

Studies of classical HPC problems on
fine-grained and massively parallel

computing environment based on
reconfigurable hardware.

L A U R E N Z C H R I S T I A N B U R I

Master of Science Thesis
Stockholm, Sweden 2006

ICT/LECS-2006-88

Evaluation of an FPGA-based supercomputing platform

Studies of classical HPC problems on
fine-grained and massively parallel

computing environment based on
reconfigurable hardware.

L A U R E N Z C H R I S T I A N B U R I

Master of Science Thesis
Stockholm, Sweden 2006

ICT/LECS-2006-88

Evaluation of an FPGA-based supercomputing platform

Supervisor
Olle Raab

Mitrionics AB, Lund, Sweden

Examiner
 Vladimir Vlassov

Department of Microelectronics and
Information Technology IMIT

KTH, Stockholm, Sweden

Abstract

Today, High Performance Computing (HPC) problems occur in various lines of
business. Whilst conventional von Neumann processors are slowly approach-
ing the maximum of feasible CPU frequency, become FPGA’s an interesting
alternative as they get large enough to be able to implement critical algorithms
efficiently.

This thesis consists of an evaluation of the capabilities of the FPGA based
supercomputing platform Mitrion regarding mathematical functions, ranging
from linear algebra to trigonometry. The evaluation illuminates the achievable
speed-up as well as the programmability of the reconfigurable processor and
compares these aspects with ANSI-C solutions destined for an ordinary x86
AMD 64 processor.

For a short summary of the overall results please refer direcly to chapter 10.

Keywords : Mitrion, HPC, FPGA

i

ii

Acknowledgements

The realization of this Master thesis at Mitrionics was both fun and a highly
valuable knowledge enrichment. It was very interesting to work with their in-
telligent product, which adds cutting edge technology to the supercomputing
world.

I would like to thank everybody at Mitrionics, especially my supervisor Olle
Raab, for having supported me in realizing this diploma work. I would also like
to thank my examiner, Vlad Vlassov, for help with the report and administra-
tion. Last but not least I thank my opponent, Piotr Kundu, for useful inputs,
which helped me to improve the quality of this report.

iii

iv

Contents

List of Figures 1

1 Introduction 3
1.1 Preamble . 3
1.2 Project specification . 3
1.3 Mitrionics . 4
1.4 Assumed prior knowledge . 4
1.5 Reading directions . 4
1.6 Related work . 4
1.7 High Performance Computing . 5
1.8 The von Neumann machine . 5
1.9 Limitations of the von Neumann model 5
1.10 Benchmarking . 6

2 Basic terms and concepts of parallel computing 7
2.1 Motivation for parallel computing 7
2.2 Complexity notations . 7
2.3 Data dependency . 7

2.3.1 Critical path . 8
2.4 Speedup . 8

2.4.1 Amdahl’s law . 9
2.5 Achieving parallelism . 9

2.5.1 Pipelining . 9
2.5.2 Data-parallelism . 10

2.6 Granularity . 10

3 Mitrion - The virtual processor 13
3.1 The Mitrion processor . 13
3.2 Reconfigurable hardware . 13

3.2.1 FPGA . 14
Vendors . 14

3.3 The Mitrion SDK . 14
3.3.1 Development process . 14
3.3.2 Target platforms . 15

3.4 The programming language Mitrion-C 16
3.4.1 Types and Assignments 16

Scalar types . 16
Assignment . 16

v

CONTENTS

Collection Types . 17
3.4.2 Dependency and functional aspect 17
3.4.3 Loops . 17

Foreach loop . 17
For loop . 17
While loop . 17

3.4.4 Example: Fibonacci sequence 17
3.4.5 Memory management . 18

3.5 Graphical debugger . 18

4 Matrix multiplication 19
4.1 Matrix multiplication . 19

4.1.1 Complexity . 19
4.2 Implementation in Mitrion-C . 20

4.2.1 Small square matrices . 20
4.2.2 High dimensioned square matrices 21
4.2.3 Matrix preloading . 22
4.2.4 Exploit the FPGA to full capacity 22

4.3 Performance . 22
4.4 Summary . 23

5 Gaussian elimination 25
5.1 Introduction to Gaussian elimination 25
5.2 Basic algorithm . 25

5.2.1 Partial pivoting . 25
5.2.2 Complexity . 26

5.3 Parallelization . 26
5.4 Implementation on the Mitrion platform 27
5.5 Alternative solutions . 27

5.5.1 LU factorization . 27
5.5.2 Jacobi’s iterative method 28

5.6 Result . 28

6 Jacobi’s linear equation solver 29
6.1 Motivation for Jacobi’s linear equation solver 29
6.2 Overview of the Jacobi method 29

6.2.1 Convergence criteria . 30
6.2.2 Complexity . 30

6.3 Implementation design . 30
6.4 Jacobi iterations on a single processor 31
6.5 Performance . 32
6.6 Related projects . 32
6.7 Conclusion . 33
6.8 Summary . 33

7 Discrete wavelet transformation for image compression 35
7.1 Wavelet transformations . 35
7.2 The Haar wavelet transformation 36
7.3 Thresholding and lossy transformation 37
7.4 Implementation design . 37

vii

7.4.1 Integer to integer transformation 37

7.4.2 Data flow . 38

7.5 Resource usage . 39

7.6 Performance . 39

7.7 Summary . 39

8 CORDIC 41

8.1 Overview of CORDIC . 41

8.2 Sine and cosine calculation . 41

8.2.1 Precision of CORDIC . 43

8.3 Implementation design . 43

8.3.1 Parallelism . 43

8.3.2 Pipelining versus data-parallelism 43

8.3.3 Unsolved problems . 45

8.4 Performance . 45

8.5 Summary . 45

9 Discussion 47

9.1 FPGA based platforms . 47

9.2 Hardware design process . 47

9.3 Controlling resource usage . 48

9.4 Dynamic of Mitrion-C . 48

9.5 Memory management . 48

9.6 Appropriate algorithms for Mitrion-C 49

9.7 Dynamic bit-width . 49

9.8 Portability . 50

9.9 Performance results resumed . 50

10 Conclusions 51

11 Future work 53

11.1 Dynamic of Mitrion-C . 53

11.2 JPEG 2000 . 53

11.3 Memory simulation . 54

11.4 Memory token handling . 54

11.5 Resource usage optimization . 54

11.6 Comparison with OpenMP and MPI 54

11.7 Financial aspect . 54

Bibliography 55

Index 57

Appendix 58

A Graphical debugger 59

CONTENTS

B Wavelet transformation 61
B.1 Source code . 61

B.1.1 Mitrion-C program . 61
B.1.2 Host program . 66

B.2 A visual demonstration . 68
B.2.1 The original image . 68
B.2.2 The transformed images 68

B.3 Dependency graph . 70

List of Figures

2.1 Data dependency graphs . 8
2.2 Snapshot of a pipelining system 10
2.3 Data parallelism . 10

3.1 The Mitrion logo . 13
3.2 General structure of an FPGA by [1] 14
3.3 Schematic overview of the Mitrion SDK by [2] 15

4.1 Matrix multiplication dependency graph 21
4.2 Storage scheme for a 128 × 128 matrix. 21

5.1 Gaussian elimination . 26

6.1 Storage scheme of a 64 ∗ 64 matrix A. 31
6.2 Implementation scheme and data dependency graph 31

7.1 Filter-banks in the two-level wavelet transform 35
7.2 Order of wavelet transform . 36
7.3 First level of two dimensional Haar wavelet transform 38

8.1 CORDIC rotation scheme for sine and cosine calculation 41

A.1 The graphical debugger . 59

B.1 Original image . 68
B.2 Level 1 transformation (2 dimensional) 69
B.3 Level 2 transformation (2 dimensional) 69
B.4 Dependency graph of the wavelet transformation 70

1

LIST OF FIGURES

Chapter 1

Introduction

1.1 Preamble

In spite of the tremendous evolution in computer hardware claim critical appli-
cations always more and more computing power. Unfortunately can a system
rarely exploit the peak performance of its CPU because of dependencies such as
relatively slow memories and interconnections. In addition are the CPUs slowly
approaching the maximum in terms of clock frequencies of what is physically
feasible.

The trend to fill the gap between the speeds of memory and processor and to
overcome the limits of the clock rate is to parallelize computing and to customize
hardware.

In this thesis, the author is going to evaluate the platform Mitrion, which is
a massively parallel virtual processor used to implement algorithms efficiently
on reconfigurable hardware.

1.2 Project specification

The massively parallel virtual processor Mitrion is based on reconfigurable hard-
ware and is said to be about 20 times faster than a CPU. An aim of this project
was to evaluate the Mitrion processor regarding this statement.

The evaluation was to be done by implementing a representative range of
mathematical functions, ranging from linear algebra to trigonometry. The func-
tions were to be implemented in the languages Mitrion-C, which is used to
configure the Mitrion virtual processor, and ANSI-C for performing a quanti-
tative benchmark test with a sequential processor. The sequential processor is
represented by an AMD 64 processor with a x86 architecture.

It is expected that the Mitrion processor keeps its promise of being in average
20 times faster than the sequential processor.

Furthermore was a qualitative analysis between the massively parallel pro-
cessor (MPP) Mitrion and a sequential processor to be done. This included the
discussion about what advantages or disadvantages there exist when program-
ming the MPP or the sequential processor, what kinds of algorithms are more
appropriate for what processor type and what kind of possibilities there are to
improve the programmability of the MPP.

3

1.3. Mitrionics

1.3 Mitrionics

The company Mitrionics AB was founded in the year 2000 and is located in
Lund, Sweden. It is their goal to exploit the maximum performance of clas-
sical HPC problems on their reconfigurable platform Mitrion. Their product,
the Mitrion virtual processor, is reconfigured for every application. The con-
figuration is done with the Mitrion Software Development Kit (SDK), which
uses it’s own language Mitrion-C. Compiling a Mitrion-C program by means of
the Mitrion SDK yields a processor configuration, which is customized for the
specific algorithm.

The Mitrion-C language introduces a high abstraction level to hardware pro-
gramming. It makes reconfigurable hardware accelerated computing available
for scientists in various fields of business without having to acquire deep knowl-
edge in hardware. The table below is taken from the Mitrion marketing brochure
[3] and compares the Mitrion Platform with VHDL or ESL design tools.

The Mitrion Platform compared to VHDL or
Electronic System Level (ESL) design tools:

VHDL or ESL
design tools

Mitrion

Typical application speedup 10-30 times** 10-30 times**
Application development time Months or years Days or weeks
Program without hardware considerations No Yes
Easily move applications to new platforms or FPGAs No Yes
Built-in support for floating-point numbers No Yes
Automatically find and utilize parallelism in software No Yes
Graphical simulator lets you visualize parallelism of
software and find performance bottlenecks

No Yes

Code efficiency: simple example adding two vectors about 400 lines 7 lines of code
**Up to 100 times for some applications

Chapter 3 provides an introduction to the concepts of Mitrion.

1.4 Assumed prior knowledge

It is assumed, the reader is familiar with basics in computer science. However,
no prior knowledge in parallel computing or FPGA technology is required as
short introductions in these topics are provided.

1.5 Reading directions

This document is structured as follows. The next chapter outlines foundations of
parallel computing. Chapter 3 introduces the Mitrion platform. The chapters 4,
5, 6, 7 and 8 illustrate how a set of algorithms was implemented on the Mitrion
platform. The illuminations include analysis of the algorithms, implementation
design and performance evaluation. Chapter 9 consists of an overall discussion
about the Mitrion platform followed by the conclusions in chapter 10. The last
chapter 11 is about future work.

1.6 Related work

Prior to this diploma work, Johan Rees and Henrik Abelsson wrote closely
related Master Thesis at Mitrionics AB in Lund. Johan Rees analyzed an inter-
secting set of functions as is discussed in this report, the results however differ.

5

The other student, Henrik Abelsson, wrote a similar thesis but analyzed a dif-
ferent set of algorithms. There was no collaboration between the writer and the
mentioned students.

1.7 High Performance Computing

Today, the development of fast digital computers have caused traditional ana-
lytical calculations as well as experiments in various fields like fluid dynamics,
electrical engineering or quantum chemistry to be replaced by computer simula-
tions [4]. In that such problems are of extremely complex nature, it is often not
feasible to calculate exact solutions on today’s digital machines in full precision
and within a reasonable amount of time. The problems have to be simplified
and approximated. Often a trade-off between accuracy and computation time
has to be made.

Such problems are of the High Performance Computing (HPC) domain and
belong to the open problems in computer science [5].

1.8 The von Neumann machine

The digital computer model that is referred to as the von Neumann machine
was contrived by John von Neumann around the year 1945 [6] and is defined as
follows:

“The von Neumann machine is a stored program computer. It keeps its
specific instructions (programs) in its memories, storing the information in the
same manner as it stores any other information (data). The computer does
necessarily contain five basic components: a control unit, memory, a calculating
unit (CPU) and input and output for interacting with human users. The control
unit delves into memory, finding an instruction or a piece of data, and deals
with what it found accordingly.” [6]

This model coincides still with most of the today’s computers.

1.9 Limitations of the von Neumann model

Despite the tremendous CPU advances, memory bandwidth can not keep pace
with the improvements in processor performance.

Today, the most important factor for computing speed is not how fast a
processor can operate, much more does it depend on how fast data can be
moved from one place to the other, i.e. how fast the memory can provide the
CPU with data. The time needed by the memory system to provide a word
of data requested by the CPU is referred to as latency. Another notation in
this context is the bandwidth, which specifies the rate at which data can be
transferred from the memory to the processor. It happens that a processor
stalls for hundreds of cycles while waiting for data.

Caches constitute a good countermeasure to treat this problem. Basically,
they are small memories embedded in the processor that contain copies of data
of the main memory. Every time the processor makes a request to the memory,
the cache provides the data in case it has a valid copy. Because caches are inbuilt
in the processor, the latency is extremely low and almost negligible compared

1.10. Benchmarking

to the latency of the main memory. Several policies exist that define how data
is copied to and replaced in the caches. Such policies become extremely impor-
tant and have a crucial impact on performance in shared memory architectures
where multiple CPUs have own copies of the memory that is shared among all
processors of the system.

1.10 Benchmarking

As computer systems are very advanced and as different vendors develop their
own architectures, it is hard to compare the performance of different systems
by simply looking at their specifications. It is therefore common to measure
the relative performance between systems in terms of floating point operations
performance or execution time for running a given specially designed, so-called,
benchmarking program. In many cases the benchmarking programs have do
be adapted to the underlying platform, they should however produce the same
output.

One has to observe that not every system was designed to perform at its
theoretical peak for a certain benchmark. The benchmarking results are specific
for the given problem. Furthermore, when comparing CPUs, it is often crucial
what other hardware components are involved. One important point are for
example the memory’s capacity and speed.

Benchmarking in this thesis was done by comparing execution times for the
given algorithms between the Mitrion processor and a classical sequential proces-
sor with von Neumann architecture. For all algorithms, there was an equivalent
ANSI-C program implemented in order to be able to compare the performance.
The execution times of the Mitrion-C programs were measured in simulation
mode because of the higher accuracy of the result. Measuring the execution
times in the host program instead would have added very little overhead. If
not otherwise stated, the benchmarking platform for the C programs was an
AMD 64 3200+ processor that runs at 2000 MHz and has a 512KB L2 cache
and 1024MB random access memory. The C programs were compiled on the
same machine with Linux Ubuntu 5.10 and GCC 4.0.2 using the option -O3,
which does some optimizations such as function in-lining.

It is known that GCC, which is an Open Source compiler, has less abilities
to optimize programs for the underlying hardware than commercial compilers,
which are specially designed for specific processors. GCC was chosen because it
is widely-used and because it is probably the best C compiler that is available
for free.

Moreover has the author to admit that it is not guaranteed that the op-
erating system does not do any context switches during a single execution of
a benchmarking program. Such interruptions can have impacts on the cache
hit-rate and hence slow down the execution. To establish an estimate of the
execution times of the C programs is difficult because of the role of the caches
and was therefore left out. The execution times stated are averages over running
the programs several times.

Chapter 2

Basic terms and concepts of

parallel computing

This chapter illuminates some basic concepts and terms of parallel computing
including complexity notations, data-parallelism and pipelining.

2.1 Motivation for parallel computing

The idea of parallelizing computing is not new and there exist several techniques
to achieve different degrees of parallelism. The purpose to do so is to speed up
computing by processing more data per time frame than the strictly sequential
model.

2.2 Complexity notations

Oftentimes, there exist several algorithms that can solve a given problem. In
order to be able to compare the potential performances of the contemplable
algorithms, it is common to use the notation of the asymptotic growth of a
procedure.

A function f(x) is said to be of order θ(g(x)) when the following holds:

f(x) ∈ θ(g(x)) ⇐ c1g(x) ≤ f(x) ≤ c2g(x) (2.1)

f(x) is of order O(g(x)) if the equation below is true:

f(x) ∈ O(g(x)) ⇐ f(x) ≤ cg(x) (2.2)

Note that f(x) = θ(g(x)) implies f(x) = O(g(x)). The θ notation is referred to
as the exact magnitude whereas the big O notation is the upper bound of the
algorithm.

2.3 Data dependency

Not every program or algorithm can be parallelized to any desired degree. The
main reason is that there often exist data dependencies among different calcula-
tion steps. To exemplify, consider the two programs below.

7

2.4. Speedup

1. Procedure vectorSum(int[n] a)
2. b = 0
3. for i = 0 to n − 1 do
4. b := a[i] + b
5. end for
6. return b

and

1. Procedure addVectors(int[n] a, int[n] b)
2. for i = 0 to n − 1 do
3. c[i] := a[i] + b[i]
4. end for
5. return c

To illustrate the above code snippets, their corresponding data dependency
graphs are drawn in 2.1.

c[0]

a[0] b[0]

c[1]

a[1] b[1]

c[n-1]

a[n-1] b[n-1]

Add vectors a[i] + b[i] = c[i]

a[0]

b=0

a[1] a[n-1]

a[i]
i=0

n-1

Vector sum b = a[i]
i=0

n-1

b =

Figure 2.1: Data dependency graphs

It is clearly visible in the dependency graphs, that the sums in the procedure
addVectors can entirely be executed in parallel while the sums in vectorSum must
wait on a previous result.

2.3.1 Critical path

Assuming that every operation (circle with operation sign in 2.1) takes one unit
of time (one clock cycle) the critical path is defined as the number of stages that
are necessary to obtain the final result. In the schematic illustration 2.1 it is
equal to the computation time or the latency for to obtain a result.

The procedure addVectors has a critical path length of 1 while the procedure
vectorSum has a critical path of length n. Optimizations are possible to reduce
the critical path for the procedure vectorSum to log n. The summing would then
have to be performed in a reversed tree (reduction tree) like fashion.

2.4 Speedup

When implementing a parallel version of a serial program, the programmer is
often interested in how much execution time could be saved by the parallel
program over the sequential version. Speedup, denoted by S, is defined as the

9

relative benefit of solving a problem in parallel [7]. In terms of the asymptotic
notation the formula is:

S = θ

(
Tsequential

Tparallel

)
(2.3)

where Tsequential and Tparallel are θ-complexity notations.
In practice, S is often expressed as the ratio of the serial run-time to the time

taken by the parallel algorithm for solving the same problem (S =
Tsequential

Tparallel
).

Despite the fact that the problem and the problem size have to be the same for
both architectures, the algorithms to solve the given problem might be different
since the execution times are measured for the best suited algorithms for the
respective platforms.

2.4.1 Amdahl’s law

Amdahl’s law [8] states that the maximum achievable speedup of a program
does not depend on the number of processing elements available, it is rather the
algorithm itself that determines the upper bounded speedup. If p ∈ [0, 1] is the
fraction of the algorithm that can be parallelized with a speedup sp the total
speedup is given by the formula 2.4.

Stot =
1

(1 − p) + p
sp

(2.4)

Considering the speedup of the parallelizable part of the program to be
extremely high (sp → ∞), the formula 2.4 grows asymptotically to:

Smax =
1

(1 − p)
(2.5)

Which means that the maximum speedup is always upper bounded by the
sequential (not parallelizable) part of the algorithm.

2.5 Achieving parallelism

Basically two types of parallelism can be named; data-parallelism and pipelining.
Both models are presented shortly.

2.5.1 Pipelining

Pipelining works actually the same way like a car assembly line. When one car
can be built within D days from beginning to the end, can an assembly line
have an output of a number of cars per day. This is achieved by manufacturing
the final product in several stages, where every stage can be done independently
and simultaneously. If the longest stage takes t units of time, the factory can
sell a car every t units of time. If f is the fraction l/t, where l is the latency
of the production (strictly serial production time), the productivity is f times
higher over the strictly serial production. This principle is extremely efficient
in terms of saving time and money.

Single processors use this technique to improve their efficiency like it does for
example the Intel Pentium 4, which has a 20 stage pipeline [7]. This principle

2.6. Granularity

input 10 2 3 outputi

(((())))3 2 1 0 0

((()))2 1 0 1

(())1 0 2

()0 3

Figure 2.2: Snapshot of a pipelining system

is also referred to as implicit parallelism. However, to implement long pipelines
efficiently needs a good branch destination prediction technique since every 5th

to 6th instruction is a branch instruction [7].

Applying pipelining to the previously presented vectorSum procedure would
mean to subsequently calculate sums of different vectors.

As shown in picture 2.2, each processing element calculates one step Φi and
transmits the result to the next processing element. Where a lot of values are
calculated, it is not crucial how long and of what topology the pipeline is. More
important is the fact that the system produces one output every clock cycle.

Note that pipelining increases the throughput but does not decrease latency.

2.5.2 Data-parallelism

Data-parallelism takes place when several processing elements or nodes do the
same work but on different data streams in parallel.

This principle is referred to as Single Instruction Multiple Data streams
(SIMD). The complement is called Multiple Instruction Multiple Data streams
(MIMD) where several processing elements do different work on different data
streams in parallel.

input

output

Figure 2.3: Data parallelism

As shown in figure 2.3, the input is split into pieces where every piece is
assigned to a different process. The calculation occurs completely in parallel.

2.6 Granularity

Parallel computing distinguishes between between coarse-grained and fine-grained
granularity. While every processing element in a coarse-grained parallelism
model calculates relatively big chunks of data, does fine-grained parallelism
assign many small, often only single instructions to a processing element. Fine-

11

grained parallelism is used when communication time between processing ele-
ments is extremely low compared to the clock frequency.

The functions Φ in the figures 2.2 and 2.3 would in fine-grained parallelism
stand for single instructions like an addition or a multiplication whereas they
would represent more complex functions in coarse-grained parallelism.

2.6. Granularity

Chapter 3

Mitrion - The virtual

processor

The current chapter provides an overview of the Mitrion virtual processor, the
programming language Mitrion-C and the reconfigurable hardware on which the
Mitrion processor is based on.

3.1 The Mitrion processor

The Mitrion High Performance Computing processor is a fine-grain, massively
parallel and reconfigurable processor that is implemented in FPGAs [9].

The product Mitrion was developed by and is a trademark of the company
Mitrionics AB.

Figure 3.1: The Mitrion logo

3.2 Reconfigurable hardware

A clear advantage with reconfigurable hardware is that data dependency graphs
can be directly mapped onto hardware. The configuration is specially designed
for computing a specific problem. While a sequential processor can only cal-
culate one element in a dependency graph at a time1, a specially configured
processor can operate on several or possibly all nodes simultaneously. Fur-
thermore, the classical von Neumann processor, in contrast to the customized
processor, needs to fetch and decode consecutive instructions because of its gen-
eral purpose. Reconfigurable processors are referred to as FPGAs, which is the
topic of the next subsection.

1but possibly in a pipelined fashion

13

3.3. The Mitrion SDK

3.2.1 FPGA

Field Programmable Gate Arrays (FPGAs) are semiconductor devices with con-
figurable logic components and interconnections. In contrast to Application
Specific Integrated Circuits (ASICs), FPGAs can be reconfigured after the man-
ufacturing process, which allows them to be customized for specific algorithms
and operational areas. This makes them advantageous compared to ASICs in
terms of developing costs and time to market.

The major drawback that entails the feature of the reconfigurability is that
the devices run at lower clock frequencies than ASICs. It is therefore common to
use FPGAs for developing and testing implementation designs for ASICs since
ASICS become cheaper as the production volume exceeds approximately 10’000
exemplar [1].

FPGAs have configurable I/O systems that allows them to be deployed in
different ways and on different systems. They act as co-processors, where they
are used for super-computing. The computationally most intensive parts of pro-
cedure are then accelerated and performed by the customized FPGA while the
main processor provide the FPGA with data and collect the computed results
again. Note that there exist systems with more than one FPGA and such that
have more than one CPU per FPGA.

Logic cell

I/O cell Programmable
functions

Programmable
interconnections

Configuration

Figure 3.2: General structure of an FPGA by [1]

Vendors

With a market share of 50% is Xilinx [10] the biggest company manufacturing
FPGAs [1] today. They recently released their new flagship FPGA Virtex4.

3.3 The Mitrion SDK

The Mitrion processor is reconfigurable as it is based on FPGAs acting as co-
processors. Every configuration is customized for the specific service the system
should provide.

It is massively parallel because a high number of processing elements on the
FPGA can execute in parallel.

The platform is said to be fine-grained because every processing element is
assigned only a very small part of work, often only one single instruction.

3.3.1 Development process

The Mitrion virtual processor is reconfigured for every service it should provide.
The configuration is done by compiling a Mitrion-C program into VHDL code by

15

Mitrion-C
source code

Compiler

Program
specification

Processor
architecture

Mitrion SDK

Processor
configurator

VHDL

FPGA

Figure 3.3: Schematic overview of the Mitrion SDK by [2]

the means of the Mitrion SDK. The VHDL code in turn is used to perform the
actual mapping of the program onto hardware (place-and-route). This mapping
procedure is particular for every FPGA and is done by the tools provided by
the vendor of the FPGA.

Mitrion-C programming can be done with little knowledge in hardware. The
only constraints, which the programmer should be aware of are the size of the
FPGA2, the internal and external RAM capacities and the architecture of the
I/O system3.

The programmer can optionally use external functions, which are directly
written in VHDL.

Once the FPGA based co-processor is configured, it can be used by the host
program, which is run on the master processor. The host program is written in
ANSI-C and uses the Mitrion host abstraction layer (Mithal) API to interact
with the FPGA.

The host program can also use the Mitrion simulator as an FPGA simulator,
which allows the entire application to be debugged before a time consuming
place-and-route is performed.

3.3.2 Target platforms

Supercomputers that are supported by Mitrion are the Cray XD1, various plat-
forms using FPGAs by Xilinx and the Silicon Graphics computers RASC AFINA
and RC 100.

The programs discussed in later chapters are designed and optimized for
Xilinx Virtex II based platforms. The Virtex II has a total number of 67584
Flip-Flops, 144 internal RAM banks and four external RAMs, each with a bus-
width of 64 bits. In order to be sure a place-and-route can be done successfully,
the Flip-Flop usage of a program should, as a rule of thumb, not exceed 55 to
75 % of the available Flip-Flops. The clock frequency is 100 MHz.

2number of available Flip-Flops
3bit-width to the external RAM banks and the number of external RAM banks

3.4. The programming language Mitrion-C

3.4 The programming language Mitrion-C

Today, the most common languages for designing hardware (i.e. configure FP-
GAs) are Verilog [11] and VHSIC Hardware Description Language VHDL[12].
Programming sophisticated configurations using these languages is quite time
intensive because the languages are very much low-level. Mitrion-C on the other
hand is used to write FPGA configurations despite the fact it is not a circuit
design specification language in any way. It is much easier to program since it
has a higher abstraction level. Although it is called Mitrion-C it is little related
to ANSI-C. It is a C-family language but it is about as similar to C as Java is
similar to C [13].

Mitrion-C describes data dependencies rather than order-of-execution and
allows fine-grain parallelism to be described. The language allows a complete
data-dependency graph to be created from the program [13].

The next subsections present the basics of Mitrion-C. For detailed specifi-
cations please refer directly to The Mitrion-C Programming Language manual
[9].

3.4.1 Types and Assignments

Since Mitrion-C is used for hardware programming it consists almost only of a
set of primitives.

Scalar types

Scalars may be one of the following: int (integer), uint (unsigned, or positive
integer), bool (boolean variable, accepts only the values true/false), float
(floating point variable) or bits (a raw binary word of bits).

When declaring a variable of one of the above listed types, the programmer
has also to specify the bit-width of that variable (except for booleans, which
has always a bit-with of 1). Since the surface of an FPGA is quite limited the
programmer can specify any number for the bit-with in order to save hardware
resources.

Assignment

An example for declaring a variable of type int with bit-width 8 named myint
with the assigned value 3 is stated as follows:

int:8 myint = 3;

float:24.8 myfloat = 0.0;

The second statement declares a floating point value. For floating point values
the mantissa-width and the exponent-width must be declared. The above ex-
ample declares an IEEE-754 single precision floating point variable with 24 bits
mantissa and 8 bits exponent. To every variable a value is assigned only once
and at the time of creation. This principle of single-assignment distinguishes
Mitrion-C from other programming languages. The idea behind is that the
language is used to implement dependency graphs. See section 3.4.2 for more
details.

17

Collection Types

The two collection types in Mitrion-C are lists and vectors. Collections can be
multi-dimensioned where each dimension can be of different size and type4.

Both data structures can be processed in different ways. Elements in a vector
can be accessed by index, which is not possible for lists.

Lists can be reformatted to vectors and vice versa. In addition can multidi-
mensional lists or vectors be reshaped to any desired combination of dimensions,
where the total number of elements must of remain the same.

3.4.2 Dependency and functional aspect

In principle, if an instruction is not dependent on previous calculations, it is
executed directly. Order-of-execution can be controlled in the way that depen-
dencies among several instructions are explicitly created.

Generally, every instruction or every block of instructions returns a result,
which can be of one of the above introduced types and collections. If an ex-
pression is dependent on a return variable from a previous block or statement,
it can only be executed after the variable has been calculated. In this way can
order-of-execution be controlled.

3.4.3 Loops

Mitrion-C provides three types of loops, namely the while, the for and the
foreach loops. They are useful for to process collections. Each of them works
differently when used to process different collection types.

Foreach loop

Where no dependencies between loop iterations exist, the foreach loop is used.
When iterating over a vector with the foreach loop, all elements are processed
in a data-parallel manner (wide parallel). Iterating over a list with a foreach
loop on the other hand occurs in a pipelined way.

For loop

If every iteration is dependent on the results of its previous, the for loop must
be used. Iterating over a vector with this kind of loop provokes the vector to be
unrolled. Processing a list with the for loop occurs in a sequential manner.

While loop

The while loop is very similar to the for loop except of the property that it
iterates only as long as the provided condition is true.

3.4.4 Example: Fibonacci sequence

The Fibonacci sequence is obtained by starting with 1 and 1 and then adding
subsequently the two previous Fibonacci numbers to get the next Fibonacci

4vector or list

3.5. Graphical debugger

number. The Mitrion-C code that calculates the first 20 Fibonacci numbers
looks as follows.

Mitrion-C 1.0;

uint:20<20> main()

{

uint:20 fib = 0;

uint:20 prev = 1;

fibonacci = for(i in <1..20>)

{

prev = fib;

fib = fib + prev;

} >< fib;

} fibonacci;

As already mentioned, when declaring a variable, the programmer must spec-
ify the bit-width. Because the program does only produce the first 20 Fibonacci
numbers, it is known that the last number will not exceed 220. Hence, the
bit-widths 20. The returned result is a list of unsigned integers of the same
bit-width. The symbol >< before the returned value means that the whole
sequence and not only the last value is returned from the loop.

3.4.5 Memory management

The Mitrion processor can fetch and store data via RAM banks. The number
and the volume of internal and external RAM banks varies among different
FPGAs and their environment. Mitrion-C uses instance tokens in order to
control the memory access succession. Every time a memory is read or written,
the call returns an instance token5. Similarly is an instance token passed as
an argument when accessing a memory. In this way, race conditions can be
avoided. A memory write and read sequence could look as follows:

token1 = _memwrite(token0, index0, value0);

(value1, token2) = _memread(token1, index1);

3.5 Graphical debugger

The graphical debugger is a good aid to notice at once if the program was or
not optimally designed. The debugger runs the compiled Mitrion-C program
in simulation mode in which the execution can be traced step by step. It also
includes a troughput analysis function, which indicates possible bottlenecks and
how severe they are. A screenshot is found in the appendix A.

5additionally to a value in case of a read

Chapter 4

Matrix multiplication

This chapter concerns a Mitrion-C solution for matrix multiplication. It contains
a presentation of the algorithm as well as a performance analysis including a
comparison with an ANSI-C implementation run on a general purpose PC.

4.1 Matrix multiplication

Multiplying two matrices is computationally intensive where the matrices are not
of trivial dimensions. On the other hand claim applications a lot of computing
power where a high number of small matrices is multiplied. This is for example
the case in 3d applications, which multiply large numbers of 4 × 4 matrices for
vertice transformation.

Multiplying an n×m matrix A with an m× l matrix B yield an n× l matrix
C. The only constraint is that the number of columns of A is equal to the
number of rows of B. The equation below exemplifies a multiplication of two
4 × 4 matrices.

(
a00 a01

a10 a11

)
×

(
b00 b01

b10 b11

)
=

(
a00b00 + a01b10 a00b01 + a01b11

a10b00 + a11b10 a10b01 + a11b11

)

The mathematical formula for the calculation is given by 4.1.

∀(i, j) ∈ [0, n − 1] : cij ⇐
n−1∑
k=0

aikbkj (4.1)

An generic procedure implementing 4.1 is written in algorithm 1.

4.1.1 Complexity

Multiplying two square matrices A and B, each of size n × n, yield a matrix C
of the same dimensions. A serial program solving this problem has three nested
loops, each iterating n times, thus the complexity is of order θ(n3).

19

4.2. Implementation in Mitrion-C

Algorithm 1: MATRIX MULTIPLICATION AB = C

1. for i := 0 to heightA do
2. for j := 0 to widthB do
3. temp := 0
4. for k := 0 to widthA do
5. temp := temp + A[i, k] × B[k, j]
6. end for
7. C[i, j] := temp
8. end for
9. end for

4.2 Implementation in Mitrion-C

Depending on the size of the matrices, different performance results can be
achieved. In case that all multiplications of a row of A with a column of B
can be executed in parallel, the order of the problem complexity can be reduced
from θ(n3) to θ(n2) if the elements can be summed in a pipelined fashion after
the data-parallel multiplication step. This corresponds to a theoretical speedup
of θ(n).

The major problems for doing so are the limited FPGA resources and the
memory bandwidth because there can only be read 4 × 64 bits per clock cycle,
which corresponds to 4 double precision or 8 single precision floating point
values. This limitation has a huge impact on the performance since all elements
of A and B have to be read several times. Two implementations were made.
One with subsequently loading the needed elements from the outer memories
and a more interesting and optimized version, which loads the entire matrices
A and B into the internal RAM banks prior to execution of the multiplication.
The next subsections focus on the latter variant.

4.2.1 Small square matrices

In case of relatively small matrices, a row of A can be multiplied with a column
of B completely in parallel. A Virtex II FPGA allows such an implementation
for single precision matrices with dimensions up to size 32 × 32. To evade
the memory bandwidth limitation during calculation, the matrices were entirely
loaded into the internal memory banks prior to execution of the actual algorithm.
A and B are stored in a row-wise and a column-wise fashion, respectively. Like
this, every row of A and every column in B can be accessed within one clock
cycle.

Since the generic algorithm could be reduced from three to two nested loops
there is a high performance gain. Nevertheless, one has to take into account
that the discussion up to now was about relatively small matrices. With this
design the processor has an output of approximately one entry of the resulting
matrix C every clock cycle.

21

row i

A (internal)

0 1 2 n-2 n-1

C[i][j]

Data parallelism

Pipelining

col j
B (internal)

Figure 4.1: Matrix multiplication dependency graph

4.2.2 High dimensioned square matrices

An implementation was made, which is suitable for matrices A and B of such
dimensions, that they both fit in the internal RAM banks. The matrices are
preloaded into the internal memory banks before the actual calculation begins.
For the internal memory consumption it is important what the bit-width per
value is. In case of single precision matrices with 32 bits per entry, a matrix of
dimensions 128×128, which has 12384 entries in total, needs 524288 bits (65536
bytes or 64KB) of memory. A double precision matrix would have consumed
128KB instead.

The matrices have to be stored in a way that 32 elements from each matrix
can be accessed simultaneously. One matrix must be stored row-wise, the other
column-wise. Figure 4.2 shows a row-wise storage scheme where 32 elements in
a row can be accessed simultaneously (from the internal memory banks). There
are 32 different internal memory banks needed.

Internal storage schemeExternal storage scheme

128

324 x 32

Figure 4.2: Storage scheme for a 128 × 128 matrix.

The actual calculation is performed in an analogous way as depicted in figure
4.1. The difference is that the output C[i][j] (in figure 4.1) is only a part of the
final entry C[i][j]. If the matrix dimensions are n× n there are n/32 successive
results like in figure 4.1 added for obtaining one entry of the resulting matrix
C.

4.3. Performance

For this implementation, the only constraint for the matrix dimension n is
that n is divisible by 32.

4.2.3 Matrix preloading

If the matrices consist of single precision entries, there can be read two values per
external RAM and clock cycle. Since the FPGA can read 64 bits per external
RAM and clock cycle, the two values are first read as a value pair in raw bits.
The 64 bit vector is then split into two 32 bit vectors where each of them is
converted to single precision floating point values. With a total number of 4
external RAMs, there can be 8 matrix entries be loaded per clock cycle.

The whole preloading procedure consumes approximately n2

8 clock cycles per
matrix. Given a 10ns clock (100 MHz), loading a 128× 128 matrix takes about
20.48μs.

4.2.4 Exploit the FPGA to full capacity

An implementation, where 32 single precision floating point entries of A and B
are multiplied in parallel, needs 41230 flip-flops, which corresponds to a usage
of 61% of a Virtex II.

Using double precision floating points instead needs 39598 flip-flops for half
the degree of parallelism (16 multiplications in parallel). An option would be to
use less costly fixed point numbers. A new type, which Mitrion-C may provide
in the future. So far can fixed points be represented by standard integers.

Not only decreases the degree of parallelism with the augmented bit-width,
the application will also become slower because of the matrix preloading time,
which will be doubled comparing to the single precision version. This is however
not the most time consuming part compared to the entire procedure of matrix
multiplication.

Once the matrices are stored internally, the estimated execution time for the
multiplication algorithm is given by the approximation:

(
n

npar

)
× n2 × clock (4.2)

where n is the dimension of the matrices, npar is the number of elements that
can be multiplied in parallel and clock is the time per clock cycle. Multiplying
two 128× 128 matrices where 32 elements can be multiplied in parallel takes by
this estimation formula 655μs, assumed a 10ns clock.

4.3 Performance

Experimental results yielded the following. Multiplying two 128× 128 matrices
with single precision floating point numbers uses 682μs on the Mitrion processor.
An equivalent ANSI-C program on the AMD 64 3200+ processor needed 15ms
for execution.

The execution times for the given size of the matrices A and B are repeated
below:

Matrix size C Mitrion speed-up
128 × 128 15ms 682μs 21.99×

23

The speed-up of the Mitrion processor over the AMD can only be explained
by the constant and simultaneous internal memory access times of the Mitrion
processor and the thereby introduced parallelism. The AMD suffers apparently
caching problems when reading and writing data from and to the main memory.

The algorithm with preloading the matrices A and B used the following
amount of resources:

Precision FPGA Flip-Flops RAMs
Single Virtex II 41230 (61%) 64 (44%)

61% is a rather high number but is still in the permitted range between 55%
and 75%.

4.4 Summary

The benchmark concerned a multiplication of two square matrices of sizes 128×
128 using single precision floating point numbers. To attenuate the impact of the
memory bandwidth limitation were the matrices entirely loaded into the internal
memory banks of the Mitrion processor. Like this it was possible to access
and multiply as much as 32 elements of either matrix simultaneously. By this
concept could the matrix multiplication be accelerated about 22× comparing to
the ANSI-C program run on the sequential processor.

4.4. Summary

Chapter 5

Gaussian elimination

This chapter presents the Gaussian elimination algorithm, which used to solve
systems of linear equations and elucidates the suitability of the algorithm for
implementation in Mitrion.

5.1 Introduction to Gaussian elimination

The problem of solving n linear equations with n unknowns is formulated as
Ax = b where A is a square matrix of dimension n ∗ n and b is vector with n
columns and x is the vector of size n containing the unknown variables. In fact,
it is not necessary to have n equations and n unknowns. A solution can exist
if the number of equations is higher than or equal to the number of unknowns.
However, this chapter considers the matrix A to be square.

One standard procedure to solve Ax = b is to apply Gaussian elimination in
a first step as analyzed in this chapter. If detA 	= 0 the matrix is not singular
and has a unique solution to the problem Ax = b for any vector b.

After Gaussian elimination has been performed successfully, back substitu-
tion is used to yield the actual solution. This part however is not subject of this
chapter.

5.2 Basic algorithm

The Gaussian elimination algorithm has three nested loops. Several variations
of the algorithm exist, depending on the order in which the loops are arranged.
A generic procedure implementing Gaussian elimination is found in algorithm
21.

5.2.1 Partial pivoting

In case the pivot of the active row, say element A[k][k], is null, the algorithm
stops because one can not divide by zero. If this happens, a row interchange
must be performed. Note that this does not affect the final solution as row
interchangement leaves the system row-equivalent. From all the rows in the

1without partial pivoting

25

5.3. Parallelization

Algorithm 2: GAUSSIAN ELIMINATION FOR Ax = b

1. for k = 0 to n − 1 do
2. for j = k + 1 to n − 1 do
3. A[k, j] := A[k, j]/A[k, k]
4. end for
5. x[k] := b[k]/A[k, k]
6. A[k, k] := 1
7. for i = k + 1 to n − 1 do
8. A[i, j] := A[i, j] − A[i, k] × A[k, j]
9. end for

10. b[i] := b[i] − A[i, k] × x[k]
11. A[i, k] := 0
12. end for

active part a row is selected to be interchanged with the failing pivot row. This
row should be the one with the highest absolute value of the elements in column
k below row k.

5.2.2 Complexity

Since three nested loops are needed, each iterating at maximum n times, the
complexity for the serial algorithm is of order O(n3), where n is the dimension
of the matrix A.

5.3 Parallelization

In the generic algorithm there are a number of instructions, which can be ex-
ecuted independently in parallel. First of all is the division step, also referred
to as normalization. Dividing all elements in the current row (pivot row) by
the first one (pivot), can occur concurrently because there are no dependencies
among the divisions.

Second, after the normalization of the pivot row has been done, all the
elimination steps of the rows below can be carried out completely in parallel.

k,k k,j

i,k i,j

row k

row i

co
lu

m
n

k

co
lu

m
n

j

inactive part

active part

A[k,j] = A[k,j]/A[k,k]

A[i,j] = A[i,j] - A[i,k]*A[k,j]

Figure 5.1: Gaussian elimination

27

5.4 Implementation on the Mitrion platform

On a first glance one could think an FPGA being an excellent solution for
performing Gaussian elimination because of its fine-grained granularity. The
division step in the code above can theoretically divide all elements in a row in
parallel. The following elimination step can be carried out concurrently as well,
where every element of the respective row can be updated at the same time.

With this assumptions, one iteration of the outer loop would take constant
time O(1)! Having a total of n outer loop iterations, the Gaussian elimination
would be reduced from O(n3) to O(n)! This corresponds to a speedup of O(n2)!

The reason why this is only theoretically possible is because an FPGA has
a limited number of processing units. Hence, it is not possible to treat an
entire matrix of non trivial size on one chip at the same time. The elements
have therefore to be successively loaded from the memory, updated and written
back to the memory again. This introduces some additional operations, it can
however be performed in a pipelined fashion to hide latency.

The main reason why the algorithm in its generic form is not feasible to
implement in Mitrion-C is because of the fact that the language does not permit
variable loop lengths. In every iteration, the active part of the matrix gets
smaller as depicted in figure 5.1. Loops of the following form are not supported
in Mitrion-C. Something which may be added in the future.

for k=0 to n do
for i=k to n do

. . .
end for

end for

Because of dependencies among elements, the algorithm does not allow the
matrix A to be divided into smaller sub-matrices, where each sub-matrix could
be calculated separately. One problem that intervenes here is the partial pivot-
ing.

In literature, algorithms for parallelizing Gaussian elimination are mostly
designed for coarse-grained parallel computing environment, something which
is not convenient for a single FPGA. The author did not find any solution that
could avoid the variable loop lengths. However some alternative algorithms to
Gaussian elimination were explored as mentioned in the next section.

5.5 Alternative solutions

Basically there exist two categories of algorithms that can solve the problem
Ax = b; direct methods and iterative methods. Gaussian elimination is a direct
method. A closely related solution is the LU factorization. The most common
iterative solution is the one proposed by Jacobi.

5.5.1 LU factorization

An alternative to the Gaussian elimination is LU-factorization where A is de-
composed in a a lower triangular matrix L and an upper triangular matrix U
such that A = LU . The decomposition makes it possible to calculate x in two

5.6. Result

steps, namely Ly = b and Ux = y. Because L and U are triangular matrices,
solving the two equations results in doing back substitution twice.

There exist variations of decomposing A into L and U . But all procedures
found by the author were not possible to implement in Mitrion-C because of the
same dynamic problem that averted implementation of Gaussian elimination.

5.5.2 Jacobi’s iterative method

Solving a system of linear equations can not only be done by direct methods
such as Gaussian elimination. There exist algorithms that propose iterative
solutions, which turned out to be more adequate for FPGAs. Chapter 6 devotes
the iterative method proposed by Jacobi.

5.6 Result

As already mentioned, no variant of the generic algorithm that the author has
seen seemed to be mated for Mitrion-C. Quite a lot of time was invested in
finding a variation of the original algorithm to go round the dynamic of the
algorithm. But after a number of attempts, the author did not do any further
experiments because of the above explanations. Herewith is the discussion about
Gaussian elimination completed.

Chapter 6

Jacobi’s linear equation

solver

This chapter describes the Mitrion-C implementation of the Jacobi’s iterative
linear equation solver. Theory, performance analysis and a comparison with an
ordinary PC solution are embraced.

6.1 Motivation for Jacobi’s linear equation solver

The problem of solving n linear equations with n unknowns is formulated as
Ax = b where A is a matrix of dimension n×n and b is vector with n columns
and x is the vector of size n containing the unknown variables. As discussed
in chapter5, are direct methods for solving this problem not suited for Mitrion-
C. The iterative method proposed by Jacobi on the other hand is expected to
perform well on the Mitrion processor.

6.2 Overview of the Jacobi method

Since the mathematician is interested in the unknowns xi of the vector x, we use
x initialized with zeros as input to a function of the form x(δ+1) ⇐ f(x(δ)) which
produces an estimate of x. The estimate x is the new input of the function in
the next iteration. This procedure is repeated until the vector x converges.

Let A = L + U + D, where L and U are the lower triangular and upper
triangular matrices of A, and D is the matrix containing only the diagonal
entries of A. The actual calculations are as follows:

x(δ+1) ⇐ D−1[b− (L + U)x(δ)] (6.1)

or for one element xi the equation is

x
(δ+1)
i ⇐ 1

aii

[bi −
j=n∑

j=1:j �=i

aijx
(δ)
j] (6.2)

A generic algorithm looks as follows:

29

6.3. Implementation design

Algorithm 3: JACOBI’S LINEAR EQUATION SOLVER Ax = b

Require: A is square and strictly diagonally dominant
1. for iterations = 0 to MAX do
2. for i = 0 to n do
3. sum = 0
4. for j = 0 to n where i 	= j do
5. sum := sum + x[j] × A[i][j]
6. end for
7. xiterated[i] := (b[i] − sum)/A[i][i]
8. end for
9. x := xiterated

10. end for

6.2.1 Convergence criteria

Because not every system of linear equations converges to the desired vector of
unknowns x there is need for a convergence criteria that ensures the method
finds the solution. The method proposed by Jacobi converges only in case the
following formula holds for all rows of the matrix A.

|aii| >
∑
i�=i

|aij | (6.3)

A matrix holding the criteria 6.3 is said to be strictly diagonally dominant.

6.2.2 Complexity

In every iteration there are two nested loops of length n, which corresponds to
complexity θ(n2) per iteration.

6.3 Implementation design

The implementation described solves a system of 64 linear equations with 64
unknowns. However the program can be adapted to other problem sizes, as long
as the matrix A fits entirely in the internal memory banks.

The calculations are data intensive because every entry of the entire matrix A
has to be read once per iteration. As the bandwidth to the external memories is
very limited, the entire matrix A was preloaded into the internal memory banks.
In case of a 64× 64 matrix with double precision values, only 32 KB are needed
for storage.

Analogously to the proposed solution in chapter 4, is the matrix A preloaded
and stored as depicted in figure 6.1. In order to be able to access a chunk of 8
elements at once, all 8 elements in a row are stored in different memory banks
that can be accessed simultaneously.

The unknowns xi are stored the same way. There is no need to preload the
values of b, they can remain in the external memory since they do not constitute
a bottleneck.

The preloading time for A is estimated to be n2

8 clock cycles, where n×n is
the dimension of A.

31

Internal storage schemeExternal storage scheme

64

88 x 8

Figure 6.1: Storage scheme of a 64 ∗ 64 matrix A.

row i

A (internal)

x (input) n

0 1 2 n-2 n-1

j=0, j i

n-1

A[i][j] * x[j]

A[i][i]

b[i]

x[i] (output)

x[i]

Diagonal of A (copy)

x (copy)

b (external)

Data parallelism

Pipelining

Figure 6.2: Implementation scheme and data dependency graph

Figure 6.2 depicts the dependency graph for only one iteration. The result
is stored in a buffer and written back to the memory after the iteration has
completed. This is however not shown in figure 6.2.

Assuming the data being preloaded, the time used for one iteration will
approximately be (ignoring the pipelining latency):

(
n

npar

)
× n × clock (6.4)

In case of a 64 × 64 matrix where 8 elements are multiplied concurrently,
the roughly estimated execution time for one iteration is 64

8 × 8× 10ns = 6.4μs,
assumed a 10ns clock.

6.4 Jacobi iterations on a single processor

Something which Mitrion-C does not permit is to read in every iteration data
from a different memory location. This is why there is need to store the new
vector x in a buffer and write it back to the memory after every iteration.

6.5. Performance

Writing back the buffer can only occur after the last value has been calculated.
This provokes the whole pipelining system to be interrupted, i.e. to be emptied
and filled up again in the next iteration.

This is can easily be avoided in an ANSI-C program by reading from one
memory in an even iteration and from the other in an odd iteration. Analogous
can the iterated vector be stored in the opposite location, of course. However
only a negligible amount of time can be saved compared to the entire workload
of the ANSI-C program. The impact of this lacking feature in Mitrion-C is much
bigger for the Mitrion processor.

6.5 Performance

The table below shows the experimental execution times for the calculation of
a system with 64 equations with 64 unknowns (64 × 64 matrix) with double
precision where 8 elements are multiplied concurrently.

Iterations AMD Mitrion speed-up
1000 48ms 7.6ms 6.32×

The resource usage for this implementation on the Virtex II FPGA looks as
follows:

Precision FPGA Flip-Flops RAMs
Double Virtex II 39000 (57%) 50 (34%)

6.6 Related projects

An equivalent iterative Jacobi solver was implemented in VHDL by Morris and
Prasanna [14] on an FPGA using identical IEEE 64-bit floating point values.
Their design is very similar to the one presented here.

One iteration with double precision and a matrix of size 64 × 64 has an
estimated execution time of 9μs to load the matrix onto the FPGA and 8.6μs
for one iteration. One has to take into account that they deployed a Virtex II
pro FPGA with a 13ns clock, which augments the execution time by a factor
of 1.3 compared to the Mitrion processor. However the execution times were
theoretically established. Nothing was stated about experimental run time.

They implemented a reduction tree to sum all the elements of the multipli-
cation step. This is an optimization, which reduces the latency of calculating
the sum of the multiplications from n to log (n). However, since the number of
elements to sum after a multiplication step is only 8, their design saves only a
few clock cycles.

Something, which is not included in their calculations is the handling of
the iterated vector x. The Mitrion-C program buffers the iterated values xi

and writes them back to the memory after the last value was calculated. This
procedure adds at least another 64 cycles to every iteration. Adding 64 cycles to
the execution time of Morris and Prasanna’s Jacobi solver lets the execution time
of their implementation for one iteration become 9.4μs. Considering the lower
clock frequency, the execution time would be converted to 9.4μs/1.3 = 7.21μs
for a system with a 100MHz clock.

33

The Mitrion processor calculates 1000 iterations for the same problem size in
7.6ms, which corresponds to 7.6μs per iteration. This execution time however
includes the matrix preloading and the writing back of the final result to external
memory. So as a quantitative evaluation, one can say the implementations being
equivalent.

6.7 Conclusion

As seen in the previous section, the Mitrion-C program can not make it faster
than an implementation in VHDL. However, it is neither slower. The author
suspects much more to have implemented the Mitrion-C version in significantly
less time than what would have been needed for a VHDL implementation.

6.8 Summary

The discussed Mitrion-C Jacobi linear equation solver could iterate about 6
times faster than the equivalent ANSI-C program run on the AMD 64 3200+
processor. The speed-up was achieved because the Mitrion-C program could
multiply 8 64-bit floating point values in parallel due to the manner how the
matrix A was stored in the internal memories. In addition could all summing
occur in a fully pipelined fashion. Furthermore was the Mitrion processor as
fast as an implementation made directly in VHDL.

6.8. Summary

Chapter 7

Discrete wavelet

transformation for image

compression

This chapter deals with the theory, implementation and evaluation of the dis-
crete Haar-wavelet transformation on the FPGA-based platform Mitrion. The
performance analysis includes a quantitative comparison with an equivalent
ANSI-C program run on an ordinary PC.

7.1 Wavelet transformations

Wavelet transformations are mostly used in signal processing. An image can be
seen as a special kind of a signal where the temporal component is replaced by
a two dimensional and discrete spatial component.

The wavelet transformation of an image does itself not diminish the amount
of data. It does rather transform the image to a set of data, which can be
encoded much more efficient than the original image.

An image can be transformed in different ways. Characteristics for wavelet
transformations are the number of transformation levels, the order of transfor-
mation, the loss of information and the kind of filters used. The filters in turn
are derived of the actual so-called mother-wavelet.

Figure 7.1 illustrates the general schema of the image wavelet transformation
using high-pass (HP) and low-pass (LP) filter-banks.

HP

LP

HP

LP

Forward transform Inverse transform

HP

LP

LP

HP

Signal SignalMergeSplit

MergeSplit

Figure 7.1: Filter-banks in the two-level wavelet transform

35

7.2. The Haar wavelet transformation

A transformation level filters the input signal with a HP and a LP filter. This
turns the input signal into approximation (output of LP) and detail (output of
HP) coefficients.

The LP filtered part of the signal can be seen as a coarser representation of
the original signal, i.e. a representation with lower resolution. The HP filtered
part of the signal in contrast constitute the detail information of the original
signal. The aim of the transformation is to obtain detail coefficients with very
low entropy because they can then be encoded and compressed with a high
compression rate.

L H

LL

LH

HL

HH

HL

HHLH

HL

HHLH

LLL LLH

LLLL

LLLH

LLHL

LLHH

Level 1

Level 2

Figure 7.2: Order of wavelet transform

Figure 7.2 shows the transformation order of level one and level two of a two
dimensional signal (image). Depending on the kind of wavelet transformation
(mother-wavelet), the filtering is done in different ways. Every HP and LP filter
pair has different properties regarding entropy reduction. The simplest and
most parallelizable filter pair is derived from the Haar wavelet, hence the name
Haar wavelet transformation. The next section introduces the concept behind
this kind of transformation.

7.2 The Haar wavelet transformation

This section adopts the explanations of Schroeder and Sweldens’s presentation
[15].

Two neighboring numbers a and b in a sequence can be restated in terms of
their average s and difference d.

s =
a + b

2
(7.1)

d = b − a (7.2)

The original numbers a and b can be recovered by:

a = s − d/2 (7.3)

b = s + d/2 (7.4)

This observation is the key behind the so-called Haar wavelet transformation.
A discrete input signal of length 2n is by this technique split into two signals

sn−1 and dn−1, each of length 2n−1. Given the averages and differences, the
original sequence can always be reconstructed.

37

One can think of the averages s as a lower resolution of the input signal
and the differences d as the high-resolution coefficients when reconstructing the
original sequence from the low resolution sequence.

The same transformation can be applied to the coarser sequence sn−1 once
again. The result is an even coarser representation of the original sequence and
another difference signal, both of length 2n−2. This procedure can be repeated
n times until one runs out of samples.

7.3 Thresholding and lossy transformation

In addition to the LP filtering can the obtained coefficients be set to zero if
they do not exceed a certain threshold. The coefficients, which are lower than
the chosen threshold can be seen as not significant detail information. Setting
the concerned coefficients to zero increases the achievable compressing rate (de-
creases the entropy) but makes a prefect reconstruction of the original image
impossible. The choice of the threshold is a trade off between compression rate
and quality of recovery of the original image.

Since the wavelet transformation itself is in focus of this discussion, the
thresholding was not implemented. It would however be easy to add, and would
increase the latency of the program by only a few clock cycles.

7.4 Implementation design

The implementation made in Mitrion-C performs a two dimensional and two
level discrete Haar wavelet transformation. The input are 8 bit unsigned inte-
gers, which represent gray scale pixels of the image of size 1024× 768.

The pixels of the whole image are externally stored in a one dimensional
array. The image is like this only read from one external memory bank. The
platform used here was an SGI rasc 6000 that has two external memory banks,
each 128 bits wide.

Because one memory bank provides the processor with 128 bits per clock
cycle, there can 128/8 = 16 pixels be read per clock cycle.

7.4.1 Integer to integer transformation

In order the LP and HP filtered coefficients to be 8-bit integers again, the
transformation was implemented using unsigned integers. The Haar wavelet
transformation can be implemented very easily using only unsigned integers
because of the following relations [16].

s =
(a + b)/2� (7.5)

d = b − a (7.6)

And the backward transform:

a = s −
d/2� (7.7)

b = s +
(d + 1)/2� (7.8)

7.4. Implementation design

Because of the above relations, the rounding does not cause information to
be lost. Nevertheless, if b is smaller than a, the d component will become less
than zero, which in turn will be interpreted as a pixel with very high intensity.
If for example b = 0 and a = 1, c = 0 − 1 → 255, which is represented as a
white pixel. The HP coefficients will therefore be mostly black (close to 0) or
white (close to 255) pixels. In order to turn the white pixels into black ones,
the coefficients could be thresholded in an appropriate way.

7.4.2 Data flow

The input data is an 8-bit gray scale image of size 1024×768. Since one external
memory bank can provide 128 bit of data every clock cycle and one pixel is 8
bit wide, there can 16 pixels in a row be read per clock cycle and memory bank.
Because it is assumed that the image is placed entirely in one external RAM,
only one RAM bank could be used to read the image. The transformed image
is written to the other RAM bank to avoid contention.

The reading progression occurs according to the scheme depicted in figure
7.3. The first four chunks are marked with darker grey. They are read in the
order as indicated by the arrow. The next 3× 4 chunks are marked with lighter
grey. The reading is repeated in this manner (4 × 4 chunks) until the whole
image was read.

Reading blocks of 16 pixels

Transform first dimension

Transform second dimension

16

8 8

8 8

8 8

16

88

Figure 7.3: First level of two dimensional Haar wavelet transform

As can be seen in the last picture of figure 7.3, the HH, HL, LH and LL
coefficients contain all 2 × 8 coefficients in a row, which is a total of 128 bits
in each window. As soon as 16 coefficients in a row are calculated, they are
converted to a raw 128 bit array and written back to the memory. The order of
input reading was chosen to induce this effect after shortest possible execution
time.

The exception however are the LL coefficients, which are transformed once
again. Since it takes more time to obtain the final coefficients of the LL window
(LLLL, LLLH, LLHH, LLHL) and because the whole transformed image is writ-
ten back to one single external memory bank, it was not possible to synchronize
the writing back of the second pass coefficients with the writing back of the LH,

39

HL and HH coefficients. The second pass coefficients were therefore buffered in
another memory location and only written back to the target memory after all
calculations have been completed.

7.5 Resource usage

The implementation proposed claims not a lot of resources of the FPGA. As
much as 24971 flip-flops (36%) and 92 Block Rams (63 %) were needed for the
configuration.

One could possibly fit an embedded zero-tree encoding (see [17]) or Huffman
coding (see [17]) algorithm on the same FPGA. Adding such an algorithm would
implement a complete image compression algorithm. A diploma thesis that
concerns a complete coding and decoding algorithm was for example written by
D. Bachofen [18].

Platform Flip-Flops RAMs
SGI RASC v6000 23315 (34%) 124 (86%)

7.6 Performance

The complete two-level discrete Haar wavelet transformation used on the Mitrion
processor 0.614ms for processing an image of size 1024× 768. This corresponds
to reading 8 pixels per clock cycle plus the latency of the algorithm. With
a total of 768 × 1024 pixels, there are (768 × 1024)/16 = 49152 clock cycles
needed to read the whole image. Having a 10ns clock (100MHz) the reading
corresponds to approximately 0.492ms. Additional clock cycles are needed to
write back the buffer of the second passed LL coefficients. The size of the buffer
is 512× 384 pixels. Packing 16 pixels into one 128 bit array diminishes the time
of transferring the buffer by a factor of 8. Hence (512× 384)/16 = 12288 clock
cycles, which corresponds to 0.12ms.

Adding up the reading of the image plus the writing back of the buffer
gives an estimated execution time of 0.12ms + 0.492ms = 0.612ms, without
considering the latency of the algorithm. This number matches the experimental
results.

An equivalent ANSI-C program run on the AMD 3200+ PC used 14ms for
transforming an image of the same size. The Mitrion processor attained in this
case a speedup of 14ms/0.614ms ≈ 22.8.

Image size Transformation levels AMD Mitrion speed-up
1024× 768 2 14ms 0.614ms 22.8×

7.7 Summary

Comparing to the ANSI-C two-dimensional and two-level discrete Haar wavelet
transformation on the AMD processor is the Mitrion processor faster by a factor
of more than 22 times in transforming an 8-bit gray-scale image of size 1024×768.
An important factor, which affected this result was that the Mitrion processor
can calculate with 8-bit unsigned integers instead of using standard single preci-
sion values. This advantage lessened the impact of the limited bandwidth of the

7.7. Summary

Mitrion processor in that it could read and write chunks of pixels simultaneously
out of and to external memory banks.

Chapter 8

CORDIC

This chapter deals with the theory, implementation and evaluation of the CORDIC
algorithm, which is used to calculate the trigonometric functions sine and cosine.
The performance analysis includes a quantitative comparison with an equivalent
ANSI-C program run on an ordinary PC.

8.1 Overview of CORDIC

CORDIC (COordinate Rotation DIgital Calculation) calculates the trigonomet-
ric functions sine and cosine, magnitude and phase (arc-tangent) to any desired
precision [19]. The algorithm is especially designed for digital computation.

Only sine and cosine calculation for any angle α ∈ [0, 360] is covered in this
chapter.

8.2 Sine and cosine calculation

Recall from trigonometry that if given a circle with radius one, there can directly
be obtained the sine and cosine values of an arbitrary angle α when the point
on the circle at α degrees is projected onto the y-axis or x-axis respectively.

x-axis (cosine)

iy-axis (sine)

x2 x1

iy1

iy2

1

2

Figure 8.1: CORDIC rotation scheme for sine and cosine calculation

In figure 8.1 x1 and iy1 correspond to cos (δ1) and sin (δ1). The same is true
for x2, iy2 and δ2.

41

8.2. Sine and cosine calculation

Since,

δ2 = δ1 + φ

the following identities for the corresponding sine and cosine can be stated:

sin (δ2) = sin (δ1 + φ) = sin(δ1) × cos(φ) + cos(δ1) × sin(φ) (8.1)

cos (δ2) = cos (δ1 + φ) = cos(δ1) × cos(φ) − sin(δ1) × sin(φ) (8.2)

By replacing sines and cosines of δ1 by the complex notation iy1 and x1 in
the previous equations, we the following relation is obtained:

x2 = x1 × cos (φ) − iy1 × sin (φ) (8.3)

iy2 = x1 × sin (φ) + iy1 × cos (φ) (8.4)

If the angle δ1 in figure 8.1 is rotated by φ to δ2 the new and old values for
x and iy are related as stated in the equations above.

Because of the property

tan(φ) = sin(φ)
cos(φ)

the sines in the equations above can be replaced by tan(φ)×cos(φ). The resulting
equations are the following:

x2 = cos (φ) × [x1 − iy1 × tan (φ)] (8.5)

iy2 = cos (φ) × [x1 × tan (φ) + iy1] (8.6)

So far nothing became really simpler. But the last two equations are a good
starting point for the numerical sine and cosine calculation.

Starting with any arbitrary angle (δ1 in 8.1) who’s sine and cosine values are
known, the CORDIC algorithm rotates the current angle (δ1 in 8.1) towards the
target angle (δ2 in 8.1) step by step. In every step the sine and cosine values of
the current angle are updated by the equations above. This can be done in an
efficient way, if tan(φi) of the rotation angles φi are fractional powers of 2. In
this case, the multiplications can be replaced by simple shift right operations.

Another interesting fact is that cos(φ) = cos(−φ). Hence, for the cos(φ)
factors, it does not matter whether the rotation is clock wise or counter clock
wise. Because tan(φ) was chosen to be a fractional power of two, the cosine
factors become

cos (tan−1 (2−i)) = 1/
√

1 + 2−2i for iteration i.

If this formula is accumulated over n iterations, one obtains

cn =
∏n−1

i=0 1/
√

1 + 2−2i

which is a constant value. The cos (φ) factors can therefore be replaced by this
constant value, called aggregate constant, because the total number of iterations
is known and equal to n. Thus, the formulas for a total of n iterations look as
simple as

xi+1 = xi ∓ iyi × tan (φi) (8.7)

iyi+1 = iyi ± xi × tan (φi) (8.8)

and for obtaining the final result:

xfinal = xn × cn ≈ cos(α) (8.9)

iyfinal = iyn × cn ≈ sin(α) (8.10)

43

8.2.1 Precision of CORDIC

The table below lists the first set of values of φ such that tan (φ) are fractional
powers of two.

tan (φ) φ◦ cos (φ)
1/20 45◦ 0.707107
1/21 26.5650◦ 0.894427
1/22 14.0362◦ 0.970142
1/23 7.12502◦ 0.992278
1/24 3.57633◦ 0.998053
1/25 1.78991◦ 0.999512
1/27 0.895174◦ 0.999869

1/210 0.055952892◦ 0.999999523
1/215 0.001748528◦ 0.999999999534
1/219 0.000109283◦ ≈ 1

The results of every iteration are the sine and cosine values for an angle
which is an approximation of the desired target angle. In each iteration, the
approximating angle gets closer to the target angle, where the difference between
the angles gets almost diminished by a factor of two.

If the starting angle is 0 and the target angle is 90 degrees, the approximation
gets as close as 90.0000246 degrees after 20 iterations. This corresponds to a
precision of 2.729 × 10−5.

8.3 Implementation design

This section describes how the CORDIC algorithm was implemented in Mitrion-
C.

8.3.1 Parallelism

The CORDIC algorithm of sine and cosine calculation proceeds in an iterative
way. Because every iteration depends on the results of its previous, there is
unfortunately no possibility to parallelize one single calculation. Hence, one has
to calculate a number of values simultaneously in order to introduce parallelism.

8.3.2 Pipelining versus data-parallelism

In case of multiple sine and cosine calculations, the best way is to create a
pipeline in which every stage performs one iteration and refines the approxima-
tion of sine and cosine. Because every stage in the pipeline updates only one
value, the pipeline is fed with one target angle per clock cycle and puts out one
sine and one cosine value per clock cycle on the other end. Like this, there is
no challenge regarding limited memory bandwidth, assuming that there are at
least three external memories available, one for to read the target values and
two for to write the corresponding sign and cosine values.

The length of the pipeline affects the accuracy of the output values. A
balance has to be found between the bit-width of the intermediate and final
results and the number of pipeline stages because a small number of stages
permits a higher bit-width and vice versa.

8.3. Implementation design

Algorithm 4: CORDIC SINE AND COSINE CALCULATION OF α

Require: 0 ≤ α ≤ 360
1. const := 0.607253
2. if α > 180 then
3. φ := 270 /* starting angle */

4. x := 0 /* cos(270) × const */

5. iy := −const /* sin(270) × const */

6. else
7. φ := 90 /* starting angle */

8. x := 0 /* cos(90) × const */

9. iy := const /* sin(90) × const */

10. end if
11. for i = 0 to MAX do
12. if φ < α then
13. φ := φ + tan−1(2i) /* rotate clock wise */

14. x := x − iy × 1/2i

15. iy := x × 1/2i + iy
16. else
17. φ := φ − tan−1(2i) /* rotate counter clock wise */

18. x := x + iy × 1/2i

19. iy := iy − x × 1/2i

20. end if
21. end for

Calculating with 64 bit values allows a 12 stage pipeline to be implemented
on one FPGA. This is somehow a disaccord because 64 bit values have much
higher precision than what can exploited with a 12 stage pipeline. Thus the
algorithm was implemented with single precision allowing a pipeline of more
than 20 stages. Note that the length of the pipeline is not crucial for the
execution time in case a large number number of sines and cosines are calculated.

Where not much accuracy is needed, many shorter pipelines running in par-
allel can be implemented instead of only one. Of course, this would permit a
higher throughput. Today’s FPGAs allow this application to be implemented
with two data-parallel 20 stage pipelines, each with single precision.

Since Mitrion-C does not have fixed-point types, some kind of pseudo fixed
point numbers were used. This was done by simply multiplying all input values
by a factor of 1010 and converting them to integer values. After execution, the
results are converted back to floating point values. Like this, the divisions and
multiplications can be replaced by arithmetic shift operations.

As a coarse approximation of the execution time, one could disregard the
latency of the pipeline and only consider the time needed for reading of the
target angles. There can two values be read per clock cycle. The estimated
execution time for the calculation of n target angles will be:

n
2 × clock

where clock is the time per clock cycle. Assuming a 10ns clock, the lower
bounded execution time for the calculation of 2000 angles will be 10μs (neglect-
ing the latency).

45

8.3.3 Unsolved problems

If one wants to calculate sine and cosine of 45 degrees, there would only one
iteration be needed1 because the approximating angle is rotated precisely onto
the target angle, since tan (45) = 1, which is a fractional power of 2.

In the next iteration, the approximating angle is rotated away and causes the
result to become worse! In every succeeding iteration, this error is diminished
again. A countermeasure to address this undesired effect would be to insert
a relative costly if-statement in every stage of the pipeline, which checks for
this special case. An implementation with if-statements needs more space on
the FPGA per pipeline stage, something which causes the pipeline do become
shorter. The shorter pipeline in turn diminishes the accuracy of the results in
general.

The decision was made not to implement the additional if-statement for this
special case where tan (φ) of the target angle φ is a fractional power of 2 because
the precision of the result without special care is equal for any arbitrary target
angle φ.

8.4 Performance

The table below shows the performance results of the above described imple-
mentation. A total of 27202 flip-flops are needed for two 20-stage pipelines
running in parallel whilst an implementation with a single pipeline of the same
length would have needed only 13836 flip-flops. Having one single pipeline would
obviously decrease the speed of the application by a factor of two.

Execution time per AMD Mitrion speed-up
2000 angles 392μs 11.19μs 35.63×
1 angle 196ns 5.5ns 35.63×

The obtained results let the Mitrion processor appear in bright light. At
100MHz it is more than 35 times faster than an equivalent ANSI-C program
run on the AMD 64 3200+ processor.

The resource usage for this algorithm looks as follows:

Precision Pipelines Flip-Flops RAMs
Single 2 25818 (38%) 14 (9%)

8.5 Summary

The data-parallel and fully pipelined CORDIC implementation in Mitrion-C
beats the ANSI-C program run on the sequential processor by an amazing factor
of more than 35 times. The reason for this result is the extremely high degree
of parallelism of the Mitrion-C implementation.

1assuming to start at 0 or 90 degrees

8.5. Summary

Chapter 9

Discussion

This chapter reviews pros and cons that were encountered while working with
the Mitrion SDK.

9.1 FPGA based platforms

Computer scientists tend to argue about what programming language and what
kind of workstation could solve best a certain computationally intensive prob-
lem. Oftentimes, one does not consider that the hardware itself can perform
various tasks. It turns out that hardware implementations can be even much
more efficient in some cases. The performance results of the previously discussed
algorithms approve this statement.

In terms of large scale systems, one could name the current project of Mitri-
onics, which tries to beat a 700 workstation cluster with a 14 FPGA system
regarding the genetic BLAST algorithms.

The fact that the speed of FPGAs grows faster than the speed of traditional
CPUs let the author expect FPGA based systems to become even more advan-
tageous in the future. In addition grows the size of FPGAs continuously, which
makes it possible to implement increasingly complex algorithms on a single chip.

9.2 Hardware design process

So far, hardware programming was to be done using quite low-level programming
languages like VHDL or Verilog. Programming in those languages is very time
consuming, even for small applications. As problems get bigger, coding VHDL
gets very complicated. A simple example is a program that adds two vectors.
While about 400 lines of VHDL implement this procedure is the same algorithm
programmed in 7 lines Mitrion-C code [3].

Attempts were made to use ANSI-C like languages like Handel-C to describe
algorithms in hardware. However, none of the proposed solutions is very pop-
ular these days. Mitrionics saw the necessity of designing a completely new
language, which concentrates on data dependencies and parallelism. Program-
ming Mitrion-C becomes quite intuitive, once the programmer has acquired the
basic knowledge. The complexity of the problems are much easier manageable
comparing to VHDL programming. So can for example a 180 lines Mitrion-C

47

9.3. Controlling resource usage

program easily generate thousands of lines of VHDL code. Complexity man-
agement may become an even more important factor with the growing size of
FPGAs. Despite the higher abstraction level of Mitrion-C, the programs are as
fast as implementations made directly in VHDL. Furthermore is debugging in
Mitrion made easy with the graphical debugger and the simulation mode of the
Mitrion processor.

9.3 Controlling resource usage

Another valuable feature of the Mitiron SDK is that the programmer sees imme-
diately an estimation of hardware resources used for the compiled program. The
degree of parallelism, like in the discussed Jacobi iterative linear equations solver
or the matrix multiplication as well as the length of the pipelines in CORDIC
could like this easily be adapted to the available resources. If for example the
data-parallel multiplication step of a row of A with a column of B in a matrix
multiplication claims too many flip-flops, the foreach loop can easily be broken
into a foreach loop of half the size, which is then executed twice instead of only
once.

9.4 Dynamic of Mitrion-C

In spite of all the mentioned advantages of Mitrion, one has also to mention
the previously presented Gaussian elimination algorithm, which failed to be im-
plemented in Mitrion-C because of the lack of dynamic support, like illustrated
in the code fragment below. The missing feature of dynamic inner loop-length
averted the implementation of Gaussian elimination in Mitrion-C.

for k=0 to n do
for i=k to n do

. . .
end for

end for

Problems with high dynamic are not well or not at all suited for Mitrion-C.
When implementing recursive algorithms like for example recursive tree evalu-
ation, the programs may only evaluate to a pre-defined level since all function
calls are made in-line at compile time.

To attenuate the problem of lack of dynamic in Mitrion-C, one has to take
into account, that the author worked with the Mition-C version 1.0. Future
releases that address this problem are planned and are under development.
Currently is for example a new version under construction, which implements
streams and introduces by this means more dynamic. So it is in some way too
soon to draw definite conclusions regarding the Mitrion-C’s limited dynamic.

9.5 Memory management

A known bug in the simulator that is expected to disappear in future releases
is that the memory management is not simulated correctly when attempting to
read or write concurrently from a same memory bank. The simulator allows

49

concurrent reads and writes despite the fact that only one read or write can
occur at a time. Nevertheless, if the programmer is aware of this incorrectness,
he can force the memory accesses to occur strictly sequentially by means of
passing memory tokens. Doing so is recommended anyway.

A feature that would be useful for the programmer and which may be added
in the future, is the handling of memory tokens in a collection. When creat-
ing n internal memory banks, the programmer has to write explicitly n-times
memcreate(). Unfortunately, this can not be done in a loop, which would

potentially decrease the amount of programmed lines by a large factor where a
lot of memory banks are created and accessed.

9.6 Appropriate algorithms for Mitrion-C

Algorithms that are very data intensive are not well suited for FPGA imple-
mentations. This problem is not restricted to Mitrion, it is rather given by the
fact that FPGAs run at relatively low clock frequencies and by the related lim-
ited memory bandwidth. A best possible speed-up compared to an ordinary PC
implementation is achieved by programs that perform a lot of calculations with
few input data. An advantage regarding memory accesses that have FPGAs
over CPUs is that FPGAs do not have to deal with cache misses. However, if a
CPU succeeds in predicting memory accesses in advance, it may achieve a high
cache hit-rate, which makes the CPU advantageous over the FPGA.

A factor, which affects the performance of an FPGA implementation, is the
maximum degree of concurrency, which is determined by the algorithm itself
(see Amdahl’s law in chapter 2). Nevertheless, if the procedure can not be
implemented in a data-parallel manner because of data dependencies, it may
be possible to execute in a pipelined fashion to hide latency. The discussed
CORDIC algorithm can be named as an iterative and therefore data-dependent
procedure, which could be accelerated through pipelining.

9.7 Dynamic bit-width

The algorithms discussed in this thesis were mostly implemented using standard
single precision floating points or single precision integers. Single precision was
chosen because of the limited FPGA resources and because of the memory band-
width. The flip-flop consumption increases often exponentially when choosing
double precision values instead. In addition, compared to double precision val-
ues, there can be read and written the double amount of single precision values
per time frame from and to the external RAM banks. This trade-off between
single and double precision may persist in the future. However, if the FPGAs
become bigger in terms of available flip-flops, double precision implementations
may become more attractive.

A clear advantage of the Mitrion processor over an ordinary PC could be
exploited with the ability of utilizing 8-bit unsigned integers in the wavelet
transformation (see chapter 7). First of all could the processor read quite a
lot of information per time frame, namely 16 values per memory bank and
clock cycle. Second, there were no resources wasted for the operations with
the 8-bit unsigned integers. The PC on the other hand operates on 32-bit

9.8. Portability

unsigned integers despite the fact that the coefficients only have values in the
range between 0 and 255. Though, the wavelet transformation was not very
resource consuming. As already mentioned in chapter 7, the spare flip-flops
could be used to add an encoding algorithm on the same chip.

9.8 Portability

Although the presented Mitrion-C programs were faster than the ANSI-C pro-
grams on the AMD 64 3200+, the Mitrion-C code needs to be modified when
run on another platform. Different FPGAs have varying I/O systems and un-
equal amounts of resources. This is a disadvantage compared to the ANSI-C
programs. But in any case are modifications easier and faster made in Mitrion-C
than in VHDL.

9.9 Performance results resumed

Summarizing the results of the previous chapters in the table below shows the
overall advantage of the Mitrion processor over the AMD 64 3200+ equipped
PC.

Algorithm Time AMD Time Mitrion speed-up
Mitrion
over
AMD

Matrix multiplication 15ms 682μs 21.99×
Jacobi linear eq. solver 48ms 7.6ms 6.32×
Wavelet transformation 14ms 0.614ms 22.8×
CORDIC 392μs 11.19μs 35.63×
Average speed-up 21.67×

A summary of the algorithms, platforms and resource consumptions is found
in the table below.

Algorithm Platform Precision Flip-Flops RAMs
Matrix Virtex II generic Single 41230 (61%) 64 (44%)
Jacobi Virtex II generic Double 39000 (57%) 50 (34%)
Wavelet SGI RASC v6000 8-bit 23315 (34%) 124 (86%)
CORDIC Virtex II generic Single 25818 (38%) 14 (9%)

All of the discussed algorithms were faster on the Mitrion processor than
on the AMD, except of the Gaussian elimination, of course. This result meets
the expectations and demonstrates the great potential and capabilities of the
Mitrion processor. However, one has to incorporate the fact that the systems
compared are not only of different architectures, but also of very different price
segments. While about 1000 Euros buy an up-to-date AMD 64 equipped PC,
are the costs of an FPGA based supercomputer at least 10 times higher.

Chapter 10

Conclusions

In the previous chapters, the author discussed Mitrion-C implementations of a
range of mathematical functions and compared them with ANSI-C implemen-
tations for a sequential processor. It was expected that the Mitrion processor is
about 20 times faster than the sequential processor regarding these functions.
Apart from one algorithm, which failed to be implemented in Mitrion-C, were
all other algorithms on the Mitrion processor faster by an average factor of al-
most 22. Hence, the promise was fulfilled with reservation of the mentioned
exception.

New features that will soon be added to the Mitrion-C language address the
dynamic problem, which prevented a successful implementation of the remaining
algorithm. It is therefore too soon to draw final conclusions regarding the lacking
dynamic of Mitrion-C.

Mitrion-C programming introduces a very high abstraction layer to hardware
programming. The language together with the Mitrion SDK makes the hardware
design process easier and faster than ever.

In comparison with the sequential processor is the Mitrion processor ad-
vantageous when the algorithms are not very data intensive and not highly
dynamic.

Current reconfigurable hardware seems to be well mated for supercomput-
ing. Certain classes of algorithms profit amazingly from customized hardware.
Mitrion adds even more advantages to the reconfigurable supercomputing world,
in that the well designed Mitrion-C programming language reduces time of pro-
duction and debugging.

The author was in general very happy with Mitrion and reckons great po-
tential for future releases together with new and even more sophisticated FPGA
technologies.

51

Chapter 11

Future work

The previous chapters demonstrated the great potential and capabilities of the
Mitrion platform. The discussed algorithms were successfully implemented and
all of them beat the AMD 64 3200+ equipped PC. Nevertheless, there is always
amelioration and extension possible. The author makes some suggestions in this
chapter.

11.1 Dynamic of Mitrion-C

The Mitrion-C programs were developed using version 1.0 of the Mitrion SDK.
Future releases with more dynamic support would be welcome. Solving systems
of linear equations with one of the direct methods such as Gaussian elimina-
tion or LU-factorization would then become possible to implement efficiently.
However, the author does not exclude the existence of a direct method, which
could avoid the dynamic loop-length problem. More time could be invested
in finding an appropriate variant of the mentioned algorithms, which would be
suited for the current state of the Mitrion-C language. To run Gaussian elimina-
tion with partial pivoting on the Mitrion processor would be of special interest
because there exists a broad benchmark on [20], which compares various com-
puter systems ranging from workstations to sophisticated clusters regarding this
algorithm.

11.2 JPEG 2000

As an extension to the discrete Haar wavelet transformation presented in chap-
ter 7, the author already suggested to add an appropriate data encoding al-
gorithm such as embedded zero tree coding or Huffman coding. The wavelet
transformation as well as the encoding could be done according to the JPEG
2000 standards, which would allow the Mitrion processor to be compared with
various implementations made in other projects.

53

11.3. Memory simulation

11.3 Memory simulation

As already mentioned, the Mitrion simulator does not correctly simulate con-
current memory accesses. The bug in the simulator can indeed be handled
by passing memory tokens, but it would be eligible to be able to rely on the
simulator concerning this subject.

11.4 Memory token handling

In chapter 4, the discussion was about matrix multiplication. The algorithm
multiplies a quite large number of elements in parallel. To be able to access a
number of elements of either matrix simultaneously, the entries have to be stored
at different memory locations. It would be desirable to be able to express the
reading of all elements by the means of a foreach loop instead of typing for
each element a memread().

11.5 Resource usage optimization

The discussion in chapter 9 brought up the actuality that all function calls in
Mitrion-C are made in-line at compile time. This fact averts to implement
recursive algorithms to any desired level because of the fast increasing resource
usage. Optimizations might be possible that would allow the programmer to
explicitly declare functions in-line or not.

11.6 Comparison with OpenMP and MPI

As a suggestion for future projects, the author proposes to compare the Mitrion
processor as well as the programming language Mitrion-C with the well known
standards OpenMP [21] and MPI [22] and the respecive systems on which such
programs can be run. Comparing to the fine-grained FPGA based platform
Mitrion are both standards considered coarse-grained. MPI (Message Passing
Interface) is a standard for message passing, which can be embedded in ANSI-C
programs. OpenMP can as well be integrated in ANSI-C programs, but it is a
standard for shared memory architectures.

11.7 Financial aspect

In the context of a comparison of the Mitrion processor with workstation clusters
using OpenMP or MPI, an interesting point would be to analyze the financial
aspect. Since FPGAs are very economical in energy consumption, the Mitrion
processor might not only be advantageous in terms of programmability but also
in terms of money.

Bibliography

[1] Eduardo Sanchez. An introduction to digital systems. Technical report,
Swiss Federal Institute of Technology Lausanne, EPFL, 1998.

[2] Henrik Abelsson. Evaluation of a parallel reconfigurable architecture im-
plemented in fpgas for supercomputing applications. Master’s thesis, Uni-
versity of Linköping, 2005.

[3] Hello supercomputing world. Mitrionics advertising brochure.

[4] ETH Zuerich Prof. Matthias Troyer. Computational physics, 2005/2006.

[5] http://en.wikipedia.org/wiki/unsolved problems in computer science/.

[6] http://mayet.som.yale.edu/coopetition/vn.html.

[7] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Parallel
Computing. Addison Wesley, second edition, 2003.

[8] http://en.wikipedia.org/wiki/amdahl’s law.

[9] Stefan Möhl. The mitrion-c programming language.

[10] http://www.eda.org/vasg/.

[11] http://www.verilog.com.

[12] http://www.eda.org/vasg/.

[13] Stefan Möhl. Mitrion-c presentation.

[14] Gerald R. Morris and Viktor K. Prasanna. An fpga-based floating-point
jacobi iterative solver. Technical report, Department of Electrical Engi-
neering, University of Southern California, 2005.

[15] Wim Sweldens Peter Schroeder. Wavelets in computer graphics. Technical
report, California Institute of Technology and Lucent Technologies Bell
Laboratories, 1996.

[16] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Wavelet trans-
forms that map integers to integers. Appl. Comput. Harmon. Anal., 1998.

[17] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, second edition, 2000.

55

BIBLIOGRAPHY

[18] Daniel Bachofen. Fpga wavelet transformation für bildübertragung. Mas-
ter’s thesis, Hochschule für Technik, Wirtschaft und soziale Arbeit, St.
Gallen, Switzerland, 2001.

[19] http://www.dspguru.com/info/faqs/cordic.htm.

[20] http://www.top500.org.

[21] http://www.openmp.org/.

[22] http://www.mpi-forum.org/.

[23] http://www.processing.org.

Index

aggregate-constant, 42
Amdahl’s law, 9
ASIC, 14

bandwidth, 5
Big O complexity, 7

CORDIC, 41
critical path, 8

data-parallelism, 10

filter-bank, 35
FPGA, 14

Gaussian elimination, 25
granularity, 10

coarse-grained, 10
fine-grained, 10

high-pass filter, 35
HPC, 5

implicit parallelism, 10

Jacobi, 29

latency, 5
lossy transformation, 37
low-pass filter, 35
LU-factorization, 27

matrix multiplication, 19
MIMD, 10
Mithal, 15
Mitrion-C

memread, 18
memwrite, 18

bit-width, 16
bits, 16
boolean, 16

exponent-width, 16
float, 16
for loop, 17
foreach loop, 17
int, 16
list, 17
mantissa-width, 16
uint, 16
vector, 17
while loop, 17

MPP, 3

pipelining, 9

SIMD, 10

Theta complexity, 7
threshold, 37
transformation level, 36

Verilog, 16
VHDL, 14, 16
von Neumann machine, 5

wavelet, 35

57

INDEX

Appendix A

Graphical debugger

Figure A.1: The graphical debugger

59

Appendix B

Wavelet transformation

B.1 Source code

B.1.1 Mitrion-C program

Mitrion-C 1.0;

#define memtype bits:128

#define EVEN 0

#define ODD 1

(uint:8[8], uint:8[8]) filter (uint:8[8][2] buffer)

{

(Lo, Hi) = foreach(pair in buffer) {

uint:8 low = (pair[EVEN] + pair[ODD]) / 2;

uint:8 high = pair[EVEN] - pair[ODD];

} (low, high);

} (Lo, Hi);

(uint:8[8], uint:8[8]) filter2 (uint:8[2][8] buffer)

{

(Lo, Hi) = foreach(i in [0..7]) {

uint:8 low = (buffer[EVEN][i] + buffer[ODD][i]) / 2;

uint:8 high = buffer[EVEN][i] - buffer[ODD][i];

} (low, high);

} (Lo, Hi);

(uint:8[8][2]) getpixels (bits:128 buffer)

{

bits:8[8][2] bitvect = buffer;

(pixels) = foreach(pair in bitvect) {

(pixels) = foreach(e in pair) {

uint:8 pixel = e;

} (pixel);

} (pixels);

} (pixels);

(bits:64) makebits64 (uint:8[8] buffer)

{

61

B.1. Source code

(tmp) = foreach(e in buffer) {

bits:8 byte = e;

bits:64 tmp = byte;

} (tmp);

bits:64 a = tmp[0] << 56;

bits:64 b = tmp[1] << 48;

bits:64 c = tmp[2] << 40;

bits:64 d = tmp[3] << 32;

bits:64 e = tmp[4] << 24;

bits:64 f = tmp[5] << 16;

bits:64 g = tmp[6] << 8;

bits:64 h = tmp[7];

bits:64 buffer0 = a | b | c | d | e | f | g | h;

} (buffer0);

(bits:128) makebits128 (bits:64 a, bits:64 b)

{

bits:128 a0 = a;

bits:128 b0 = b << 64;

bits:128 buffer = a0 | b0;

} (buffer);

(mem memtype [0x20000],

mem memtype [0x20000]) main (mem memtype [0x20000] Am,

mem memtype [0x20000] Bm)

{

Cm = _memcreate(mem memtype[0x3000] Cm_end);

(Cm0, LoHi_bits, HiLo_bits, HiHi_bits) = foreach(row in <0..191>) {

/* Level 1 Rowwise */

(LoLo, LoHi_bits,

HiLo_bits, HiHi_bits) = foreach(col in <0..15>) {

(Lo, Hi) = foreach(k in <0..1>) {

(Lo, Hi) = foreach(l in <0..1>) {

(Lo, Hi) = foreach(i in <0..1>) {

(Hi, Lo) = foreach(j in <0..1>) {

uint:14 memloc = row*256+col*4 + l*128 + k*2 + j*64 + i;

memtype buffer = _memread(Am, memloc);

(pixels) = getpixels(buffer);

(Lo, Hi) = filter(pixels);

} (Lo, Hi);

} (Lo, Hi);

} (Lo, Hi);

} (Lo, Hi);

tmpLo = reshape(Lo, <8><2>[8]);

tmpHi = reshape(Hi, <8><2>[8]);

Lo_re = reformat(tmpLo, <8>[2][8]);

Hi_re = reformat(tmpHi, <8>[2][8]);

63

/* Level 1 Columnwise high pass */

(HiHi_bits, HiLo_bits) = foreach(Hi in Hi_re)

{

(HiLo, HiHi) = filter2(Hi);

HiHi_bits = makebits64 (HiHi);

HiLo_bits = makebits64 (HiLo);

} (HiHi_bits, HiLo_bits);

/* Level 1 Columnwise low pass */

(LoLo, LoHi) = foreach(Lo in Lo_re) {

(LoLo, LoHi) = filter2(Lo);

} (LoLo, LoHi);

(LoHi_bits) = foreach(lohi in LoHi) {

LoHi_bits = makebits64(lohi);

} (LoHi_bits);

} (LoLo, LoHi_bits, HiLo_bits, HiHi_bits);

/* Level 2 row wise */

LoLo_tmp = reshape(LoLo, <64><2>[8]);

LoLo_tmp0 = reformat(LoLo_tmp, <64>[2][8]);

LoLo_re = reshape(LoLo_tmp0, <64>[8][2]);

(LoLoL, LoLoH) = foreach(LoLo in LoLo_re) {

(LoLoL, LoLoH) = filter(LoLo);

} (LoLoL, LoLoH);

LoLoL_tmp = reshape(LoLoL, <32><2>[8]);

LoLoH_tmp = reshape(LoLoH, <32><2>[8]);

LoLoL_re = reformat(LoLoL_tmp, <32>[2][8]);

LoLoH_re = reformat(LoLoH_tmp, <32>[2][8]);

/* Level 2 column wise high pass */

(LoLoHH_bits, LoLoHL_bits) = foreach(hi in LoLoH_re) {

(HiLo, HiHi) = filter2(hi);

HiHi_bits = makebits64 (HiHi);

HiLo_bits = makebits64 (HiLo);

} (HiHi_bits, HiLo_bits);

/* Level 2 column wise low pass */

(LoLoLL_bits, LoLoLH_bits) = foreach(lo in LoLoL_re) {

(LoLo, LoHi) = filter2(lo);

LoHi_bits = makebits64 (LoHi);

LoLo_bits = makebits64 (LoLo);

} (LoHi_bits, LoLo_bits);

LLHH_tmp = reshape(LoLoHH_bits, <16><2>);

LLHL_tmp = reshape(LoLoHL_bits, <16><2>);

LLLH_tmp = reshape(LoLoLH_bits, <16><2>);

LLLL_tmp = reshape(LoLoLL_bits, <16><2>);

LLHH_re = reformat(LLHH_tmp, <16>[2]);

LLHL_re = reformat(LLHL_tmp, <16>[2]);

LLLH_re = reformat(LLLH_tmp, <16>[2]);

LLLL_re = reformat(LLLL_tmp, <16>[2]);

B.1. Source code

(LLll_128, LLlh_128,

LLhl_128, LLhh_128) = foreach(llll, lllh,

llhl, llhh in

LLLL_re, LLLH_re,

LLHL_re, LLHH_re)

{

llll_128 = makebits128(llll[0], llll[1]);

lllh_128 = makebits128(lllh[0], lllh[1]);

llhl_128 = makebits128(llhl[0], llhl[1]);

llhh_128 = makebits128(llhh[0], llhh[1]);

} (llll_128, lllh_128, llhl_128, llhh_128);

/* Store result for second pass in temp location */

(Cm3) = foreach (ll, lh, hl, hh, index in

LLll_128, LLlh_128,

LLhl_128, LLhh_128, <0..15>)

{

uint:10 memloc = row*32 + index;

Cm0 = _memwrite(Cm, memloc, ll);

Cm1 = _memwrite(Cm0, memloc+16, hl);

Cm2 = _memwrite(Cm1, memloc+6144, lh);

Cm3 = _memwrite(Cm2, memloc+6160, hh);

} (Cm3);

LoHi_tmp = reshape(LoHi_bits, <64><2>);

HiLo_tmp = reshape(HiLo_bits, <64><2>);

HiHi_tmp = reshape(HiHi_bits, <64><2>);

LoHi_re = reformat(LoHi_tmp, <64>[2]);

HiLo_re = reformat(HiLo_tmp, <64>[2]);

HiHi_re = reformat(HiHi_tmp, <64>[2]);

(LoHi_128, HiLo_128, HiHi_128) = foreach(lh, hl, hh in

LoHi_re, HiLo_re, HiHi_re)

{

lh128 = makebits128(lh[0], lh[1]);

hl128 = makebits128(hl[0], hl[1]);

hh128 = makebits128(hh[0], hh[1]);

}(lh128, hl128, hh128);

} (Cm3, LoHi_128, HiLo_128, HiHi_128);

LoHi_re = reshape(LoHi_bits, <192><16><2><2>);

HiLo_re = reshape(HiLo_bits, <192><16><2><2>);

HiHi_re = reshape(HiHi_bits, <192><16><2><2>);

(Bm3) = foreach(lh, hl, hh, k in

LoHi_re, HiLo_re, HiHi_re, <0..191>) {

(Bm3) = foreach(lh1, hl1, hh1 , l in

lh, hl, hh, <0..15>) {

(Bm3) = foreach(lh2, hl2, hh2, i in

lh1, hl1, hh1, <0..1>) {

(Bm3) = foreach(lh3, hl3, hh3, j in

lh2, hl2, hh2, <0..1>) {

int:14 memloc = k*128 + l*2 + j*64 + i;

Bm1 = _memwrite(Bm, memloc + 32 ,hl3);

65

Bm2 = _memwrite(Bm1, memloc + 24576 ,lh3);

Bm3 = _memwrite(Bm2, memloc + 24608 ,hh3);

} (Bm3);

} (Bm3);

} (Bm3);

} (Bm3);

Bm_tmp = _wait(_wait(_wait(_wait(Bm3))));

Cm_tmp = _wait(_wait(Cm0));

/* Write back buffer of second pass */

(Bm_e, Cm_e) = foreach(i in <0..383>) {

(Bm0, Cm0) = foreach(j in <0..31>) {

(buffer, Cm0) = _memread(Cm_tmp, i*32+j);

Bm0 = _memwrite(Bm_tmp, i*64+j, buffer);

} (Bm0, Cm0);

} (Bm0, Cm0);

Bm_last = _wait(_wait(Bm_e));

Cm_end = _wait(_wait(Cm_e));

} (Am, Bm_last);

B.1. Source code

B.1.2 Host program

#include <stdlib.h>

#include <stdio.h>

#include "mithal.h"

#include "mithal_gen.h"

#define WORD unsigned char

#define NUM_WORDS 786432

#define COLS 1024

#define ROWS 768

int main(int argc, char** argv)

{

FPGA *f;

Processor *p;

STATUS s;

WORD *mem1, *mem2;

WORD next;

int i, j;

FILE *input, *output;

f = mitrion_fpga_allocate("localhost:60000");

if (f == NULL) {

fprintf(stderr, "Could not find the FPGA.\n");

return 22;

}

p = mitrion_processor_create("haar.2D.L2.mitc");

if (p == NULL) {

fprintf(stderr, "Coult not create the processor.\n");

return 23;

}

s = mitrion_fpga_load_processor(f, p);

if (s != OK) {

fprintf(stderr, "Could not load the processor

on the FPGA.\n");

return 24;

}

mem1 = (WORD*)mitrion_processor_reg_buffer(p, "Am", NULL,

NUM_WORDS*sizeof(WORD), WRITE_DATA);

mem2 = (WORD*)mitrion_processor_reg_buffer(p, "Bm", NULL,

NUM_WORDS*sizeof(WORD), READ_DATA);

// Prepare data (read col-wise and write row-wise)

input = fopen("snowboarder.bin", "rb");

if (input == 0) {

printf("Unable to open input file.\n");

exit -1;

}

for (i=0; i<COLS; i++) {

for (j=0; j<ROWS; j++) {

next = fgetc(input);

mem1[j*COLS+i] = next;

}

}

fclose(input);

67

// run processor

mitrion_processor_run(p);

mitrion_processor_wait(p);

// Write back result (read row-wise and write col-wise)

output = fopen("snowboarder.transformed.bin", "wb");

if (output == 0) {

printf("Unable to open output file.\n");

exit -1;

}

for (i=0; i<COLS; i++) {

for (j=0; j<ROWS; j++) {

next = mem2[j*COLS+i];

fputc(next, output);

}

}

fclose(output);

mitrion_fpga_close(f);

return 0;

}

B.2. A visual demonstration

B.2 A visual demonstration

B.2.1 The original image

Figure B.1: Original image

The original image was a colored JPEG image, which the author turned into
a gray-scale image by the means of Processsing [23]. The gray-scale image could
then be written pixel-wise in a file using Java and Processing API’s. After the
wavelet transformation, the images could be read from the file and be displayed
again.

B.2.2 The transformed images

As mentioned in chapter 7, the image is transformed into approximation and
detail coefficients. The approximation coefficients can be seen as a coarse rep-
resentation of the original image. If the image is transformed once horizontally
and once vertically, it looks as depicted in B.2. The coarse representation (the
LL-coefficients) are in the upper left part. The other four parts are the de-
tail coefficients (LH, HL, HH). It does not make much sens to visualize them
as such, but they are needed to add details, if the image is back transformed.
The detail coefficients are mostly close to black (intensity 0) or close to white
(intensity 255) because they represent differences between neighboring pixels
of the original image. Threshold the detail coefficients (lossy transformation)
could turn many of the white pixels into black ones, which in turn would reduce
the entropy even more and hence augment the achievable compression rate. An
advantage of wavelet-transformed images is that if they are to be displayed, one
can make very fast previews.

69

Figure B.2: Level 1 transformation (2 dimensional)

Figure B.3 shows the image after the second tranformation level. The second
transformation level transforms the LL coefficients of the first transformation
level once again.

Figure B.3: Level 2 transformation (2 dimensional)

B.3. Dependency graph

B.3 Dependency graph

Figure B.4: Dependency graph of the wavelet transformation

	cover.pdf
	titlepage.pdf
	content.pdf

