from
Peer-to-Peer systems.

Peer-to-Peer technologies are scalable and self managed. P2P system have the same idea of
resource sharing as in Grids but have different views how resources are shared. Anyhow,
P2P systems use overlay networks established on top of the existing network. The overlay
is a self managed logical network which uses connectivity information from peers. These
systems are highly scalable and their technology can be exploited to be used to make Grid
systems scalable. Much research is going on to adapt P2P technology into Grids. In the
recent years researches have noticed that the evolution of P2P systems and Grids converge
to each other.

3.1 Goals and Expected Results
The goals of the thesis are the following

1. Background study of related work on Grids, Web Services and P2P
2. Survey of load balancing in the context of Distributed Systems
3. Experiment with the Globus Toolkit 4, by studding and deploying Grid Services

together with Sotomayors book [1]. This give an insight of a real Grid System and
hands on programming Grid Services.

4. Proposal and evaluation of algorithms, directing towards load balancing, using the
structured overlay DKS developed at KTH and SICS. The main features of the Grid
Service is great scalability and self management.

2

Introduction

Expected Results
1. The survey of load balancing in a distributed system: show different technologies

used to solve load balancing within Distributed Systems. We prefer to find
applications where it allows to scale to a large number of members.

2. A system model for solving load balancing for a distributed system of Web (Grids)
services: The model should be scalable and run within a dynamic environment.

3. Proposing algorithms for information aggregation for large-scale dynamic system.
4. Results of the evaluation of the algorithms.

We expected to build a prototype for load balancing. We have adapted the work to give a
evaluation of the developed algorithms which covers the aggregation of information.
Future work can be based on this thesis to propose and implement load balancing
mechanisms.

3

Background study on P2P, Web Services & Grids

4 Background study on P2P, Web Services & Grids

4.1 P2P Systems (overlay network)
P2P systems evolve fast and are an emergent technology in the future of the Internet,
forming a new paradigm of computing and resource sharing. Actually, P2P form an
overlay network on top of the Internet with some important properties relaying on its
decentralized and non-hierarchical architecture such as self-organizing, massive scalable
and robust in Internet sized networks.
The ACM Computer Survey [2] points out that there is not a general agreement on what is
and what is not a peer-to-peer. In respect to sharing resources directly with other peers and
be able to treat instability they define P2P as this:

Peer-to-peer systems are distributed systems consisting of interconnected nodes able
to self-organize into network topologies with the purpose of sharing resources such as
content, CPU cycles, storage and bandwidth, capable of adapting to failures and
accommodating transient populations of nodes while maintaining acceptable
connectivity and performance, without requiring the
intermediation or support of a global centralized server or authority.

[2] points out that the definition is encompassing the different level of “peer-to-peeryness”
(or decentralisation), ranging from a pure decentralized system to a partially centralized
systems such as Napster [3].

The following characteristics are the main issues for developing and deploying P2P
applications: Decentralization, Scalability, Anonymity, Self-Organization, Cost of
Ownership, Ad-Hoc, Connectivity, Performance, Security, Transparency and Usability,
Fault Resilience, Interoperability.

4.1.1 P2P overlay network structure
P2P overlay networks form a self-organizing system of peers. Overlays are logical
networks, built on a physical communication network. They consist of 5 main layers
depicted in Figure 1.

The first one is the Network Communication layer and describes how the network
connectivity characteristics are (i.e. on a mobile device, desktop machine). Connectivity
between peers is typically in a ad hoc manner.

The Overlay Network Layer manages the peers and is responsible for peer discovery,
optimal routing and location look up.

The Feature Management Layer handles security, resource management and the
resilience. Security deals mostly with some central authorities, albeit new distributed
technology are developed against denial of service and reputation.

The Service Specific Layer (aka Class-Specific Layer) concerns itself with a bunch of
classes enabling “features” on the infrastructure (Add-ons for supporting the P2P
substrate). Such classes are scheduling (applies to compute intensive applications), meta-

4

Background study on P2P, Web Services & Grids

data (applies to content and file management applications), messaging (applies to
collaboration application) and the management of the underlying P2P network.
On top lays the Application Layer where specific functionalities for applications,tools and
services are implemented.

Application

Service specific

Features
Management

Overlay
Management

Network

Figure 1: An Abstract P2P Overlay Network Structure (layers)

4.1.2 General Classification of P2P systems: Structured and
Unstructured

The term structured applies in P2P to the fact that there is some specific control and some
deterministic behaviour. Peer identifiers aren’t taken randomly, the data which a peer
shares is placed in some specified location. Such systems like Chord [4] Tapestry [5], CAN
[6], DKS [7] make use of a Distributed Hash Table (DHT). In such a DHT the data object
(value) is placed deterministically at peers with identifiers corresponding to that objects
unique key. With the DHT’s Application Programming Interface (API) objects can be put,
retrieved and looked up.
Structured overlay networks introduces such key-based routing which is highly scalable. It
is efficient in locating rare items, but produces much overhead in locating replicated items
(what is a reason for the high presence of unstructured networks in the Internet).

In contrast, unstructured networks have loose rules. Their nature is ad-hoc. A node joining
the network doesn’t has to know the topology and don’t have any prior knowledge. The
first unstructured network was Gnutella [8]. It uses a flooding based mechanism to send
queries across the network. Each flooding is limited to a certain scope (using a TTL field).
A node receiving a query and having a match replies back with a list of all matches to the
originating peer. Another unstructured system is Kazaa which is based on the proprietary
FastTrack technology [9].
Unstructured ad-hoc networks have often the property called small world [10]. This
phenomena is based on the hypothesis that each human in the world can be reached by a
short chain of social acquaintance (by a average of 6). Adopted to unstructured networks,
there exists relational information between nodes which can be exploited to reduce hop
count. This information are vicinity based information. Networks are built ad-hoc and for
specific purposes.

5

Background study on P2P, Web Services & Grids

Unstructured networks suffer from the problem that they do not scale as well as structured
networks: Nodes become readily overloaded when it comes to a higher rate of aggregated
queries as in the case of Gnutella.
On the other hand, unstructured overlay networks are efficient on locating replicated data
or popular data.

An unstructured topology is a overlay network realized with a random connectivity graph
where a structured topology is a overlay network with a predetermined structure. The
latter form a predictable and controllable structure, although it can be fully decentralized.

4.1.3 P2P algorithms: Centralized-, Flooding- and Document Routing
Model

This section briefly discuss the types of P2P algorithms. They build the core of a P2P
system and describes their type of overlay network.

In a Centralized model, an example is Napster [3] , a central server is holding a directory
of shared files and the data which is distributed on the belonging peers. There are 2
services. The first one is the directory service and the second a storage service. Storage
service is distributed (the peers) and the directory service is a central server. In principle
the peer sends a search query to the directory service and gets a reply with a list of results.
The peer therefore can communicate with the storage from peer to peer.

An important drawback is the scalability of the directory service. The centralized service
has two crucial properties: it is a bottleneck and a single point of failure. The decisive stage
to overcome these issues are scalability techniques.
Anyhow, this model is called a hybrid model because it uses both approaches: a centralized
service to look up and a distributed service as its data storage.

The Flooding Model as used in Gnutella [8] forms a flat or some kind of low-hierarchical
(e.g. super peers) random graph. It is very effective in locating highly replicated data.
Flooding doesn’t guarantee any hit, and for rare items this model is poorly suited. The
algorithm is robust against failures and joins/leaves. The system is poorly scalable, since
the load increases linearly to the number of nodes in the system [2]. The nodes become
overloaded and therefore it doesn’t scale well.
Anyway, the flooding model is robust and is a less complex overly than i.e. a DHT based
system. Furthermore it’s a pretty ad-hoc system where the system it self doesn’t matter
much about structure.

In the Document Routing Model each peer is given an ID. A peer can share a document by
hashing the documents content and its name (publishing). This hashes forms a Document
ID (DID). A peer in the system will route this DID towards the peer with the most alike
peer ID. This process is repeated until the closest peer ID is the current peer ID. If a peer
now requests a document with a document ID 'DID', the system routes the query towards
the peer with the closest ID. This process will be repeated until a copy of the requested
document was found. Thereafter, the document is routed back to the originator. On each
hop along the route a copy will be kept.

6

Background study on P2P, Web Services & Grids

The Document Routing Model scales very good in large scale such as global communities.
A drawback is that the document ID must be known before requests are sent. It is a more
difficult task to implement search algorithms than in the flooding model. An other common
problem is the islanding: if the network splits apart e.g. because of a broken link the
communities splits into sub communities which do not know each other.

The following algorithms have implemented the document routing model: Chord [4], CAN
[6], Tapestry [5] and Pastry[11] . They share all the same goal which is to reduce the
number of hops for locating a document. For more details in peer to peer computing follow
up [12].

4.1.4 Distributed Hash Table DHT
A DHT is an infrastructure which enables distribution of an ordinary hash table onto a set
of cooperating nodes. DHTs have the important property which consistently assigns
random node IDs in a uniformly distributed manner taking the set of numbers from
identifier space. Data objects are assigned IDs taken from the same identifier space. A hash
function maps object keys, such as a file name, onto the overlay network to a
corresponding existent peer in the network: ID = Hash(Key).
The overlay network supports the following API given in Figure 2 API for a structured
DHT-based Overlay System

Figure 2 API for a structured DHT-based Overlay System

To put a given object onto the DHT, we can make use of the interface put(Key,Value). Key
is the key of the object and “Value” is the data object. The operation “lookup” can be
achieved by Value=get(Key), which retrieves the data object corresponding to the key. The
lookup will initiate routing to the peer holding that data object and get its value.
On the DHT, a key is matched to a ID on the identifier space

In a DHT each peer will maintain a small routing table of its neighbouring peers. Look up
routing will be progressively done by locating the data object by locating its closest peer in
sense of the peer ID.
In theory, DHTs can achieve routing performance in O(log(N)) average on look up, where
N is the number of peers in the system.

7

Background study on P2P, Web Services & Grids

The underlying network path (the physical one, or e.g. the IP network) between two peers
can be significantly different from the path on the DHT-based overlay network. Therefore,
the lookup latency in DHT-based P2P overlay networks can be quite high and could
adversely affect the performance of the applications running on it.

Many DHT-based P2P lookup approaches heave been proposed. For example: CHORD [4]
uses a ring structure for the ID space and each node maintains a finger table to support key
query as binary search. Pastry [11] uses a tree-based data structure and the routing table
kept in each node is based on shared prefix. P-Grid [13] is based on a virtual distributed
search tree. CAN [6] implements DHT using a d-dimensional space. These systems are all
scalable access structures for P2P and share the DHT abstraction.

Today exists many flavours of DHTs. The original ideas of DHTs are based on 2 ideas:
Consistent hashing and the PRR2 scheme from Plaxton et. Al. PRR2 is a scheme for
efficient routing to the node holding a object while having a small routing table [14].

4.1.5 Distribute K-ary Search (DKS)
The DKS is a structured P2P overlay network, implementing the DHT’s functionality.
DKS is based on CHORD. It uses a virtual k-ary spanning tree, where CHORD uses a
binary (2-ary) spanning tree. The height of the DKS spanning tree is logk N where N is
the number of nodes in the network and k the configuration parameter forming the base of
the tree. The lookup is done by following a path in the spanning tree.

The DKS organizes the peers in a circular identifier space and has the routing tables of
logarithmic size k−1 logk N (CHORD has k=2).
In DKS the circular identifier space is larger than the number of live nodes. Every node is
responsible for some interval on the identifier space. If an object is stored, it will be
forwarded to the node responsible for identifier given by the hashed key of that data. The
keys are taken from the same identifier space as the node IDs, so there’s an implementation
of document routing, as explained previously.

The DKS architecture has some important services such as efficient broadcast and
multicast of messages (group communication). For more details please refer to [7] .

4.1.6 Common Based Peer Production
The term Peer-to-Peer is not solely a technology-paradigm, as we can find it in social
economics, there’s an appearance of P2P as well: Common Based Peer Production (CBPP)
[15] is a new economical model of production coined by Yochai Benker, a professor for
law at the University of Yale. The model describes that the creative energy of large
numbers of people is coordinated into large projects, mostly without traditional
hierarchical organization or financial compensation i.e. Linux or Wikipedia.

The Internet is often used for such ad-hoc collaborating. What brings the development of
P2P in strictly technological interest and in the economical interests together is the new
paradigm of dynamic collaboration: collaborators are physically dispersed and mobile,
they join whenever they want and where they want.

8

Background study on P2P, Web Services & Grids

4.2 Web Service and Service Oriented Architecture SOA
Web Service is a very popular paradigm in all economical sectors. One of the most
important aspects is the gap-bridging between business concepts and IT concepts. Many
companies such as Microsoft, Sun and IBM have quickly discovered the high potential
with Web Services. Today, nearly every software vendor has agreed to use the same core
standards for WS. The WS is a de facto standard and ratified by the W3C [16].

Service Oriented Architecture (SOA) changes the process of designing, developing and
deploying software. The SOA defines an architecture for loosely coupled software
services. In the SOA there are three different individual roles:

1. Service Provider: Implements the service and provide it in the internet
2. Service Consumer: Searches and uses provided services
3. Service Registry: Enables search of services and holds information of service

provider

Existing software can be converted into services, even monolithic and inflexible
applications can be replaced by SOA architecture applications. There is no coupling
between owner and consumer of the service.

4.2.1 Definition Web Services

Web Services are a new breed of Web application. They are
self-contained, self-describing, modular applications that can be
published, located and invoked across the Web. Web Services
perform functions, which can be anything from simple requests
to complicated business process.
Once a Web Service is deployed, other applications (and other
Web Services) can discover and invoke the deployed service”
IBM Web Service tutorial [17]

An other definition:

A Web Service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web
Service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.
W3C Working Group[16]

Web Services provides an interface for distributed applications to communicate with each
other. It defines a set of protocols that enables applications to publish, search, provide and
consume a service. All protocol are based on XML.

9

Background study on P2P, Web Services & Grids

Figure 3: General Process of Engaging a Web Service [18]

The provider exposes a service to the environment. It might be a person, an organization or
a company which publishes services at a known place. A consumer can therefore find the
published service; the entities consumer and provider become known to each other.
Entities agree on a semantic which enables their message exchange (mechanics),
interpreting and acting on these messages.

The mechanics of a Web Service message exchange are described in the so called WSD or
Web Service Description (using XML). It is a machine processable specification of Web
Service interface. It defines the message formats, data types, transport protocols, and
transport serialization formats being used between consumer and provider (depicted in
Figure 3). Upon these information a consumer can consume the providers service.

In general a Web Service interaction can be seen as the following:

1. Client queries registry to locate services
2. Registry refers client to WSDL document
3. Client accesses WSDocument
4. Client processes WSDL, provides information to use Web Service
5. Client sends SOAP message request
6. Web Service returns SOAP-message request-response

10

Background study on P2P, Web Services & Grids

Figure 4: WS interoperability stack

4.2.2 Messaging SOAP
“The Simple Object Access Protocol is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment “ [18].
The SOAP messaging is XML messaging. It provides a flexible means to communicate
between applications. Because XML is not bound to some programming language or
operating system, messaging can be performed independently of these. SOAP is a standard
way to structure the messaging in Web Services.
SOAP is under standardization of W3C's XML protocol working group, after Microsoft,
IBM, Ariba and some smaller companies had submitted SOAP in the year 2000.

The SOAP message consists of an envelope containing a optional header and exactly one
body. The header contains blocks which indicates how the message must be processed.
These can be authentication credentials, routing information or it can be a transaction
context.
The body in the SOAP envelope contains the application payload. The bodies content is
pure application specific and not part of the SOAP-specification.

SOAP fits in WS as a standardized packaging protocol on top of the WS technology stack,
above the network and transport layers. As a packaging protocol, SOAP doesn't care about
what transport protocol is used. This makes SOAP flexible in where and how it is used.
SOAP-over-HTTP is the far most used transport and the SOAP specification even gives
special treatment for SOAP on HTTP. Despite that HTTP is pervasive on the Internet,
SOAP can be transported as well on SMTP, POP3, FTP and on many other transport
protocols.

SOAP implementations are:
-Apache SOAP (http://xml.apache.org/soap/)
Open source Java implementation of the SOAP protocol; based on the IBM SOAP4J
implementation.
-Microsoft SOAP ToolKit (http://msdn.microsoft.com/soap/default.asp) COM
implementation of the SOAP protocol for C#, C++, Visual Basic, or other COM-compliant
languages.
-SOAP::Lite for Perl (http://www.soaplite.com/) Perl implementation of the SOAP
protocol, written by Paul Kulchenko, that includes support for WSDL and UDDI.

11

Background study on P2P, Web Services & Grids

-GLUE from the Mind Electric (http://www.themindelectric.com) Java implementation of
the SOAP protocol that includes support for WSDL and UDDI

4.2.3 Service Description WSDL
Web Service Description Language describes the data type information for message
request and message response, how they are bounded to a transport protocol and how
services can be invoked. All these information are specified in the WSDL specification
[19].

In a nutshell, WSDL is a contract between the service provider and requester, using a XML
grammar. As in SOAP, WSDL is language- and platform-independent. WSDL is primary
used to describe SOAP services (but it isn't limited to that).

WSDL 1.1 (submitted by Microsoft, IBM, Ariba and many small companies) and 2.0 is a
W3C candidate recommendation, meaning that it's a document that W3C believes has
been widely reviewed and satisfies the W3C Working Group's technical requirements.

The WSDL specification can be split into 2 definition parts: The service interface
definition and the service implementation definition.

The Service Interface Definition is contains reusable parts and is expressed by Binding,
PortType, Message and Type.

Types: describes all the data types used between consumer and service provider.

Message: It describes a one-way message which can be either a response or a request. It
defines the message name and it can contain zero or more parts. Parts are usually some
parameters or return values.

PortType: It combines multiple messages to form a one-way or two way request response
operation. Most commonly used in SOAP is the combining of a request message and a
response message in a single request/response operation. Operations describes actions
supported by the messages.

12

Figure 5: The WSDL Specification

Background study on P2P, Web Services & Grids

Binding: This element describes how the service is specifically implemented on the wire.

The Service Implementation Definition describes how a service is implemented by a
service provider and it is expressed by the Service and Port.

Service: Specifies the location of the services through Ports (or end points). It contains a
documentation element to provide human readable documentation

The two definitions can be combined in one document or be a part in two documents. This
separation enables interface re-usability. Implementation and interface can be treated
dependent from each other.

4.2.4 Discovering and Publishing Services
An open environment allows to choose what service and when it should be consumed. To
be able to search for a service, services must been announced or published. This might be a
a directory service. I could look up in that directory for a service best suited to my needs,
fetch the description and consume that service.

UDDI is a technical specification for describing, discovering, and integrating Web
Services. A definition from the OASIS UDDI Specifications TC - Committee
Specifications [20]:

„UDDI Version 3.0, an OASIS Standard, builds on the vision of UDDI: a "meta
service" for locating Web Services by enabling robust queries against
rich meta data. Expanding on the foundation of versions 1 and 2, version 3 offers the
industry a specification for building flexible, inter operable XML Web Services
registries useful in private as well as public deployments “

UDDI 1.0 was originally announced by Microsoft, IBM, and Ariba in the year 2000. Since
then the UDDI.org initiative has grown up to more than 300 companies. In 2001 Microsoft
and IBM launched the first operational UDDI site which was shut down end of 2005. Later
on, in 2001, UDDI.org announced version 2 with extended features. After completion of
version 3.0 UDDI.org submitted it to OASIS to evolve into formal standard. Nowadays
UDDI 3.0 is an OASIS standard. UDDI is not part of the standardization effort by W3C.

UDDI is one of the core WS standards. It is designed to be queried by SOAP messages to
retrieve Web Service description documents (WSD), which contain all information to
consume a service. The UDDI defines data structures and a API for publishing and
querying the registry.

The information in a UDDI can be in:
● White pages: contain general contact information about the entity
● Yellow pages: contain classification information about the types and location of the

services the entry offers
● Green pages: contain information about the details of how to invoke the offered

services (technical data regarding the service)

13

Background study on P2P, Web Services & Grids

UDDI is based on a common set of standards, including HTTP, XML, XML-Schema and
SOAP.

14

Background study on P2P, Web Services & Grids

4.3 Grid Service
Grid Computing is an emergent technology in the world of distributed computing. Grid
Computing is the next logical step in networking. Like in the World Wide Web, Grid
Computing allows people and machines to share files over the Internet. Grid computing
enables sharing machine resources like computational power and storage capacity over the
Internet. A definition by IBM [21]:

„Grid computing allows you to unite pools of servers, storage systems, and
networks into a single large system so you can deliver the power of multiple-
systems resources to a single user point for a specific purpose. To a user, data
file, or an application, the system appears to be a single enormous virtual
computing system.“

Ian Foster aka father of the Grid, senior scientist in the Mathematics and Computer Science
Division at the Argonne National Laboratory Chicago, defines a 3 point check list what
specifies a Grid[22]: A Grid is a System that

1. coordinates resources that are not subject to centralized control …
2. … using standard, open, general-purpose protocols and interfaces
3. … to deliver non-trivial qualities of service.

Resources and users are in different control domains and the Grid integrates them. The
open standards and general-purpose protocols builds a collection of heterogeneous
systems. In the anatomy of the Grid [23] Foster points out that the real problem underlying
the Grid concept is the coordinated resource sharing and dynamic, cooperative, multi-
institutional collaborating. These emerges sharing rules, called Virtual Organizations VO.

Such VO enables high performance and throughput by aggregating resources from
different organizations together. VOs are dynamic heterogeneous federations which share
processing power, data and the security infrastructure. In the view of what forms a VO we
can think of organization which enforce security rules and implement policies for resources
utilization and priorities of using them. VOs can be companies, organizations, institutes, a
collaborating compound of the previous named and so on. These might also be projects
which are existent over long time or only for short time.

15

Figure 6: VO sharing resources R from organizations O

Background study on P2P, Web Services & Grids

Grid virtualizes heterogeneous geographically disperse resources. Files and Data Bases can
seamlessly span over the globe, capacity can be improved for data transfer rates.

The IBMs redbook “Fundamentals in Grid computing” [24] boils the principles of Grid
computing in a business scope down:“ if you want to meet customer requirements to better
match within the Grid computing, you should keep in mind the reasons of using Grid
computing: exploiting underutilized resources and parallel processing power“.

The aspect of reliability and management in IT infrastructure exploits new business
possibilities within the Grid environment. Reliability in IT infrastructure is achieved
nowadays by hardware redundancies such as multiple CPU, storage striping (RAID) or
gasoline generators for electricity blackouts. With the Grid paradigm a relatively
inexpensive and geographically dispersed redundancy can be achieved: The blackout in
Moscow doesn't affect the city of Stockholm.
Using „automatic computing“ allows an automatically healing in the Grid. The vision is
clear: where reliability is done today in hardware, it will be achieved in future in Software.

In the management perspective of IT infrastructure, the virtualization of the resources in
the Grid will allow us to better manage large and disperse, heterogeneous system [24].

Where Grids are used:

● In the financial services industry, Grid computing can be used to speed trade
transactions, crunch huge volumes of data, and provide a more stable IT
environment in a mission-critical environment that doesn't tolerate much downtime.

● Government agencies can use Grids to pool, secure, and integrate vast stockpiles of
data. Many civilian and military agencies need the capabilities of cross-agency
collaboration, data integrity and security, and fast information access across
thousands of data repositories.

● Companies involved in the life sciences, such as those that do genome research and
pharmaceutical development, can use parallel and Grid computing to process,
cleanse, cross-tabulate, and compare massive amounts of data. Faster processing

16

Users

Administrator

Grid management &
organization

CPU
Ressource

CPU + Data
Resource

Storage
Resource

Storage
Resource

Grid Data sharing mechanisms

Figure 7: A simple Grid on a local organization.

Background study on P2P, Web Services & Grids

means getting to market faster, and in those industries, a slight edge can be the
deciding factor.

The Grid Architecture as proposed by Kesselman, Tuecke and Foster's anatomy of the Grid
[23] catalogues the components of a Grid system which is an extensible, open architectural
structure.

Fabric Layer: The layer is the local control of the actual resources (e.g. hardware),
underlying the Grid system. This can be computers, supercomputers, storage, clusters or
sensors.

Connectivity Layer: Defines the communication and security. The layer enables fabric
layer resources the exchange of data between them. Authentication protocols provide
cryptographically mechanisms for verifying users and resources. The fundamental Internet
protocols such as HTTP, TCP/IP, DNS fall into this layer.
It describes what authentication solutions characteristics for VO should be possible like
single sign-on, delegation of credentials, integration with various local security solutions
and user-based trust relationship.

Resource Layer: It enables to manage the local resource individually. It is builds on top of
the Connectivity layer and defines protocols, APIs and SDK for the secure negotiation,
initiation, monitoring, control, accounting, and payment of sharing operations on
individual resources. The resource layer calls operations on the Fabric layer to interact
directly with the local resource. The layer doesn't care about global state.
Management protocols are used to manage the access and control of the shared resource.
These protocols also are responsible to accomplish it's organizational policy of what
operation can be taken out by who. GT4 adopts a set of protocols like GRIP, GRAM,
GridFTP and LDAP [23].

Collective Layer: Coordinates multiple resources. It manages a collection of resources and
make them working together to solve a common task. The layer provides services such as:

● Directory Service: discovering VO's resources and their properties
● Co-allocating, scheduling and brokering: lets VO participants allocating and

scheduling resources for specific purposes. A program we would like to run (called

17

Figure 8: Grid Architecture and its mapping
to Internet Protocol

Background study on P2P, Web Services & Grids

a job) will be allocated by discovering resources through a directory service and
will allocate the needed resource for that job

● Monitoring an diagnostics services: The VOs resources can be monitored and
probed e.g. if any attacks, failure or overload happened.

● Data management service: Jobs will require data to work on. Therefore the data
management keeps track of these data and transfer them to the resource which
needs them within the VO.

● More services are: Workload management systems and collaboration frameworks,
Data replication services, Community accounting and payment services,
Collaborator services

Application Layer:The top layer is the virtual organization environment to execute
applications. The Layer does not has to interact with the Collective Layer but can also
directly interact with the resource and connectivity layer.

4.3.1 Open Grid Services Architecture
OGSA is a specification which defines the overall structure and services which can be
provided in the Grid. The specification defines a common, open standard architecture for
Grid-based applications. The 'open' in the OGSA defines interoperability and the artefact
of standardisation should guarantee the portability of OGSA implementations.
OGSA is developed by members of the OGF Open Grid Forum www.ogf.org formerly
called GGF Global Grid Forum.

The OGSA adopts Service Oriented Architecture SOA. Everything is a Web Service
which is the main groove in the architecture – various resources become available as a
Web Services. The OGSA requires stateful resources, more precisely it uses the Web
Service Resource Framework WSRF, which will be explained later.

The OGSA defines a frame work which strongly uses the component paradigm. The
components can be expressed as capabilities which offers functionalities respectively
services to the desired needs. These capabilities or services are not standardized, they are
rather informative for adoption in a particular implementation. The architecture is not a
layered or kind of object-oriented architecture. The following services are identified by
OGSA and should be encountered in a Grid system:

Execution Management Service are concerned with the problems of instantiating,
managing, and completion of work units. OGSA data services are concerned with the
movement, access and update of data resources. It is as well concerned with data
replication and data consistency.

Resource Discovery and Management Services: In an OGSA Grid there are three types
of management which involve resources: Management of resources themselves (e.g.,
rebooting a host), management of the resources on Grid (e.g., resource reservation,
monitoring and control), management of the OGSA infrastructure, which is itself
composed of resources (e.g., monitoring a registry service).

18

Background study on P2P, Web Services & Grids

Security services are to facilitate the enforcement of security-related policies within a
virtual organization. Security at a high level is authentication, delegation, single sign-on,
privacy, confidentiality, integrity and so on. Security is one of the most challenging parts
in Grid and can be specifically been described in a Grid security model.

Self-management is an automated process which reduces the cost and complexity of
owning and maintaining an IT infrastructure. In such an automated managed environment,
the whole infrastructure, including hard- and software, becomes optimized, self-healing
and self-configuring.

Information Service provides efficient production of, and access to, information about
the Grid and resources. This includes as well status and availability of a particular
resource.

Context Management Services manages the usage and access of resources for users. It
optimizes resource utilization based on resource requirements.

4.3.2 Web Services Resource Framework
The WSRF is a joint effort by the Grid and Web Services communities. The WSRF [25] is
an extension to the Web Services and specifies stateful Web Services.
Operations in a Web Service might have values as parameter or results. To be able to
remember such value after an operation has finished, it must be stored in memory. The
memory might be simple variables, data structures or data bases and so on. A Web Service
can have access to many different resources. This what is referred as state, a well defined
way to store and access values on the service provider side. Stateful resources inherently
enables high complexity and transactions for Web Services.
Note that stateful resources appear in several computing contexts. Stateful resources are a
major focus of Grid Computing, as in the Open Grid Service Infrastructure 1.0 OGSI [26].

The State is not kept in the Web Service; State is kept in a resource while the Web Service
itself is state less. They are well separated and together they form the Web Service
Resource (WS-Resource).

Addressing WS-Resources is specified in the WS-Addressing specification. It defines a
construct called endpoint reference which allows to address Web Service endpoints. It is a
XML construct which includes an URI pointing to the corresponding Web Service. The
resource itself can be identified by an resource identifier. The latter is called WS-Resource-
qualified endpoint reference.

Resource Properties are the actual data items within the resource. An example of a
resource property might be „File name“, „Size“ , „Descriptor“ and the like. The resource
properties are generally used to store service data values (reflects service properties like
operation results, runtime information), meta data about values (like who accessed last,
what was it's changing time) and state management information which manages the
resource as a whole (e.g. manages its lifetime).

19

Background study on P2P, Web Services & Grids

The WSRF specification is a collection of four different specifications which relate to the
management of the Web Service Resource:

● WS-Resource Properties
● WS-Resource Life Time
● WS-Service Group
● WS-Base Faults

please refer to the WSRF [26] for detailed information.

A related specifications within WSRF is WS-Notification which describes how a Web
Service can be configured as a notification service where clients can subscribe to it and
become a notification consumer.

4.4 Grid Service versus Web Service
Although Grid Services are implemented using Web Services technology, there is a
fundamental difference between a Grid Service and Web Service.
A Web Service addresses the issue of discovery and invocation of persistent services. A
Web Services Description Language (WSDL) compliant document points to a location
that hosts the Web Service.
A Grid Service addresses the issue of a virtual resources and the management of state. A
Grid is a dynamic environment. Hence, a Grid Service can be transient rather than
persistent. A Grid Service can be dynamically created and destroyed, unlike a Web
Service, which is often presumed available if the corresponding WSDL file is accessible to
clients.

Web Services also typically out live all their clients. This has significant implications for
how Grid Services are managed, named, discovered, and used. The OGSA model adopts a
factory design pattern to create transient Grid Services. Thus, an OGSA Grid Service is a
potentially transient Web Service based on Grid protocols using WSDL

4.5 Grid Software
The OGSA is a reference architecture for open and interoperable implementations of Grid
systems. In this section we are going to see what a real Grid software is composed of and
how OGSA is adapted. In the remainder of this section I will discuss existent products and
their properties.

Distributed Grid Management
This component keeps track of available resources and assigns Grid jobs. It measures the
utilization rate and capacities of nodes in the Grid. The management of the Grid must be a
scalable and highly available component. To achieve that it must be achieved in a
distributed manner. The primary job is to collect statistical information in the Grid in a
distributed way, using an aggregation approach.
The IBM redbook “Fundamentals of Grid Computing” [24] conceptually decompose a
Grid Software in the following components:

Donor software
A machine, e.g. a PC, would like to share its computational power. It therefore installs a
software making it a potential member of the Grid system. Such that a machine can join a

20

Background study on P2P, Web Services & Grids

Grid, different security aspects has to be performed: Establish and proof relationship and
identity, obtain a member certificate in the Grid, login in the Grid and so on.

Job submission software
The software used to submit jobs into the cloud. Any member machine, node, in a Grid
can use such software to submit jobs into the Grid. However, special dedicated machines
like submission-nodes or submission-clients are chosen to perform the task.

Schedulers
Mostly all Grid system do include schedulers. They organize the job queuing in the Grid.
A simple example is the round-robin approach where each after another gets a job to
process. Other approaches are i.e. priority queuing or policy based queuing. Schedulers
usually act on the immediate Grid load.
Schedulers might be organized hierarchical: meta scheduler/low level scheduler scheme:
meta scheduler submits a job to the cluster scheduler, cluster scheduler allocates next
suitable node for the job.
More advanced schedulers monitor the progress of scheduled jobs. They manage the
overall work flow (outage of jobs, infinite looping, jobs have different completion code).
The reservation of resources can be achieved in a calender based system.

Communication
Grid Software might include software to help jobs communicate with each other. An input
of one job might be the output of another job. They might not reside on the same resource
and hence need to communicate with each another.
One of the open standard which enables this communication is called MPI, Message
Passing Interface. MPI and variations of it are often included as a part of the Grid system.
The most common protocol used is SOAP.

Observation and measurement
The donor software usually includes some facilities to monitor the hosts load. These are
also called load sensors. Facilities might be explicitly built in or can be used as offered by
the hosting operating system. The measurement of CPU (process usage) and storage usage
is measured but also job progress is monitored. These enables a predictable concept of
what a job resource needs are, allowing better scheduling.
There exist different Grid architectures to fit the specific business needs. Some Grids
architecture are thought of take computational resource power into its main objective
where others are targeting collaboration problems between different organizations. This
means that the selection of the Grid type has a direct impact on the design of the solution.

There are several Grid Software available: Globus Toolkit 4, GT4 from the Globus
Alliance is a freely available. Sun's N1 Grid Engine and IBM's Grid Tool Box are
commercial products. gLite, a middle-ware for Grid computing from the EGEE at CERN
(Enabling Grids for E-ScienceE). GRIA is Grid Resources for Industrial Applications,
aimed for business users.

4.5.1 Globus Toolkit 4 and GRAM
Globus Toolkit, GT, is an OGSI implementation of the Globus Alliance[27]. Some of the
core components of GT4 are:

21

Background study on P2P, Web Services & Grids

● GRAM: Globus Resource Allocation Management. It is the heart of GT Execution
Management. It provides services to deploy and monitor jobs on a Grid.

● GSI: Grid Security Infrastructure, provides Authentication and Authorization,
Credential Delegation, Community Authorization for VO and credential
Management

● MDS: Monitoring and Discovery System, provides Index Service to aggregate
resources of interests in a VO, Trigger Service (same as index service but actions
might be triggered based on some data).

● Data Management: GridFTP (optimized for data transfer between hosts), Reliable
File Transfer Web Service (RFT).

APIs and command line utilities are provided with the software. For more information see
[27].

Grid Resource Allocation Management GRAM 4
GRAM is a set of Web Service components providing a single standard interface for using
remote resources. The interface allows the bidirectional communication between resource
and clients which utilize that resource.
The hourglass model illustrates the GRAM as the neck in the model.

Figure 9: The hourglass model of GRAM

Meta schedulers and brokers might allocate on a higher level the GRAM. These are
applications and higher order services which sit above GRAM. Below GRAM are local
control and access mechanisms.

In the scope of Grid jobs, GRAM allows clients to submit, monitor and control jobs
remotely. Four basic services that are provided by GRAM are

● MJFS: Managed Job Factory Service,
● MJS: Managed Job Services,
● FSFS: File Stream Factory Services,
● FSS: File Stream Service,

Jobs are executed on the host machines as local users. GSI authenticates users and
resources. There are mechanism for mapping Grid users with local users, and for credential
delegation.

A job is specified through the Resource Specification Language RSL. The XML based
language models the GRAM capabilities and describes a job for execution. RSL extensible
for more complex expressions.

22

GRAM

Meta-schedulers and Brokers

resource management mechanisms

Background study on P2P, Web Services & Grids

We consider GRAM as the component designated in our design as the resource allocation
manager for single resources. Therefore each resource will have exactly one GRAM
component as the interface between resource and client.

Figure 10: FIFO discipline on a resource with GRAM

Job submission on GRAM are in a FIFO discipline. On a resource, a submitted job means
that GRAM has accepted the job and executes it within the queue (as in a batch system).

Figure 11: Different states of a job in the GRAM scheduling
model

A job has different states as depicted in Figure 11. A job might need to stage in files
beforehand and also might have to stage out results. To interact with a GRAM, a client
uses the GRAM API. In essence, a job request in GRAM is a request to create a job
process, expressed in the supplied Resource Description Language RSL. The Request
guides:

● resource selection, when and where should process be created
● job process creation, what job process should be created
● job control, how should job processes being executed

In our work, we focus on the resource selection by routing requests. Whenever a client
submits a job to the Grid, the selection of the resource will be decided by a component
called the routing component. We use the GRAM as an abstraction, or more as a example,
to specify our model.

23

A) request queue

B) execution on resource

request arrival
(acceptance)

Background study on P2P, Web Services & Grids

4.6 Engaging Grid and P2P
P2P and Grid are both focusing on the coordination and sharing (pooling) of resources
within distributed communities. Some P2P systems have been referred as a Grid. Even
Grid and P2P solving similar issues, there are significant differences in communities,
incentives, applications, technologies, resources and achieved scale [28].
Grid systems are used for intensive computations and data manipulations. To realize
authentication requirements and sharing policies among the parties in the VO, a centralized
approach is employed. The centralization makes Grid system inherently unscalable.

On the other hand, P2P systems are mainly driven by file sharing communities, despite that
much research in P2P systems is going on. Anonymity is highly valued and trust
assumption simply doesn't exist.
The evolution of file sharing P2P systems [29]:

1. Generation: Server Client (Usenet, Napster)
2. Generation: Decentralized (Gnutella, FastTrack, Edonkey, BitTorrent...)
3. Generation: High Anonymity with non-direct and encrypted (Waste, Ants, Mute,

I2P)
4. Generation: stream over P2P

P2P systems do not have any centralized requirements. This makes P2P systems highly
scalable, fault tolerant and self managing.

Engaging the elements of P2P and Grid computing we can solve the problems, which
occurs in Grid systems, that address scalability and failures by using self-configuring
protocols such of P2P systems.

24

Survey of Load Balancing in Distributed Systems

5 Survey of Load Balancing in Distributed Systems
A small survey for different approaches gives us an overview of existing solutions and
source us with ideas and inspirations. There are 4 different types of load balancing
considered in the survey:

● dynamic load balancing for distributed and parallel object-oriented applications in a
P2P system;

● Load movement in a structured P2P network;
● Grid Load Balancing using intelligent agents and multi agent system;
● Messor: Load distribution based on the ant colony metaphor

5.1 Active Object Migrations
In [30] Javier Bustos and Denis Caromel present an algorithm to balance load of Java
Virtual Machines (JVMs) on the Grid middle-ware ProActive [31]. ProActive is an open
source Java middle-ware, which aims to achieve seamless programming for concurrent,
parallel, distributed, and mobile computing, implementing the active-object programming
model.
An Active Object has an active thread and is composed of a body and a standard Java
Object (also called passive Object). The body is responsible for receiving method calls and
storing them in a queue. The thread chooses then a method in the queue and executes it as
the standard Object.

In ProActive, active objects are accessible remotely via method invocation. Method calls
with active objects are asynchronous with automatic synchronisation. This is provided by
automatic future objects. As a result of remote methods calls, synchronisation is handled
by a mechanism known as wait-by-necessity. Wait-by-necessity (WbN) is an active object
request which has not yet been served, and it waits for the responses thus reflects a longer
execution time. By reducing the WbN time, performance can be improved [32].
ProActive provides a way to move any active object from any Java Virtual Machine to
another, through migration. Active Objects can be migrated through a local or external (by
an agent) call. Any active object can be migrated. If there are some passive objects
referenced with it, they are migrated along. All Objects must be serializable to be
migrateable [31].

The balancing objective is to reduce the WbN time to improve the overall execution time.
Through the migration of active objects on computational nodes with better resources,
execution time will be reduced due to a smaller WbN time and finally to a better overall
performance.

A P2P infrastructure is employed where peers have to maintain a list of neighbours
(known nodes). A peer joining the network has a list of potentially network peers which it.
A requested peer will accept the joining node with a certain probability and if accepted
becomes it's acquittance. The node which accepted it forwards the request message to its
acquaintances so that the new node gets more possible acquaintances [32]. This resembles
the Gnuttella protocol. Nodes can communicate with their acquaintances only. A node,
also called a computational node, is a JVM in the P2P overlay network.

25

Survey of Load Balancing in Distributed Systems

The aspects of the load balancing algorithm relies on two approaches:
● if a node is overloaded, migrate objects to a less loaded node;
● if a node is under-loaded, steal work from other nodes which are more loaded than

In the first approach, an overloaded node will send a request to a random subset of its
acquaintances. Only under-loaded nodes satisfying a rank criteria will respond. The node
migrates an active object to the first node in response. Using the first node in response
scheme maintains the property of keeping active objects in vicinity and reduces
communication latency.

In the second approach, the extension of the first approach, nodes become active in stealing
work from it's acquaintances. An under-loaded node sends to a randomly chosen
acquaintance a stealing-request. If the requested satisfy a rank criteria, it will return a
active object to the requester. This will cluster active objects on high performance nodes,
meaning that nodes with a better resources will have more active objects than nodes with
less performance.

An experimental evaluation shows that the algorithm scales well. The authors simulated
the algorithm on a P2P network with up to 8000 nodes. To verify it does scale well,
experimental tuning of algorithm parameters were made. The interesting metrics for
scaling capabilities are how many migration are performed and how big the ratio between
the optimal distribution of the objects and the experimented distribution of the objects are.
However, the authors conclude out of their tests that by having a low number of links per
node and well tuned algorithm a near optimal-distribution is reachable even for large scale
networks.

5.2 Load movement in a P2P structured network
The difference between neighbouring knowledge and partial knowledge is that the latter
one is knowledge of the partial system, where the first one is knowledge in the vicinity of a
node. Partial knowledge is more appropriate in structured network since structure is
known, whereas in unstructured networks no assumption of the structure of a network can
be made.

Partial knowledge can be exploited such as in [33] by using the resource routing model. In
this work the authors state in their summary:

We propose an algorithm for load balancing in dynamic, heterogeneous peer-to-peer
systems. Our algorithm may be applied to balance one of several different types of
resources, including storage, bandwidth, and processor cycles. The algorithm is
designed to handle heterogeneity in the form of (1) varying object loads and (2)
varying node capacity, and it can handle dynamism in the form of (1) continuous
insertion and deletion of objects, (2) skewed object arrival patterns, and (3)
continuous arrival and departure of nodes [...]

In a structured P2P system, a unique identifier is associated with each data item and each
node in the system (DHT). The identifier space is partitioned among the nodes, and each
node is responsible for storing all the items that are mapped to an identifier in its portion of
the space.

26

Survey of Load Balancing in Distributed Systems

The nodes represent the processing units, the ones which take out the work. The data items,
on the other hand holding meta information, that is information like the memory size or
processor time needed to serve a task.
The DHT is the basic core of the load balancing. The authors developed algorithms that
completely relies on the implementation of the underlying DHT without making any
programmable change to it. The authors are using CHORD[4] in their example. CHORD
was one of the first which proposed the notion of virtual servers to improve node
imbalance.

Their algorithms use the concept of Virtual Servers. A virtual server represents a peer in
the DHT; that is, the storage of data items and routing happen at the virtual server level
rather than at the physical node level. A physical node hosts one or more virtual servers.
Load balancing is achieved by moving virtual servers from heavily loaded physical nodes
to less loaded nodes. In other words: the load is balanced by reassigning the set of region to
an other node. A set of region are the data items under the obligation of a virtual server.
Because in a DHT the data items must preserve their identity in respect to be routed to, the
concept of virtual server was introduced. The set of attached data items to a region follow
without ever changing their identifier respectively their place in the identifier space.
The objective of the load balancing is to minimize the imbalance on the DHT by satisfying
the requirement of minimizing the amount of the load moved.

The basic idea of the load balancing algorithm is to store load information of the peer
nodes in a number of directories which periodically schedule reassignments of virtual
servers to achieve better balance. Thus it essentially reduces the distributed load balancing
problem to a centralized problem at each directory. The algorithm has two schemes:

● many-to-many: periodical load balancing of all nodes
● one-to-one: emergency load balancing for an overloaded node

In the first scheme, nodes report their load to a random chosen directory out of a subset of
two (to the one with fewer 'node reports' to reduce node imbalance among directories). The
directory schedules transfers of virtual servers for the nodes. Transfers are scheduled in
large batches. Because computing a reassignment for virtual servers to minimize the
maximum node utilisation is NP-complete, they used a simply greedy algorithm to find a
approximate solution.
If the node becomes overloaded an immediate load movement takes place. The second
scheme is applied in the emergency load balancing, where a overloaded node reports to a
directory and immediate gets load transferred to reduce its load.

Performance of the algorithm has been evaluated by the following metrics:
● Load movement factor under different system load
● 99.9th percentile node utilization for different load movement factor

The Load movement factor is defined as the total movement cost incurred due to load
balancing divided by the total cost of moving all objects in the system once.
The 99.9th percentile node utilization defined as the maximum over all simulated times t of
the 99.9th percentile of the utilizations of the nodes at time t. The Utilization of a node is
its load divided by it's capacity.
The experimental evaluation consists of 4096 fixed nodes, 12 virtual servers per node and
16 directories and an average number of objects: 1 million. Different patterns have been
experimented with to measure those performance: Non-uniform object arrival patterns,

27

Survey of Load Balancing in Distributed Systems

node arrival and departures where node arrivals are modelled as a Poison process and
where the lifetime of an object is drawn from an exponential distribution.
The simulation results show that the algorithm is effective in achieving load balancing for
system utilizations as high as 90% while transferring only about 8% of the load that arrives
in the system, and performs only slightly less effectively than a similar but fully
centralized balancer.

5.3 Grid Load Balancing using intelligent agents
The agent paradigm is known for its great ability for modelling complex software systems.
The work [34] focuses on Grid load balancing with intelligent agents and multiagent
approaches. These approaches were used to schedule local Grid resources and do global
Grid load balancing.
A Grid resource can be a multiprocessor or a cluster of workstations. An agent is at the
Grid level a presentation for a Grid resource offering services and a high performance
computing power. Agents are the high-level abstraction of a Grid resource. Each agent
consists of 3 main layers, from bottom to top: communication, coordination and local
management layer. The latter performs functions of an agent for local Grid load balancing.
The coordination layer treats requests and organizes the local knowledge. The
communication layer enables to interact with other agents.

The agents are organized in a hierarchical structure and have a cooperative behavior to
advertise services and discovering services by means of P2P mechanisms.

Agents contact each other through their identity, which is like addressing. The broker is On
top of the hierarchy. A coordinator is the head of a sub-hierarchy. Brokers and coordinators
are also agents with the difference that they are in a special position. Despite their position,
they have all the same functionality.
The agent hierarchy can represent an open and dynamic system, meaning agents can join
the hierarchy or leave the hierarchy at any time. The hierarchy exists only logically and
each agent can contact others as long as it has their identities.

The authors point out that the hierarchical model addresses only partly the scalability. The
more agents in the system the higher the system activities. Thanks to the hierarchy, these
activities are processed in local domains and thus allows avoiding bottlenecks. Even the

28

Figure 12: Hierarchical structure

Survey of Load Balancing in Distributed Systems

hierarchical model is known for good performance in large scale networks [DNS], they
have not made any experimental verification of scalability.

The agents use the PACE performance prediction engine. PACE [35] is a tool set for
performance prediction in Parallel and Distributed Systems. The evaluation engine
combines the PACE resource model and application model at run time to produce
evaluation results, e.g. estimation of execution time.
The resource model includes performance related information of the hardware on which
the parallel program is executed, specifically on which Grid resource, whereas the
application model includes all performance related information of the parallel program, e.g
MPI (message passing interface) or PVM (Parallel Virtual Machines) program running on
this Grid resource.
The result can be used to feed the algorithms with the necessary information. The
algorithms are developed in two different scopes:

● Local Grid Load Balancing;
● Global Grid Load Balancing;

In the first, a local Grid resource is considered to be a cluster of workstations or a
multiprocessor. The authors show 2 different algorithms for local Grid load balancing,
meaning balancing the load in the scope of a cluster or multiprocessor. The first algorithm
is first-come-first-served. The function of the agent local management is to find the earliest
possible time for each task to complete, in respect to the sequence of the task arrivals. The
main problem with the algorithm is that when the number of Grid resources increases, the
scheduling complexity increases exponentially. In this algorithm the ordering of tasks is
based on the arrival of tasks.
Considering reordering could improve performance, but also increase complexity.
In their second algorithm the authors consider an iterative heuristic algorithm to overcome
that issue. The problem of local Grid scheduling became now an optimization problem.
Their algorithm is a genetic algorithm where the goal is to minimize the latest completion
time when all tasks are considered together. The genome consists of the order in which the
task must be executed, and a mapping which allocates the tasks to a host in the cluster. The
optimization is measured by a fitness function in each generation, to steer the outcome in
the optimum direction. The aim is to find a near optimum solution. For more details about
genetic algorithms, read [36].

An advantage of the evolutionary algorithm is that it is adaptive to changes in the system.
It absorbs changes such as addition or deletion of tasks or changes in the number of hosts.
The two algorithms are implemented by an agent and they can be easily switch from one to
the other. The algorithm can be best used in a local Grid resource since it offers a fine
grained adjustment. However, this algorithms can not be employed for a large scale, since
complexity increases exponentially with the number of hosts.
The second deals with the Grid load balancing. The problem that is addressed in this
algorithm is how the discovery of available Grid resources that provide the optimum
execution performance for a globally submitted tasks. The Grid, or global Grid, is a
collection of multiple local Grid resources that are distributed geographically in a wide
area. The act of balancing is achieved by discovering services. It is a indirect result which
is effective across multiple Grid resources.
Agents use the processes discovering and advertising as the way of dispatching a task to
the resource matching best its requirements. These processes are cooperating activities,
which means that agents cooperate with each other in information exchange.

29

Survey of Load Balancing in Distributed Systems

Agents capabilities are represented as local Grid resource. Capabilities are advertised
throughout the hierarchy. Agents can hold different ACTs (Agent Capabilities Table). The
ACT store information about local capabilities or global discovered resources. To maintain
the tables the agent can use data-push and data-pull tactic. ACT are updated periodically or
event-driven.

Discovering available services is done as follows: Within each agent, its own service
provided by the local Grid resource is evaluated first. If the requirement can be met locally,
the discovery ends successfully. Otherwise service information in the ACTs is evaluated
and the request dispatched to the agent, which is able to provide the best resource match. If
no service can meet the requirement, the request is submitted to the agent up in the
hierarchy. When the head of the hierarchy is reached and the available service is still not
found, the discovery terminates unsuccessfully. Inherently these processes leads to a coarse
grained load balancing even though it is a bi-effect on service discovering.

There are many interesting metrics about performance of the overall system in the paper.
The experimental design consists of 12 clusters/agents containing each 16
hosts/processors. The results shows various performance measurements. The results
demonstrate that the genetic algorithm (GA) has better performance than the first-come-
first-served algorithm.
The discovery mechanism also shows an efficient balancing performance when coupled
together with the GA algorithm. Such an agent-based framework is scalable, flexible, and
extensible for further enhancements.

5.4 Load Balancing with a Swarm of Ants
The novelty that brings [37] in is the “CAS” Complex Adaptive System. CAS is used to
describe certain biological and social systems [38]. Özalp and his coauthors think of a
basis for a new possible programming paradigm in P2P. In a CAS framework, a system
consists of a large amount of autonomous computing units so called agents. The motivation
in CAS is its ability to exhibit what is called emergent behavior: Individual agents can be
understood very easily whereas the system as a whole is not easy to understand. The
authors point out that agents can be based on much more complex patterns.

As an instance of a CAS, and actually the authors inspiration, they consider a colony of
ants. Several colonies of ants are known to group objects in their environment (e.g. dead
body corps) into piles to clean up their nests. The behavior is not coordinated by any ant.
Agents can be seen as ants. The authors state what renders CAS particularly attractive from
a P2P perspective is the fact that global properties like adaptation, self-organization and
resilience are achieved without explicitly embedding them into the individual agents.

To pursue their work they have developed a P2P framework called Anthill [39]. It adopts
the ant colony paradigm. In this agent-based approach, ants move across a network of
nodes trying to achieve a particular task. While moving, they produce some product
(output) and modify the task. The system may be defined as complex adaptive one, but
individual ants are very simple. Single ants do not have a problem solving capability.
Despite that, ant colonies manage to perform several complicated tasks.

30

Survey of Load Balancing in Distributed Systems

The Anthill framework implementation is based on JXTA [40]. JXTA is a open source
P2P platform proposed by Sun Microsystems. It is based on a set of open protocols and it
is one of the most mature P2P platforms currently available (Java implementation). JXTA
creates an overlay network which forms a hybrid topology. Some peers are rendezvous
peers (similar to a super node in Kazaa [9]), gateway peers which deals with the
NAT/Firewall problem, and the rest are normal peers. Rendezvous-peers form a
interconnected network, maintaining indexes of their resources. Resources are peers
holding some data which are published on the rendezvous peer (please find more about
rendez-vous networks on [41]). Peers communicate through the overlay network. The
benefits of basing the implementation on JXTA are several. For example, JXTA allows the
use of different transport layers for communication, including TCP/IP and HTTP, and
deals with issues related to firewalls and NAT.

Messor is the name of the Anthill framework. Messor is aimed at supporting the
concurrent execution of highly-parallel, time-intensive computations, in which the
workload can be decomposed into a large number of independent jobs.

Messor is composed of a self organizing overlay-network of interconnected nests. Each
nest is a middle-ware layer running on a computational node. The network is unstructured
and loosely coupled: nests can come and go. Nests can communicate and discover each
other on top of the communication substrate. The nest middle ware offer services to the
running application on the node. Applications are the interface between the P2P network
and the user. Services are implemented by means of ants: autonomous agents able to travel
across the network. Ants are created in response of user requests.

The application layer, which is concerned with user interactions and collection of
computed results and the Service Layer which is responsible for task execution and load
balancing.
The service layer exploits the ant communication and scheduling facilities provided by
nests. Load Storage contains information about estimated load of remote nests. The job
manager is responsible for executing jobs which are assigned locally. Jobs are put on the

31

Figure 13: Messor Architecture

Survey of Load Balancing in Distributed Systems

job queue after receiving a local job request through the Request Router or after
downloading a job from a remote nest. Load is defined as the number of jobs currently in
the job queue, or, if available, information about potential computing power. When ants
wandering around, information of the visited nest is collected and put in the Load Storage
of their home nest.

The system is resilient to failures, as jobs assigned to crashed nodes are re-inserted in the
network by the nest that generated them. Messor is self organizing: New nests may join the
network, and their computing power is rapidly exploited to carry on computations as soon
as ants discover the nest and start to assign jobs from other nests.

The messor ant algorithm: Messor Ants live in a network of nests. During a ant's lifetime it
can have two states: SearchMax and SearchMin. While in SearchMin state, the ant
wanders around looking for an “under loaded” nest. When such a nest is found, the ant
requests the local Job Manager to transfer jobs from the overloaded nest to the under
loaded one, and then switches back to the SearchMax state again; then the process repeats.

The performance metrics are how the load balancing evolves over time steps. One time
step consists of the ants running its run-method and moving to the next nest. A simulation
with 100 nests and 10'000 initially created jobs shows that in 50 steps the load is evenly
distributed over all nests.

32

Survey of Load Balancing in Distributed Systems

5.5 Summary of Survey
Table 1 gives a summary and comparison between the studied papers.

The (1) has a clear benefit for its topology. All nodes are equal and topology maintenance
is very simple. The network is highly adaptable and a complete ad-hoc network, as known
for decentralized flooding models. But where ad-hoc benefits, the pay-off is the integrity of
the network: it is clear that such network is not much use where deterministic large scale
approaches must be achieved, since it is a unstructured network and highly unstable.

Another benefit from the underlying ad-hocity can be drawn, where it might exploit small
world properties. The work stealing algorithm clusters active objects on high performance
nodes, since nodes with more performance will also do more work.

The (2) uses a DHT as the underlying network. Since DHTs have be proved to be
applicable in global large scale networks it can be applied for large scale networks.
Because load is shifted by join/leaves in the structured network and occurrence of delay in
the overlay due to communication latency can lead to inconsistency, harder constraints on
overlay maintenance must be defined. In presence of node failure, there might be delays
until a stable state is reached. Considering vulnerabilities, the overlay must provide
security mechanisms to prevent threats.

Load balancing is taken out by some directories which schedule reassignments of regions
(relocating the tasks). Because the design is adopted from a centralized scheme, it can
easily be implemented.
A possible problem space is a large number of global dispersed nodes (Internet like),
which can communicate over a reliable network, with good bandwidth respectively assured
QoS of the physical network.

In (3) the process of discovering resources has a global resource balancing effect. In the
hierarchical structure, each agent keeps ACTs (Agent Capability Table). When an agent
learns about a new resources or it got an update, it keeps this information in such an ACT.
Load balancing is therefore not actively ratter keeping the information in these tables upon
change. Therefore the actual load balancing is a lookup, and route the task wherever it
matched criteria. Note that in (1),(2), and (4) the act of load balancing are actively, and
taken out immediately or in a certain period.

The interesting part in (3), and the only considered, is that the global load balancing is
separated in two independent tasks:

● updating tables, and
● routing tasks.

The scheme inherently introduces a new layer, and enables complex designs. In this design
routing algorithm could be implemented, such where other criteria can be taken into
account: proximity, QoS, policies, brokering.

33

Survey of Load Balancing in Distributed Systems

Migration based
LB (1)

Balancing with
structured P2P (2)

Grid LB using
intelligent Agents (3)

Anthill (4)

Nodes Computational
nodes
(JVMs).Load
Balancing for
Active Objects.

Data Items holding
meta data:
information like the
memory size or
processor time needed
to serve a task.
Nodes are also the
computational entity.

Cluster of
workstations or
multiprocessor.
Parallel virtual
machine. Grid
resources (represented
by an agent). Local
Grid resource
scheduling and global
Grid load balancing.
Parallel task exec.

Nodes are nests.
Jobs are
distributed over
nodes equally.
Nodes are
computational
entities.

Topology,
Overlay
Network

random graph,
decentralized
topology

ring,
decentralized resource
routing model

hierarchical, agent
{Broker, Coordinator,
Self}

Hybrid topology,
resource routing
model

Builds on ProActive middle-
ware: active
object
programming
model, group
communication
migrateTo().
ProActive uses
Java RMI

Can be implemented
on a overlay network
such as CHORD.

Agent infrastructure,
service discovery and
advertisement P2P
system (cooperative
activity). These
processes in local
domain, among
neighboring agents
allowing scalability.

Anthill runtime
environment based
on JXTA.
Self-organizing
overlay network of
interconnected
nests.

Load Active Objects Tasks Tasks Tasks

balancing
objective

Reduce the time
for wait-for-
necessity (WbN).
Speeds up
execution time of
active objects.

Minimize load
imbalance on the
DHT by satisfying the
requirement of
minimizing the
amount of the load
moved (they are not
orthogonal).
Only load on virtual
servers are taken into
account (no
prediction).

Agents use PACE
evaluation engine to
predict load on-the-
fly. Input: Task and
parallelism
characteristics (taken
into account the
execution
environment, HW and
MPI/PVM application
performance). Output:
in the form of overall
execution time
estimates.

A nest's load is the
length of the job
queue or
information about
the potential
computational
power. Distribute
load upon these
info evenly overall
nests.

Algorithm
approach

Sender initiated
migration:
Probing random
subset of
acquaintance
nodes, migrates
active object to a
under loaded node
(IFL).

Receiver initiated
migration: Work
stealing approach
clusters active
objects on high
performance

Using Virtual
Servers: move load by
reassigning the set of
region associated to a
node. Employs static
scheduling idea in a
distributed fashion:
many-to-many
scheme: periodical
load balancing of all
nodes, using
directories.
one-to-one:
emergency load
balancing for one
particular overloaded

Using AI scheduling
algorithms.
Local: First-Come-
First Served or
Genetic Algorithm,
Iterative heuristic
Global: service
discovery results in a
load balancing across
multiple Grid
resources. Using
X_ACT (Agent
Capability Tables,
where x is {self|local|
higherl}).

Anthill: Derived
from the Ant
colony metaphor.
SearchMax &
SearchMin.
SMAX: wander
around until
overloaded nest
found. Switch to
SMIN, wander
until under loaded
nest found. Ant
then requests job
transfer on local
manager. Switch
back to SMAX

34

Survey of Load Balancing in Distributed Systems

Migration based
LB (1)

Balancing with
structured P2P (2)

Grid LB using
intelligent Agents (3)

Anthill (4)

nodes. node.

State
abstraction

Rank criteria. Predictive: estimates
execution time.

Queue length,
computational
resources.

Resource
discovery/
disseminati
on

Query based
mechanism,
initiated by the
resource

Resource
dissemination,
periodically
pulls/pushes.
Resource initiated

Resource discovery,
agent based. MW
initiated initiated.

Match maker: m/w
initiated

Performanc
e measure

Measured in #of
migrations and
the IFL
performance: ratio
between #of
nodes used by an
optimal statical
distribution and
#nodes used by
the IFL algorithm.

Load movement
factor in function of
system utilization.
99.9th percentile node
utilization in function
of load movement
factor

Total application
execution time.
Average advance time
of application
execution completion.
Average resource
utilization rate
 Load balancing level.

Load Distribution
in function of
iterations. A
iteration
corresponds to a
set of ants running
their “run method”
and moving to an
other nest.

Analysis,
scale

Simulation of the
algorithm on a
large-scale P2P
Network (till
8000 nodes).
Simulation pattern
adapted from real
world:
seti@home cpu-
usage distribution.

Fixed 4096 nodes, 12
virtual servers per
node and 16
directories, average
number of objects: 1
million.
Different Patterns:
Non-uniform object
arrival patterns, node
arrival patterns
(Poison process)

Experimental system
with 12 agents.
Experiment 1 employs
first come first served
result poor cluster
utilization.
Experiment 2 employs
the iterative heuristic
one results in good
improvement

100 Nodes with
initially 10'000
Jobs created in one
node.

Table 1: Characteristics of surveyed load balancing solutions

Every agent has a different view of the system (local tables). The pro is that information is
available at place. On a network wide view, each table differs because each node has a
different view of the network at any time. Anyway, the interesting aspect here is that the
manipulation of the ACT table happens at discovery time, compared to where it is
achieved when lookup for the best suited resource is done.
(4) is a match-making ant wandering around and being diligent. An ant is wandering from
nest to nest, and if a overloaded nest is found it searches for an under loaded one. When
matching condition is met, tasks are transferred. Having wandering ants implies having a
reasonable overlay network enabling it. This is achieved in (4) through JXTA.
Different questions arrives in the self management of the ants. When is a system to be
regarded as overloaded? There might be different reasons for having many visits of ants,
such as too much load in the system and network partitioning or creation of ants upon
unreliable information.
The interesting part here is that the balancing logic is implemented in the ants. This
approach allows as in (3) more complex balancing mechanisms. What it makes clear
different to (3) is the act of balancing which actively happening compared to (2) where it is
passively happening. Nests offer mechanisms to move load from one nest to the other. The
ant can therefore invoke these mechanisms.

35

Design

6 Design
The motivation in the design is at the heart of request routing. Request routing has the
property that it can be divided into two independent processes: The gathering of routing
information process and the routing of request process based on routing information.
First I introduce the concept of request routing. The model of the system will bind us then
to our problem space as described in the second part of this chapter.

6.1 Concept of Request Routing
In this work, a request is defined as the following: A request is a process where a
consumer asks the resource provider for execution of the requested Web Service and may
receive a response which can be a request-response or a request-error.
The request-response is the outcome of invoking the service successfully or
unsuccessfully. A request-error is the response of the resource provider, unable to invoke
the service (e.g. when there is no way to invoke the service).
The consumer is the potential entity willing to use resources of the Grid. In this work, a
client or service-consumer is referred as the entity producing requests. The Grid on the
other hand is the service-provider.

.

Note that in Figure 14 the consumer could also be a node in the the Grid. In the context of
GRAM (GT) a job request is a request to gatekeeper to create one or more job processes,
expressed in the Resource Specification Language. This request guides

• resource selection (when and where to create the job processes);
• job process creation (what job processes to create);
• job control (how the processes should execute;

Clarification of terms which often occur in this section: a logic refers to an algorithm, a
program code or just some code that has a significant importance for the overall
functionality in context of its occurrence.

6.1.1 Life cycle of a request
A request passes 3 steps in its life:

1. issuing a request: life begins with a certain aim;
2. routing a request: life becomes to satisfy the aim;
3. acceptance of a request: aim found, life ends.

By analyzing the 3 steps I will bring the context up to make the concept and requirements.

36

Figure 14: Consumer Request

response

requestconsumer

grid

Design

6.1.2 Creating and issuing a request
Creating a „fully qualified“ request is built up on two information

● request constructing: knowledge to build the request data structure, and
● protocol entry point.

A potential consumer needs to consume a service. Therefore the consumer knows why and
what it wants to consume. However, we are not concerned about why and what the
consumer wants to consume; we are concerned in how to consume the service. For
example in Web Services the consumer will get first an WSDL document. This document
is partially like a blueprint for producing customized request for services. In this case, the
consumer has the recipe to produce the needed request structure. This example explains
that there must be some knowledge about how to build a request.

The protocol entry point is needed to specify where to start with that request. It's rather a
theoretical meaning (specification) but necessary for a request to be useful. The request
routing, explained in the next paragraph, can be entity based (consumer centric), remotely
based (resource centric) or in a mixed fashion depending on the specification. This simply
states how request routing will be taken out. Because a request is a data structure, without
any entry point the request will not do much. The protocol entry point is inherently needed.
By knowing the protocol entry point, a request can be given to the protocol and issued.

6.1.3 Request Routing
Routing is the catch all term for finding the way towards a specific destination with help of
an algorithm called routing algorithm. An employed routing algorithm defines fir which
objective finding the path will be made e.g. on path cost and others but it also can be an
algorithm which aims in load balancing. The algorithm needs some input called routing
information. The output produced is the routing decision.
Routing information is the information up on which the routing algorithm produces the
routing decision. Routing information usually maps a route (next hop) in respect to a
objective (like a cost objective). Routing decision is the decision containing where the
subject (e.g. a request) will be addressed to in the system. It's produced by the routing
algorithm.

This mainly defines where the logic of decision making sits and what interfaces consumer
and provider must offer each other.
In the source centric request routing, it is up to the consumer to retrieve information,
process information and make the decision where to submit the request. In this case the
logic and responsibility is in the hand of the consumer.

Source centric is also useful when interaction of a human or another instance is needed.
Consider the case where a consumer first has to contact a broker: A consumer asks a
broker for some resources to be used by passing a specification. The broker in turn delivers

37

Figure 15: components of request routing

routing information routing decision
rout ing

algorithm

Design

an offer with different resources for different costs. The consumer, or human operator,
chooses then which resources fits best.

In the resource centric request routing, it is the resources which take care of the routing
integrally (like in IP routing). The logic is based in the system. That is easy for the client,
since it only has to submit the request and the rest will be done by the system. One could
argue that a broker could be include too here which receives in-line with the request some
„money“ or credit for which it should find accurate resources for. Of course that's possible
but it shows that choosing a different design approach designates a different architectural
aspect, and vice versa.

6.1.4 Request Routing Types
I divide basically request routing in 2 types , Figure 16, which is either a passive lookup
type or an active lookup type.

The main difference between active lookup and passive lookup is how and where the
information for routing decision is obtained. The information feeds the routing algorithm
with the necessary information such it can make a decision.

In the passive lookup, information is available locally meaning that the routing decision
can be made at the place with the given information. On the other hand, active lookup first
collects and processes information and then makes routing decisions. The benefit of using
active lookup is to taking into account the current system state or system topology. A
trade-off for the active lookup is the delay before the outcome of the routing decision.

In the case of passive lookup, decision can be made immediately and independent and no
delay occurs. The trade-off here is the system state might be outdated, and also topology
might have been changed and therefore not adaptive to dynamism (think of failures, join
and leaves). To deal with dynamism, an update must be achieved periodically or on
demand.

In the passive type we need some logic which runs to update our local routing information.
This implies that during the update process, messages within the Grid are send and
received, memory and processor cycles are used. This happens maybe on a periodical or
trigger based scheme. Anyway, the characteristic here is that there's a constant update
process running consuming resources (overhead).

38

Figure 16: Request Routing types

Request Routing

based on
passive lookup

based on
active lookup

Design

In the active type the logic to prepare the routing information is triggered when needed,
messages are send and memory and processor cycles are used. This implies that if there's
no request to be routed, there will also be no overhead.

In a hybrid type of lookup, one could imagine that each node in the Grid holds information
with a certain durability. When the information out dates it will first be updated. An update
process might push also information to other nodes. If a routing has to be performed it will
first check if the local info is out of date or not and takes the necessary steps.

The information lookup is the process of feeding the routing algorithm with the necessary
information such it can make a decision.
The most simple one is the simple table lookup (figure 17). The table contains the
information and the decision can be made with a very simple decision logic. The featured
lookup holds a bunch of information which can be treated with a more complex logic,
resulting in many operations and intermediate results. The featured one is clearly more
extensive than the simple but also more powerful. When the featured is employed as an
active lookup type, the lookup logic might become an essential part of the routing
algorithm itself.

In the passive lookup type, the information is stored locally. Anyhow, information must be
made available first. Two schemes categorize availability of centralised and distributed
information.

The centralised scheme make use of a central logic where information can be pushed to or
pulled from it. An implementation for example could be a central directory. Nodes can
push information into it an get information out of it. The directory might also broadcast
information to all nodes or subsets of nodes.

In the distributed scheme, information is gathered from many nodes at many nodes. There
is no central known directory. A good example is aggregation of information.
For a more specific classification of a distributed scheme, I divide the distributed scheme
into two subtypes where the underlying overlay dictates the fundamental interfaces for
communicating among nodes:

● random topology (we do not care much about overall network boundary), and
● deterministic topology (network boundaries can be exploited).

In the latter case a DHT constructs a deterministic topology. The lookup mechanisms can
be exploited. The main point for deterministic topologies is, tha boundaries of the network
can be estimated, where in unknown network only a certain part for each node in the
network is recognised. Nodes have different views of the network. Where the underlying
overlay is a random topology, mechanisms like neighbour querying, information
dissemination, network flooding or other mechanisms must be used to gather information.

39

Figure 17: Information Lookup approaches

 Lookup

simple table lookup featured lookup

approach

Design

6.1.5 Accepting a request
There are two possibilities of what the resource can do with a request: the request can
either be executed or not. In the latter case the result will be a rejection for various reasons.
The resource can, but must not, create a response to notify the involved entities. When
resource has executed the requested wish, it creates a notification with either a positive or a
negative result. The positive result is the natural outcome of the computation. The negative
result states that a computational error occurred. In the case of a fault in the resource or
system, a response might never been created, received or sent.

6.1.6 Balancing requests is balancing load
Recall figure 15 (components of request routing). Figure 18 demonstrates where load
balancing could take part.

In (A) the balancing of request is based on the current routing information. For example a
distributed algorithm runs in a system periodically to create a list with nodes ordered by
their load. A lower load reflects a lower cost. The routing takes the list as input. The
routing algorithm would therefore make a decision considering the route to a node with the
lowest load. Enforcing routing based on the routing information is a passive lookup type.

On the other hand, in the case of the active lookup type, the routing algorithm itself is the
load balancing. This means that the creation of the input is part of the routing algorithm
itself. This involves information acquisition together with other nodes.

6.2 System Model
The problem space is given by the Grid4all project, which aims to enable non-profit users
such as schools and private people and small enterprises to share resources to harvest
massive Grid resources [42]. To achieve such a system, Grid4All focuses on a system
which is composed of structured P2P overlay services and self-managing and self-
organizing (being a self-*). It should allow to scale to a large number in the Internet and be
highly dynamic to create ad-hoc organizations where participants can join and leave upon
their own interest and need. The lifetime of a organizational coalition might be between a
few hours up to multiple years.

Within this given system properties a suitable solution for introducing load balancing will
be elaborated.

40

Figure 18: request balancing enforcement points

routing
algo routing decisionrouting information

load balancing

A B

input output

Design

6.2.1 The system model
GRAM4 components are used for job execution and control on local resources (node or the
physical machine). A routing algorithm executed by a distributed meta scheduler is
responsible for routing a job request to a resource. The routing algorithm enforces the load
balancing of the overall system. The routing algorithm is distributed, and every resource in
the Grid runs the same algorithm. The resources can communicate with each other without
keeping a local index of all nodes. There might/might not be need for the capability of
communicating to all nodes but at least to a subset of nodes.

A node is a computational resource with the ability to do routing. Routing itself is taken
out by the routing-component. The resource is the component which offers computational
power to the Grid. A resource is e.g. a machine, PC, desktop computer and so on, running
the Grid middle ware. A node is therefore built up of a routing component and the middle
ware enabling its resources being used in a Grid VO.

Figure 19: Components of a
node

Grid-Job in a VO
A client submits a job request and runs the routing algorithm. The outcome of the
algorithm will be one out of three decisions: either it accepts the request and executes it
locally or it routes the request to an other node or or it will reject for a known reason by
informing the client
The node which decided to run the job must have a resource which fulfils the criteria to
execute the job given for example by a specification. If the resource is not able to execute
the job, it rejects the request. Therefore routing concerns itself only with the distribution of
jobs.

GRAM-job
Once a node has accepted a request and passed it to GRAM, it follows the GRAM
scheduling model. The user which submitted the request will be in direct communication
through the GRAM. Every node has a view on the overall system load. This might be a
individual view and each view of the resources might be different. If the overall system is
saturated, the system should reject any new request by informing the client (graceful
degradation).

The system must be capable to handle system dynamism. Since real systems will have
resources which joins, leaves or fails system dynamism is a crucial issue which must be
dealt with. Nodes might not have the same view of parts of the system.

41

GRAM
Routing

Component

P2P
Overlay

RESSOURCE

GRID M/W

Design

When it comes to scale, the system should be able to scale 10s of thousands of nodes. In
other words, the system should be very scalable.

When it comes to saturation of the utilized resources, the system should gracefully degrade
and reject new requests. Some nodes in the system might detect saturation albeit some do
not.

The metric on which load balancing should be based on the queue size and capacity a node
provides at any given time. Based on these two metrics different objectives of load
balancing can be faced such as routing a request to a node with high capacity and/or with
low utilization.

Requirements to the resource
The resource must abstract the local capabilities to provide the needed metrics These are a
measure of queue length and overall execution time of the running jobs. Each resource has
a GRAM component which controls and runs the jobs locally according to the the GRAM
scheduling model.

Requirements to the client
The client is a node in the system. It submits a job request by submitting it locally to the
routing component. Whether the request is accepted/rejected locally or remotely should
appear to the client transparently.

Requirements to the requests
A request is based on the GRAM architecture. It might contain also some specification
which is understood by GRAM. Anyhow, in this work we are not concerned with any job
specification.

Requirements to the communication substrate
As the communication substrate between the resources, a P2P overlay should be used. The
most important dependability property to the overlay is 'dynamism'. Therefore the
communication substrate should reflect that property which allows to deal with failures,
joins and leaves in the communication network fulfilling the self management requirement.

The QoS which the Grid offers is regulated in the participant policies.

Based on this system model and according to the request routing model we will employ a
load balancing mechanism with the following properties:

● use a passive lookup type, information must be available when requests arrive
● use a featured lookup to gather routing information
● Information is distributed on a deterministic topology (DHT)
● load balancing decision is made on the routing information

Therefore we have two main mechanisms for the load balancer
1. algorithms of gathering routing information
2. algorithms which routes request based on results of point 1

42

Design

Figure 20: VO using a DHT overlay as the communication
substrate.

We limit in this thesis the definition and evaluation on the first component, which deals
with the gathering of information. The second part is given in short as a vision of
possibilities to actually implement load balancing in request routing.

6.2.2 Inspiration from the survey
From the anthill paper [39]we could borrow the idea of the ant which wanders around
together with the idea from the paper [34] to keep a table with capabilities of nodes. In our
case the ant would inform higher loaded nodes where it has seen lower loaded nodes; the
nodes could keep a table with that knowledge, and route an incoming request according to
that table.

From the first paper [32] we could use the way how nodes measure the load from their
neighbours and accordingly build a table during discovery. Combined with a flooding
message protocol, where nodes can learn and update their capability tables of inspected
nodes. Since we are not dealing with job migration, stealing work from higher loaded
nodes is not treated and not part of the routing. However, it could be seen as a
supplementary feature to the existing balancing system.

The survey gave us a facet of different solutions for load balancing for different problem
spaces. We learned what technologies are used for what type of problem environment.
Anyhow, we will focus on a solution based on a structured overlay network with a full
decentralized architecture, where the survey gives a fall-back if necessary.

43

The structured aggregation scheme

7 The structured aggregation scheme
We will describe the information gathering process in this part as the main contribution to
the thesis work. We describe the idea of scalable n-aggregation in large scale systems.

7.1 Introduction
Aggregation is usually referred as the process of composing a multitude of information
into a single one. An example of distributed information aggregation is the Grid resource
monitoring in Globus MDS [43] where continuous aggregation tells on the monitoring
entity the CPU usage of Grid resources.
In our case, we are interested that the aggregated information is omnipresent, and not only
at a single place. Omnipresent means that everybody has a view of the aggregated
information in a system, and therefore called n-aggregation (n stands for n participants).
Thus everybody is monitoring. Therefore we use the term “aggregation” only to describe
the way of composing the information. We are considering a continuous aggregation.

Multiple aggregation schemes have been proposed to leverage the topology information of
structured P2P networks [44]. Anyway, in our work we focus on aggregate information in
such a way that it is available on every node in the system, and not only on a single node.

Gossip-based aggregation [45] is as far as we know the most promising, since it was shown
to behave robustly in large dynamic networks and also speaks greatly for its simplicity.
The Jelasity paper's [45] gossip protocol inherently makes all the aggregated values
available to each participant in the protocol.
The main difficulty for [45] is that the set of nodes known to a node must be random
enough, and randomness must be maintained. The paper doesn't give any real-world
practical evaluation for their protocol under churn, which we will evaluate.
The algorithm does not have information completeness, which is based on the assumption
that the aggregate is calculated based on the knowledge of a subset of values [46]. In the
paper [46], Gupta et Al propose an abstract hierarchical scheme with a gossiping protocol
to aggregate in a system of large process groups. Aggregations are built on subsets.

Our scheme is inspired by those two papers [44] and [45]. Building the knowledge on
subsets will allow us to use each subsets information for later routing purposes, and it
allows a practical scalable omnipresent aggregation.

We will show a scheme where load is aggregated. We will not discuss the actual load
balancing act since it must be treated in a own project. We concentrate on the issue of
gathering information, such that load balancer can utilize the information.

7.1.1 System model
The model is a distributed system, built up of nodes which communicate through message
passing. The system is asynchronous and therefore the upper bound of time needed to
deliver a message is not known. The communication channels are not perfect, and
messages might be lost. During our evaluation we do not consider message lost. Failures of
nodes might occur as it does in real world. Failures represent the absence of a node which
was assumed being present.

44

The structured aggregation scheme

7.1.2 Algorithmic Notations
We use the event driven notation. Nodes receive messages and the messages results in an
event. An event is a procedure, which also can send messages to nodes. An event can be
initiated locally as well.

7.2 The Structured Aggregation Scheme
We employ a Distributed Hash Table. The DHT is split into different intervals, where
intervals have different amount of members depending on the interval size. A node belongs
always to a predefined interval. Such that nodes collect information from other nodes they
communicate over the DHT. Nodes have a predefined scheme with who they are allowed
to communicate to. This is given by the interval they reside in. Each member of an interval
is allowed to talk to members in its complementary interval.

7.2.1 Underlying Structured Overlay
The algorithms are based on the underlying overlay network, which is a structured
network. The overlay is CHORD (which reflects the general case)[4]. Note that all
arithmetic operations will be modulo arithmetic to the size of the ring (N). When we talk
about a node with identifier i we use from here on the shorthand node i for it.
CHORD can be modeled as a graph G=V ,E with n=∣V∣ nodes and the edges E
are the connections on the overlay between the nodes. A node v∈V is denoted by ID(v)
which is a unique identifier in a b-bit identifier space, where ID v ∈[0,2b) . Chord
assigns identifiers to nodes using a consistent hashing scheme.
All nodes organizes themselves in a ring topology where the identifier ID is the position in
the circular space. Each node n has a predecessor denoted by n.pred which is its
immediate predecessor node. Each node has also a successor denoted by n.succ which is
its immediate successor node. The direction in the ring is clockwise.
The overlay has an identifier space consisting of size N, N=2b which defines the
maximum number of nodes. Chord uses fingers as shortcuts for lookup. The fingers from
a node n point to a node such that the first finger points to n+1, the second one to n+2, the
third one to the n+4 one and so on. There are f =b fingers so N=2∣ f ∣ Each finger i
at a node n points to a node

f i
n
=n⊕2i−1 ,1≤i≤∣ f ∣

The principle is going from the highest finger down to the first one in steps. In each step
the identifier space is halved. By using the fingers, routing can be achieved in logarithmic
complexity.

45

The structured aggregation scheme

7.2.2 Structuring the gossip
The basic aggregation protocol from Jelasity et. Al [45] uses a push-pull gossiping scheme.
The protocol has two threads, where the first is initiating a state exchange with a random
node and the latter thread is passively awaiting for state exchange. In one cycle nodes
exchange their states, and after one cycle both nodes holding the same weighted average
(the estimate). In each consecutive cycle the variance over the set of all estimates in the
system decreases. It was shown that after a little number of cycles the variance over the set
of all estimates converges near to 0, which means there exists a fast convergence of the
protocol.

The inspiration of gossiping in our work is the following: Regarding the ring structure, we
could easy implement the gossip protocol [45]. Sending a message to a random
(destination) node is on CHORD routed to the closest proceeding node of the destination
node. Whoever this closest proceeding node is, it will be routed to that node. Random
choice can be achieved by choosing an identifier i from the identifier space. To give good
randomness we assume N is big.

Since we structure gossiping into a structured scheme, the term gossiping doesn't really
match its purpose anymore. We simply call it (restricted random) information exchange.

In our scheme, random information exchange is processed in different levels. Lets take a
DHT, with an identifier space of size N. We introduce levels, such that the information can
be composed of these levels. Each level allows the node to exchange information within a
certain hierarchical scope. If a node n exchanges information with another node so called
opponent, then the opponent gives the information as well to node n.

Interval levels

An interval is a sequence of consecutive IDs on the identifier space. Levels define the size
of the intervals.

46

Figure 21: finger pointers for node 0 in a ring with N=64

1 2

8

16

0 4

32

f1

f6

f4

f5

f3
f2

The structured aggregation scheme

To build a composed aggregation, information exchange on the ring is structured into a
defined protocol. We construct so called levels which contains intervals and each node will
know exactly with which opponent interval it is allowed to exchange information for
which level. Each node will belong to an interval in each level and for each node exists an
opponent interval in each level.

In one cycle, N nodes will exchange information for one level. Since there are

L=log2 N levels there are L cycles.

On top of the DHT we create intervals I. Each defined interval belongs to a level l in the
DHT. A level defines the size of an interval, where the size of the level is 2l−1 nodes.

I l
t
=[k⋅t , k⋅t⊕k) , k=2 l−1

t={ 0,... ,
N
k
−1}

l={1,... , log2 N }

A level l has
N

2l−1
−1 intervals. Therefore each defined Interval I l

t is the t-th interval

in level l . Formally, an interval level is I l
t where t is the numeration of intervals, always

starting at t=0 for each level l. Each node can compute according to its ID to which interval
and opponent interval for each level it belongs to.

The following rule will guarantee that nodes, in each level, will always communicate with
a node from the defined opponent interval and vice versa:

node n in level l belongs to interval t :n∈ I l
t

opponent interval ={I l
t '
∣t '={t−1 if odd t

t1 if even t }}

For a node n in interval t of a level l, the opponent interval of n in level l is I l
t ' .

Nodes in an even interval t will always choose nodes in interval t+1, and nodes in the
interval t+1 will always choose nodes from interval t, and therefore nodes from t and t+1
will only communicate with each other. A node chooses an opponent randomly (with
uniform distribution) from the opponent interval.

47

Figure 22: Interval levels (shown only in the right half), in a ring of N=64

31

L6

62 032

L5L5
L4

L5

L3

The structured aggregation scheme

Asymmetric cost on the overlay: Since messages will send towards 2 mutually intervals
where the intervals are constructed in clockwise direction, there exists an asymmetric cost.
Because nodes in an odd interval, say node 5, will send message in counter clockwise to
interval 4 but the construction of the CHORD finger table is in clockwise direction. There
are significantly more hops since finding successor in CHORD is achieved in clockwise
direction and the lookup will go around the clock.

Drawing 1: 2 intervals: upper interval [0,8) has lower cost
(dashed line) in hops, where lower interval [8,16) has
higher cost. N=64, chosen level=4.

In the results of the evaluation, we will discuss the measured costs for our scheme. Note,
for an exchange of information between node n and m, where n is the initiator, only node n
looks up node m. Node m will reply directly to node n, resulting in only one single hop.

48

0

10

42

5
58

2

13

7

11

The structured aggregation scheme

7.2.3 Data Structures used in the Algorithms
The following notations are used for data and data-structures in the aggregation algorithms.

lm: “load message”, is a data structure holding the information used during aggregation.
Each message sent is a lm data structure.

rL: “received Levels”, is a list of messages (type lm). The index of the list is the level the
message corresponds to. A node stores the information (load messages “lm”) received in
rL.

cL: “computed Levels”, is a list of messages (lm). The index of the list is the level the
message belongs to. The cL is constructed respectively calculated from the rL list. A cL
has L+1 values, where L is the number of levels:

generally cL is: cL[1... L1]
cL [1]=local load
cL [L]=load estimate representing half of the ring
cL [L1]=load estimate representing the whole ring

Procedure “lm:=OP(loadmessage,loadmessage)”: is a placeholder for the imple-
mentation of the aggregation calculation. OP contains the objective function how data
should be aggregated (average, mean, count...) .

L: “The number of levels”: L=log2 N

I j: “Interval of level j”: The interval of opponent nodes for level j. An interval is always
represented as [s,e), where s is the starting node included and e the ending node excluded
of the interval. Each node knows its L-intervals and opponent intervals.

When the aggregation run has terminated, every node will hold a value for each level,
where the highest level represents the global value. The value is subject to what the
aggregation objective is, such as average, count and so on.

49

The structured aggregation scheme

7.2.4 Simple scheme: Symmetric Scheme
Algorithm 1 initiates an information exchange. For each level, starting at level 1, a node n
will send a message to a node m in its opponent interval. When m receives the message it
will trigger the algorithm 2, and update its local information and sends it's current
information about the current level to node n.

Node n either receives the response message from the node it previously sent the message
or it doesn't. If there was no such node m, or if one of the messages got lost, node n will
never receive a R-LOADMESSAGE. This is broken by a timeout, such that the algorithm
can terminate.

If a timeout occurred, node n will set current opponent level to unknown, assuming that no
node exists in that interval. If there exists some node in the opponent interval, then there
will be a chance that a node of the opponent interval will contact node n. Every node in the
system has to run algorithm 1 since nodes don't know beforehand if opponent level nodes
exist or not.

Algorithm 3 updates the estimates. It triggers whenever algorithm 1 has run through or if a
load message was received and matched the current level.

No synchronization of cycles: In the symmetric scheme there must not (but can) be a
synchronization. Nodes do not have to proceed the protocol for each level simultaneously
(as in [45]). Because we build the information based on defined logical groups on the ring,
it will always be a weighted information based on the estimated size the level. This
property decouples cycles from the obligation being synchronized and makes the protocol
practical for real world asynchronous systems.

In a fully populated ring, an aggregation will always end such that every node holds the
same aggregation value. This is true since every node initiates an exchange for each level,
and each contacted node will reply and hence each level agrees on the same value.

If the ring is not fully populated, then an aggregation end such that every node eventually
holds the same value. Due to absence of nodes in intervals, there exists also missing
information exchanges and hence different intervals for same levels will have different
values.

50

The structured aggregation scheme

Algorithm 1 active information exchange, symmetric/asymmetric scheme, run
periodically

1: procedure n.EXCHANGE()

2: for j:=1 upto L do

3: m:= random r , r∈I j

4: sendto m.LOADMESSAGE(cL[j])

5: receive R-LOADMESSAGE(f) from p,
where p∈I j∧ f.level= j or timeout

6: if timeout≠True then

7: n.UPDATE(f,j)

6: else

9: n.UPDATE(NULL,j) //level is unknown

10: end if

11: end for

12: end procedure

Algorithm 2 receive load message, symmetric scheme

1: event n.LOADMESSAGE(f) from m

2: j:=f.level

3: if m∈ I j then

4: n.UPDATE(f,j)

5: sendto m.R-LOADMESSAGE(cL[j])

6: end if

7: end event

51

The structured aggregation scheme

Algorithm 3 updating the estimates

1: procedure n.UPDATE(f,level)

2: rL[level]:=f.value

3: for k:=level upto L do

4: n.OP(rL[k],cL[k])

5: end for

6: end procedure

7.2.5 Simple Asymmetric Scheme
The difference to the symmetric scheme is nodes only send messages to a random node in
its opponent interval in each cycle and never reply if a load message was received.
Therefore the protocol can proceed after each sent message. The number of messages used
is half the size as in the symmetric scheme, and thus half the message complexity of the
symmetric scheme. The better message complexity comes inherently at cost of the
accuracy of the calculated aggregate. For more details read the evaluation section.

Algorithm 1.2 and 2.2 are the modified for the symmetric scheme. In contrast to the
original symmetric, it will never response on a received load message.

The algorithm 1.2 has a simpler protocol than 1, but needs some remarks. At each run of
algorithm 1.2 the received level data structure (rL) must be zeroed. Since we do not have a
reply mechanism where we explicitly determine if an interval has members or not, we must
assume from beginning that there are no nodes in the interval. The initial value is then
overwritten if load message in algorithm 2.2 was received.
According to algorithm 1.2 all nodes must not (but can) proceed synchronously. The
reason are the same as explained in the symmetric algorithm.

In a fully populated ring the aggregation ends and eventually every node holds the same
value. Since the protocol only sends information to a random opponent, we do not
guarantee that intervals of same levels have same values since there's no bi-directional
exchange.
If the ring is not fully populated, such that every node eventually holds the same value at
the end of the distributed algorithm, the probability decreases.

Instead of resetting every rL and every cL at the beginning of the distributed algorithm, the
algorithm could reset a level only if needed. This improves the algorithme, since it might
not yet have received the load-message for the level it is about to send a load-message.
Anyhow, we would also like to assume that a level doesn't exist, since this is the default
behavior. This can therefore be achieved by using a flag indicating a level was recently
updated (within a duration of a full aggregation). The rL and cL will be reseted if for the
current level no update rL has been received.
A flag could be set by algorithm 2.2 such that algorithm 2.1 can verify that there was an
update for that value since the last full aggregation. The Algorithm would therefore reset
the flag when it was set due to an update (each level has a flag).

52

The structured aggregation scheme

Algorithm 1.2 active information exchange, asymmetric scheme, run periodically

1: procedure n.EXCHANGE()

2: for j:=1 upto L do

3: rL[j]:=NULL

4: end for

5: reset cL

6: for j:=1 upto L do

7: m:= random r , r∈I j

8: sendto m.LOADMESSAGE(cL[j])

9: end for

10: end procedure

Algorithm 2.2 receiving a load message, asymmetric scheme

1: event n.LOADMESSAGE(f) from m

2: j:=f.level

3: if m∈I j then

4: n.UPDATE(f,j)

5: end if

6: end event

7.2.6 Improvement of the asymmetric/symmetric scheme
Since node n chooses an opponent node m at random from the identifier space, n does not
know beforehand if m exists. We assume nodes are uniformly distributed. Thus finding a
node on the ring has in each interval in the same level the same probability.

If an opponent interval is fully populated, then each random choice will be a hit. If the
opponent node is not fully populated, then the probability of getting a hit is smaller than 1.
Under the assumption of no message loss, each non-hit can not be distinguish between an
empty or non empty interval. The symmetric protocol doesn't distinguish between empty
interval or a missed node. It always assumes that the interval is empty. The asymmetric
scheme simply doesn't care, and always set it to empty before each new round.

Such that more accurate aggregation can be made we propose a simple modification to the
Algorithm 1 and 2.

53

The structured aggregation scheme

Algorithm 2.2.2 improved receive load message, asymmetric scheme

1: event n.LOADMESSAGE(f) from m

2: j:=f.level

3: k:=f.nodeID

4: if k∈I j then

5: n.UPDATE(f,j)

6: else

7: if f.resend = False

8: f.resend := True

9: sendto H j .LOADMESSAGE(f)

10: end if

11: end if

12: end event

If a node m receives a message, and m is not in the targeted interval of that message, then
m sends the message to the beginning of the targeted interval. According to the CHORD
protocol, the node receiving the re-sent message will be a node in the interval if the
interval is not empty, or it will be received by a node outside the interval if empty.

Assume that in drawing 2 node 11 sends a message to node 5 in the opponent interval.
Since node 5 does not exist, the message will be routed to node 10 according to the
CHORD protocol of “find successor”. Therefore node 10 would resend the message to
node 0, which is the head of the upper interval. Since node 0 does not exists, the message
will be routed to node 4. Node 4 accepts the message.

In the following modified algorithm we guarantee that in each level will be an information
exchange, meaning that if opponent interval is not empty p=1 for getting a hit, and if
interval is empty p=0 for getting a hit. Thus we achieve always a representative weighted
aggregation in the whole system.

54

Drawing 2: Scenario of resending message. X
means node exists. H stands for “head” of Interval
in clockwise direction.

11100
4

H
X

XX

The structured aggregation scheme

Remark to algorithm 2.1.2 and 2.2.2: The field 'resend' is in every new message initially set
to 'false'. H j denotes the first node (Head) in interval j for node n in clockwise
direction.

Algorithm 2.1.2 improved receive load message, symmetric scheme

1: event n.LOADMESSAGE(f) from m

2: j:=f.level

3: k:=f.nodeID

4: if k∈I j then

5: n.UPDATE(f,j)

6: sendto k.R-LOADMESSAGE(cL[j])

7: else

8: if f.resend = False

9: f.resend := True

10: sendto H j .LOADMESSAGE(f)

11: end if

12: end if

13: end event

55

Evaluation

8 Evaluation
We will evaluate the symmetric and asymmetric scheme, compare them to each other and
to the Jelasity scheme [45]. The evaluation is made within a specially developed Java
simulator. The simulator offers Distributed Hash Table functionality where the different
schemes are built on. The simulator collects the following metrics:

● standard deviation of estimates,
● number of messages sent,
● number of hops on the DHT for messages.

The simulator models perfect channels with no message or link loss. The simulator models
churn, such that we can simulate join and leaves (dynamism) in the system.

8.1 Definition of metrics and measurement
Throughout all evaluations we will set up each measurement with the following
properties:

● type of scheme to be evaluated {asymmetric, symmetric, Jelasity},
● Define size N of DHT identifier space: N=2b ,
● Define size of population n: n≤N ,
● All nodes n in population have a load between 0...100.

For all measurements we consider the objective of finding the system average load. The
load is modeled as a value between 0...100, where 0 is unloaded and 100 is full loaded.
Each node will have an initial load and they are uniformly distributed. Thus the initial true
system average load is 50.

The symmetric and asymmetric schemes are described in the algorithm section. We will
show results for the improved version only. Jelasity scheme is taken as a reference and as
objective of comparison.

Estimates represents the system average load value. The value is always weighted in our
schemes, since we proceed aggregation in steps where each step is a interval of different
size and population. when we speak of an estimate, we always refer to a node which
estimates the system load.

Standard deviation of estimates represents the distribution of the estimates from all
nodes in the system. The smaller the standard deviation the better the estimates do agree on
the mean value in that distribution. The mean value is the estimated true average value.

Simulating the protocol (scheme)
The simulator proceeds in the following discretized manner (Figure 23): Each round has L
cycles where L=log2 N . A round is a complete run of the protocol. This means that
after a round the aggregation algorithm has finished. Each cycle represents a level. There
are n nodes which run the algorithm in each level. In the simulation, the algorithm is run
by one node at the time (respectively algorithm 1 is run by that node).

This inherently let nodes proceed synchronized, where the synchronization variable is the
length of one cycle. All schemes are simulated the same way. Jelasity [45] gives a practical
way of achieving synchrony. In the symmetric scheme we do not need synchrony as

56

Evaluation

described earlier. In the asymmetric scheme we need synchrony, but as also described
earlier we can easily overcome need for synchrony.

8.2 Precision of the estimates
With the precision evaluation we compare how well nodes estimate the system load. The
comparison is done by measuring the standard deviation of all the estimates.

Graph 1: precision: std deviation for the asymmetric scheme

Graph 1, 2 and 3 show standard deviations of the estimates in function of the network
population. Different lines represents different sizes of identifier space (N). The x-axis
represents the population. The chosen populations (points in graph) are the following
factors of N: 1, 0.9, 0.8, 0.7, 0.6, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256.

57

Figure 23: Discretization of the protocol in the simulator

L n 1

round scope
cycle scope

node scope

 {node run algorithm 1}

end node scope
end cycle scope

end round scope

Evaluation

Graph 2: precision: std deviation for the symmetric scheme

Graph 3: precision: std deviation for the Jelasity scheme

58

Evaluation

The asymmetric scheme, graph 1, perform worst of all three. To achieve a std deviation
smaller than one is almost unfeasible for N smaller than 215 in a full population.
Comparing the asymmetric scheme with Jelasity, graph 3, we never perform as good as
Jelasity does.

We show in the graph 3 the curve for Jelasity of optimal randomness. Optimal random
means that random choice is made from the set of existing nodes in the DHT, rather from
the identifier space N. From the graph we see that for N=65536 and population > ½ N, we
are very sharp to optimal random, by simply choosing nodes from the identifier space.
Which means that for very large systems with good population, the randomness will not do
better than optimal random. Thus, there is no special need for providing good randomness,
as long the population is very large.

On the other hand, the symmetric scheme, graph 2, performs much better, than Jelasity.
The reason for the good results is because for each message not received by a node it will
be resent to the head of the interval.
Note that the Graph 2 has rounding errors, and therefore shows these “mountains”. It can
be regarded as a 0-std-deviation for all measurement in that graph.

Note that Jelasity assumes good randomness to provide good aggregation precision. The
CHORD DHT does not provide any mechanism to provide optimal randomness, since we
simply choose random nodes from the identifier space N.

Anyhow, as we shown in the graphs, Jelasity provides good results even though not
optimal random, with std deviation < 1/6. The symmetric scheme performs excellent with a
multiple of orders better than Jelasity. Asymmetric does not provide good common
estimation, unless N is big and almost fully populated. In our results, the asymmetric
performs not better than a std deviation around1.

59

Evaluation

8.3 convergence
The convergence shows how fast estimation converges to a common value for all nodes.
This common value is the mean of the estimates. The standard deviation to the mean shows
how much the distance to mean is. Since the protocols runs in a discrete manner, we show
the narrowing of standard deviation in function of cycles. Remember that after a cycle all
nodes have run the algorithm 1 for a certain level. In our scheme a round consists of L
cycles, where L=log2 N .
In the Jelasity scheme an epoch has jL cycles where jL=log2n and n is the population.
Note that for Jelasity N is only a upper bound of nodes in the system.
We refer to epoch if we talk about the Jelasity scheme and we refer to rounds when we talk
about the asymmetric/symmetric schemes.

In graph 4, 5 and 6 we show the convergence for the 3 schemes. Th DHT of identifier
space is N=65536. The different lines show different populations in the DHT.

In the fully populated case the asymmetric scheme, graph 4, does not converge to a std
deviation smaller than 0.55. In the case of half the population the std deviation is 1.4, and
for the quarter population it is 3.
To converge to a value of std deviation smaller than 1, the fully populated DHT takes 14
cycles where for the 0.9N and 0.8N it takes 15 cycles, for 0.7N 16 cycles and the rest never
goes below 1.

Graph 4: convergence for the asymmetric scheme N=2b where b = 16

The symmetric scheme, graph 5, has the nice property that in all sizes of population the std
deviation will approach 0 in the L-th cycle. Compared to the symmetric scheme, all std

60

Evaluation

deviations are bound to 0 at the L-th cycle, and convergence is somewhat faster than in the
asymmetric scheme.
Number of cycles needed to have std deviation <1:

population #cycles
s.t sd<1

value at L-th
cycle

N 10 0.0

0.9N 10 0.0

0.8N 10 0.0

0.7N 11 0.0

0.6N 11 0.0

0.5N 11 0.0

0.25N 12 0.0

0.125N 13 0.0

0.0625 14 0.0

0.03125 15 0.0

0.015625 15 0.0

0.0078125 16 0.0

Table 2: symmetric scheme, number of cycles s.t std deviation < 1, and aggregation value

Graph 5: convergence for the symmetric scheme for N=2b where b = 16

61

Evaluation

The Jelasity scheme, graph 6, has a very fast convergence. As the graph shows, the
convergence is independent of the size of the population. After only a few cycles the
convergence is tending to 0.

population #cycles
s.t sd<1

value jL-th cycle

N 6 0.00164

0.9N 6 0.00323

0.8N 6 0.00340

0.7N 6 0.00356

0.6N 6 0.00375

0.5N 6 0.00398

0.25N 6 0.00816

0.125N 6 0.01531

0.0625 6 0.02804

0.03125 6 0.05151

0.015625 6 0.08852

0.0078125 6 0.16206

Table 3: Jelasity scheme, number of cycles s.t std deviation < 1, and aggregation value

Comparing Jelasity to the symmetric shows that for a std deviation smaller than 1, Jelasity
converges 1.67 to 2.67 times faster. On the other hand, the aggregated value after the last
cycle is for the symmetric scheme always 0, where as for the Jelasity scheme exists some
value >0.

62

Evaluation

Graph 6: convergence for the Jelasity scheme N=2b where b = 16. N is
a upper bound.

Jelasity has a super fast convergence. This has a significant revenue on the time to run the
protocol. Jelasity terminates faster than the symmetric scheme, which makes the algorithm
being more efficient than the symmetric scheme.

The asymmetric scheme does not have any good convergence properties for practical
networks. A high population density mustbe present, almost N, have a high identifier space
to achieve good performance. Thus making it not a good choice where all estimates need to
agree close (a std deviation <1) on a value. It is up to the properties of the load balancing
algorithm. If the constraint on the value of the std. deviation can be relaxed, by allowing
greater std deviation, the asymmetric scheme can be applied.

63

Evaluation

8.4 DHT hops, messages and cost
In this section we discuss the results of how the message complexities of the schemes
compete, and what the cost on the overlay the different schemes have.

8.4.1 messages
The graph 7 and 8 illustrates the messages sent in each scheme to accomplish a full
aggregation. For the asymmetric and symmetric scheme a round consists of L=log2 N
cycles and for Jelasity a epoch consists of jL=log2n cycles. N is the identifier space
and n is the population in the system where n≤N . Hence the number of cycles of
Jelasity and our schemes have the relationship jL≤L .

The expected number of messages sent per cycle for each scheme is:

Jelasity m j=2n

Asymmetric ma=n ={ 0 if n=N
(0,n] if n≠N }

Symmetric m s=2n ={ 0 if n=N
(0,n] if n≠N }

Table 4: expected number of messages per cycle

Thus we have the relationship: ma≤m j≤ms

n is the population. α is the number of messages which will be resent to the head of a
interval, as explained in the improved algorithm. If it is not fully populated, there might be
0 resent messages or maximum n resent messages.

The total number of message, for a full aggregation, is given as the following:

Jelasity M j=m j⋅jL

Asymmetric M a=ma⋅L

Symmetric M s=ms⋅L

Table 5: expected number of messages per full aggregation

Remember that jL≤L . According to our results below, we can establish the
relationship between the schemes for the messages used in a full aggregation (in general):

M a≤M j≤M s

We have implemented an algorithm which reduces redundancies on level 1 and 2 by
exploiting the finger tables of the underlying overlay. There are 2 principles of reducing
messages: First we do not send any messages if we know there is no node. Second we
reduce messages when our neighbor already achieved the exchange. Our algorithm can be
found in the code appendix. We will not further discuss it here.

64

Evaluation

Graph 7: message complexity, comparing asymmetric and Jelasity

Graph 8: message complexity, comparing symmetric and Jelasity

65

Evaluation

Graph 7 compares the asymmetric with Jelasity. The asymmetric scheme has always less
messages than Jelasity. Given by our measures, table 6 gives numerical examples to the
graph 7.

population Jelasity, #m asymmetric, #m factor
Jelasity/asymmetric

N=65536 2097152 1048576 2

N/8 212992 137895 1.544

N/16 98304 72501 1.356

Table 6: comparing #messages for Jelasity and asymmetric with b=16

The symmetric scheme uses twice as much messages than the asymmetric scheme.
Comparing symmetric to Jelasity, graph 8, our scheme uses less messages than the Jelasity,
but only if fully populated. We gain in that case from the algorithm for reducing
redundancy on level 1 and 2 as discussed above.

Important to say about graph 8 is that Jelasity scheme uses less messages than the
symmetric scheme. This is due to the resending of messages which have not reached any
node. Even an interval is empty, nodes will resend the message according to our algorithm.
This can be slightly improved: If a node receives a message targeted to a other interval,
and it was originally sent to the head of that interval then a node would never resend the
message since it can assume that the interval is currently empty.

population Jelasity, #m symmetric, #m factor
Jelasity/symmetric

N 2097152 1966080 1.0667

N/8 212992 243900 0.8733

N/16 98304 122160 0.8

Table 7: comparing #messages for Jelasity and symmetric with b=16

Through this results we have shown that the message complexities are M a≤M j≤M s .

What can be implied is that a protocol which uses more messages than an other one will
have a longer run time and it is more sensible to message loss. The statement is
theoretically true, but practically we do not have any measures and discussions. Anyhow,
according to the churn results, later in this section, will give us good promises that our
scheme might do better than Jelasity, even messages are lost.

66

Evaluation

8.5 overlay cost
The cost of running the algorithms on the CHORD overlay are measured in number of
hops it takes to deliver messages. The CHORD DHT guarantees that a message is
delivered in at least log2 n hops.
Here we give theoretically approximation of number of hops for the different schemes it
takes to deliver all messages in a cycle:

Jelasity h j=nn⋅O log2n

Asymmetric ha=
1
2

n⋅log2 n
1
2

n⋅O log2 n⋅log2n

Symmetric hs=n
1
2

n⋅log2 n
1
2

n⋅Olog2 n⋅log2 n

={ 0 if n=N
(0,n] if n≠N }

A node in Jelasity uses at most log2 n hops to deliver a message to a random node and
the random node will reply directly with 1 hop. Messages will always be routed in
clockwise direction. This will lead us to the above formula for a gossip cycle with n nodes.

The asymmetric and symmetric scheme have the disadvantage that half of the nodes will
choose a opponent in clockwise direction, which is cheap, and the other half in
counterclockwise direction, which is expensive. We have made the assumption that in the
latter case it will always take log2 n steps (which in fact is an approximation).

According to the improved scheme a message received by a node from an interval which
was not targeted, the message is sent to the head of the targeted interval. Since it is sent in
counter clockwise, we also assume for each resent message it will take log2 n steps, in
case of β.

In the symmetric scheme, a node which was sent a message to will reply directly to the
originator. This is measured as in Jelasity with 1 hop.

In the results, graph 9 and 10, we show how the costs on the overlay are compared to
Jelasity. The asymmetric scheme and Jelasity have about the same cost in a population ~
1/8 N. In smaller population Jelasity does much better.

population # hops Jelasity #hops asymmetric

N 11009573 9093510

½ N 4870400 4498393

1/32 177163 291108

Table 8: comparing #hops of Jelasity and asymmetric together with graph 9

67

Evaluation

Graph 9: #hops used to deliver all messages

Graph 10: #hops used to deliver all messages

68

Evaluation

In all measured cases, b = 10...16 can be found in appendix, Jelasity and asymmetric have
always equal costs around 1/4N and 1/2N (~ 1/8N). Thus making the asymmetric scheme
cheaper only for population greater than approximately 1/8, in our case for
 8192< population <= 65536.

As in our theoretical assumption of the cost for the symmetric scheme we can see in graph
10 that the population must be very dense such that the cost is cheaper than Jelasity. The
crossing is around 0.6N and 0.7N (~0.65N). For all simulations, b=10...16 can be found in
appendix, the crossing is always between 0.6N and 0.7N.
Thus making the asymmetric scheme cheaper only for population greater than
approximately 0.65N, in our case for 42598< population <= 65536.

population # hops Jelasity #hops symmetric

N=65536 11009573 10010284

½ N 4870400 4955578

1/32 N 177163 313577

Table 9: comparing #hops of Jelasity and symmetric together with graph 10

In a real network, the number of hops can not solely be taken to determine the time it takes
to reach the destination [7]. Network latencies and node speed also matters. Also, a
message taking one hop on the overlay might travel on the physical network over multiple
hops. With a metric called stretch latency, overhead of DHTs can be expressed. Stretch is
the factor between the time it takes to route a message from a to b through the DHT and
the time it takes by directly sending message from a to b.

Taking stretch into account, it is crucial for having a efficient protocol by using a small
number of hops.

8.5.1 overlay cost per message
In the evaluation of messages we have established and shown the relationship of the
messages sent during a full aggregation: M a≤M j≤M s . The asymmetric scheme uses
the fewest messages, and the symmetric the most messages. As shown just before, the cost
has not the same relationship between the schemes as it is for the number of messages. We
can now show the cost per message thus speaking of number of hops it takes to deliver a
message. The measurements are again based on full aggregation (we use the results from
the cost and number of messages).
The cost per message will tell how good the schemes does on the CHORD overlay. Of
course, a cheaper cost represents a more effective usage of the overlay than a higher cost.

Graph 11 and 12 compares our scheme to Jelasity. We show for different identifier spaces
the cost (hops) per message in function of the network population. The costs per message
are evaluated like in the hops evaluation.

In the asymmetric scheme we have a cost per message between Jelasity and asymmetric
which first increases and then saturates when population gets higher than 1/4N. Still then,
the cost per message is almost double as much as for Jelasity.

69

Evaluation

Graph 11: cost per message in a full aggregation

Graph 12: cost per message in a full aggregation

70

Evaluation

In the symmetric scheme, graph 12, the cost per message between Jelasity and symmetric
first increases but then gets better than Jelasity. The boarder is always between 0.6N and
0.7N for any size of identifier space (all results can be found in the appendix).

The symmetric scheme is less expensive than the asymmetric. Remember that the
asymmetric scheme uses less messages, but actually at a higher cost.

By this results we see that our chosen overlay, CHORD, is not a optimal choice. The
reason is because routing is done only in clockwise direction. Our schemes send half of the
messages in clockwise direction and the other half in counter clockwise which is more
expensive. Also each resent message in the symmetric scheme is done counterclockwise.

An improvement of the overlay can be achieved if routing can be done in both directions.
Thus each node has to maintain double as much pointers. This would improve the number
of hops to deliver a message, since we choose the direction which is closer to our identifier
in question.
An other improvement is th choose a different overlay: For example by having a greater
overlay routing table will reduce the number of hops in a lookup, because there exists a
trade off between the maximum number of hops and the size of the routing table [7]. For
example in DKS the system can be configured to decrease maximum number of hops by
increasing routing table size. Read in 1.2.1 in [7] for details on different DHTs comparing
number of hops and routing table sizes.
Investigation for a overlay achieving cheaper service to our schemes is kept as a part of the
future work.

8.6 churn
Nodes might leave or join whenever they feel for it. Nodes might also fail, which in our
work is considered as a leave. We evaluate the schemes under churn, which represents the
schemes behavior under dynamism. Churn is defined as a disturbance by exchanging a
number of nodes with new nodes. This means that n nodes are removed from the system
and replaced by n new nodes. The number of nodes in the system is constant.
The measurement setup is made as the following: A churn rate defines how many nodes in
the system during 1 full aggregation should be replaced. The rate is given in percentage. 0
% means no node is replaced and 100% means all nodes are replaced.

We slightly modify the discretization of the protocol in the simulator following to figure
24.

71

Evaluation

Figure 24: Discretization of the protocol in the simulator for churn

After a node has executed one step in algorithm, k nodes are replaced such that after
L⋅n times replacing k nodes (after a full aggregation), we have replaced X% of the

nodes, where X is the churn rate. Note that for Jelasity L=jL.
We implemented the replacement of nodes at the smallest discrete unit = 1 in our simulator
because we guarantee in this way that our scheme is comparable to the Jelasity scheme,
since this is the greatest common step in the algorithm between our scheme and the Jelasity
scheme.

How new nodes participate in the protocol: According to Jelasity [45], a new node does
not participate in the protocol until a new epoch (round) starts. If a new node gets
contacted, it simply refuses exchange which is similar to a link loss.
Our schemes behave different to Jelasity. A new node participates from the moment on it
enters the system, but it does not run the active algorithm (in the node scope) for the
current level. When the next level begins it will also run the active algorithm.

72

L n 1

round scope (R)
cycle scope (C)

node scope (S)

 {node run algorithm }
{replace k nodes}

end node scope
end cycle scope

end round scope

Evaluation

Graph 13: Churn, comparing Jelasity, asymmetric and symmetric

The graph 13 compares the results for the 3 schemes. We measured the std deviation of
all estimates in function of the churn rate. Per scheme are always 2 cases, one for a fully
populated and one with the population of 1/32N (2048 of 65536 nodes). For Jelasity N is
logically meaningless, and hence both curves overlap.

According to the graph we see that the symmetric scheme performs throughout best. Even
for a churn rate of 10%, the std deviation is smaller than 2. Until a churn of 50% the std
deviation increases only slowly.
The asymmetric scheme has a natural std deviation >0 if the population is smaller than N.
As we see in the graph, the asymmetric std deviation curve starts at a offset of 6.71. The
pro for the asymmetric scheme is that it has a flat slope increasing the std deviation till
50%.
In contrast, the Jelasity has a very steep slope and therefore a rapidly increasing std
deviation even for small churn rates. At the churn rate of 1% Jelasity has a std deviation of
2.9.

73

Evaluation

churn
rate [%]

std dev
symmetric

std dev
asymmetric

std dev
Jelasity

0
1
2
5
10
20
30
50
60
80
100

0.0
0.79
0.60
1.27
1.74
2.64
3.40
4.20
6.12
5.93
6.03

6.71
6.59
6.7
7.17
7.52
8.13
8.83
9.78
11.7
11.64
11.74

0.00165
2.9
4.1
6.34
8.75
11.9
14.57
16.81
20.64
20.60
20.62

Table 10: std deviation in a population of n=2048 (N=65536)

It turns out that our schemes perform practically best under churn. A simple explanation is
the concept of composing the aggregation value. It allows new nodes an immediate
participation in the protocol even partial information is missing on new nodes (no need for
synchronization as discussed in the algorithm section). New nodes in Jelasity do not
participate albeit they are contacted, resulting in a link/message loss. Jelasity also needs to
synchronize for each epoch such that fresh nodes can participate in the protocol.

In our schemes, removed nodes add an error to the estimates, and new nodes joining
introduce an error due to lack of information. Anyhow, we showed that the std deviation is
small which essentially comes from the concept of composing the aggregation.

74

Conclusion

9 Conclusion
We have studied concepts of Grid Computing and the Web Service paradigm. In the
present tense of ubiquitous computing, resources for computational power can be harvested
and they are harvested. We have explained how the Grid infrastructure managing a large-
scale Internet size group of machines works, and introduced the problematic of balancing
the load among the participant in a computational Grid. By analysis of fundamental P2P
technologies we have introduced concepts to enable large scale and efficient self
management networks.

In the survey for load balancing in Distributed Systems we analysed different solutions and
compared them to each other. An introduction to request routing in the scope of load
balancing lead us to the model. Job-request routing is crucial, since we believe that routing
a job within a Grid should be the load balancing act.

We sketched out the model of the load balancer, based on the problem space according to
the Grid4all research project. Based on the model we have introduced scalable algorithms
for n-aggregating information in a large scale and dynamic group of nodes where nodes
might fail. Through the evaluation of our algorithms, simulated in the own developed Java
simulator, we have discussed the performance of the three schemes. We have compared
our algorithms with the gossip-based aggregation by Marc Jelasity et. al [45], which is in
our mind the most interesting to compare with.
The results of the evaluation of our schemes have shown that they are very practical and
specially robust in dynamic system where node join and leave, or even die, whenever they
feel for. Improvements need to be made, especially of choosing an overlay which is more
effective for our schemes than the CHORD.

With this work we encourage further investigation in the usage of the aggregated values for
load balancing in large scale Distributed Systems of Web (Grid) services.

9.1 Future Work
Employing and exploiting the information collected during the aggregation in load
balancing is the next logical step towards load balancing. Different load balancing schemes
should be exploited by using the symmetric scheme, such as comparing local load to
estimate global load, or counting underutilized nodes seen during an aggregation. The
algorithms can also be used to piggy back information. A vision is to enable the “power of
2 choices” [47] in a pre-emptive fashion: a request is sent to a node chosen out of 2
choices. Choices were made available during the aggregation. According to the power of 2
choices, an exponential improvement of the load in the system can be achieved when
choosing between 2 at random.

The underlying overlay should be improved such that the cost of running our algorithms
decreases. The overlay might also be enhanced by introducing locality awareness. If the
links between nodes in the DHT are chosen regarding to their physical locality, requests
might be routed in physical vicinity. Grid jobs could therefore benefit where large files
must be staged in/out by reducing transfer time.

75

References

10 References

Bibliography
[1] Globus® Toolkit 4: Programming
Java Services Sotomayor, Borja and
Childers, Lisa Morgan Kaufmann 2005

[2] A survey of peer-to-peer content
distribution technologies Stephanos
Androutsellis-Theotokis and Diomidis
Spinellis New York, NY, USAACM
PressACM Comput. Surv. 2004

[3] Napster among fastest-growing Net
technologies C-NET NEWS. 2000

[4] Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applicationss
Robert Morris and David Karger and Frans
Kaashoek and Hari Balakrishnan ACM
SIGCOMM 2001 2001

[5] Tapestry: An Infrastructure for
Fault-tolerant, Wide-area Location and
Routing B. Y. Zhao and J. D. Kubiatowicz
and A. D. Joseph UC Berkeley

[6] A Scalable Content Addressable
Network Sylvia Ratnasamy and Paul
Francis and Mark Handley and Richard
Karp and Scott Shenker Berkeley, CA
2000

[7] Distributed k-ary System:
Algorithms for Distributed Hash Tables
Ali Ghodsi Stockholm, SwedenKTH---
Royal Institute of Technology 2006

[8] Gnutella: Distributed Information
Sharing http://gnutella.wego.com/ 2000

[9] KaZaA Media Desktop,P2
SHARMAN NETWORKS LTD.
http://www.kazaa.com/ 2001

[10] Explore the "Small World
Phenomena" in Pure P2P Information
Sharing Systems Yi Ren, Chaofeng Sha,
Weining Qian, Aoying Zhou, Beng Chin
Ooi, Kian-Lee Tan IEEE Computer
Society 2003

[11] Pastry: Scalable, Decentralized
Object Location, and Routing for Large-
Scale Peer-to-Peer Systems ROWSTRON,
A. AND DRUSCHEL, P Lecture Notes in
Computer Science 2001

[12] Peer-to-Peer Computing Dejan S.
Milojicic and Vana Kalogeraki and Rajan
Lukose and Kiran Nagaraja and Jim
Pruyne and Bruno Richard and Sami
Rollins and Zhichen Xu HP Lab 2002

[13] P-Grid: A Self-Organizing Access
Structure for P2P Information Systems
Karl Aberer (CoopIS 2001), Lecture Notes
in Computer Science 2001

[14] Accessing Nearby Copies of
Replicated Objects in a Distributed
Environment C. Greg Plaxton and
Rajmohan Rajaraman and Andrea W. Richa
ACM Symposium on Parallel Algorithms
and Architectures 1997

[15] Coase's Penguin, or Linux and the
Nature of the Firm Benkler, Yochai
http://arxiv.org/abs/cs/0109077 2001

[16] Web service activities w3c
http://www.w3.org/2002/ws/ 2002

[17] IBM's web service tutorial
http://www6.software.ibm.com/developerw
orks/education/wsbasics/wsbasics-1-1.html

[18] Web Services Architecture w3c
working group http://www.w3.org/TR/ws-
arch/ 2004

[19] Web Services Description Language
(WSDL) 1.1, W3C Note 15 March 2001
W3C working group
http://www.w3.org/TR/wsdl 2001

[20] OASIS UDDI Specifications TC -
Committee OASIS http://www.oasis-
open.org/committees/tc_home.php?wg_abb
rev=uddi-spec

76

References

[21] New to Grid Computing IBM
developerWorks http://www-
128.ibm.com/developerworks/grid/newto/

[22] What is the Grid? A three point
check list Ian Foster
http://www.gridtoday.com/02/0722/100136.
html 2002

[23] The Anatomy of the Grid: Enabling
Scalable Virtual Organizations Ian Foster
and Carl Kesselman and Steven Tuecke
Lecture Notes in Computer Science 2001

[24] Fundamentals on Grid Computing,
http://www.redbooks.ibm.com/redpapers/p
dfs/redp3613.pdf IBM IBM redbooks
2002

[25] The WS-Resource Framework
Globus Alliance, IBM and in conjecture
with HP http://www.globus.org/wsrf/ 2004

[26] Open Grid Services Infrastructure
(OGSI) S. Tuecke and K. Czajkowski and
I. Foster and J. Frey and S. Graham and
C. Kesselman and D. Snelling and P.
Vanderbilt (eds.) GGF

[27] Globus Alliance,
http://www.globus.rg

[28] On Death, Taxes and the
Convergence of Peer-tp-Peer and Grid
Computing Ian Foster and Adriana
Iamnitchi Berkeley, CA2nd international
workshop on P2P Systems IPTPS'03 2003

[29] Liste Der File Sharing Dienste
WIKIPEDIA
http://de.wikipedia.org/wiki/Liste_der_Files
haring-Dienste

[30] Load Balancing: Toward the
Infinite Network Javier Bustos-Jiménez,
Denis Caromel CoreGrid TR-0049k 2006

[31] ProActive GRID middleware
ObjectWeb Consortium INRIA

[32] "Balancing active objects on a peer
to peer infrastructure," in Proceedings of

the XXV International Conference of the
Chilean Computer Science J. Bustos-Jim
´enez, D. Caromel, A. di Costanzo, M.
Leyton, and J. M. Piquer IEEE Computer
Society, November 2005 2005

[33] Load Balancing in Dynamic
Structured P2P Systems Brighten Godfrey
Karthik Lakshminarayanan Sonesh Surana
Richard Karp Ion Stoica IEEE INFOCOM
2004 2004

[34] Grid Load Balancing Using
Intelligent Agents Junwei Cao, Daniel P.
Spooner, Stephen A. Jarvis, and Graham R.
Nudd C&C Research Laboratories, NEC
Europe Ltd., Sankt Augustin,
GermanyC&C Research Laboratories, NEC
Europe Ltd., Sankt Augustin, Germany,
Department of Computer Science,
University of Warwick, Coventry, UK

[35] PACE --Toolset for the
Performance Prediction of Parallel and
Distributed Systems G. R. Nudd and D. J.
Kerbyson and E. Papaefstathiou and S. C.
Perry and J. S. Harper and D. V. Wilcox
The International Journal of HPC
Applications 2000

[36] Introduction into Genetic
Algorithms,
http://en.wikipedia.org/wiki/Genetic_algori
thm Wikipedia online Encyclopedy
Wikipedia

[37] Messor: Load-Balancing througha
Swarm of Autonomous Agents Alberto
Montresor, Hein Meling, Özalp Babaoglu
Departement of Computer Science 2002

[38] CAS: Complex Adaptive Systems,
http://en.wikipedia.org/wiki/Complex_adap
tive_system Wikipedia Wikipedia online
Encyclopedy 2006

[39] Anthill: A framework for the
development of agent-based peer-to-peer
systems Ozalp Babaoglu, Hein Meling, and
Alberto Montresor In Proceedings of the
22th International Conference on

77

References

Distributed Computing Systems
(ICDCS'02), Vienna, Austria 2002

[40] Project JXTA:An Open, Innovative
Collaboration Ra Ti On Sun Microsystem
Inc. 2001

[41] JXTA:
http://en.wikipedia.org/wiki/JXTA
wikipedia.org 2005

[42] Grid4All Grid4All (Self-* Grid:
Dynamic Virtual Organizations for schools,
families, and all)
http://en.wikipedia.org/wiki/Grid4all

[43] Globus: A Metacomputing
Infrastructure Toolkit I. Foster, C.
Kesselman International Jouranl of
Supercomputer Applications and High
Performance Computing 1997

[44] Distributed Aggregation Schemes
for Scalable Peer-toPeer and Grid
Computing Min Cai, Kai Hwang
University of Southern California 2006

[45] Gossip-Based Aggregation in Large
Dynamic Networks Marc Jelisity, Alberto
Montresor, Ozalp Babaoglu ACM Tr on
Computer Systemsansactions 2005

[46] Scalable Fault-Tolerant
Aggregation in Large Process Groups
Indranil Gupta, Robbert van Renesse,
Kenneth P. Birman Cornell UniversityDpt.
of Computer Sciende 2001

[47] The Power of Two Choices in
Randomized Load Balancing Michael
Mitzenmacher IEEE, Transactions on
Distributed & Par Computing 2001

78

	coverpage.pdf
	thesis-marc-schneider-kth.pdf
	1Abstract
	2Acknowledgements
	3Introduction
	3.1Goals and Expected Results

	4Background study on P2P, Web Services & Grids
	4.1P2P Systems (overlay network)
	4.1.1P2P overlay network structure
	4.1.2General Classification of P2P systems: Structured and Unstructured
	4.1.3P2P algorithms: Centralized-, Flooding- and Document Routing Model
	4.1.4Distributed Hash Table DHT
	4.1.5Distribute K-ary Search (DKS)
	4.1.6Common Based Peer Production

	4.2Web Service and Service Oriented Architecture SOA
	4.2.1Definition Web Services
	4.2.2Messaging SOAP
	4.2.3Service Description WSDL
	4.2.4Discovering and Publishing Services

	4.3Grid Service
	4.3.1Open Grid Services Architecture
	4.3.2Web Services Resource Framework

	4.4Grid Service versus Web Service
	4.5Grid Software
	4.5.1Globus Toolkit 4 and GRAM

	4.6Engaging Grid and P2P

	5Survey of Load Balancing in Distributed Systems
	5.1Active Object Migrations
	5.2Load movement in a P2P structured network
	5.3Grid Load Balancing using intelligent agents
	5.4Load Balancing with a Swarm of Ants
	5.5Summary of Survey

	6Design
	6.1Concept of Request Routing
	6.1.1Life cycle of a request
	6.1.2Creating and issuing a request
	6.1.3Request Routing
	6.1.4Request Routing Types
	6.1.5 Accepting a request
	6.1.6Balancing requests is balancing load

	6.2System Model
	6.2.1The system model
	6.2.2Inspiration from the survey

	7The structured aggregation scheme
	7.1Introduction
	7.1.1System model
	7.1.2Algorithmic Notations

	7.2The Structured Aggregation Scheme
	7.2.1Underlying Structured Overlay
	7.2.2Structuring the gossip
	7.2.3Data Structures used in the Algorithms
	7.2.4Simple scheme: Symmetric Scheme
	7.2.5Simple Asymmetric Scheme
	7.2.6Improvement of the asymmetric/symmetric scheme

	8Evaluation
	8.1Definition of metrics and measurement
	8.2Precision of the estimates
	8.3convergence
	8.4DHT hops, messages and cost
	8.4.1messages

	8.5overlay cost
	8.5.1 overlay cost per message

	8.6churn

	9Conclusion
	9.1Future Work

	10References

