
Evaluation of A Scalable
Peer-to-Peer Lookup Protocol for

Internet Applications

S A M E R A L - K A S S I M I

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-95

S A M E R A L - K A S S I M I

Evaluation of A Scalable
Peer-to-Peer Lookup Protocol for

Internet Applications

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-95

Thesis Advisors:
Per Brand and Sameh El-Ansary

Thesis Examiner:
Vladimir Vlassov

Work performed at the Swedish Institute of Computer

Science (SICS) and submitted to the Royal Institute of
Technology (KTH) in partial fulfillment of the requirements for

the degree of Master of Science

Acknowledgements

This thesis has been the result of a very, very long and hard work, and not only in
terms of scientific and technical labor.
It certainly would not have been possible without the help of many people.
The beginnings are usually difficult, but in this case they were very close to
dramatic, and those who know me well understand that this is not just my share of
Andalusian blood talking exaggeration.
I am a person who takes pride at being thankful every day for what I am given.
And I have been given a lot during my stay here in Stockholm.
First of all, I have to thank Mats Brorsson at IMIT in KTH for the welcome he gave
me nearly 4 years and a half ago, and incidentally, Xavier Martorell from the
Computer Architecture Department at UPC, who introduced me to him.
During some of the courses in KTH I met Vladimir Vlassov and Luc Onana.
I am very thankful for all the support that Vlad has given as a new examiner in such
a short time and with such a short notice, in a moment when I was nearly
desperate thinking that I would suffer another delay yet. It has been a blow of fresh
air just when the winter is threatening to fall upon all of us.
Luc Onana is the person that, after a very enjoyable course on Distributed
Systems, introduced me to the staff at the Swedish Institute of Computer Science
(SICS), and that meant a lot to me. I have the impression that he had very high
expectations that I could not fulfill due to many adverse circumstances. For that I
am sorry; but most of all, I am grateful of the role he played in all this story.
There at SICS I met the most amazing group I have ever had the pleasure to work
with. Beginning with Seif Haridi, all the way with Per Brand and Sameh El-Ansary
(my supervisors) and other people that helped me much amongst whom I have to
remark Ali Ghodsi for being a great room partner. Being at SICS has been a
formidable experience and my only regret is not having been able to extract the
best of it. Thank you all for having been there and all your help, especially Per, who
has been extremely supportive at all times.
And speaking of support, special mention to my "familia postiza" på Lappis and
surroundings. I'm trying to write a few names, and many are going to be lost,
there's no place for everybody, and I know this is no excuse, but you all know how
bad my memory is...: Cristina Sáez, Rafa Cordones, Carmen Cárdenas, Guillermo
Torres, Raul Iglesias, Xavi Gelabert, Rodrigo Sierra, Manolo Mazo, Luis, Estitxu,
Maria Selva, Mariansita, David, María José Mesa, Sanna, Rossana Giaconi,
Natasha Mouravitskaya, Salva, Jabón (aarrr!), Alicia Soutullo, Fran Marquez, Paco,
Juancar, Bego, Jose, Rosa, Elena, Beni, Xavi Gratal, Veera, Bea10, Jaume y
Mercedes, Mariquilla, Toñi, Núria, Lisi, Bet, Jordi, Dafne, Andreu Taberner, Kabra,
Joan Lusilla, Dario Betrián, Neus, Patricia, Enrico, Patrik, Oscar Sierra... Oh, my!
You're so many... But mostly "el núcleo duro": Oscarín, Victor, Sandra, Beatxu and
Merche, you are the best.
And I place aside two persons that have meant a lot to me.
Emilio Melero, Kalifa, you know how special this experience has been, and how
much we've shared and learnt one from each other. May our paths give us many
more chances to learn together and share.
And Pere Oriol, you really can teach so many people how much can one say with
little words. Everything is inside. Ets molt més gran per dins que per fora, i aixó ja
és dir molt.
Both of you have made me feel at home and Sweden has a particular homey flavor
thanks to you.
And homey home gives me the cue to acknowledge my friends from Spain.

From my home school at UPC I have to mind Susana Ubach, Jordi Camps, Jordi
Sola, Gema Gomez, Juan Francisco Fernandez, Jordi Varela, Oriol Mercadé,
Roberto López and Maria del Mar Colillas
Those friends who are always there, no matter how bad things are.
Gabriel Lozano, Gabito, crack, eres el mejor. You know you can spell v-a-l-o-n-i-a
from the corner of my mouth.
Sara Lanau, tú también has pasado por esto y sabes lo que vale. I'll never get why
you didn't want to be Erasmus!
Helena Grau, has sigut una de les persones que més m’ha recolzat amb el teu
possitivisme. Moltíssimes gràcies pel teu suport.
Now, getting closer to my family, my Dad and Mum. Papa, gracias por ser tan
fuerte. Cuántas veces me he resistido a quejarme al acordarme de tí. Mama,
gracias por ser más fuerte todavía. Me habéis dado todo lo que tengo, y soy quien
soy gracias a vosotros. My brothers, so similar to me, and yet so very different. The
farther away we've lived one from each other, the closer I've felt you. Tamer,
sometimes I think you know more about computers than I do (don't be too happy,
that doesn't mean much anyway). Amer, you don't know what it feels like when you
look down to see your little brother and you realize you have to be looking up. I
have so much to learn from you. I'm very proud of both of you.
Grandma Enriqueta, wherever you are, you can see me, you are in our memories.
Grandpa Antonio, this achievement has a higher meaning to me because of what it
means to you.
To my uncles Paco and Teófilo, aunts Antonia and Salvadora, and all my cousins
Ana Mari, Francis, Esther, Arantxa and Sara, os quiero un montón, pensar en
vosotros me ha dado fuerzas en los peores momentos. Especially my cousin
Montse. Who would have said that after wrecking havoc at your place in my
childhood I would adore you the way I do today?
I want to dedicate a line here to all my relatives in Syria, the most of whom I
haven't seen in more than 15 years, with special mention to my uncle Osman.
And last, but not least, to the person that snapped her fingers and made it all
happen at once. The person that came in my aid when I was worst with myself.
The person that made me see the light at the end of the tunnel, where I could see
all the sense behind past, present and future. The one that makes me shiver with
one look and sends me to unknown places with one touch. The greatest of all
these acknowledgements and my deepest gratitude to my fiancée, my friend, my
partner, my lover, María José Vicente. I've been through many up and downs all
during the realization of this thesis, but there is a definite point of inflection at your
arrival. This is the first of many great presents to come from me.
In short, thank you very much, your support means much to me. This
accomplishment has a little bit of you in it.

A mi abuelo Antonio,

Abstract

Peer to peer (P2P) systems are, among other models of distributed systems, one
of the most fashionable nowadays. Scalability, full decentralization, anonymity, use
of the computational power at the edges of the network, mobility and availability of
services are, with many other, very desirable properties of such systems.
This master thesis work presents the results of research about Chord. Chord is a
project lead by a team from the University of Berkeley and the Massachusetts
Institute of Technology that aims at providing location of resources in a network by
means of a protocol that addresses some of the features stated above.
The contents of this research include the study of one of the publications by Ion
Stoica et al., as a base to further work with Chord. As a complement to this
groundwork, a set of software tools has been developed to gather data —through a
comprehensive set of simulations— which provides a means for a further, deeper
study of Chord’s behavior. The aforementioned simulations reproduce certain
typical circumstances in order to permit the collection of representative and
relevant figures for the subject at hand, that is, measure how the protocol —as
implemented here— copes with these particular situations and conditions.
Keywords: Chord, computer networks, survey, structured, consistent hashing,
decentralization, DHT, distributed systems, fault tolerance, Peer-to-peer (P2P),
scalability, resiliency, robustness, simulator, traffic generator.

Table of Contents:

1 Preliminaries .. 1

1.1 Introduction .. 1
1.2 Related Work ... 2

1.2.1 Definition ..2
1.2.2 Evolution...2
1.2.3 Taxonomy...6
1.2.4 Trends ..8

1.3 Contribution ... 9
2 The Chord Protocol ... 11

2.1 Introductory concepts:.. 11
2.1.1 Hash functions..11
2.1.2 Modular arithmetic ..12

2.2 Network topology ... 12
2.2.1 Basic layout ..12
2.2.2 Further data structures ...14

2.3 Operations in Chord... 15
2.3.1 Join...15
2.3.2 Lookup..15
2.3.3 Stabilization ..16
2.3.4 Failure ..17
2.3.5 Leave..20
2.3.6 Insert ..20

3 Objectives, Tools and Methodology 21
3.1 Objectives .. 21
3.2 Equipment.. 21

3.2.1 Hardware..21
3.2.2 Software ...21

3.3 The traffic generator... 22
3.3.1 The original traffic generator...22
3.3.2 Changes to the original traffic generator...23

3.4 The simulator ... 23
3.4.1 Architecture ..23
3.4.2 Internals..25
3.4.3 Extension and customization..26

4 Experiments ... 29
4.1 Changes in the network size.. 29
4.2 Massive simultaneous node failures .. 31
4.3 Constant node joins and departures .. 32

5 Results and Analysis... 33
5.1 Changes in the network size.. 33

5.1.1 With successors list VS Without successors list33
5.1.2 Constant identifier space VS Proportional identifier space35
5.1.3 Overall evaluation of path length metric ...36
5.1.4 Processing load..38

5.2 Massive node failures .. 41
5.3 Constant node joins and departures .. 43

6 Future Work.. 47
7 Conclusions ... 49

7.1 The simulator ... 49
7.2 Chord ... 49

8 Appendix .. 51
8.1 Glossary... 51
8.2 Simulator User Manual .. 53

8.2.1 System Requirements ..53
8.2.2 Configuration ..55
8.2.3 Starting the simulator..56

8.3 Javadoc from the Simulator ... 57
8.4 References .. 90

Table of classes in Javadoc

Class arrivals... 58
Class chordNode... 61
Class commChannel ... 69
Class commChannelsManager ... 70
Class controller.. 71
Class distributedNode ... 72
Class file.. 74
Class InputStreamHandler .. 75
Class message.. 76
Class parametersManager .. 78
Class params .. 79
Class progressMon ... 80
Class screen ... 81
Class simulator.. 82
Class stat .. 83
Class std ... 86
Class timedNode... 87

Table of Figures

Fig. 1.1 Taxonomy of Peer-to-Peer systems ... 6
Fig. 1.2 Taxonomy properties and associated literature.. 7
Fig. 2.1 Example of numeric equivalences in “modulo 3” .. 12
Fig. 2.2 Assignment of responsibilities: a) Chord ring with 10 nodes b) node 14 inserts key 24 c) node 32 is
responsible of key 24 .. 13
Fig. 2.3 Example of lookup in its simplest form: linear forwarding around the ring a) the Chord ring
b)pseudocode for lookup c) forwarding of the request ... 13
Fig. 2.4 Finger tables for nodes 14 and 38.. 14
Fig. 2.5 Pseudocode involved in the creation of a Chord ring and insertion of nodes 15
Fig. 2.6 Pseudocode of the routines involved in the most critical operation: the lookup.................................... 16
Fig. 2.7 Example of a lookup request: node 8 asks for key 54 .. 16
Fig. 2.8 Pseudocode of stabilize and notify: these operations ensure that successor and predecessor pointers
are kept up to date. These ultimately ensure correct answers to requests... 17
Fig. 2.9 Pseudocode for the fixFingers operation: this ensures that lookup requests are kept efficient 17
Fig. 2.10 Pseudocode for the verification of the network robustness .. 17
Fig. 2.11 Example of network reorganization: node 32 drops; nodes 21 and 38 are corrected a) detail of nodes
21, 32, 38 b) nodes 32 fails, and drops c) the chord ring is corrected ... 18
Fig. 3.1 The simulator: UML diagram of classes ... 23
Fig. 3.2 Main loop of the simulator ... 26
Fig. 5.1 Lookup path length using the successors list (left) and not using the successors list (right). The
identifier space in each of the experiments is proportional to the number of nodes belonging to the network (X
axis)... 33
Fig. 5.2 Lookup path length using the successor list (left) and not using the successor list (right). The identifier
space is constant: 221 keys.. 34
Fig. 5.3 Table of values for the average path length for lookups (1st and 99th percentiles too) depending on the
size of the network. Last column reflects the differences between using or not using the successors list 34
Fig. 5.4 Average path length (including 1st and 99th percentiles) of lookups not using the successors list.
Proportional identifier space (left) versus constant identifier space (right). ... 35
Fig. 5.5 Path length of lookups using the successors list with proportional identifier space (left) versus constant
identifier space (right).. 36
Fig. 5.6 Table of values for the average path length for lookups (1st and 99th percentiles too) depending on the
size of the network. Last column reflects the differences between having proportional or constant identifier
space... 36
Fig. 5.7 a) Path length as a function of the network size. b) The PDF of the path length in the case of a 212
node network... 37
Fig. 5.8 Path length as a function of the network size (left) and PDF of the path length in the case of a 212
node network (right) .. 37
Fig. 5.9 Plot and data of the processing load for networks in which nodes make 10 documents searches in
average ... 39
Fig. 5.10 Plot and data of the processing load for networks in which nodes make 20 documents searches in
average ... 39
Fig. 5.11 Plot and data of the processing load for networks in which nodes make 25 documents searches in
average ... 40
Fig. 5.12 Table of values of average path length and the number of timeouts encountered (including 1st and
99th percentiles) in lookup queries as a function of the fraction of failed nodes.. 41
Fig. 5.13 Path length and number of timeouts experienced by a lookup as function of nodes that fail
simultaneously... 41
Fig. 5.14 Comparison of the PDF of the lookup path length in a network with 1,000 nodes (left) and the same
network when 30% of the nodes have simultaneously failed. ... 42
Fig. 5.15 Table with average path length, number of timeouts, failures and undershooting for lookup requests
in a network with 1,000 nodes and in function of the arrival/departure rate... 43
Fig. 5.16 The path length and the number of timeouts experienced by a lookup as function of node join and
leave rates... 43
Fig. 5.17 Table of error rates found on the generation of events by the traffic generator. 45
Fig. 8.1 Progress monitor of the simulator while running... 53
Fig. 8.2 Example of a text window with information of a channel of type “screen” .. 54

 1

1 Preliminaries

1.1 Introduction
Peer-to-peer systems’ main distinctive feature is the lack of a centralized control or
hierarchical organization. Some other desirable properties are redundant storage,
permanence, load balance, selection of nearby servers, anonymity, search,
authentication or hierarchical, flexible naming. And yet, the main problem to
address is the location of items.
This master thesis presents a study of Chord based on a paper published by Ion
Stoica and other authors called “Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications” [STO-1].
Chord’s main goal is the location of entities in P2P environments, namely:
documents, files, or generally speaking, any resource that one might want to share
in a computer network. It is a distributed lookup protocol that provides such
location of entities with some of those very desirable properties. It is done by
means of a single operation that maps a given key onto a node. Data location can
thus be easily implemented on top of Chord by associating a key with each
resource item. Chord shows adaptation advantages when node failures occur and
when nodes continuously join and leave the network. Another very desirable
feature along with the adaptation of the network is efficient query replies in
presence of these events.
Chord might not be the ideal solution for most of the applications in which peer-to-
peer technology is used today. However, some of its ideas could be very well put
into practice in more general-purpose tools to make systems more efficient.
Chord has a number of advantages when faced to other P2P systems in terms of
scalability, performance and simplicity:
While Freenet [FRE-2],[FRE-3] is decentralized and symmetric, and automatically
adapts when hosts leave and join, and it does not assign responsibility for shared
resources to specific nodes, it does not guarantee retrieval of existing resources or
provide low bounds on retrieval costs. Its lookups take the form of searches for
cached copies. This allows Freenet to provide a degree of anonymity unlike Chord.
But Chord’s lookup operation runs in predictable time and always results in
success or definitive failure as opposed to Freenet’s.
OceanStore [OCS-4], based in work by Plaxton et al. [PLA-5] is perhaps the
closest algorithm to the Chord protocol in terms of reliability. It provides stronger
guarantees than Chord: queries make a logarithmic number of hops and keys are
well balanced; furthermore queries never travel further in network distance than the
node where the key is stored, subject to assumptions about network topology. The
advantage of Chord is that it is substantially less complicated and handles
concurrent node joins and failures well.
Unlike Napster [NAP-6], Chord avoids single points of failure or control; and when
compared to Gnutella’s widespread use of broadcasts [GNU-7], Chord sports
better scalability.

 2

1.2 Related Work
This section presents a survey of data related to Peer-to-Peer systems, beginning
with some definitions admitted from scholars and experts in the field of distributed
systems. A subsection of how these systems have evolved will follow with also a
separate section for a P2P systems taxonomy study. And finally, a summary of
trends and research issues closes the section
Much of the data exposed here has been extracted from Sameh El-Ansary’s
Licentiate Philosophy Dissertation [SEA-8], and completed with information and
quotations from other sources and surveys, but mainly from the workgroup of the
Distributed Systems Laboratory in SICS that has hosted me under the duration of
my thesis work.

1.2.1 Definition
Because Peer-to-Peer systems are relatively young and still evolving, a precise
definition is hard to establish. Depending on the sources, the focus at aim and the
moment, these definitions have suffered additions or suppressions. At times it has
been intended to find a general enough definition, and this ends up categorizing
systems that do not purely apply to the idea of a Peer-to-Peer system.
What is common to most definitions is the idea that such systems have resource
sharing at aim, they must have certain degree of autonomy and decentralization,
the fact that dynamic IP addresses are usually involved, and last but not least, the
client-and-server dual role of participants, e.g.:
Oram: P2P is a class of applications that takes advantage of resources – storage,
cycles, content, human presence – available at the edges of the Internet. Because
accessing these decentralized resources means operating in an environment of
unstable connectivity and unpredictable IP addresses, P2P nodes must operate
outside the DNS system and have significant or total autonomy from central
servers. [ORA-9] [ORA-10].
Miller: P2P is a network architecture in which each computer has equivalent
capability and responsibility. This is in contrast to the traditional client/server
network architecture, in which one or more computers are dedicated to serving the
others. However, we need more complex definition: P2P has five key
characteristics. (i) The network facilitates real-time transmission of data or
messages between the peers. (ii) Peers can function as both client and server. (iii)
The primary content of the network is provided by the peers. (iv) The network gives
control and autonomy to the peers. (v) The network accommodates peers that are
not always connected and that might not have permanent Internet Protocol (IP)
addresses. [MIL-11].
P2P Working Group: P2P computing is the sharing of computer resources and
services by direct exchange between systems. These resources and services
include the exchange of information, processing cycles, cache storage, and disk
storage for files. Peer-to-peer computing takes advantage of existing desktop
computing power and networking connectivity, allowing economical clients to
leverage their collective power to benefit the entire enterprise. [PTP-12]

1.2.2 Evolution
Peer-to-Peer systems have evolved during the last 6 years or so, since the
introduction of Napster. This has been a hot topic in research since then, and all
through the years the systems have faced changes that depended mostly on two
features: decentralization, guarantee of success and scalability.

 3

1.2.2.1 The Beginning:
Napster offered its users a way to share files with the use of a centralized directory
service, while the storage was decentralized. This centralization brought two
difficulties. First, politically (and legally) it was a problem that most of the material
shared in the network had copyright. The directory server was storing and issuing
information that ultimately led to what were considered illegal downloads. And
second, the technical problems: to start with, the directory server is a single point
of failure; moreover, the system is also difficult to scale, given that the load in the
directory server increases with linear cost relative to the number of participants in
the network.
This central server was the aim of the people who had in mind improving P2P
systems. Gnutella [GNU-7] and Freenet [FRE-2],[FRE-3] came up with ideas
involving flooding systems in networks where one participant only needed to know
about another one peer to start proceedings and gain knowledge of other
participants in the network. Similarly, a participant performs a flooding algorithm by
asking all of his neighbors about a given query. His neighbors act similarly and the
process is stopped by a query embedded Time-To-Live value that prevents further
forwarding of queries, and thus, an ultimate collapse of the network due to
increasing traffic. With this idea the centralization problem was overcome, but it still
remained the issue of scalability which was, if anything, even worse. Some studies
[MAR-13],[RIP-14] showed that high network traffic induced by such flooding
mechanisms imposed serious restrictions to the growth of such systems.
Furthermore, adding a Time-To-Live upper boundary to the path length of a query
raised in Gnutella a new reliability problem: that a resource available in the network
might not be retrievable by certain peers due to the “distance” between the
requester and the node storing the item, or so to call it, the limitation in the scope
of search. Freenet follows a slightly better approach which is the document routing
model through which a data item d is inserted in a node with an identifier that is
most similar to the identifier of d. During search, a query is forwarded guided by the
identifier of the data item. Due to the random nature of the Freenet network,
guarantees on finding items are low. An optimization to the flooding/gossiping
approach was the introduction of the notion of super-peers that was initially
adopted in the Kazaa [KAZ-15] system and later in the Gnutella system as well.
The optimization allows for some nodes to act as directory services and thus
reduces the amount of flooding needed to locate data.
Scalability was obviously becoming a hot issue in such systems, and the next step
in the evolution was to provide a means to conquer that milestone for applications
whose popularity was alarmingly increasing.

1.2.2.2 Structure
With that ambition in mind a new idea crawled into the researchers minds: to
impose a logical structure to the network topology laying within. And thus the
structured Peer-to-Peer systems were born. Their major representatives were
Chord [STO-1],[STO-44], CAN [CAN-16], Pastry [PAS-17] and Tapestry [TAP-18].
More have come later, but this thesis aims at focusing on Chord as a good
paradigm of these systems.
The technology on top of which these projects are based is known as a Distributed
Hash Tables (DHT). A node (Peer) in such systems acquires an identifier based on
a cryptographic hash of some unique attribute such as its IP address. A key for a
data item is also obtained through hashing. The hash table actually stores data
items as values indexed by their corresponding keys. That is, node identifiers and
key-value pairs are both hashed to one identifier space. The nodes are then

 4

connected to each other in a certain predefined topology, e.g. a circular space in
Chord, a d-dimensional Cartesian space in CAN and a mesh in Tapestry and key-
value pairs are stored at nodes according to the given structure. Thanks to the
structured topology, data lookup becomes a routing process with low (typically
logarithmic) routing table size and maximum path length. Unlike the previously
mentioned systems, DHTs provide high data location guarantees because no
restriction on the scope of search is imposed. .
Given the desirable properties of scalability and high guarantees while meeting the
requirements of full decentralization, DHTs are currently considered in research
communities as the most reasonable approach to routing and location in P2P
systems. While having a common principle, each system has some relative
advantages. e.g., The Chord system has the property of simple design. Tapestry
and Pastry address the issue of proximity routing. The most attractive property in
all current DHT systems is self-organization. Due to the focus on the absence of
central authority, DHTs provide mechanisms by which the structural properties of
the network are maintained while the peers are continuously joining and leaving it.
Nevertheless, not only self-organization is at stake. Other “self-“ properties [ALI-19]
play an important role in the fight for achievement of systems that converge to
stability [DIJ-20],[LAS-21] despite of high churn [STU-22] rates.
Periodic stabilization is the system used by Chord, CAN and Pastry. It involves a
number of routines being executed in a periodic fashion to correct the routing
information that each node maintain.
Adaptive stabilization, also called “self-tuning” in [MAH-23] claims that periodic
stabilization consumes too much bandwidth unnecessarily, and is based in the idea
that the observation of the behaviour of the system can yield information about how
best to tune the amount of information delivered from one node to another to keep
routing information up to date with low cost. However, it is not yet clear what
parameters are to be observed to effectively tune the probing rate. More
importantly, how to make these observations is currently not well understood, given
the large scale nature and the high dynamism of the targeted systems. Anyhow,
the research on adaptive stabilization show the importance of building systems that
self-adapt to observed and current behaviors. Correction-on-use combined with
correction-on-change presented in the following paragraphs provide this self-
adaption at a low cost.
Correction-on-use is another proposal to overcome the high bandwidth
consumption employed by periodic stabilization suggested in [ALI-24]. The
technique is basically that the traffic within the network carries information for the
nodes to be stored and learn about the topology and status of the network. Its main
drawback is that only under certain assumptions of high enough traffic the system
is good enough by itself.
Correction-on-change complements correction-on-use by proposing that each time
a node joins, leaves or drops from the network some new routing information has
to be injected into a number of nodes that will propagate the information according
to needs.
The combination of correction-on-change and correction-on-use does not have the
high cost of bandwidth that periodic stabilization shows. If there are no changes in
the network, no extra traffic is added. Furthermore, the use of this combination
adds an extra robustness to the systems that use it that comes from the fact that
when a node joins or fails other nodes are pro-actively notified.

 5

1.2.2.3 Conclusion:
Does all this mean that a “battle” between structured and unstructured systems is
at stake? From what has been exposed, and thinking in pure terms of evolution, it
might seem that DHT systems are superior to the unstructured previously
mentioned. The truth is, as in many technologies before, solutions tend to advance
into the hybrid compromise. This is the main rebate to the classic criticism that has
been placed upon structured systems regarding high churn rates.
However, the second main criticism of structured systems is that they do not
support keyword searches and complex queries as well as unstructured systems.
Given the current file-sharing deployments, keyword searches seem more
important than exact-match key searches in the short term.
Some have justifiably seen unstructured and structured proposals as
complementary, not competing. One proposal is Structella [CAS-25], a hybrid of
Gnutella and Pastry. Their starting point was the observation that unstructured
flooding or random walks are inefficient for data that is not highly replicated across
the P2P network. Structured graphs can find keys efficiently, irrespective of
replication.
Furthermore, unstructured proposals have evolved and incorporated structure.
Consider the classic unstructured system, Gnutella. For scalability, its peers are
either ultrapeers or leaf nodes. This hierarchy is augmented with a query routing
protocol whereby ultrapeers receive a hashed summary of the resource names
available at leaf-nodes. Between ultrapeers, simple query broadcast is still used,
though methods to reduce the query load here have been considered. Secondly,
there are emerging schema based P2P designs, with super-node hierarchies and
structure within documents. These are quite distinct from the structured DHT
proposals.

 6

1.2.3 Taxonomy
From what has been mentioned in the previous subsection, and basically
considering two variables (decentralization and topology), as done in [AND-26] and
[LVQ-27], the following taxonomy (with examples) in Fig. 1.1 IS considered as
suitable for Peer-to-Peer systems.

Fig. 1.1 Taxonomy of Peer-to-Peer systems

This taxonomy captures major differences between P2P systems, and is widely
accepted by the community
The network structure characteristic aims at looking at systems from the topological
perspective. Two levels of structuring are identified: unstructured and structured. In
an unstructured topology, an overlay network is realized with a random connectivity
graph. In a structured topology, the overlay network has a certain predetermined
structure such as a ring or a mesh.
The degree of centralization means to what extent the set of peers depend on one
or more servers to facilitate the interaction between them. Three degrees are
identified: Fully decentralized, Partially decentralized and Hybrid decentralized. In
the fully decentralized case, all peers are of equal functionality and none of them is
important to the network more than any other peer. In the partially decentralized
case, a subset of nodes can play more important roles than others, e.g. by
maintaining more information about their neighbor peers and thus acting as bigger
directories that can improve the performance of a search process. This set of
relatively more important peers can drastically vary in size while the system
remains to be functioning. In the Hybrid Decentralization case, the whole system
depends on one or very few irreplaceable nodes which provide a special
functionality in one aspect such as a directory service. However, all other nodes in
the system, while depending on one special node, are of equal functionality and
they autonomously offer services to one another in a different aspect such as
storage. Thus, a system of that class is a hybrid system that is centralized in one
aspect and decentralized in another aspect.

Peer-to-Peer
systems

Structured

Unstructured

DHT based
(CAN, CHORD,

PASTRY, TAPESTRY)

Partially decentralized
(KAZAA)

Fully decentralized
(GNUTELLA)

Hybrid decentralized
(NAPSTER)

 7

Anyhow, topology structure and degree of decentralization are not the only
parameters that lead to proper classifications of Peer-to-Peer systems. What
follows in Fig. 1.2 is a much more specific and focused taxonomy set of properties
in which aspects such as security or application issues are taken into
consideration. [RIS-28].

Fig. 1.2 Taxonomy properties and associated literature

 8

Nevertheless, the taxonomy in Fig. 1.1 has more widespread acceptation and is
thereafter more convenient and simple for this thesis’ purposes than those that
want to take into consideration aspects that have in mind a more pragmatic view of
the use in which the P2P systems are going to be put.

1.2.4 Trends
Distributed Hash Tables are a cornerstone of state-of-the-art Peer-to-Peer
systems. They mean a remarkable advance in solving the issue of scalability and
decentralization, with the added value of determinism and high guarantees.
However, this has opened a whole set of new questions that need to be
addressed. What follows is a summary of those issues, from [SEA-8]. Quoting:

Lack of a Common Framework Research in DHT systems has been addressed
by different research groups. The result was the emergence of systems that are
very similar in basic principles. Nevertheless, there is no common framework that
allows the common understanding and reasoning about those systems.
Locality Though accounted for in systems like Pastry and Tapestry, locality
remains to be an open research issue. Additionally, the loss of locality due to
hashing is not always considered a disadvantage. The Oceanstore system [OCS-4]
which depends on Tapestry for location and routing, considers loss of locality
favorable because replicas of items would be stored at physically apart nodes
which renders a system resistant to denial of service attacks.
Cost of Maintaining the Structure Most of the current DHTs depend on the
periodic checking and correction (stabilization) for the maintenance of the structure
which is crucial to the performance properties of those systems. This periodic
activity costs a high number of messages and sometimes unnecessarily in the
case of checking stable sections of a routing table. The awareness about this
problem motivated research such as e.g., [MAH-23] where a network tries to “self-
tune” the rate at which it performs periodic stabilization.
Complex Queries DHTs assume that for each item, there is a unique key and to
retrieve the item one must know the key. That is, one can not search for items
matching a certain criteria like a keyword or a regular-expression-specified query.
The feasibility of the task is questionable [JLI-29]. Some approaches include the
insertion of indices [HAR-30] for general queries or using some geometrical
constructs that make use of the DHT structure such as space-filling curves [AND-
31]. Another approach is to let the hashing be based on keywords or semantic
information and not on unique keys [SCH-32].
Heterogeneity While all DHT systems aim at letting all nodes have equal duties
and responsibilities, the heterogeneity in physical connectivity makes them
unequal. Consequently, nodes with higher latencies constitute bottlenecks for the
operation of structured P2P systems. Two approaches were suggested to cope
with those problems: i) Cloning: The more powerful nodes are cloned so they can
act as multiple nodes and receive higher percentage of the uniformly distributed
traffic [DAB-33] ii) Clustering: Nodes of similar latency behavior are clustered
together [ZXU-34].
Group Communication Since structured P2P systems offer graphs of known
topologies to connect peers, it is natural to start exploiting the structural properties
in group communication. The main focus in P2P Group communication is on
multicasting. Extensions like [STO-35], [RAT-36], [CAS-37] aim at providing
multicast layers to existing DHT systems. Publish-subscribe communication [TAN-

 9

38] is also another form of group communication that was researched in P2P
systems [BAE-39].
Grid Integration P2P and the Grid are two fields that share key properties such as
being large scale distributed systems and the goal of sharing networked resources.
The properties of scalability and self organization provided by recent P2P
infrastructures are interesting properties for Grid applications. Actually, both
research communities are starting to merge, we can observe that from conferences
like the International Conference on Peer-To-Peer Computing [IIC-40] and the
International Conference on Cluster Computing and the Grid (CCGRID) [ISC-41].
Additionally, the P2P working group [PTP-12] and The Global Grid Forum [GGF-
42], two respective standardization efforts, started to merge their efforts [ROG-43].

1.3 Contribution
The contribution of the research contained in this master thesis to the area of
distributed systems — focused on Chord — can be summarized as:

• description of the Chord protocol
• design and implementation of a simulator in Java
• design and implementation of a Chord node in Java
• design of the scenarios that are representative to take measurements
• generation of the data that the experiments need as input for these

scenarios
• execution of Chord with these experiments in the simulator in order to

review its behavior
• data gathering and representation
• study of data and results interpretation
• validation of the data found in the paper by Ion Stoica et al. [STO-1]

The following chapters in this report include a survey about Peer-to-Peer systems
and more specifically, structured P2P systems (ch. 2) followed by some Chord
basic principles and internals (ch. 3), a description of the programming that took
place before field work (ch. 4) and the description of the experiments that were
conducted (ch. 5). Finally, the results are presented (ch. 6) and the future work and
overall conclusions stated (ch. 7 & 8). Appendixes can be found at the end of the
document (ch. 9), including a glossary, a short user manual of the simulator, the
javadoc of the software and references.

 10

 11

2 The Chord Protocol

This chapter presents the mathematic concepts on top of which Chord is
sustained, as well as the design of inner data structures and functionalities of the
protocol. Most of this is based on the paper by Ion Stoica et al. [STO-1]
as well as in their technical report [STO-44]; a more detailed and technical
explanation of how the protocol behaves can be found there. What follows is an
excerpt of such text, in order to provide some insight on the general ways in which
the protocol works and why. Some examples are provided here to make certain
aspects more clear, and certain additions that provide better performance are
included too.

2.1 Introductory concepts:
There are two mathematical concepts that are basic for the understanding of
Chord’s behavior: hash functions and modular arithmetic. What follows is a
short introduction on them.
As a starting point, and to simplify calculations, we define the maximum size of any
network that we want to build or study to be N = 2m. This means that this size is
power of two. The relevancy of this m value will be uncovered later on.
SHA-1 is the hash function that Chord —as described in [STO-1]— uses, but it
worth noting that the protocol is not tied to any particular one.

2.1.1 Hash functions
Each node belonging to the network is assigned a number through the use of a
hash function. Each item that is going to be made available (searchable, or
retrievable) has such a numeric association too.
Hash functions usually convert an input from a (typically) large domain into an
output in a (typically) smaller range.
The domain can be any number, or any data that can be represented in a numeric
way. In the case of the IDs of nodes belonging to a Chord network, the IP address,
or the <IP,port> pair are good candidates as such input, and thus serve as a value
from the domain in the hash function. In the case of items or resources to be
shared in the network, the name of a file or resource, or even their contents can
also be represented in a numeric way, making its hashing possible.
The reason why hashing is used resides in the fact that these functions randomize
and disperse values.
• Randomization: given a value X from the domain, hash(X) will be a value from

the range of the function with a certain degree of randomness. This only means
that small values of X will not necessarily mean small (nor specifically big
either) values of hash(X).

• Dispersion: given two similar or close values of the domain, X and Y, there is
high probability that hash(X) and hash(Y) will be distant one from each other.

Hence, two nodes with similar <IP,port> values (belonging to a certain LAN/WAN,
other factors like geographical proximity, or simply resembling values) will end up
having very different numeric values after being applied a hash function. The same
holds for resources with similar contents previous to hashing.
More information about hashing properties that apply to our needs can be found in
the article about hash functions [CAR-45], a standard about secure hash [FIP-46],
the paper by David R. Karger et al. on consistent hashing [KAR-47] and D. Lewin’s
master thesis about the same issue [LEW-48].

 12

2.1.2 Modular arithmetic
Chord is a protocol whose behavior is based entirely on the topology that the
network forms. Modular arithmetic is the cornerstone upon which this topology lies.
As a result of the transformation mentioned in the previous section, the numeric
representation of both nodes and items will belong to a certain range of numbers
[0,X). This numbers will be operated in a modulo arithmetic (see glossary), which
means, in "modulo p": 0+1=1, 1+1=2, (p-1)+1=p=0, p+1=1, and so on; Fig. 2.1
shows an example, in "modulo 3":

Fig. 2.1 Example of numeric equivalences in “modulo 3”

As it will be seen later, certain operations of the Chord protocol need to perform
additions to the identifiers of nodes and items, and those additions will be done
following the rules stated above.

2.2 Network topology
Following the last section’s contents, Chord’s behavior is defined in terms of the
way that nodes organize themselves, the so called topology of the network. What
follows is a description of this topology in two stages.

2.2.1 Basic layout
The two main actors in Chord are nodes and items.
Nodes belonging to the Chord network will be referred to as node or its identifier id,
and shared items as documents or keys. Any of those is a number belonging to the
range [0,2m).
Each node in the network will be responsible for a set of keys. Unlike most other
common P2P applications assume, a Chord node is not automatically responsible
for the keys it wants to share in the network. When a node shares an item, this
item’s key will be inserted in the network and will be assigned as a responsibility to
(probably) another node.
Now, this is how nodes and documents organize themselves with respect to each
other: identifiers are ordered in a modulo 2m ring. Key k is assigned to the first
node whose identifier is equal to or follows (the identifier of) k in the identifier
space, regardless of which node was originally the owner of the file (or resource)
that generated this key. This node is called the successor node of key k, denoted
by successor(k). If identifiers are represented as a circle of numbers from 0 to 2m-
1, then successor(k) is the first node whose assigned identifier is k or, in the
absence of this, the first node found clockwise from k in the ring. In the remainder
of this thesis, I will also refer to this circle of identifiers as the Chord ring.
Fig. 2.2(a) below illustrates a Chord ring with 10 nodes. Fig. 2.2(b) shows node 14
requesting the insertion of document 24. When inserted, document 24 becomes
responsibility of node 32, which is the present successor of key 24, as shown in
Fig. 2.2(c).

0 (modulo 3) = 0
1 (modulo 3) = 1
2 (modulo 3) = 2
3 (modulo 3) = 0
4 (modulo 3) = 1
5 (modulo 3) = 2
6 (modulo 3) = 0
7 (modulo 3) = 1
etc...

 13

Fig. 2.2 Assignment of responsibilities:
a) Chord ring with 10 nodes b) node 14 inserts key 24 c) node 32 is responsible of key 24

Then again, the basic topology is that every node knows its successor, forming the
Chord ring. What follows is an example of a Chord ring with m=6. Every identifier
(or key) in the network would be a number 0<=X<=26, so 0<=X<64, or X∈[0,64).
The Chord ring in this scenario could accommodate a maximum of N=2m=64
nodes, each one of them with an identifier X∈[0,64). As a clarification, if such a
network existed, each one of those nodes would be responsible for one key at
maximum, the key being equal to its node identifier, according to what was
illustrated in Fig. 2.2.
This example has 10 nodes, with identifiers: 1, 8, 14, 21, 32, 38, 42, 48, 51 and 56,
as in the previous example. Some of the nodes are responsible for a set of keys
present in the network. We could say that keys (or documents) 10, 24, 30, 38 and
54 are in the network, available for any peer to be retrieved. And each one of those
documents is held by its responsible node. As explained before, a node with
identifier id is responsible for document d if id=successor(d). This whole setup
would be enough to provide lookup search capabilities with linear cost (the average
number of hops necessary to locate a key would be O(N)). Fig. 2.3(b) shows the
pseudocode for a lookup operation in RPC [WIK-61] format, and Fig. 2.3(c) shows
a graphical description of its behavior when node 8 requests document 54, on the
ring previously described and showed in figure Fig. 2.3(a)

Fig. 2.3 Example of lookup in its simplest form: linear forwarding around the ring
a) the Chord ring b)pseudocode for lookup c) forwarding of the request

INSERT (doc 24)

N14

N1

N8

N21

N32
N38

N42

N48

N51

N56

N14

N1

N8

N21

N32
N38

N42

N48

N51

N56

doc 24

N14

N1

N8

N21

N32
N38

N42

N48

N51

N56

//Node n asks to find successor of id
n.findSuccessor(id){
 if (id ∈ (n,successor])
 return successor;
 else
 //forward the query around the circle
 return successor.findSuccessor(id);
}

K54

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56
K10

K24
K30 K38

final reply

forwarding

K54

N1

N8

N14

N21

N32
N38

N42

N48
N51

N56

lookup(54)

 14

2.2.2 Further data structures
As mentioned above, this is enough if what we want is to provide lookup search
capabilities, and we are content with linear cost, O(N).
In order to achieve the goals of the protocol (improved efficiency, performance and
scalability, fault tolerance, etc), further data structures are required.
Each node has the following data regarding other nodes in the network:
• A fingers table with m entries. m refers to the number of bits that limit the

identifier space. Each given entry i in the finger table holds, 0<=i<m the
identifier of successor(id+2i). This structure offers lookup performance
improvement. Note that fingers[0] holds successor of (id+1), which means THE
successor, or said in other words, the next node found clockwise in the Chord
ring; so the variable successor introduced in the last subsection is not needed
anymore, as its equivalent is now part of the finger table. This structure is the
one that will ensure that lookups will be performed with cost O(log2N), given
that the Chord ring has identifiers belonging to [0,2m), and the size of the
network is at most N = 2m. Fig. 2.4 shows a couple of examples of the finger
tables of nodes 14 and 38, for the network shown in Fig. 2.3. Given that this
network had an identifier space limited by m=6, the finger tables have 6 entries:

Fig. 2.4 Finger tables for nodes 14 and 38

• The predecessor. p=predecessor(n) means that n=successor(p). Expressed in

the same terms as used for the successor definition, given that the identifiers
are represented in a circle of numbers from 0 to 2m-1, the predecessor of n is
the first node found counter-clockwise from n in the Chord ring. This is
necessary for internal management of the topology as the network changes
(nodes joining and leaving).

• A successors list. This is a list of the next nodes found clockwise. As will be
explained later, the longer this list is, the more tolerant to simultaneous failures
of nodes is the network. The successors list will be named “sList” when
referenced in the pseudocode that appears in following sections.

• A referrers list. This is a list of the nodes that are pointing to the node from any
of their fingers. They are useful in the event of a node leaving the network.
When a node will leave, it will let all the referrers know, so each referrer will be
able to substitute the finger for an appropriate node (which is always the
successor of the leaving node). This is an improvement to what is documented
by Ion Stoica et al. in their paper [STO-1].

Finger table for Node 14:
finger
level

aim
NodeID+2level

successor
of aim

0 14+20 14+1 15 21
1 14+21 14+2 16 21
2 14+22 14+4 18 21
3 14+23 14+8 22 32
4 14+24 14+16 30 32
5 14+25 14+32 48 48

Finger table for Node 38:
finger
level

aim
NodeId+2level

successor
of aim

0 38+20 38+1 39 42
1 38+21 38+2 40 42
2 38+22 38+4 42 42
3 38+23 38+8 46 48
4 38+24 38+16 54 56
5 38+25 38+32 68 8

Note that successor of 68 is 8.
68 modulo 26 = 4. The successor of 4 is 8.

 15

2.3 Operations in Chord
This section contains information about significant parts of the code that the
protocol uses to achieve its goals. Certain routines are called periodically. The way
this has been implemented is by making calls to a “schedule” function which takes
care of calling the argument in a future time, e.g.: schedule(foo) will make foo() to
be called in a future. If the last thing that foo() does is to call schedule(foo), this will
result in foo() being called periodically.

2.3.1 Join
When a node joins the network, its successor and predecessor are set to none
(null).
The first thing a node X does when being inserted is to request to any node Y
present in the network who X’s successor is. When X receives a reply, it stores its
successor’s id.
The stabilization and fixFingers routines are called for the first time, and will be
executed periodically. This will ensure that the predecessor, the fingers, as well as
the successors list (sList) and the referrers list stay up to date. Fig. 2.5 shows the
most significant part of the pseudocode involved in the creation of a Chord ring
with the first node and the join operation.

Fig. 2.5 Pseudocode involved in the creation of a Chord ring and insertion of nodes

Further details concerning keys should be taken into consideration too. Given that
consistent hashing provides the network with the ability to let nodes enter and
leave it with minimal disruption, when a node n enters the network certain keys
previously assigned as a responsibility to n’s successor now should become
assigned to n, e.g.: if node 32 is responsible for keys 15, 18 and 30, and now node
20 joins the network, it follows that keys 15 and 18 will be now responsibility of the
recently joined node. These operations have been included in the final
implementation as part of the stabilization procedures.

2.3.2 Lookup
The lookup operation is the heart and core of the protocol: it is what justifies its
design. Its performance and reliability stem from the data structures that a node
holds and maintains.
Let us assume a node with identifier n is interested in locating key id: if id lies
between n and n’s successor in the identifier circle, the result of the operation is n’s
successor.
Otherwise, the lookup request is forwarded to the closest preceding node in the
network that n knows about by inspecting the fingers table. This way, by forwarding
petitions, the lookup operation will make steps closer and closer clockwise in the
identifier circle to reach its destination. Note that at each forwarding step, the
forwarder node goes as far away in the identifier circle as its data allows to, and
that fact is the one that will ultimately justify the O(log2N) cost. Later in the analysis
of results section it will be justified that the cost is about 1/2(log2N) in average.

//n joins a Chord ring containing node c
n.join(c){
 predecessor := nil;
 successor := c.findSuccessor(n);
 schedule(stabilize);
 schedule(fixFingers);
}

//create a new Chord ring
n.create(){
 predecessor := nil;
 successor := n;
 schedule(stabilize);
 schedule(fixFingers);
}

 16

When the successors list structure is used, it does not only provide robustness in
the event of node failures, but also gives a slight performance improvement. When
looking for the closest preceding node to forward a lookup request, this structure
can be inspected too in order to save some of the last forwarding hops. What
follows in Fig. 2.6 is the pseudocode for the find_successor routine — which is
what a lookup query is mostly about—, and the closest_preceding_node routine,
used by the former one to locate the best forwarding candidate among the fingers
table; at this stage, the use of the successors list is obviated for simplicity reasons.
Fig. 2.7 shows an example of a lookup query for the same key illustrated in Fig.
2.3, but with the advantage of using the fingers table this time (the hops are larger):

Fig. 2.6 Pseudocode of the routines involved in the most critical operation: the lookup

Fig. 2.7 Example of a lookup request: node 8 asks for key 54

2.3.3 Stabilization
The network is kept stable (or converges to a stable network) by means of two
operations: stabilize and fixFingers.
• The stabilize operation: It ensures that successor and predecessor pointers

are kept up to date. The successor is updated when a new node has been
inserted in the identifier circle between the node running the stabilization routine
and its successor —this is done by asking for the successor’s predecessor.
Next thing the routine does is requesting the successors list of its successor,
and then build its own by removing the last item and prefixing the successor as
first item. Then, the routine lets its successor know about its existence, by
calling the notify procedure. When a node receives a notify call, it checks from
which node it comes, and updates the predecessor pointer if necessary after
having checked out that the node who claims to be the predecessor is a better
candidate than the existing predecessor. The last thing done in the stabilize
operation is to re-schedule itself to guarantee a periodical execution of the call.
What follows is a figure with the pseudocode involved in the stabilization
procedures:

//ask node n to find the successor of id
n.find_successor(id){
 if (id ∈ (n,successor])
 return successor;
 else
 c = closest_preceding_node(id);
 return c.find_successor(id);
}

//search the finger table for the
//highest predecessor of id
n.closest_preceding_node(id){
 for i = m downto 1
 if(finger[i] ∈ (n,id))
 return finger[i];
 return n;
 //the successors list can be searched too
 //for the most appropriate candidate
}

K54

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56
K10

K24
K30K38

final reply

forwarding

K54

N1

N8

N14

N21

N32
N38

N42

N48
N51

N56

lookup(54)

 17

Fig. 2.8 Pseudocode of stabilize and notify: these operations ensure that successor and
predecessor pointers are kept up to date.

These ultimately ensure correct answers to requests.

• The fixFingers operation: It updates one entry of the finger table at a time,

scheduling the next update for a later round of finger table correction, which
happens periodically. It basically consists of making a call to find_successor,
and looking for the best fit existing node in the network for the position of the
finger table that is being corrected. If the reply to the find_successor call is the
same as the content of the fingers table, no correction is needed; when
corrections are made the referrers list of both the old finger and the new finger
are updated consequently. What follows in Fig. 2.9 is the pseudocode of the
fixFingers routine:

Fig. 2.9 Pseudocode for the fixFingers operation: this ensures that lookup requests are kept

efficient

2.3.4 Failure
Given that one of Chord’s desired strengths is robustness, the nodes need to have
a way to learn about other nodes disappearing from the network —which is
denoted as a node failure in this thesis—, regardless of whether this absence is
voluntary or not. The way that nodes know about this is with negative
acknowledgement. A node sends periodically a message to its predecessor to
see if it is alive. If the sending node does not receive a reply —within a certain
timeout—, it means that the receiver is not in the network anymore.

Fig. 2.10 Pseudocode for the verification of the network robustness

//called periodically, verifies n’s immediate
//successor, and tells the successor about n
n.stabilize(){
 x = successor.predecessor;
 if (x ∈ (n,successor))
 successor = x;
 sList = Shift(successor.sList);
 successor.notify(n);
 schedule(stabilize);
}

//p claims it might be n’s predecessor
n.notify(p){
 if (predecessor == nil OR p ∈ (predecessor,n))
 predecessor = p;
}

//called periodically, refreshes finger table entries
//next stores the index of the next finger to fix
n.fixFingers(){
 next = next + 1;
 if (next > m)
 next = ⎣log2(successor-n)⎦ + 1; //first non-trivial finger
 aux = find_successor(n + 2next-1);
 if (aux != finger[next])
 finger[next].removeFromReferrerList(n);
 finger[next] = aux;
 finger[next].addToReferrerList(n);
 schedule(fixFingers);
}

//called periodically, checks whether predecessor has failed
n.check_predecessor(){
 if (hasFailed(predecessor))
 predecessor = nil;
}

 18

The worst case is when a node just drops from the network or disappears without
making other nodes in the network notice. In order to make it possible for the
network to maintain its invariants of robustness and performance, a node checks
periodically for the presence of its predecessor. If the predecessor is not present
anymore, the predecessor pointer is set to none (null), and the stabilization routine
will make the rest of the job, because nodes send a notify call to their successors
periodically. This is when the successors list comes in useful. Fig. 2.11 illustrates
the example using the same ring, and focusing on nodes 21, 32 and 38.

Fig. 2.11 Example of network reorganization: node 32 drops; nodes 21 and 38 are corrected
a) detail of nodes 21, 32, 38 b) nodes 32 fails, and drops c) the chord ring is corrected

If node 32 fails and drops from the network (Fig. 2.11(b)), the next time that 38
checks its predecessor it will realize that 32 is no more in the network. 38 will set its
predecessor to null. And also, next time that 21 runs the stabilize routine, it will ask
32 about its predecessor, and 32 will not reply; hence, 21 will understand that 32 is
not in the network anymore. Being it so, node 21 will remove 32 from the
successors list and the finger table (remember that the first entry of the finger table
is the successor). Instead, the next successor it knows about will be used. Say, for
example, that every node in the network has a successors list of size 3. This
means that each node knows about the 3 next nodes found clockwise counting
from their own identifier. Thus, node 21 had this successors list before 32’s failure:
{32, 38, 42}. As node 32 has disappeared, the next successor that 21 knows about
is 38. 32 is then removed from the finger table and the successors list. Now,
stabilize will be called again, and 21 will contact 38, asking about its predecessor.
38 will reply that its predecessor is null now, because its former predecessor has
failed. This results in 21 not changing its successor (it has already been updated to
38 when 21 noticed that 32 failed). Next thing 21 does is notifying 38, claiming that
it may be a proper predecessor for node 38. When 38 receives a notify from 21 it
checks its predecessor; it being null now, node 38 will take 21 as its new
predecessor (Fig. 2.11 (c)). Ion Stoica et al. prove in [STO-1] that a successors list
with size r = Ω(log2 N) is enough to make it possible for a network in which nodes
fail with probability 1/2 to keep on offering both efficiency and performance “with
high probability”. The phrase "with high probability" is justified too in the paper
[STO-1] with arguments based on the randomness provided by hash functions, and
used all along the discussion of robustness.

Predecessor

Successor

K54

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56
K10

K24
K30 K38

K54

N1

N8

N14

N21

N38

N42

N48

N51

N56
K10

K38

K54

N1

N8

N14

N21

N38

N42

N48

N51

N56
K10

K38

 19

As said before, more comments about the choice of SHA-1 (or any other hash
function, for that matter) follow. I will illustrate this with two examples of a malicious
attack and an accident. These examples, though not representative of the potential
Chord’s weaknesses, are devised just to clarify the importance of the successors
list structure for robustness issues.

Malicious attack: let us set the scenario in which an adversary wants to break the
Chord ring, and they have the power to take down a set of computers at will. How
many nodes, and which ones, should they choose for their attack to result in a
destabilization of the network?
• How many: at least the size of the successors list.
• And which ones? Any set of nodes present in the Chord network whose Chord

identifiers formed a successor chain. Note the fact that these identifiers are the
result of applying the SHA-1 function to some original data related to the node,
e.g. the <IP,port> pair.

In short: a list of N consecutive nodes, being N bigger than the successors list.
Why? Because the strength of Chord in the event of failures resides in the
successors list structure.
Now, how difficult would it be for this malicious attacker to do that? Even in the
event of this malicious attacker being able to "disconnect" a certain amount of
nodes, chances are that they could not choose which nodes to disconnect at will.
The most an attacker could do is disconnect, somehow, certain LANs or sub-
networks. And even if they could choose individual nodes, the fact that Chord
identifiers are the result of a hash function makes it fairly difficult for an attacker to
know which IPs are the owners of the IDs that they would like to disconnect, and
even more if these IPs are combined with a port number or some other identifying
character that might be unknown to the adversary. This is because hash functions
are not mathematically reversible. The most the adversary could do would be to
map massive amounts of values from the domain to their result after being applied
the hash function and try to take advantage of that — what is commonly known as
a dictionary attack. It is, in general terms, a hard problem for the adversary to
solve.

Accident: Let us consider the event of an accident happening in a certain
geographical area. This accident implies that a set of computers that were running
Chord at that time suddenly become disconnected. How does this affect the Chord
network as a whole? Well, let us assume that all these nodes might have (or
maybe not) similar IPs, and they are a significant percentage of the nodes forming
the whole Chord network. Again, the strength of Chord relies both in the
successors list structure (which is, remember, a chain of successive id values of
the nodes present in the network) and the hash function used to create those ids.
In most cases the dispersion achieved by the hash function ensures that nodes
with similar IPs (belonging to certain sub-networks, or having the same network
prefixes) will end up —most probably— having very distant Chord identifiers. This
makes it unlikely that when the whole set gets disconnected the whole Chord
network becomes utterly destabilized. The network will likely be underperforming
during the time span before it self-stabilizes again. But it will not stop working,
unless the percentage of nodes that fail is too big. Again, the bigger the size of the
successors list, the bigger the set of failed nodes needs to be in order to
destabilize the network beyond recovery. If instead of a chosen set of nodes those
were random nodes failing, the same argument applies. Randomness and
dispersion are qualities that ultimately provide robustness to Chord.

 20

2.3.5 Leave
Regard that given Chord’s robustness in the eventuality of failures, a node
voluntarily leaving the network can be treated as a node failure, without real need
to warn other nodes about it. However, performance can be improved through
slight additions.
• A node leaving the network tells its successor about it. The successor takes

advantage of knowing who its predecessor will be from that moment on. Also,
the node can send to its successor the set of resources of which it was
responsible upon departure, and that will be assigned to the successor. This
means that the successor needs not wait for the stabilization routine in order to
fix the predecessor pointer, and also increases the positive responsiveness of
nodes when being asked about keys (documents) that were present in the
network and that might have disappeared if the departing node had not passed
them on.

• A node leaving the network tells its predecessor about it. The node sends along
its successors list, and the predecessor will use it from then on. This implies
that the predecessor knows who its successor is at once, and does not need to
wait for the stabilization routine to fix it.

• Every node X knows which other nodes in the network (a,b,c...) are referring to
it. When node X leaves, it sends a message to each one of the nodes referring
to it in the finger tables (a,b,c...) so that these nodes can substitute the
reference to X for a better one. The substitute of X in nodes a,b,c... will be
successor(X), which is a value that X will send to these nodes in the same
message that lets them know that X is leaving.

2.3.6 Insert
Of course, any node belonging to the Chord network can share a new resource
and make it available. The way the protocol works is, when a node n inserts a key
k, it is responsibility of the node with id = successor(k) to maintain k, until
departure.
Again, certain discussions about how an adversary could destabilize the network
arise. Given a certain hash function, an adversary could choose a set of colliding
keys to be inserted in the network, those that map to a single hash bucket, and
thus make the network unbalanced, tearing apart fairness and dispersion
arguments. The discussion is closed in the paper by Ion Stoica et al. [STO-1]
claiming that “we expect that a non-adversarial set of keys can be analyzed as if it
were random. Using this assumption, we state many of our results below as ‘high
probability’ results”.
Anyway, despite the fact that none of the experiments that were performed for the
evaluation of the protocol included the insertion of keys in the network (and
therefore, the assignment of the responsibility for the key to the successor node of
that key), these features were included in the implementation. As a result, both the
traffic generator and the Chord implementation that will be described in the next
section take into consideration the possibility to add keys to the store, and act
according to this. However, even if keys were inserted in the node’s store, the
lookup queries do not check the contents of the store before replying as the node
implementation stands now, and further improvements like resource redundancy
and replication should be taken into consideration for full effectiveness and
efficiency of such features.

 21

3 Objectives, Tools and Methodology

This chapter describes the objectives of the study as well as the work that took
place to achieve those goals.

3.1 Objectives
The goal of this project is to provide a case study of Chord by means of measuring
its behavior under three sets of conditions.
To do this, a simulator and certain other pieces of software were developed to
provide the framework in which the experiments were conducted.
What follows is a description of this software and the tools that were used in order
to achieve these goals.
Moreover, certain design decisions were taken, and some implementation details
are significant enough to deserve being mentioned.

3.2 Equipment

3.2.1 Hardware
The only necessary hardware equipment for the consecution of this work was a
desktop workstation. A standard white box PC with 512 Mb of RAM and a AMD
Sempron 2400+ CPU was used. No big computation power was needed, although
certain simulations took several hours to complete.

3.2.2 Software
The following software packages were used:
• MS Windows XP Professional with SP1
• cygwin (for GCC use)
• Linux: Debian Sarge Distribution with 2.6.9 kernel
• Borland JBuilder X
• Sun Microsystems JDK 1.5.0.02
• XML Spy
• Rational Rose 2000
• GNU Plot
• text editors
• traffic generator (based on original work by Ion Stoica at Berkeley)
• simulator (based on original work by Peep Kungas at SICS)

 22

3.3 The traffic generator

3.3.1 The original traffic generator
The traffic generator is a tool by Ion Stoica, published in a BSD-style, 2-clause
license.
In its original form, the traffic generator is a piece of software programmed in “C”
that, being fed an input of instructions, generates a text output with events that can
be executed by the simulator.
It only compiles with the GNU toolchain, so in order to take advantage of its
existence, and instead of programming a brand new traffic generator, there were
three alternatives that I could easily handle in order to work comfortably with it:
• Boot Linux every time changes in the code were needed or when the generator

was to be used (drawbacks: time cost, changing platform every now and then)
• Connect to a remote machine in which I could compile and execute the traffic

generator (drawbacks: time and connectivity)
• Install cygwin in the local machine under Windows. (drawback: disk space,

affordable). This was the chosen one, given that Windows was the default work
environment.

At the end, it was not necessary to make changes to the code often, but the issue
of execution was still there, and the solution proved good anyway.
This is the way the traffic generator works:
The input file must contain lines with three different commands: events, wait or
exit
1) events num avg wjoin wleave wfail winsert wfind
This command generates join, leave, fail, insert document and find document
events
• num - represents the total number of events to be generated for this line

command
• avg - represents the average distance in time ticks between two consecutive

events; this distance is randomly distributed
• wjoin, wleave, wfail, winsert, wfind - represent weights associated to each

event type; an event of a certain type is generated with a probability
proportional to its weight

2) wait time
This command generates an event that inserts a pause in the simulation (usually
this command is used to wait for network stabilization)
• time – the number of time ticks to be idle

3) exit
Generates an event to end simulation

When fed with a file that complies with the specification above, the traffic generator
returns through stdout the list of events sorted by time; stdout can easily be
redirected to a file, and this file can be used later for simulation purposes.

 23

3.3.2 Changes to the original traffic generator
The traffic generator was modified in order to make it possible that the program
accepts an additional parameter to provide in a command line argument the
number of bits m. This m parameter defines the identifier space [0,2m), and the
modulo under which the operations within the networks generated are applied. This
modification lets the program take m as a command line parameter rather than
feeding this number into a header file. By doing so, recompiling the program every
time this number m changes is not needed, as it was in the original tool.

3.4 The simulator
The simulator on which the design was inspired was originally developed by Peep
Kungas and adapted with help of Sameh El-Ansary. It was programmed in Oz.
After a period of tests and development, I programmed a new one in Java with
similar structure. The core of the simulator is, to put it simply, a procedure that
counts time ticks, traverses every single node of the network at each tick, and
inspects whether the node has pending events to be executed at the current time.
If so, those events are executed. Events are modeled as text messages passed
from one node to another. When a node receives a message, it executes the
routine associated with the message. The actual implementation of the RPC (see
glossary and [WIK-61] for a definition) model shown in the various examples of
pseudocode seen so far in this thesis is message passing (see glossary, [WIK-62]
and [NAP-63]).
The following sections describe different aspects of the simulator, and how it fulfills
its specification.

3.4.1 Architecture
The package as a whole goes beyond this basic description, and further data
structures are used. Fig. 3.1 shows an UML-like diagram of the classes that form
the system with their "use" and "inherits" relationships:

Fig. 3.1 The simulator: UML diagram of classes

 24

What follows is a short description of the most important features of these classes:

• The simulator class is the one that holds the main routine.

o Before the simulation starts: Shows on the standard output (stdout) the
time at which the simulation starts, creates the params object, the
controller object, and initializes the commChannelsManager

o Triggers the start of the simulation on the controller
o After the simulation has finished: Shows on the standard output (stdout)

the time at which the simulation has finished, and closes the
commChannelsManager (thus closing each one of the commChannel
objects that were opened)

• The params class is an specialization of the parametersManager class. This is
an interface that provides easy access to constant like parameters that can be
introduced in a XML file. The simulator object instantiates one object of class
params that is then passed to the controller as a parameter, and from there it
can be used by any of the other components of the program. While
parametersManager takes care of parsing the XML file and providing a
general interface to access the values stored in the XML file, params gives
more specific type oriented access retrieving methods.

• InputStreamHandler is a class downloaded from a website [HAC-49] that I use
for stdin & stderr redirect purposes. When using Runtime.getRuntime.exec() to
execute an external command (that is the way I use the traffic generator within
the simulator, and have them integrated) the input and error streams do not
behave cleanly, and this class helps dealing with those streams.

• commChannelsManager is the class that initializes and provides clean and
transparent access to all commChannel objects by means of a common write
operation. When a commChannelsManager object is created, a number of
commChannel objects is instantiated. The classes that inherit from
commChannel provide methods to easily log information in various ways. Each
one of these channels is created depending on the values found in the XML
parameters file previously introduced, accessed through the params object.
Each one of these communication channels can be declared in the XML file and
remain so, but without being really used. The XML entries of type channel have
an attribute that can have values on or off. What follows is a brief description of
each one of these communication channels. Note that more channels can
easily be designed and incorporated in the system; the foundations for that are
already laid.
o file communication channels store information into a file whose name can

be specified in XML. A user can create as many file commChannels as
needed for different log purposes, i.e.: log all the messages that nodes
send to their predecessor

o progressMon provides the user with a progress bar to supervise the
evolution of the simulation, both in ‘time ticks’ and ‘completed percentage’
(it does not make sense to have more than one of these in a simulation)

o screen communication channels are pretty much the same as file
communication channels, with the difference that they are directly shown in
a text window as the simulation progresses. When the simulation is
complete, the window provides an interface to save its contents into a file

o stat is a channel specifically designed to manage statistical data retrieved
during the simulations and generate plots with these data

o std is a channel designed just to let the user set on or off the standard
output (stdout) for an execution of the simulation. Setting it off or

 25

redirecting it to a certain file makes it easy for the user to execute a
number of simulations concurrently without bothering about the verbosity of
the simulator.

• message is the class that models the messages passed from node to node. A
message is basically a command plus a number of parameters. All of them are
text based, although they can be later parsed as numeric. These messages can
be executed in the nodes upon arrival and depending on the timing of their
schedule. This is the implementation of the message passing model that is
effective in the simulator instead of the RPCs shown in the pseudocode.

• The nodes that form the network whose behaviour is simulated follow this
hierarchy:
o timedNode is the topmost node generalization. It takes care of all the

timing issues such as ordering the execution of the events of messages
that are scheduled for the “now” time moment, and scheduling the
execution of messages arrived for a certain future time. One of its inner
structures is a queue of events that is filled and emptied as the simulation
evolves

o distributedNode inherits from timedNode and it satisfies mainly two
purposes: it provides the necessary interfaces to pass messages from one
node to another and it effectively implements the execution of messages. It
also takes care of the necessary methods that simulate the failure of a
message delivery (due to the absence of the receiver node in the network,
for example)

o chordNode inherits from distributedNode and it implements all the
characteristics of a real node belonging to the Chord network. It includes
the data structures described in the previous chapter as well as the
interfaces to execute the commands sent by messages.

• The controller is the core class of the simulator. For a start, it gives access to
the communication channels and the params structure to all the other
components of the system that need access to it. For example, the chordNode
needs access to both of them, and the commChannelsManager needs access
to params. The controller’s main features are explained with more depth in the
next section.

3.4.2 Internals
All these components that have been mentioned so far fulfill their purpose when
they are used as follows:
The first thing the simulator does is loading the XML file that contains the execution
parameters through the params class.
According to these, a number of communication channels are opened with the
commChannelsManager.
These two structures are made available to all those components that might need
them by means of the core of the application, the controller class.
After that, and according to one of the parameters found in params, the simulator
might generate traffic making an external call to the traffic generator. Otherwise,
the simulator assumes that there is a file with the instructions as to what traffic is to
be used. The name of the file has to be present in params too.
The next step is to parse the file produced by the traffic generator (regardless of
whether it was just generated or it was done previously). While parsing, the traffic
events are inserted into a sorted list. The sorting criteria is the time for which each
event has been scheduled by the traffic generator. Given that more than one event
can happen at one time tick, the list contains arrays of events.

 26

Once the events have been parsed, a new structure that will contain the nodes is
created, the timer is set to zero, and the simulator starts executing its main loop,
which looks schematically as follows (Fig. 3.2):

Fig. 3.2 Main loop of the simulator

The events found in the controller’s event list are those responsible for creating
and destroying nodes, and inserting new documents in the network as well as
scheduling the lookup queries. The last event is exit, and that marks the last time
tick for the loop.
Each one of the nodes has a list of events too, which are modeled by the message
structure, and they can be executed by means of an abstraction provided by the
programming language.
Given the design previously described, the programmer has the possibility to log
certain behaviour to the communication channels.
For example, in the case of this evaluation of Chord, each time a lookup query
finds the successor of a certain document, a new entry is written to a chosen
channel, storing important information such as the number of hops that the lookup
query took to be resolved. This way, it is possible to take these logs later and make
statistical studies of them. Another important channels that are used are those that
store information about failures, error messages, calls to stabilization and
fixFingers routines, etc.

3.4.3 Extension and customization
The simulator is programmed in such a generic way that it is possible to execute
simulations of very different kinds of nodes, not only Chord. So if one wants to
experiment the behaviour of networks programmed with different classes of nodes,
it is only needed to program the new class of nodes and instruct the simulator
about what node class is to be used.
The generality of use of the simulator has been significantly increased by the use
of a XML document (and its XSD scheme) that accepts certain number of
parameters or program constants to be defined. Examples of these parameters
include, among many others:
• the number of bits which limit the identifier space
• the platform on which the program is going to be run (the simulator was tested

both on Windows and Linux, and the file paths are platform dependent)
• the paths to files (both input and output)
• the name of the file where the generated traffic is stored
• the fact that the traffic generator should be used or not
• the verbosity of logging
• options that affect the way that graph plots are generated
• etc.

time = 0;
while (not end(time)) do
 if(listOfEvents.hasScheduledTrafficNow(time))
 executeEvents(listOfEvents,time);
 endIf
 for (all nodes present in the network) do
 if(node.hasPendingEvents(time))
 executeEvents(node,time);
 endIf
 endFor
 time = time + 1;
endWhile

 27

Many other features can be included in this XML file, and tailor the behaviour of the
simulator to the needs of the user.
The first thing the simulator class does (in the main routine) is loading
configuration data from the XML file. This file contains certain parameters which
the simulator uses in order to initialize the environment for the simulation. For
example, as described in previous sections, there is a list of so called “channels”.
Each one of these channels is a means to log information for the user.
The events file is generated by an external program, a "traffic generator", described
above, too. The paths to access the traffic generator, which are going to be the
input and output files, and other options, can also be found in the XML file.

 28

 29

4 Experiments

This chapter describes the design of 4 different sets of input data for the execution
of Chord in the simulator. The goal of these 4 different sets of experiments is to
analyze the changes of behaviour of a Chord network when there are:
• changes in the network size
• massive simultaneous node failures
• continuous node joins and departures

The input provided to the simulator comes from the traffic generator, when asked
to provide the list of events that make the protocol to behave in a fashion that it is
interesting for us to study.

4.1 Changes in the network size
This set of experiments is designed to highlight the impact that three chosen
variables in the environment of execution of Chord have in its performance.
The main goal of this set of experiments is to focus the attention in how the
protocol performs depending on the number of nodes in the network. The
performance metric is the path length of a lookup request.
After this main goal is met, further experiments are performed related to the load
of requests that a node has to deal with in function of the size of the network.
First, the path length experiments in function of the network size. In addition to
this, two further variables have been included to review their influence: whether the
successors list data structure is used or not for forwarding purposes, and whether
the size of identifier space is constant or proportional to the number of nodes in the
network.
The results of these experiments will be grouped in subsets, each one of them
belonging to the four combinations resulting of these two parameters. Simplifying,
the four subsets will be:
• with successors list and constant identifier space
• with successors list and proportional identifier space
• without successors list and constant identifier space
• without successors list and proportional identifier space

Each one of these four subsets involves 12 different runs of Chord with network
sizes of N = 2k, with k having values in the range 3..14, and requesting 5,000
lookups per experiment. With this, we will be able to study the impact on the
network performance when there is an exponential growth in the network size and
thus, evaluate the scalability of the protocol.
In order to make it possible to compare the results of the experiments with those
shown in the paper by Ion Stoica et al [STO-1], they were designed in a way that
was as similar to theirs as possible. The paper defines the experiments that they
conducted stating that the network had size N = 2k, and that each node stored, on
average, 100 keys. This follows from the fact that the paper claims that the number
of keys stored is 100·2k. For this to be possible, the identifier space in which Chord
works will have to fit within these numbers; this means that the identifier space of
the network has to be at least 100 times bigger than the defined network size. The
paper does not mention whether all the experiments have the same identifier
space, or each one of the identifier spaces is proportional to the number of nodes.
That is the reason why the experiments are designed differentiating between
constant identifier space or proportional identifier space; it will prove whether this

 30

differentiation has an impact or not on the main performance parameter observed
in this research: the path length of lookup queries.
Given that the identifier space has to be a power of 2, and the number of nodes in
the experiments are all powers of 2 too, it follows that the proportion constant that
decides the identifier space in the case of proportional growth has to be a power
of 2 as well. As the number of keys that each node is responsible for in average is
100, the power of 2 that immediately follows is 27=128. Thus, the identifier space
when it is proportional to the network sizes ranges from 27+3=210 to 27+14=221.
When the experiments are with constant identifier space, this is set to this
maximum value: 221.
As hinted before, the measurements that the experiment will take are the path
length of lookup queries, which is the same as saying that the number of nodes
that must be visited to resolve a query.
The successors list data structure is not expected to prove dramatically useful in
absence of node failures or leave operations, because its main reason of existence
is robustness. Despite that, the experiments conducted with and without the use of
the successors list will show what this use provides in terms of performance, when
measured by the query path length.
Besides the path length metric, some experiments related to the load of queries
that a node has to deal with are run. For this set of experiments only one
combination of successors list and identifier space is used. As the results on the
previous experiments will show, any combination might have been good, and the
“with successors list and constant identifier space” is chosen for the next
experiments.
These experiments involve 3 subsets of 10 different runs of Chord with network
sizes of N = 2k, with k having values in the range 3..12, and requesting 10, 20 and
25 lookups per node respectively in each one of the three subsets. With this, we
will be able to study the impact on the node processing load when there is an
exponential growth in the network size and thus, evaluate the scalability of the
protocol. To further clarify this set of experiments: the first subset will have 10
different runs, with network sizes ranging from 8 to 4096 growing in powers of 2,
and each node will make 10 lookup requests. The second subset is similar, but 20
lookup requests per node, and the third one will make 25 requests per node.

 31

4.2 Massive simultaneous node failures
This set of experiments is designed to provide data about the impact of different
significant amounts of node failures in the performance of the network.
For this measurements, a total amount of 6 experiments were executed; all of them
have an initial network size of N=1000 nodes.
The successors list is of size r=20, a value that comes from the size of the network
as results from taking r=2·log2N. The reason why this value was chosen is not
justified in the original paper [STO-1] , and an explanation was needed based on
the available information. What the paper tells is just that “if we use a successor list
of length r = Ω(log2N) in a network that is initially stable, and then every node fails
with probability 1/2, then with high probability find_successor returns the closest
living successor to the query key”. Later on, r=2·log2N is chosen without further
ado.
Now, given that each node fails with probability (1/2), and the probability that the
ring breaks is therefore p= N·(1/2)r, it follows for the probabilities 1/2, 1/4, 1/8, and
any 1/2x that...

 1

1
2 2

2

2

1 1·
2 2

1 1·
2 2

1·2
2
2

log log 2
log 1

log 1

r

r

r

r

r

N

N

N

N
N
N r

r N

−

−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

=

=

=
= −

= +

2

2

2

2
2 2

2

2

1 1·
2 4

1 1·
2 2

1 ·2
2
2

log log 2
log 2

log 2

r

r

r

r

r

N

N

N

N
N
N r

r N

−

−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

=

=

=
= −

= +

3

3

3

3
2 2

2

2

1 1·
2 8

1 1·
2 2

1 ·2
2
2

log log 2
log 3

log 3

r

r

r

r

r

N

N

N

N
N
N r

r N

−

−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

=

=

=
= −

= +

2 2

2

2

1 1·
2 2

1 1·
2 2

1 ·2
2
2

log log 2
log

log

r

x

r x

r
x

r x

r x

N

N

N

N
N
N r x

r N x

−

−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

=

=

=
= −

= +

,

then if we want to justify r = 2·log2N, it is because we make the probability of the
ring breaking p = 1/(2log

2
N), which ultimately ends meaning that bigger networks

are meant to be more robust.

 32

Once this successor list issue is clarified, what is left to do is to finish the
description of the set of experiments: in each one of the 6 experiments a number of
nodes is made to fail (drop from the network) — all at once. This number is a
fraction of nodes from 0% to 50% in intervals of 10%. Exactly after the nodes fail,
and giving the protocol no time to reconfigure the topology of the network (which
means that many nodes have indirections in their data structures to nodes that no
longer exist in the network) 10,000 lookups are requested at random.
For each lookup we gather, among other useful data:
• the lookup query path length: as in the previous set of experiments, this

length is a good indicator of the impact that changes have in the behaviour of
the network

• the timeouts experienced by lookup queries: a timeout occurs when a node
tries to contact a failed node. In real life systems, this will be detected by means
of a timeout at the transport (TCP) layer in the network stack [TCP-50], when a
number of ACKs are not received. In our system this is simulated, and when a
node A sends a message to an inexistent node B (regardless of whether B has
left, or it has failed), A will receive a failed message. Upon reception of such a
message A will react as established by the protocol.

• whether the lookup got a reply: lookups can ultimately fail, and the requester
may not receive a reply. The success of each lookup query gets logged.

4.3 Constant node joins and departures
The goal of this set of experiments is to evaluate the performance and accuracy of
Chord lookups when nodes are continuously joining and leaving the network.
The network has initially 1000 nodes, and the experiment starts taking measures
when the network is stabilized. This means that all successors, predecessors and
fingers are correctly pointing to the nodes they should, according to the definitions
given in Section 2.2.2, Further data structures.
From any moment since the network is stable, nodes start joining, leaving and
requesting lookups, and measurements are taken. A total amount of 10,000
lookups is requested.
The paper from which the information of the experiments is extracted [STO-1]
states that the lookups are generated according to a Poisson process at a rate of
one per second, and that joins and voluntary leaves are modeled by a Poisson
process with a mean arrival rate of R. A rate R=0.05 corresponds to one node
joining and leaving every 20 seconds on average.
The whole set of experiments comprises runs with arrival and departure rates
ranging from R=0.05 to R=0.40 in steps of 0.05, resulting in a total number of 8
experiments. Thus, the frequency at which nodes arrive and depart is f=1/(0.5i)
seconds, with i ranging from 1 to 8.
Given that the simulator is programmed in a way that everything is counted in time
ticks rather than actual time, a correspondence to these parameters needed to be
built up. To simplify things, the experiments were run assuming 100 time ticks is
one second. This way it was easier to tune the values for the way traffic is
generated, the average message delay, and both stabilization and fixFingers
periodicity.
Again, as in the previous set of experiments, the size of the successors list is
r=2·log2N, and the justification stays the same.
For this set of experiments the same information as the previous set was logged,
but a new communication channel was devised so every lookup reply was
compared to an external view of the Chord ring to asses the correctness of
lookups, given that transient state might provide erroneous replies.

 33

5 Results and Analysis

5.1 Changes in the network size
In this section the results of the experiments that relate to changes in the network
size are presented, in four different side-to-side configurations, as well as an
overall examination of these results, and a comparison to the results published in
the paper [STO-1] by Ion Stoica et al.

5.1.1 With successors list VS Without successors list
This first analysis or results compares the impact of use of the successors list
structure. The importance of this structure is shown when nodes drop from the
network, providing thus robustness. But these experiments show how this
successors list changes results of the length of lookups regardless of not having
any node departures.
In the first case, Fig. 5.1 shows the average, 1st and 99th percentile of path length
for lookups in networks having 2k nodes, with k ranging from 3 to 14, and given
that the identifier space is proportional to the number of nodes in the
network.

Fig. 5.1 Lookup path length using the successors list (left) and not using the successors list

(right). The identifier space in each of the experiments is proportional to the number of
nodes belonging to the network (X axis)

The data shows no dramatic difference, but a slight one. Note that the X axis of the
plot grows exponentially, from 23 to 214, which means that the growth shown on the
Y axis, linear in appearance, has to be interpreted as logarithmic.
Note that when not using the successors list structure, in Fig. 5.1(right), all the
values are slightly higher. This means that the use of the successors list structure
provides slightly better performance, as expected.

The second comparison in this section shows a similar setup to the last one, but in
this case the identifier space is constant, 221 available keys. The same range of
network sizes: 2k nodes with k ranging from 3 to 14:

 34

Fig. 5.2 Lookup path length using the successor list (left) and not using the successor list
(right). The identifier space is constant: 221 keys.

As seen before, there is not a big difference between using the successors list
structure —Fig. 5.2(left)— or not —Fig. 5.2(right)— to improve the path length of
lookups, which is the main issue addressed with this set of experiments.
These plots do not really show a dramatic difference. The fact that the X axis that
displays the network sizes is in logarithmic scale, and a linear scale is used for the
Y axis, is supposed to stress any differences in the Y values. That is why a table
(Fig. 5.3) with the actual values, and their differences can illustrate the data in a
more exact way:

Fig. 5.3 Table of values for the average path length for lookups (1st and 99th percentiles too)
depending on the size of the network. Last column reflects the differences between using or

not using the successors list

As can be seen in the table, the difference between the two columns is not
constant, but does not grow dramatically either. Regard that k refers to 2k in the
network size.

k avg.lgth. (1st,99th perc.)
with successors list

avg.lgth. (1st, 99th perc.)
without successors list

difference in
avg.lgth.

3 0.876 (0,2) 1.473 (0,4) 0.597
4 1.182 (0,3) 1.771 (0,5) 0,589
5 1.601 (0,4) 2.382 (0,5) 0,781
6 2.072 (1,4) 2.803 (1,6) 0.731
7 2.491 (1,5) 3.307 (1,7) 0.816
8 2.961 (1,6) 3.822 (1,7) 0.861
9 3.419 (1,7) 4.360 (1,8) 0.941
10 3.876 (1,7) 4.882 (2,9) 1.006
11 4.350 (2,8) 5.391 (2,10) 1.041
12 4.832 (2,9) 6.095 (2,11) 1.263
13 5.317 (2,9) 6.825 (3,12) 1.508
14 6.203 (3,11) 7.382 (3,13) 1.179

 35

5.1.2 Constant identifier space VS Proportional identifier space
The goal of this second set of comparisons is to establish how different are the
path lengths of lookup requests made in networks with size 2k with k ranging
from 3 to 14, but facing the constant identifier space versus the proportional
one.
Again, two subsets of experiments have been created.
The first one of them, shown in Fig. 5.4, is the one in which the successors list is
not used.
As shown in the previous section, when the successors list is not used, the
average path length of lookups is expected to be slightly larger than when it is
used. But when facing two sets of experiments in which the successors list
structure was not used, we can observe that there is absolutely almost no
difference. Only the actual numbers given by the simulator differed a bit in some of
the experiments, and these are not significant enough to be reflected very much in
their graphical representation.

Fig. 5.4 Average path length (including 1st and 99th percentiles) of lookups not using the
successors list. Proportional identifier space (left) versus constant identifier space (right).

On the other hand, when the experiment was run using the successors list
structure, which the last section showed that made the performance improve
slightly, the results are a little bit different.
If we take a close look to the plots in Fig. 5.5, it can be observed that the only
values differing in this experiment are the 99th percentile of the lookup path length
in some of the networks tested. This is so because when changing the identifier
space, and making it larger, the traffic generated for the experiments changed too.
Strangely enough this circumstance did not show up when not using the
successors list structure.
The 99th percentile of lookup path lengths when they are performed in large
identifier spaces fall into a slightly bigger range than when the identifier space is
tailored to the size of the network.
Three points need to be remarked about this issue:
• First, that unfortunately it is impossible in this set of experiments to guarantee

exactly the same node presence, traffic and lookup requests and responses for
the two confronted scenarios. The fact that the identifier space differs has an
effect on the way that the network is built and its behaviour.

• Second, that the Y axis is to be interpreted as logarithmic, given that the X axis
is exponential, as explained before, which makes this slight difference even
less noticeable and insignificant.

 36

• And third, that it is only the 99th percentile that grows, and my interpretation is
that it is possibly due to statistical outlier values. 1st percentile and average
values are still very much the same. The fact that these percentile values are
rounded to the closest integer makes this very slight change more visually
noticeable in the plots.

Fig. 5.5 Path length of lookups using the successors list with proportional identifier space
(left) versus constant identifier space (right).

To further clarify this, another table with values follows:

Fig. 5.6 Table of values for the average path length for lookups (1st and 99th percentiles too)
depending on the size of the network. Last column reflects the differences between having

proportional or constant identifier space

As can be observed, the difference in the average path length is always very low,
and does not grow steadily with k, which means that both alternatives are good in
terms of scalability when performance is measured with regard to the path length
of lookup queries.

5.1.3 Overall evaluation of path length metric
It can be considered that the most realistic scenario is that in which the successors
list structure is used. The experiments in which it was not used were devised
precisely to assess how much does the protocol gain when only using the fingers
table, which is the structure that really provides most of the performance gains in
lookups.
The last graph shows that it is essentially indifferent whether a single Chord
instantiation should be made available for use with a huge identifier space or

k avg.lgth. (1st,99th percentile)
proportional identifier space

avg.lgth. (1st,99th percentile)
constant identifier space

difference in
avg.lgth.

3 0.876 (0,2) 0.876 (0,2) 0.000
4 1.182 (0,3) 0.941 (0,2) 0.241
5 1.601 (0,4) 1.290 (0,3) 0.311
6 2.072 (1,4) 1.751 (1,4) 0.321
7 2.491 (1,5) 2.258 (1,5) 0.233
8 2.961 (1,6) 2.722 (1,6) 0.239
9 3.419 (1,7) 3.240 (1,6) 0.179
10 3.876 (1,7) 3.756 (1,7) 0.120
11 4.350 (2,8) 4.253 (2,8) 0.097
12 4.832 (2,9) 4.722 (2,8) 0.110
13 5.317 (2,9) 5.284 (2,9) 0.033
14 6.203 (3,11) 6.203 (3,11) 0.000

 37

whether Chord should have a tailored identifier space with regard to the size of the
network that is to be used — that is, if we only ponder lookup path length in
lookups. It is obvious that if two solutions provide similar results the simpler one is
always preferable. That is why the study that should be taken as reference is the
one comprising the experiments with the use of the successors list and a constant
identifier space.
Finally, it is shown in the next lines that the results of these experiments are almost
identical to those published by Ion Stoica et al. in page 11 of their paper [STO-1]:

Fig. 5.7 a) Path length as a function of the network size.
b) The PDF of the path length in the case of a 212 node network

Fig. 5.7 is taken from that paper, and from the results of my experiments I
produced the two corresponding plots to their respectively equivalent experiments:

Fig. 5.8 Path length as a function of the network size (left) and
PDF of the path length in the case of a 212 node network (right)

Fig. 5.8(left) shows once again the plot corresponding to the experiments run with
the use of the successors list and with constant identifier space; Fig. 5.8(right) is a
new plot that shows the probability density function (PDF) of the path length for a
network with 212 nodes.
Disregarding the difference in which the X axis is scaled, it is evident that the
results of the experiments about the evolution of the path length measured with
respect to the growth of the size of the network match the ones given by Ion Stoica
et al. in their paper [STO-1].

 38

5.1.4 Processing load
This analysis of results shows the impact of the number of nodes in a network into
the processing load of a node belonging to the network.
When a node makes a lookup request for document D, the request is forwarded
within the network until the node responsible for D is found. This implies that each
node has to process not only the lookup requests that it is issuing itself, but those
that come from a peer in the network.
Given a set of networks in which the average amount of requests that each node
issues is known, the question is: How does the size of the network affect the load
that each node has to deal with?
Example: in a network with 10 nodes, and each node making 10 requests, the load
expected to be met by any node is not really expected to be the same as the load
met by a node in a network with 1,000 nodes, each one making 10 requests too. In
the first network there are 100 lookups traveling within; in the second example
there are 10,000.
How much more (or less) work has a node to deal with when the network is 100
times bigger?
As explained in the previous chapter, 3 subsets of experiments in which each node
in the network issues 10, 20 and 30 lookup requests in average are run.
What they have in common is that each subset involves 10 different runs of
networks with sizes N = 2k with k ranging from 3 to 12. That means networks with
sizes that grow exponentially from 8 to 4096.
What follows is a series of three plots from the three runs. Fig. 5.9 a) represents
the plot of data corresponding networks of sizes from 8 to 4096 in which each node
has made 10 requests. Next to it, Fig. 5.9 b) has values of path length (P) and the
number of lookup calls that each node processes (L). In between these columns
there is a calculation of the number of lookups (10 for this first subset of
experiments) multiplied by the average path length (P) of queries for each network
size. Fig. 5.10 and Fig. 5.11 show the corresponding plots and data to similar
experiments but with 20 and 25 document lookups per node respectively.
For each network size the average and the 10th and 90th percentiles of number of
lookup calls are shown. Regard that these lookup calls include both the originating
call from the client that makes the search for a document as well as the forwarding
lookup calls.

 39

Fig. 5.9 Plot and data of the processing load for networks in which

nodes make 10 documents searches in average
a)

Average, 10th percentile and 90th percentile
of number of lookup calls

when nodes make an average of 10
document searches each.

b)
Table with data of load (L) experienced by

nodes in number of lookup calls, and
comparison with the multiplication of path

length (P) times the number of lookups

Fig. 5.10 Plot and data of the processing load for networks in which

nodes make 20 documents searches in average
a)

Average, 10th percentile and 90th percentile
of number of lookup calls

when nodes make an average of 20
document searches each.

b)
Table with data of load (L) experienced by

nodes in number of lookup calls, and
comparison with the multiplication of path

length (P) times the number of lookups

k N=2k P #lookups·P L10
3 8 1.01 10.1 20.5
4 16 1.21 12.1 21.75
5 32 1.70 17.0 25.0625
6 64 2.08 20.8 30.96875
7 128 2.46 24.6 35.125
8 256 2.92 29.2 39.23438
9 512 3.34 33.4 43.06055

10 1024 3.79 37.9 47.99609
11 2048 4.23 42.3 52.23193
12 4096 4.67 46.7 56.63184

k N=2k P #lookups·P L10
3 8 1.01 20.2 40.25
4 16 1.21 24.2 44.1875
5 32 1.70 34.0 53.96875
6 64 2.08 41.6 61.70313
7 128 2.46 49.2 69.16406
8 256 2.92 58.4 78.44531
9 512 3.34 66.8 86.96094

10 1024 3.79 75.8 95.81348
11 2048 4.23 84.6 104.6104
12 4096 4.67 93.4 112.5942

 40

Fig. 5.11 Plot and data of the processing load for networks in which
nodes make 25 documents searches in average

a)
Average, 10th percentile and 90th percentile

of number of lookup calls
when nodes make an average of 25

document searches each.

b)
Table with data of load (L) experienced by

nodes in number of lookup calls, and
comparison with the multiplication of path

length (P) times the number of lookups

These plots give the general idea that when networks grow exponentially, and
document search rate is kept more or less constant in a per node basis, the
number of calls that each node processes grows linearly. That implies, as with the
previous sets of experiments, logarithmic growth of load for each node, which can
be considered, in general terms, good.
However, can this load be expressed in terms that let us predict the behaviour of a
node in a network of which we know the size and the rate at which nodes make
document searches?
The answer is yes, by taking a look at the tables of values that produced the
figures above.
Given that:

o P is the average path length of lookups for a given network size
o L is the number of lookup calls that each node was found to make

It does not take too big a deal of guessing to come up with the formula that gives
the expected load L by a node:

L = (P+1) · #lookups
That is explained as follows: each node makes its #lookups calls and is also in
charge of making P lookup calls for other nodes’ sake, as belonging to indirections
needed to solve queries.

k N=2k P #lookups·P L10
3 8 1.01 25.25 49.625
4 16 1.21 30.25 58.6875
5 32 1.70 42.5 66.8125
6 64 2.08 52 76.90625
7 128 2.46 61.5 85.85156
8 256 2.92 73 97.875
9 512 3.34 83.5 108.8477

10 1024 3.79 94.75 119.9619
11 2048 4.23 105.75 130.8804
12 4096 4.67 116.75 141.668

 41

5.2 Massive node failures
This section presents the results of experiments that show how the network reacts
in the event of massive node failures. As explained in the previous chapter, the
network has initially 1,000 nodes, and for each one of the experiments a fraction of
the network is made to fail before requesting 10,000 lookups. The next table in Fig.
5.12 presents the numbers referring to the average path length and the average
number of timeouts experienced by a lookup, as well as their 1st and 99th
percentiles.

Fig. 5.12 Table of values of average path length and the number of timeouts encountered
(including 1st and 99th percentiles) in lookup queries as a function of the fraction of failed

nodes

Once again, the results match those produced by Ion Stoica et al. in the paper that
this thesis studies [STO-1] with minor differences. What follows in Fig. 5.13 is the
table corresponding to those results:

Fig. 5.13 Path length and number of timeouts experienced by a lookup as function of nodes

that fail simultaneously.

What follows is a more visual analysis of the behaviour of the protocol when
massive node failures occur. Fig. 5.14(a) shows the Probability Density Function
(PDF) of the lookup path length for the first experiment —when no failures occur at
all— which resembles the typical bell shape. Next to it, Fig. 5.14(b) shows the data
when 30% of the nodes have failed at once. The shape is mostly the same, but
slightly biased to the right, and with the right tail extended. This has to be
interpreted as a higher path length for the lookups under this circumstance, and
more occurrences of long path lengths than when the network is stable. When it is
not stable, there is an amount of nodes whose fingers and successors lists are not
correctly up to date, and that yields retries, which ultimately increases the path
length of the queries. This is because there are timeouts when trying to contact a
node that does not exist anymore in the network, and a retry is in order.

Fraction of failed nodes Avg. path lgth (1st & 99th perc.) Avg. num. timeouts (1st & 99th perc.)
0 3.85 (1,8) 0.00 (0,0)

0.1 4.11 (1,9) 0.44 (0,2)
0.2 4.40 (1,10) 0.79 (0,3)
0.3 4.64 (1,11) 1.12 (0,3)
0.4 5.00 (1,12) 1.50 (0,4)
0.5 5.54 (1,13) 2.07 (0,7)

 42

Fig. 5.14 Comparison of the PDF of the lookup path length in a network with 1,000 nodes
(left) and the same network when 30% of the nodes have simultaneously failed.

Last, but not least, an important issue to be remarked is the fact that not a single
lookup request did undershoot. All lookups did eventually get a reply. That is a very
outstanding feature of Chord that other P2P systems can not provide along with
both the path length performance and the fact that the network does not become
flooded with traffic.

 43

5.3 Constant node joins and departures
This section presents the results of the most representative set of experiments
within the thesis. They are so because these experiments portray scenarios that
are very paradigmatic of the behavior that reality often presents. The network has
1,000 nodes, and that number is maintained more or less stable by the constant
arrival and departure of nodes at frequencies of f=r-1=(0.05i)-1 seconds with i
ranging from 1 to 8. Another way to see it is that the rate r ranges from 0.05 to 0.40
in steps of 0.05. In terms of interleaving time between successive events, nodes
join and leave one each 20 seconds for i=1, 10 seconds for i=2, and so on, and 2.5
seconds for i=8.
The previous chapter described that what these experiments have in common is
that 10,000 lookups are requested at a rate of one per second.
What follows in Fig. 5.15 is a table with the values of average path length and
number of timeouts occurred per lookup (and their 1st and 99th percentiles) as well
as the total number of lookups failures after the 10,000 lookups that are requested
in each experiment and the number of non-resolved lookups.

Fig. 5.15 Table with average path length, number of timeouts, failures and undershooting for
lookup requests in a network with 1,000 nodes and in function of the arrival/departure rate

As it can be seen by comparing these values to those provided by Ion Stoica et al.
in their paper [STO-1] in Fig. 5.16, they do not match completely, but there are
significant similarities.

Fig. 5.16 The path length and the number of timeouts experienced by a lookup as function of

node join and leave rates.

What follows is a description of certain irregularities in the way that the
experiments were laid out. And after that, a description and an analysis of the
values of the variables measured during the experiments, as well as a comparison
with the values from the table above, and the explanation of these differences.
To start with, it should be noted that the timing conditions are specially significant
for this set of experiments —not that they were not in the previous ones, but even

Node
join/leave rate

Avg. path lgth.
(1st & 99th

perc.)

Avg. number of
timeouts

(1st & 99th perc.)

Lookup failures
(per 10,000
lookups)

Non-resolved
lookup queries

0.05 3.88 (1,8) 0.0001 (0,1) 0 0
0.10 3.86 (1,8) 0.0003 (0,1) 0 0
0.15 3.85 (1,8) 0.0004 (0,1) 1 0
0.20 3.84 (1,8) 0.0005 (0,1) 1 0
0.25 3.83 (1,8) 0.0010 (0,1) 1 0
0.30 3.84 (1,8) 0.0006 (0,1) 2 0
0.35 3.87 (1,8) 0.0013 (0,1) 6 1
0.40 3.89 (1,8) 0.0012 (0,1) 3 1

 44

more in this case. At first, it was assumed that one time tick was one second, but
this led to some misleading results. This is because the traffic generator does not
generate events with fractional average times, and the ratios of events are not
exactly what expected. To overcome this problem the parameters that depend on
timing were changed to values that match an equivalence of 1 second to 100 ticks.
Another reason that backs up this decision is the fact that message delivery times
are way smaller than one second, thus making it impossible for the simulator to
properly emulate such events. Then again, 100 ticks per second allowed setting
the average message delay to 5 time ticks — 50 milliseconds. The main effect this
had on the simulator is that each experiment run took much longer, up to durations
rounding 5 hours.
Second, the traffic generator does not exactly give an output according to what
was expected. The differences are not huge, and certainly not significant enough to
invalidate the research, but it adds a source of error that needs to be quantified.
The following examples related to the first and second experiments illustrate the
case.
In the first experiment, 1,000 nodes are inserted in the network, by feeding the line
“events 1000 100 100 0 0 0 0” to the traffic generator (see section 3.3 where the
traffic generator is explained to get an idea of what this line actually means). In
short, this creates 1,000 nodes. So far so good. Then, the simulator is instructed to
wait for a certain amount of time that, by experience, we know is enough to make
the network stable (that is, all fingers, predecessors, and successors lists are up to
date), with the line “wait 2000”. Now, by inserting the line “events 11000 100 500
500 0 0 10000” trouble begins: this instructs the traffic generator to generate a total
number of 11,000 events, with an average separation from one to the next of 1
second (100 time ticks). 500 of those 11,000 have to be join operations, 500 have
to be leave operations and the rest —10,000— are lookups. All these are randomly
mixed up, they do not come in any specific order. The last two lines are “wait
2000” and “exit”, just to give the protocol time to resolve the last queries and exit
from the simulation.
What actually happens when the traffic generator is executed is that only 9931
lookups are requested, as well as 569 joins and 500 leaves. As we can see, the
leave operation count is correct, and the total amount of events is also correct, but
there is a lack of lookups that has been transferred to join operations.
Second experiment: all of the lines fed to the traffic generator are exactly the same
except the third, “events 12000 100 1000 1000 0 0 10000”, which instructs the
traffic generator to generate a total number of events of 12,000, of which 1,000 are
joins, 1,000 leaves, and the other 10,000 should be lookup queries. This time what
actually happens is that 10,010 lookups are requested, 1030 joins and 960 leaves.
There is another bias in the way that the traffic generator provides the output!
A detailed inspection to the rest of traffic generations provides evidence that the
traffic generator is not accurate enough to produce the results expected. What
follows is a table (Fig. 5.17) with the values of expected count of operations and
detail of the count of operations found in the output, with the error calculated from
these values, for this third set of experiments:

 45

Fig. 5.17 Table of error rates found on the generation of events by the traffic generator.

In all cases, the total expected amount of events is met, but with a noticeable
(although totally affordable) bias to one or another type of event, except in the first
experiment, in which the leave count is exactly what expected, but the error bias of
join operations is way above 5%. Except for this particular case, the error rates are
all more or less not too significant. An inspection to the rest of traffic generations of
the thesis shows that this is the only set that incurs into such errors. It is fair to
deduce that this is because the only call to the traffic generator that produces
errors is that of an “events” with assorted weights, which means calling for different
kind of randomly mixed events in a single line.
Another factor that yields inexactness to the way that experiments are performed is
the actual choice of weights. For example, the controversial call to the “events”
command in the last experiment is like “events 18000 100 4000 4000 0 0 10000”.
This means, a total of 18000 events, separated each one of them from the next
with 1 second (or 100 time ticks) in average, of which 4000 are joins, 4000 are
leaves and the remaining 10,000 are lookups. And this is precisely what the traffic
generator does, within a 2% margin of error. But that does not exactly mean that 1
lookup is made every second, nor does this mean that nodes arrive and depart at a
rate of one every 2.5 seconds (1/0.4=2.5).
After some calculations a decision was taken concerning this issue, and instead of
requesting a constant interleaving time of 100 time ticks, this amount was
calculated to approximately yield traffic generations that met the expectations.
Some compromises needed to be taken though, given that due to the way the
traffic generator is built there is no possibility to really generate traffic complying
with the specifications. This is another reason to look at the numbers that are
presented in the paper by Ion Stoica et al. [STO-1] with certain degree of
skepticism if the traffic that they use for their simulations was generated by this
particular traffic generator —which is not such a bad assumption considering that
this is their tool too.
So the results of the experiments performed are not really comparable to those
found in the paper by Ion Stoica et al. [STO-1], but it is fair to mention that they
give a good idea of how the protocol behaves in the event of continuous node
arrivals and departures with increasing rates.
Now, regarding the differences found on the values, which cannot be attributable
completely to any of the reasons exposed before or any combination of them, a
couple of more determinant factors should be stated:
On one hand, the number of timeouts found per lookup shows noticeable better
(lower) values in these experiments than those exposed by the paper [STO-1] at
Fig. 5.16. More than 3 decimal digits are needed to spot the differences among
them. This is because of the use of a data structure that they do not include in their
work: the referrers list. Each time a node departs voluntarily from the network, it

Node join/leave
rate

join node count
(expected), error%

leave node count
(expected), error%

lookup count
(expected) – error%

0.05 569 (500), 13.8% 500 (500), 0% 9931 (10000), -0.7%
0.10 1030 (1000), 3.0% 960 (1000), -4.0% 10010 (10000), 0.1%
0.15 1547 (1500), 3.1% 1476 (1500), -1.6% 9977 (10000), -0.2%
0.20 1997 (2000), -0.2% 2049 (2000), 2.4% 9954 (10000), -0.5%
0.25 2528 (2500), 1.1% 2539 (2500), 1.6% 9933 (10000), -0.7%
0.30 3081 (3000), 2.7% 3087 (3000), 2.9% 9832 (10000), -1.7%
0.35 3562 (3500), 1.8% 3595 (3500), 2.7% 9843 (10000), -1.6%
0.40 4070 (4000), 1.8% 4071 (4000), 1.8% 9859 (10000), -1.4%

 46

lets all those nodes in the network that have fingers pointing to it know so, and
gives information about the best substitute, which is always its successor. That is a
notably good improvement to the network stability.
Regarding path length performance, 3 out of 8 simulations show slightly worse
figures than those found in the paper. What is worth noting is the fact that the path
length does not grow so much in networks with high change rates, and that the
values are closer one to each other than those showed by the paper.
The last two columns of the tables correspond to the system’s reliability. A lookup
failure is defined as the event of receiving a reply that is not correct, meaning that
node X makes a lookup request for key K, and the received reply is that Y is K’s
successor when there is actually another node Z that is in the system, and Z is
responsible for key K. Again, this values are slightly better than the ones given by
Ion Stoica et al. in their paper, and it is appropriate to assume that the use of the
referrers list has a saying in this issue too.
Stoica et al. claim in their paper [STO-1] that failures occur due to transient state
phenomena. A description of how this lookup queries can be incorrect follows:
Suppose that at time t, node n knows both its first and its second successor, s1 and
s2, both present in n’s successor list. A few time units later, t’, a new node s joins
the network between s1 and s2, and that s1 leaves before n had the chance to
discover s. Once n learns that s1 has left, n will replace it with s2, the closest
successor n knows about. As a result, for any key id∈(n,s), n will return node s2
instead of s.
However, two issues have to be taken into consideration: first, that these
incorrectness is only partial because it has to do with the fact of either s2 or s
having the associated resource to the key being searched, and that is a matter of
replication and redundancy that should be taken care of if robustness wants to be
combined with correctness. And second, that this is a transient state: the next time
n invokes stabilization for s2, n will learn its correct successor s. It could be argued
whether an application developer should include code for retrying the search if the
successor has been found but no resource associated to the key was there.
Anyway, further research in the issue showed that not only this case of a node
leaving the network displays such behavior; but also nodes joining the network
may yield failed lookup replies too.
Regarding the last column, it is worth mentioning that networks with high change
rate are prone to lose lookup requests due to the fact that a node can disappear
from the network before a message has arrived and subsequently been replied or
forwarded. This is something that could easily be corrected into a higher
application level by retrying the request, if so was desired. The reason behind
these faults is that when a node X sends a message to Y at time t, this message
takes a while to arrive. If Y is present in the network the message is by all means
delivered from the point of view of X, but it could very well happen that Y
disappears from the network before the message arrives (or the procedure call is
executed). That results in the message being lost, and it ultimately yields non
resolved lookup queries. Fortunately enough, this only happens in networks with
very high amount of joins and departures.

 47

6 Future Work

The area of Peer-to-Peer computing is boiling with activity, and there is a massive
amount of areas from which to choose to research about.
From the most general point of view, and focusing into the work that I have carried
out, I would say that further work could be done regarding:
• Research about new uses that can take advantage of P2P architecture’s

capabilities, not just file sharing. Maybe sharing CPU power, memory, or other
resources in general could be investigated.

• The DSL group at SICS has been working in DKS (distributed k-ary search), a
framework for P2P systems that provides advantages such as those found in
Chord, but in such a general way that the performance gain is increased by the
use of further data structures that provide costs of O(logkN) instead of just
O(log2N). The complexity of the algorithms and the data structures required to
do so is bigger than the one found in Chord, but the principles are similar, and
the gains in the face of network growth and change are enormous.

• Now, focusing in the work presented in this thesis, I would encourage improving
the behavior of the traffic generator. Even a total redesign (and implementation)
and a more general and configurable approach could well pay off.

• The simulator itself can be improved too, by:
including a GUI, so the interaction with the user is done by means of menus
rather than text files

using object interfaces instead of parsed text messages. This is not too
difficult due to the fact that all the code is strictly modular and very well
commented and documented (javadoc is available).

improve the memory consumption of the text windows, by devising a way in
which the content of a window does not need to be continuously kept in
memory (perhaps by disabling scrolling back?)

• The code implementing the Chord node can be extended in many ways. To
start with, I strongly suggest to focus on key insertion and acquisition, which are
the main purposes of resource sharing. Replication and redundancy are natural
extensions of said enhancements to the code, and should be taken care of too.

• And finally, a broad variety of other experiments can be devised to further
extend the knowledge of Chord and its behaviour.

 48

 49

7 Conclusions

What follows is a summary of the conclusions drawn after all the work. First I
present some ideas about the simulator and its use. And finally a recapitulation of
the main conclusions about Chord’s behaviour and some of its main advantages
such as scalability, robustness, simplicity, performance and accuracy follow.

7.1 The simulator
The simulator is a highly customizable easy-to-use tool that can be improved by
further programming, or just be used the way it is now. The XML configuration
interface is clean and easy to manage, as well as easy to extend too. Simulations
of networks can easily be run once how it works is understood, and there is no
actual need to go deep in the understanding of the tool to increase its capabilities.
The simulator is well documented and there is a very detailed javadoc style
documentation as well as a simple UML diagram explaining the relationships
between entities. Its verbosity can be tailored to the needs of the person that works
with it depending on the stage of work that they are going through, and the style of
experimentation that is being performed. Batch processes can easily be launched,
and all output channels can be redirected to files. It is sound, robust and easy to
understand and extend or modify. It is a very valuable tool for network simulation
and emulation.
Its resource requirements depend on the use that it is given. The only time that I
found memory limitations was when running simulations that created huge logs on
AWT text windows, due to the fact that the buffers are not flushed automatically
and for some reason, each time a method call is instantiated upon an AWT window
object, the whole object, with its contents (maybe megabytes of text) is brought into
memory.
That is about the only limitation that I have found to the use of the simulator, and I
ended up using files instead of text windows for logs that were big in nature.

7.2 Chord
In general terms, it can be said that the results of the experiments run match those
found in Ion Stoica’s et al. paper [STO-1], the only exception being those of the
third set. These could not be compared anyway because of a certain number of
field conditions, a part of which were beyond the aim of this thesis to adapt, and
the others would have not yielded more satisfying results at all.
However, this last set of experiments is the one that I consider most relevant. Most
P2P applications nowadays are focused on non corporative file sharing. In this set
of applications, it is usual to see networks with thousands of nodes in which nodes
continuously arrive and depart, which is the scenario that this third set of
experiments pictured. The fact that Chord requires that a node responsible for a
key is required to maintain that key may lead to disregard this protocol for such
uses. Despite of that, the scenario is still very significant, and gives a very good
idea of how smoothly and accurately Chord behaves in the face of network
changes.

 50

The first set of experiments has shown how well the protocol behaves no matter
how big the network is. When there is an exponential growth of the number of
nodes belonging to the network we observe just linear growth of the lookup path
length. That is translated as logarithmic growth of cost against linear growth of the
network, and in plain terms this is just very good scalability. Regarding the load
of lookups that each node has to deal with, it might seem too ideal to think about a
network setup in which all nodes provide the same load (meaning how much work
is delivered to the network to perform). But in essence, the idea is that the work is
more or less evenly balanced, regardless of the fact that some nodes might be
loading the network more than others. What counts for this calculation is how many
lookup queries are done in the network, and how many nodes are there to share
the load.
And last, but not least, the second set of experiments has shown the robustness
and accuracy of Chord, by not failing to reply a single one of the 10,000 requests
despite of the fact that up to 50% of the nodes in the network would fail. Note that
this is so because lookups start being requested when nodes have stopped failing.
But the fact is that while the network is being reconfigured, the lookups continue
their course along the Chord ring and yield results after all.
If the scenario was that nodes continue falling from the network after the lookup
request has been delivered, it could happen as with the third set of experiments
under the hardest conditions: some requests could very well be lost.
Anyway, a final summary of Chord’s strengths based on the data provided by the
previous study and the simulations state that the protocol is simple, robust,
reliable and scalable.

 51

8 Appendix

8.1 Glossary

Peer-to-peer (P2P)

A P2P computer network is one that relies on computing power at the edges (ends)
of a connection rather than in the network itself. P2P networks are used for sharing
content like audio, video, data or anything in digital format. P2P network can also
mean grid computing. A pure peer-to-peer network does not have the notion of
clients or server, but only equal peer nodes that simultaneously function as both
“clients” and “servers” to the other nodes on the network. This model of network
arrangement differs from the client-server model where communication is usually to
and from a central server.
Source: Wikipedia [WIK-51]

Often referred to simply as peer-to-peer, or abbreviated P2P, a type of network in
which each workstation has equivalent capabilities and responsibilities. This differs
from client/server architectures, in which some computers are dedicated to serving
the others. Peer-to-peer networks are generally simpler, but they usually do not
offer the same performance under heavy loads.
Source: Webopedia [WEB-52]

Scalability

The ability of a software program to continue to function smoothly as additional
volume, or work is required of it.
Source: LSoft.com [LSO-53]

The capacity of a system to increase performance under an increased load when
resources (typically hardware) are added.
Source: Wikipedia [WIK-54]

The capacity of a network to keep pace with changes and growth.
Source: Cisco [CIS-55]

Fully Distributed System

Distributed computing or Distributed system is the process of aggregating the
power of several computing entities to collaboratively run a single computational
task in a transparent and coherent way, so that they appear as a single, centralized
system.
Source: Wikipedia [WIK-56]

 52

Distributed Hash Tables

Distributed hash tables (DHTs) are a class of decentralized, distributed systems
and algorithms being developed to provide a scalable, self-configuring
infrastructure with a clean programming interface. This infrastructure can then be
used to support more complex services. DHTs can be used to store data, as well
as route and disseminate information. DHTs are named after hash tables because
they assign responsibility for a piece of data based on a hash function (often SHA-
1); each node acts like a bucket in a hash table. A DHT provides an efficient lookup
algorithm (or network routing method) that allows one participating node to quickly
determine which other machine is responsible for a given piece of data.
Source: Wikipedia [WIK-57]

Modulo

In computing, the modulo operation finds the remainder of division of one number
by another. When given two numbers, a and n, a modulo n is the remainder, r, on
division of a by n. Although typically performed with a and n both being integers,
many computing systems allow other types of numeric operands.
Source: Wikipedia [WIK-58]

When integers are taken "modulo m", one neglects multiples of m and considers
only the remainder. Therefore, 17 (modulo 5) = 2 because 17 = 5 x 3 + 2.
Source: The Mathematics Lair [MAT-59]

An arithmetic scheme in which the result is the remainder after division.
Source: Uniform code council [UCC-60]

Remote Procedure Calls (RPC)

A remote procedure call (RPC) is a protocol that allows a computer program
running on one host to cause code to be executed on another host without the
programmer needing to explicitly code for this. When the code in question is written
using object-oriented principles, RPC is sometimes referred to as remote
invocation or remote method invocation.
Source: Wikipedia [WIK-61]

Message passing model

Message passing is a style of parallel programming where instead of using shared
memory and locks or other facilities of mutual exclusion, different threads of
execution communicate via passing messages.
Source: Wikipedia [WIK-62]

A method of communication between processes that involves one process sending
data and the other process receiving the data, via explicit send and receive calls.
Source: National Academies Press [NAP-63]

 53

8.2 Simulator User Manual
The simulator is a piece of software designed to aid in the task of studying peer to
peer systems.
It has been programmed in Java and this document includes both an UML diagram
in Fig. 3.1 as well as the whole Javadoc documentation in the next section of this
chapter.
What follows is a short description of its requirements, some hints about how to
tune up the behaviour of the simulator through the configuration XML file, and how
to start it to make it work.

8.2.1 System Requirements
The simulator requires, of course, a functioning Java Virtual Machine.
Log files might need disk space, and how much depends in how much verbosity
the user requires from a run of the simulator.
A typical simulator install would have a structure like this:
/some_path_to/simulator/ (installdir)
 /classes (classdir)
 /doc (docdir)
 /src (srcdir)

The documentation and source directories are, of course, not needed for the
simulator to work.
The fact that the package is named “chord” might lead to the misconception that
the simulator has been designed with only Chord in mind.
The truth is, it can be used to simulate the behaviour of various peer-to-peer
networks. The next subsection includes a short description of what needs to be
done in order to use the simulator to study other networks.
The installation of the simulator needs a XML configuration file called
“simulator.xml” and its required schema and document type definition, which are
“simulator.xsd” and “simulator.dtd” to be stored all in installdir
The simulator requires JDom and Xerces libraries in order to be able to parse the
configuration XML file, and they have to be available either in the $CLASSPATH
environment variable of the Operating System, or to feed their locations into the
command line when calling the Java Virtual Machine to load the program.
One of the options available in the XML configuration file is a communication
channel of type “progressMon”. This needs a graphical environment to be shown
(X-windows or a MS-Windows desktop). If the simulator is run in text mode, it is
better to set this option off. Fig. 8.1 shows a screenshot of the progress monitor
with information of what percentage of the simulation has been completed as well
as a detail of how many tick times out of the total have been already simulated.

Fig. 8.1 Progress monitor of the simulator while running

 54

The log files can either be shown as they are generated in a window (that requires
a graphic environment too) or they can also be directly written to disk. If the graphic
version is chosen, the window provides buttons to save the file if wanted. If the file
is not saved, the information is lost. Fig. 8.2 shows a screenshot of a text window
log file with some information:

Fig. 8.2 Example of a text window with information of a channel of type “screen”

The way the simulator is implemented right now, it makes a call to the Traffic
Generator (see section 3.3 of this document). So the Traffic Generator must be
present at its expected location. It is not difficult to include a new entry in the
configuration file to feed the simulator with the proper information about what traffic
generator to use, if necessary.
One of the classes in the package, “stat.class”, provides statistics and tries to
make a plot with them if GNU-Plot is found in the system. This can also be easily
customizable with the configuration file, and make it possible for the plot to be
drawn or not depending on an additional option.
So, in short, in order to get the simulator running the way it is now, it is needed:

o disk space (installation + log files)
o Java Virtual Machine
o XML parsing libraries
o XML, DTD and XSD files
o Graphic environment
o Traffic Simulator
o GNU-Plot

Regard that the three last are necessary to run the simulator with its current setup.
Other options might make them unnecessary.

 55

8.2.2 Configuration
The XML configuration file has three sections:

o <constants> - in which numeric and text constants are kept
o <files> - where file paths and file names are stored
o <channels> - where the verbosity of the simulator logs is controlled

All entries in the XML file, regardless of which section they belong to, have three
compulsory fields:

o NAME - is the name of the entry, it must be unique
o TYPE - is either integer or text (if integer, the parser returns an Integer

object)
o VALUE - is, obviously, the value that the variable holds

Some examples of the information stored there are:

 <constant name="AverageMessageDelay" type="integer" value="5"/>
instructs the simulator that message delivery from one node to another should take
5 time units in average
 <constant name="useSuccessorsListUpgrade" type="integer" value="1"/>
means that the successors list should be looked into when looking for a good
candidate to forward a message
 <constant name="generateEventsFile" type="integer" value="0"/>
tells the simulator NOT to generate the events file with the traffic generator (the
traffic might have previously been generated)

 <file name="WinXP-eventsFilePath" type="text" value="z:\\exp\\arrival\\"/>
this shows the path where to find the events file generated by the traffic generator
(or where to store it, if the generator has to run too) in a Windows environment
 <file name="Linux-eventsFilePath" type="text" value="/etc/sim/exp/arrival/"/>
the same, for a Linux environment

 <channel name="stderr" type="std" value="on"/>
sets the standard error channel on
 <channel name="stdout" type="std" value="off"/>
sets the standard output channel off
 <channel name="time" type="progressMon" value="on"/>
sets the progress monitor on (like in Fig. 8.1)
 <channel name="commTrace" type="file" value="off"/>
makes that the information logged as “commTrace”, which would be written to a file
if the channel was ON, is disregarded (no file is created at all)
 <channel name="fingers" type="file" value="on"/>
makes that the information logged as “fingers” will be written to a file
 <channel name="documents" type="screen" value="on"/>
makes that the information logged as “documents” will appear in a text window (as
shown in Fig. 8.2)

 56

8.2.3 Starting the simulator
The simulator has its main method in the “simulator.class“ file, so it has to be
started with a call to the Java Virtual Machine like follows:

/path_to_jdk/bin/java chord.simulator $OPTIONS

$OPTIONS must include, if these paths are not in the $CLASSPATH environment
variable of the Operating System:
-classpath /path_to/simulator/classes;
 /path_to/jdom.jar;
 /path_to/xercesImpl.jar;
 /path_to/xmlParserAPIs.jar

 57

8.3 Javadoc from the Simulator

Package chord
Class Summary Page

arrivals

Title: stat
Description: the module that accumulates statistical data
for the arrivals experiment
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

58

chordNode Title: chordNode
Description: This is the main character of the project.

61

commChannel

Title: commChannel
Description: abstraction of a Communication Channel, it's
a way of logging information in different ways
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

69

commChannelsManager

Title: commChannelsManager
Description: Is the part of the system that takes care of
showing the proper information in the selected
communication channels as desired by command of the
system's general parameters file.

70

controller
Title: Controller
Description: controller of the network simulator
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

71

distributedNode

Title: distributedNode
Description: A subclass of a timedNode, it offers the
interface of a distributed node, with operations
concerning the sending of messages (including forwarding)
and execution of commands the code of which has to be
coded into the implementing class.

72

file

Title:file
Description: this provides the functionality to easily log
information into files through commChannels
Copyright: Copyright (c) 2005
Company:

74

InputStreamHandler
Title: Input Stream Handler
Description: Prevents the improper use of standard input,
output and error channels on a getRuntime() call.

75

message

Title: message
Description: Calls sent among nodes, they're meant to be
executed upon reception
This is a way of implementing a RPC abstraction, through
messages.

76

parametersManager
Title: parametersManager
Description: manages constant values
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

78

params 79

 58

progressMon

Title: progressMon
Description: progress monitor, a bar showing the
percentage of the simulation that has so far been
completed, it's a subclass of commChannel
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

80

screen

Title: screen
Description:
Copyright: Copyright (c) 2005
Company:

81

simulator

Title: Simulator
Description: network simulator, container of the main
routine
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

82

stat

Title: stat
Description: the module that accumulates statistical data
and plots it
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

83

std

Title:std
Description: this provides the functionality to easily log
information out to STDOUT and STDERR channels, in
accordance to the rest of the program, making it easy to
activate and deactivate this level of information display
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

86

timedNode

Title: timedNode
Description: Basic node of a network, provides a queue of
events to be executed in timely fashion, and the interface
by the means of which those events will eventually be
executed
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:

87

Class arrivals

chord
java.lang.Object
 chord.commChannel
 chord.arrivals
public class arrivals
extends commChannel
Title: stat
Description: the module that accumulates statistical data for the arrivals experiment
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

Samer Al-Kassimi
Version:

1.0
See Also:

commChannel, params
Field Summary Page
protected String baseFName

The Strings containing the names of the files 59
protected String dataFName

The Strings containing the names of the files 59

 59

protected
FileOutputStream dataFOS

The streams that are used to gather the data necessary to generate
the plot

59

protected
Hashtable forwards

The table in which the number of lookups of SEARCH calls and its
forwarding steps are stored

60

protected float forwardsAccum 60
protected
Hashtable lookups

The table in which the number of lookups of SEARCH calls and its
forwarding steps are stored

60

protected float lookupsAccum 60
protected int[] nodeIds 60
protected float nodesAccum 60

protected
float[] sForwards 60

protected
float[] sLookups 60

protected String summary
The Strings containing the names of the files 60

protected String summaryFName
The Strings containing the names of the files 59

protected
FileOutputStream summaryFOS

The streams that are used to gather the data necessary to generate
the plot

59

Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
arrivals(String name, params p)

This is the constructor of the class, it is initialized with a name and a params object. 60

Method Summary Page

void close()
Implementation of the abstract method defined in the superclass. 60

protected
String format(float value) 60

protected
String format2(float value) 61
void genDataArrays() 61
void generateDataFiles() 61

String genSummary() 61
protected

void initializeFileNames() 60
protected

void initializeFiles() 60
void showStats() 61
void write(String what)

Implementation of the abstract method defined in the superclass. 60

Methods inherited from class chord.commChannel
close, write
Field Detail
dataFOS
protected FileOutputStream dataFOS

The streams that are used to gather the data necessary to generate the plot
summaryFOS
protected FileOutputStream summaryFOS

The streams that are used to gather the data necessary to generate the plot
baseFName
protected String baseFName

The Strings containing the names of the files
dataFName
protected String dataFName

The Strings containing the names of the files
summaryFName
protected String summaryFName

 60

The Strings containing the names of the files
summary
protected String summary

The Strings containing the names of the files
lookups
protected Hashtable lookups

The table in which the number of lookups of SEARCH calls and its forwarding steps
are stored

forwards
protected Hashtable forwards

The table in which the number of lookups of SEARCH calls and its forwarding steps
are stored

sLookups
protected float[] sLookups
sForwards
protected float[] sForwards
nodeIds
protected int[] nodeIds
lookupsAccum
protected float lookupsAccum
forwardsAccum
protected float forwardsAccum
nodesAccum
protected float nodesAccum
Constructor Detail
arrivals
public arrivals(String name,
 params p)

This is the constructor of the class, it is initialized with a name and a params object.
After initialization (by calling the superclass constructor), it obtains the names of the
files that are going to be used and initializes the files so the necessary data can be
read or write, as necessary.
Parameters:

name - String - the name of the gnuPlot instance (the channel name)
p - params - access to the constants

Method Detail
initializeFileNames
protected void initializeFileNames()
initializeFiles
protected void initializeFiles()
write
public void write(String what)

Implementation of the abstract method defined in the superclass. It updates the
statistical data refered by the contents of the parameter
Overrides:

write in class commChannel
Parameters:

what - String - the statistical data that needs to be updated
close
public void close()

Implementation of the abstract method defined in the superclass. It closes the
communication channel. Before closing, the statistical data is prepared to be inserted
into data files. After generating these files, they will be feeded, along with a script, to
the gnuPlot program. The script file instructs gnuPlot to generate GIF images
containing the plots.
Overrides:

close in class commChannel
format
protected String format(float value)

 61

format2
protected String format2(float value)
showStats
public void showStats()
genSummary
public String genSummary()
genDataArrays
public void genDataArrays()
 throws Exception
generateDataFiles
public void generateDataFiles()

Class chordNode

chord
java.lang.Object
 chord.timedNode
 chord.distributedNode
 chord.chordNode
public class chordNode
extends distributedNode
Title: chordNode
Description: This is the main character of the project. The chordNode represents one node
belonging to a Chord network.
It provides a series of operations that make it possible the network to achieve its desired
topology, as well as maintaining it.
Furthermore, it provides the operations to fulfill the main purpose of such a network, which
is to share resources and make them available to the rest of the network.
The main operation in which this project focus is the search of a certain key. Keys
represent both node identifiers and shared resources.
In a general approach, we can say that a shared resource is a "document". And so it is
possible for nodes to insert documents in the network to be shared, and also to make
requests and see if a certain document is present in the network.
The network has a certain maximum size given by two parameters that can be adjusted in
the XML file that holds the execution parameters and constants. One of the parameters is
named K and in the Chord case is a fixed number: 2. The other parameter is called
"number of bits". This name is due to the fact that a key belonging to such a network
(K,number of bits) would be belonging to the range [0,(2^number of bits)-1].
Thus, the maximum size of a network is maxNetSize = K^bits.
Other important issues regarding the inner functioning of the chordNode are the fact that
there are two routines in charge of the maintenance of the network topology. These are the
fixFingers() and the stabilization() routines, and they are executed in a periodical fashion.
The basic chordNode is able to form a network and maintain its structure as long as nodes
don't fail and drop from the network.
A more advanced chordNode implementation takes into consideration the eventuality of a
failure, and makes it possible for the network to recover from such failures. This is
achieved by the insertion of an extra data structure called "successors list". This
"successors list" can provide more advantages to the network more than just robustness. It
is possible to make the network slightly faster in terms of number of messages needed to
receive a reply for a search request.
This is done by choosing the best of the "pointers" to the next hope from the two structures
that hold information about nodes present in the network
which are the "fingers table" and the "successors list".
The use of this advantage is eligible before running a simulation of the network by stating it
so in the XML file that holds the execution parameters and constants. A constant called
"useSuccessorsListUpgrade" with value "0" (False) or "1" (True) will disable or enable this
improvement for the search requests. The "successor list" data structure will be used
anyway for robustness purposes.

 62

Copyright: Copyright (c) 2005 Samer Al-Kassimi
Author:

samer
Version:

2.0
See Also:

distributedNode, timedNode, commChannelsManager, params, message
Field Summary Page
protected

int bits
given that a network has a maximum size of maxNetSize, this is defined

as follows: maxNetSize = K^bits both K and bits are values that are taken
from the PARAMS constant management, although we always work with
K=2

64

protected
Hashtable documents storage of the documents inserted in the node 64
protected

int[] end
superfluous information, end of the interval of responsibility of a certain

level of finger
64

protected
int[] fingers

fingers.get(K) is the first node on the ring such as succeeds ((n + 2^(k-
1)) mod (2^m)) being 1 K m and K is a Double object

64

boolean joined
the existence of the object in the system doesn't necessarily mean that

the node has actually joined the network one could say that a node X has
joined when there's at least another node Y in the network that know about
X this happens when a first stabilization of X has been done

64

protected
int K 64

protected
int maxNetSize 64

protected
int next

counter used to perform the fix_fingers routine, pointing to the level that
is going to be updated

65

protected
int periodicFixFinger

time between periodic calls to the fixFinger routine 64
protected

int periodicStabilization time between periodic calls to the stabilization routine 64
protected

int predecessor
identifier of the predecessor node in the identifier circle 65

protected
LinkedList referers

list for the nodes present in the network in which this node is present at
the finger table

64

protected
int[] start

superfluous information, start of the interval of responsibility of a certain
level of finger

64

protected
int[] successorsList

list of the #bits successors 64

Fields inherited from class chord.distributedNode
myClass, myMethods, network, p

Fields inherited from class chord.timedNode
commChannels, id, now, queue

Constructor Summary Page
chordNode(int nodeId, int time, Hashtable network, commChannelsManager channels,
params p)

Creator operation, initializes a node with its parameters, as described below:
65

 63

Method Summary Page
void alone()

When a node is left alone in the network, the pointers to the successor
and predecessors need to be reset, as well as it is needed to flush the event
queue and thus, re-schedule the periodic calls

67

void areYouAlive(String whoAsks)
A node receiving a "areYouAlive" request may have to reply "YES" in real

live, but the simulator has a means to simulate the failure from higher layers,
sending a "failed" command to the requesting node

67

protected
boolean belongs(int candidate, int init, int end, String boundaries) 68

void checkPredecessor()
This is how nodes learn that a predecessor has failed, and allow "notify"

to reset them If the message fails to be sent, the "failed" routine will take care
of it

67

protected
int closest(int target, int candidate1, int candidate2) 69

protected
int closestPreceedingNode(int whose) Choose the best fit candidate among the nodes that I know about to

forward a request.
68

protected
void correctFingersAndList(String failedNode) Removes the entries from the successorList and the fingerTable that are

a node that is not in the network anymore
68

void disconnect()
In order to guarantee the bootstrapping to build feasible networks, this

procedure ensures that nodes joining the system find a node within the
network

67

void failed(String sender, String receiver, String command, String
colonSeparatedParamList)

reception of messages is implemented in the superclass as an event
scheduled

68

void find(String what) 66
void findSuccessor(String originalSender, String whose, String callerType, String

length, String timeouts)
This is the main procedure of the protocol.

65
void findSuccessorReply(String whose, String successor, String callerType, String

length)
I receive the reply of a request that I made in the past.

66
void fixFingers()

This is the maintenance routine that keeps the finger table up to date, by
updating one row each turn.

68

void giveMeMyDocuments(String whoAsked) 66
void giveMeMyDocumentsReply(String docList) 66
void hereIsMySuccessorsList(String sList, String howManyLeft) 68
void iKnowYouExist(String whoDoes) 67

protected
String initStaticInfo()

creation of the static information regarding each level of fingers (interval
included)

65

void insert(String document) 67
void insertDoc(String document) 67

protected
void join(int nexus) Once a node from the network has been selected to be joined to,

procedures for the JOIN operation continue.
65

void leave()
do whatever a node does to leave nicely the network:

• - let the successor and the predecessor know that I'm leaving.
66

void myInfo(String time) 67
protected

int nexusSelector() At any time, there's one node in the network marked to be the one
contacted for the JOIN operation.

65

void notifyPredecessor(String predecessorCandidate) 67
void nTellsItsPredecessorItLeaves(String myNewSuccessorList)

I am the predecessor of a node who has left. 67
void nTellsItsRefererItLeaves(String whoSays, String substitute)

I have a finger that leaves, and he tells me so. 67

 64

void nTellsItsSuccessorItLeaves(String myNewPredecessor, String listOfDocuments)
I am the successor of a node who has left. 66

void preJoin()
bootstrapping: call to select a node from the network, and join to that node 65

void stabilize()
This is how nodes learn about newly joined nodes in the network. 67

void tellMeYourPredecessor(String whoAsks) 67
void tellMeYourPredecessorReply(String predecessor) 67
void tellMeYourSuccessorsList(String whoAsks) 68
void youAreInMyFingersNow(String whoSays) 68
void youAreNotInMyFingersAnymore(String whoSays) 68

Methods inherited from class chord.distributedNode
execute, failed, send

Methods inherited from class chord.timedNode
execute, scheduleEvent, trigger
Field Detail
joined
public boolean joined

the existence of the object in the system doesn't necessarily mean that the node has
actually joined the network one could say that a node X has joined when there's at
least another node Y in the network that know about X this happens when a first
stabilization of X has been done

bits
protected int bits

given that a network has a maximum size of maxNetSize, this is defined as follows:
maxNetSize = K^bits both K and bits are values that are taken from the PARAMS
constant management, although we always work with K=2

K
protected int K
maxNetSize
protected int maxNetSize
periodicFixFinger
protected int periodicFixFinger

time between periodic calls to the fixFinger routine
periodicStabilization
protected int periodicStabilization

time between periodic calls to the stabilization routine
fingers
protected int[] fingers

fingers.get(K) is the first node on the ring such as succeeds ((n + 2^(k-1)) mod
(2^m)) being 1 K m and K is a Double object

successorsList
protected int[] successorsList

list of the #bits successors
start
protected int[] start

superfluous information, start of the interval of responsibility of a certain level of
finger

end
protected int[] end

superfluous information, end of the interval of responsibility of a certain level of finger
referers
protected LinkedList referers

list for the nodes present in the network in which this node is present at the finger
table

documents
protected Hashtable documents

storage of the documents inserted in the node

 65

predecessor
protected int predecessor

identifier of the predecessor node in the identifier circle
next
protected int next

counter used to perform the fix_fingers routine, pointing to the level that is going to
be updated

Constructor Detail
chordNode
public chordNode(int nodeId,
 int time,
 Hashtable network,
 commChannelsManager channels,
 params p)

Creator operation, initializes a node with its parameters, as described below:
Parameters:

nodeId - int - the node identification number
time - int - time of initialization (entry point) in the network
network - Hashtable - the network the node belongs to
channels - commChannelsManager - the log manager that takes care of the simulator's debug
level
p - params - access to the constants

Method Detail
initStaticInfo
protected String initStaticInfo()

creation of the static information regarding each level of fingers (interval included)
Returns:

String - the static information in printable format
preJoin
public void preJoin()

bootstrapping: call to select a node from the network, and join to that node
nexusSelector
protected int nexusSelector()

At any time, there's one node in the network marked to be the one contacted for the
JOIN operation. When the network is empty, the first node to enter marks itself as
candidate to be contacted for JOIN operations. Each time a node disappears from
the network, this mark is checked out just in case the "token" has to be passed to
someone else.
Returns:

int
See Also:

disconnect()
join
protected void join(int nexus)

Once a node from the network has been selected to be joined to, procedures for the
JOIN operation continue. If THIS is the only node in the network yet, this operation
initializes fingers and successorsList as well as triggers the stabilize() and
fixFingers() routines. Otherwise, a message to the selected network node is sent
asking "who's my successor, I want to join", and these initializations will be done later
as a consequence of that call, when the reply comes.
Parameters:

nexus - int - the node to which THIS joins
findSuccessor
public void findSuccessor(String originalSender,
 String whose,
 String callerType,
 String length,
 String timeouts)

This is the main procedure of the protocol. It searches for the successor of a certain
ID.
Parameters:

originalSender - String - The one that expects the reply (if so)
whose - String - The element whose successor wants to be found

 66

callerType - String - What kind of operation is being performed that needs to know a successor,
one of the following:

• JOIN: a node joining the network made the request
• INSERT: a node has requested the insertion of a certain key into the network, the

responsible of the key should take care of it
• DOCUMENT: a node has requested the search of a certain key (or resource, or

document)
• FIXFINGERS: a node has requested the successor of a certain node to update its

fingers table
length - String - How many hops are being used to find the successor. It's incremented at each
forwarding step
timeouts - String - How many timeouts have occurred during the resolution of this
findSuccessor call since its original call

findSuccessorReply
public void findSuccessorReply(String whose,
 String successor,
 String callerType,
 String length)

I receive the reply of a request that I made in the past. Upon reception of the reply,
the operation that requested the search continues, as it now has the data that it
requires.
Parameters:

whose - String - what ID was I searching for
successor - String - the real content of the reply: WHO is the successor of the key requested
callerType - String - What kind of operation is being performed that needs to know a successor,
one of the following:

• JOIN: a node joining the network made the request. The node knows now who is its
successor, and the operation continues: it requests its documents and schedules the
first call to the maintenance routines.

• DOCUMENT: this node has requested the search of a certain key (or resource, or
document). The search has been successful, the result is written in the log files

• FIXFINGERS: this node has requested the successor of a certain ID to update the
fingers table. The successor is known now, the finger table is updated

length - String - How many hops were used to find the successor. It's been incremented at each
forwarding step.

giveMeMyDocuments
public void giveMeMyDocuments(String whoAsked)

Parameters:
whoAsked - String

giveMeMyDocumentsReply
public void giveMeMyDocumentsReply(String docList)

Parameters:
docList - String

find
public void find(String what)

Parameters:
what - String

leave
public void leave()

do whatever a node does to leave nicely the network:
• - let the successor and the predecessor know that I'm leaving. As a result:
• --- transfer the documents to the successor
• --- the successor needs to replace it's predecessor
• --- my predecessor will need to remove ME from its successor list, and add

MY last successor from the list
• - everything else will go further as if it was a failure

nTellsItsSuccessorItLeaves
public void nTellsItsSuccessorItLeaves(String myNewPredecessor,
 String listOfDocuments)

I am the successor of a node who has left. I receive a new predecessor and a ":"
separated list of documents

 67

Parameters:
myNewPredecessor - String
listOfDocuments - String

nTellsItsPredecessorItLeaves
public void nTellsItsPredecessorItLeaves(String myNewSuccessorList)

I am the predecessor of a node who has left. I receive a new successorsList (which
means a new successor, too)
Parameters:

myNewSuccessorList - String - the new successorsList
nTellsItsRefererItLeaves
public void nTellsItsRefererItLeaves(String whoSays,
 String substitute)

I have a finger that leaves, and he tells me so. I should update this finger ASAP
Parameters:

whoSays - String - the node that has knows I refer to it
substitute - String - the successor of that node

alone
public void alone()

When a node is left alone in the network, the pointers to the successor and
predecessors need to be reset, as well as it is needed to flush the event queue and
thus, re-schedule the periodic calls

disconnect
public void disconnect()

In order to guarantee the bootstrapping to build feasible networks, this procedure
ensures that nodes joining the system find a node within the network

insert
public void insert(String document)

Parameters:
document - String

insertDoc
public void insertDoc(String document)
myInfo
public void myInfo(String time)

Parameters:
time - String

checkPredecessor
public void checkPredecessor()

This is how nodes learn that a predecessor has failed, and allow "notify" to reset
them If the message fails to be sent, the "failed" routine will take care of it

areYouAlive
public void areYouAlive(String whoAsks)

A node receiving a "areYouAlive" request may have to reply "YES" in real live, but
the simulator has a means to simulate the failure from higher layers, sending a
"failed" command to the requesting node
Parameters:

whoAsks - String
stabilize
public void stabilize()

This is how nodes learn about newly joined nodes in the network.
tellMeYourPredecessor
public void tellMeYourPredecessor(String whoAsks)

Parameters:
whoAsks - String

tellMeYourPredecessorReply
public void tellMeYourPredecessorReply(String predecessor)

Parameters:
predecessor - String

notifyPredecessor
public void notifyPredecessor(String predecessorCandidate)

Parameters:
predecessorCandidate - String

iKnowYouExist
public void iKnowYouExist(String whoDoes)

 68

Parameters:
whoDoes - String

tellMeYourSuccessorsList
public void tellMeYourSuccessorsList(String whoAsks)

Parameters:
whoAsks - String

hereIsMySuccessorsList
public void hereIsMySuccessorsList(String sList,
 String howManyLeft)

Parameters:
sList - String
howManyLeft - String

fixFingers
public void fixFingers()

This is the maintenance routine that keeps the finger table up to date, by updating
one row each turn.
The "periodicFixFinger" parameter in the XML parameter file tells how often this
routine will be executed.
The whole finger table will be updated each "periodicFixFinger"*bits units of time

youAreInMyFingersNow
public void youAreInMyFingersNow(String whoSays)

Parameters:
whoSays - String

youAreNotInMyFingersAnymore
public void youAreNotInMyFingersAnymore(String whoSays)

Parameters:
whoSays - String

closestPreceedingNode
protected int closestPreceedingNode(int whose)

Choose the best fit candidate among the nodes that I know about to forward a
request.
In the case that the "useSuccessorsListUpgrade" parameter is set to 1 (True) in the
XML parameters file, the successors list will be taken into consideration for a better
approximation to the closest node.
Parameters:

whose - int - the ID of which we want to find the closest node
Returns:

int - the ID of the node of which I know that is closest to the key I'm searching for
failed
public void failed(String sender,
 String receiver,
 String command,
 String colonSeparatedParamList)

reception of messages is implemented in the superclass as an event scheduled
Overrides:

failed in class distributedNode
Parameters:

sender - String
receiver - String
command - String
colonSeparatedParamList - String

correctFingersAndList
protected void correctFingersAndList(String failedNode)

Removes the entries from the successorList and the fingerTable that are a node that
is not in the network anymore
Parameters:

failedNode - String
belongs
protected boolean belongs(int candidate,
 int init,
 int end,
 String boundaries)

Parameters:
candidate - double What element is being tested as to belong to the interval
init - double Initial boundary of the interval

 69

end - double End boundary of the interval
boundaries - String Whether the start and end intervals are open or close

Returns:
boolean

closest
protected int closest(int target,
 int candidate1,
 int candidate2)

Class commChannel

chord
java.lang.Object
 chord.commChannel
Direct Known Subclasses:

arrivals, file, progressMon, screen, stat, std
abstract public class commChannel
extends Object
Title: commChannel
Description: abstraction of a Communication Channel, it's a way of logging information in
different ways
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer
Version:

3.0
Field Summary Page
protected

static
int

howMany
This is a counter that stores the amount of instances of commChannel

objects there are, for display issues Only those commChannel subclasses that
are susceptible to be shown in a window may want to access this counter

69

protected
String name

The name of the channel, it will be the address to access, store or display
information.

69

protected
params p

Access to the constants 69

Constructor Summary Page
commChannel(String name, params p)

Constructor of the class. 70

Method Summary Page
abstract

void close() This is the signature of the call that any subclass must implement for the
event of closing the commChannel.

70

abstract
void write(String what) This is the signature of the call that any subclass must implement for the

event of logging a message.
70

Field Detail
howMany
protected static int howMany

This is a counter that stores the amount of instances of commChannel objects there are,
for display issues Only those commChannel subclasses that are susceptible to be
shown in a window may want to access this counter

name
protected String name

The name of the channel, it will be the address to access, store or display
information.

p
protected params p

Access to the constants

 70

Constructor Detail
commChannel
public commChannel(String name,
 params p)

Constructor of the class. It initializes the access to the constants as well as the name
of the object
Parameters:

name - String
p - params

Method Detail
close
public abstract void close()

This is the signature of the call that any subclass must implement for the event of
closing the commChannel.

write
public abstract void write(String what)

This is the signature of the call that any subclass must implement for the event of
logging a message.
Parameters:

what - String - the data that is going to be logged.

Class commChannelsManager
chord
java.lang.Object
 chord.commChannelsManager
public class commChannelsManager
extends Object
Title: commChannelsManager
Description: Is the part of the system that takes care of showing the proper information in
the selected communication channels as desired by command of the system's general
parameters file. It acts as a log debug level manager. By providing the information in the
PARAMS file this class will show (or not) information in the desired channels, according to
the debug level desired.
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Author:

samer
Version:

2.0
See Also:

params, commChannel
Field Summary Page
protected
Hashtable ch

Storage of the different channels. 70

Constructor Summary Page
commChannelsManager(params p)

This is the constructor method: it takes the debug level data from the PARAMS
file It creates the channels where the log information will be logged to.

71

Method Summary Page

void closeAll()
This method closes all channels opened by the manager. 71

void write(String where, String what)
This primitive offers the user a way to log information. 71

void writeLine(String where, String what)
This primitive offers the user a mean to log information. 71

Field Detail
ch
protected Hashtable ch

 71

Storage of the different channels. The keys are String objects that represent the
name of the channel. The object stored for that key is a commChannel. the execute
method.

Constructor Detail
commChannelsManager
public commChannelsManager(params p)

This is the constructor method: it takes the debug level data from the PARAMS file It
creates the channels where the log information will be logged to.
Parameters:

p - params - access to the constants
Method Detail
write
public void write(String where,
 String what)

This primitive offers the user a way to log information. It will check out the existence
of the channel requested, and if it is active, the information will be written there.
Parameters:

where - String - in which channel the information will be written
what - String - what information is going to be logged

writeLine
public void writeLine(String where,
 String what)

This primitive offers the user a mean to log information. It will check out the existence
of the channel requested, and if it is active, the information will be written there. In
this case, a line return character will be written at the end of the line.
Parameters:

where - String - in which channel the information will be written
what - String - what information is going to be logged

closeAll
public void closeAll()

This method closes all channels opened by the manager.

Class controller
chord
java.lang.Object
 chord.controller
public class controller
extends Object
Title: Controller
Description: controller of the network simulator
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer
Version:

2.0
Field Summary Page
SortedSet net 72

Constructor Summary Page
controller(commChannelsManager channelsManager, params parameters)

Default initialization function 72

Method Summary Page

void executeSimulation(int exitTime)
Executes the simulation. 72

int parseEventsFileAndGenerateQueue()
Takes the file specified as an event file from the configuration parameters,

and generates the queue of events, inserting multiple entries in the format of
event(parameter[, parameter])

72

 72

Field Detail
net
public SortedSet net
Constructor Detail
controller
public controller(commChannelsManager channelsManager,
 params parameters)

Default initialization function
Parameters:

channelsManager - commChannelsManager
parameters - params

Method Detail
parseEventsFileAndGenerateQueue
public int parseEventsFileAndGenerateQueue()

Takes the file specified as an event file from the configuration parameters, and
generates the queue of events, inserting multiple entries in the format of
event(parameter[, parameter])
Returns:

Double the finish time of the simulation. It's assumed that the last event found in the events file is
an exit event, and a time for that is provided

executeSimulation
public void executeSimulation(int exitTime)

Executes the simulation. For each time tick, it tries to see if there are events pending
to execute at that time. If there are, it executes them. Order of execution of events
within a given time is not important, therefore a Vector of events is provided for each
set of events to execute at that given time. Execution ends at the exitTime provided
to the function call or at the maxExecutionTime provided in the parameter file,
whichever occurs first.
Parameters:

exitTime – double

Class distributedNode
chord
java.lang.Object
 chord.timedNode
 chord.distributedNode
Direct Known Subclasses:

chordNode
abstract public class distributedNode
extends timedNode
Title: distributedNode
Description: A subclass of a timedNode, it offers the interface of a distributed node, with
operations concerning the sending of messages (including forwarding) and execution of
commands the code of which has to be coded into the implementing class.
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Author:

samer
Version:

2.0
See Also:

timedNode, message, params, commChannel
Field Summary Page
protected

Class myClass This is a reference to the class object in order to make it possible for the
java.lang.reflect package to execute methods called through
code>message objects

73

protected
Hashtable myMethods This is a storage of the available methods to be executed in the

implementing node.
73

Hashtable network
The network that the node belongs to. 73

 73

protected
params p

The parameters object that takes data from the XML configuration file 73

Fields inherited from class chord.timedNode
commChannels, id, now, queue

Constructor Summary Page
distributedNode(int nodeId, int time, Hashtable network, commChannelsManager channels,
params p)

Creator operation, initializes a node with its parameters, as described below:
73

Method Summary Page

void execute(message m)
This is one of the two important operations that this class offers, the

execution of a message arrived to the node.
74

abstract
void failed(String sender, String receiver, String command, String

colonSeparatedParamList)
This is the signature of the call that any subclass must implement for the

event of a failed message.
74

void send(message msg)
This is the second core functionality of this class. 74

Methods inherited from class chord.timedNode
execute, scheduleEvent, trigger
Field Detail
network
public Hashtable network

The network that the node belongs to. The keys are Integer objects. The int value
stored in those objects represents a node identificator, and the object stored for that
key is a distributedNode. This object is accessed locally only upon creation of a new
distributedNode, and when a message is to be delivered

myClass
protected Class myClass

This is a reference to the class object in order to make it possible for the
java.lang.reflect package to execute methods called through code>message objects

myMethods
protected Hashtable myMethods

This is a storage of the available methods to be executed in the implementing node.
The keys are String objects, describing the name of the method. The object stored
for that key is a Method that, among other things, can be referenced in order to make
a call to the invoke method, that will actually execute the method referenced by the
name.

p
protected params p

The parameters object that takes data from the XML configuration file
Constructor Detail
distributedNode
public distributedNode(int nodeId,
 int time,
 Hashtable network,
 commChannelsManager channels,
 params p)

Creator operation, initializes a node with its parameters, as described below:
Parameters:

nodeId - int - the node identification number
time - int - the time of initialization (entry point) in the network
network - Hashtable - the network the node belongs to
channels - commChannelsManager - the log manager that takes care of the simulator's debug
level
p - params - the configuration file manager

 74

Method Detail
execute
public void execute(message m)

This is one of the two important operations that this class offers, the execution of a
message arrived to the node. It provides most of the implementation to the
translation of RPC to message sending and execution.
Tries to execute the content of an arrived message, if an available operation with the
same signature of the message received exists. Otherwise, it logs the failure to the
corresponding error channel.
One has to be very careful with the names and signatures that chooses for the
methods and messages in order to make it possible for them to be executed without
problems. Collision of names and different signatures make the execution
unnecessarily complicated.
Overrides:

execute in class timedNode
Parameters:

m - message - the message to be executed
send
public void send(message msg)

This is the second core functionality of this class. This implements the forwarding of
message objects from one node to another.
Three different cases are contemplated:

• The destination of msg is not a node, (symbolized by -1). This is only meant
to be displayed in a Communication Channel.

• The destination of msg is the same as the sender. This will result in the
schedule of an event in the next time unit. This means that when all events
that were scheduled for time NOW will be executed, the entity in charge of
managing all the nodes (namely, the simulator controller) will increase the
time counter, and then events scheduled for time NOW+1 will be executed.

• The third, and most usual case of occurrences is when node A sends msg to
B. Then, two things can happen: that B is in the network, or maybe B has left
the network (either failed or cleanly left). In the case that B is not in the
network, a log line will be written on the chosen Communication Channel, and
the sender node will be notified of such event. Otherwise, the event will be
scheduled in a future time, depending of the DELAY expected for the
communications between nodes to take. This DELAY is a parameter that is
provided in the PARAMS class.

Parameters:
msg - message - the message to be sent

failed
public abstract void failed(String sender,
 String receiver,
 String command,
 String colonSeparatedParamList)

This is the signature of the call that any subclass must implement for the event of a
failed message.
Parameters:

sender - String - The sender of the message
receiver - String - The receiver of the message
command - String - The command to execute on reception of message
colonSeparatedParamList - String - The parameters of the command

Class file
chord
java.lang.Object
 chord.commChannel
 chord.file

 75

public class file
extends commChannel
Title:file
Description: this provides the functionality to easily log information into files through
commChannels
Copyright: Copyright (c) 2005
Company:
Author:

samer
Version:

2.0
See Also:

commChannel, params
Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
file(String name, params p)

This is the constructor of the class 75

Method Summary Page

void close()
Implementation of the abstract method defined in the superclass. 75

void write(String what)
Implementation of the abstract method defined in the superclass. 75

Methods inherited from class chord.commChannel
close, write
Constructor Detail
file
public file(String name,
 params p)

This is the constructor of the class
Parameters:

name - String - the name of the CHANNEL
p - params - access to the constants

Method Detail
write
public void write(String what)

Implementation of the abstract method defined in the superclass. It adds the string
passed at the end of the file
Overrides:

write in class commChannel
Parameters:

what - String - the content that will be added at the end of the file
close
public void close()

Implementation of the abstract method defined in the superclass. It closes the output
stream
Overrides:

close in class commChannel

Class InputStreamHandler
chord
java.lang.Object
 java.lang.Thread
 chord.InputStreamHandler
All Implemented Interfaces:

Runnable

 76

public class InputStreamHandler
extends Thread
Title: Input Stream Handler
Description: Prevents the improper use of standard input, output and error channels on a
getRuntime() call.
Copyright: Copyright (c) 2005
Company:
Author:

Al Sutton from http://hacks.oreilly.com/pub/h/1092
Version:

1.0
See Also:

simulator
Method Summary Page

void run()
Stream the data. 76

Method Detail
run
public void run()

Stream the data.
Specified by:

run in interface Runnable
Overrides:

run in class Thread

Class message
chord
java.lang.Object
 chord.message
public class message
extends Object
Title: message
Description: Calls sent among nodes, they're meant to be executed upon reception
This is a way of implementing a RPC abstraction, through messages. Access to remote
object attributes have to be done through the execution of calls for simplicity
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Author:

samer
Version:

2.0
Field Summary Page

String command
The name of the method that is expected to be found on the receiver in

order to be executed
77

String msg
Complete string containing the description of the call to be executed on

the receiver end
77

String[] parameters
Parameters of the command. 77

int receiver
Receiver of the call described in the message 77

int sender
Sender of the message 77

 77

Constructor Summary Page
message(int sender, int receiver, String message)

Constructor operation of the message, it needs a sender, a receiver and a String
that must be of the form nameOfTheOperation(param1[,paramN]) (and no parameters are
accepted too)

77

Method Summary Page
boolean equals(message m)

This method states whether two messages are equal. 77
String print()

This operation returns a String with a easily readable description of the
message, for logging and debugging purposes.

77

Field Detail
sender
public int sender

Sender of the message
receiver
public int receiver

Receiver of the call described in the message
msg
public String msg

Complete string containing the description of the call to be executed on the receiver
end

command
public String command

The name of the method that is expected to be found on the receiver in order to be
executed

parameters
public String[] parameters

Parameters of the command. For clarity and ease of implementation, all of them are
String objects, though each one of them will be properly parsed depending on the
needs of the method. This parsing will be taken care of in the implementation of the
node in each one of the different methods.

Constructor Detail
message
public message(int sender,
 int receiver,
 String message)

Constructor operation of the message, it needs a sender, a receiver and a String that
must be of the form nameOfTheOperation(param1[,paramN]) (and no parameters are
accepted too)
Parameters:

sender - int - the sender of the message
receiver - int - the receiver of the message
message - String - the text of the message (formed by the command ant its parameters)

Method Detail
print
public String print()

This operation returns a String with a easily readable description of the message, for
logging and debugging purposes.
Returns:

String - the result of the call, in format nameOfTheOperation(param1[,paramN])
equals
public boolean equals(message m)

This method states whether two messages are equal. This is done comparing
sender, receiver and the message within.
Parameters:

m - message - the message to which THIS is compared to
Returns:

boolean - true if the messages are equal

 78

Class parametersManager
chord
java.lang.Object
 chord.parametersManager
Direct Known Subclasses:

params
public class parametersManager
extends Object
Title: parametersManager
Description: manages constant values
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer
Version:

1.0
Constructor Summary Page
parametersManager()

The constructor of the class, it calls an initialization routine giving as a parameter
the name of the XML file going to be used.

78

Method Summary Page

void beginManager(String xmlFileAux)
The initialization routine, it is responsible of calling each sequential step for

the storage of the constants and its attributes in a Hashtable from which they'll
be retrieved by the only public operation in the class.

78

String get(String group, String name, String attribute)
This is, apart of the constructor, the only public operation. 78

Constructor Detail
parametersManager
public parametersManager()

The constructor of the class, it calls an initialization routine giving as a parameter the
name of the XML file going to be used.

Method Detail
beginManager
public void beginManager(String xmlFileAux)

The initialization routine, it is responsible of calling each sequential step for the
storage of the constants and its attributes in a Hashtable from which they'll be
retrieved by the only public operation in the class.
Parameters:

xmlFileAux - String
get
public String get(String group,
 String name,
 String attribute)

This is, apart of the constructor, the only public operation. It provides the means by
which constants can be retrieved. The access to constants and their attributes can
be achieved my multiple forms, depending on the value of the parameters given.
Parameters:

group - String - the group to which the constant belongs
name - String - the name of the constant, as specified in the XML file
attribute - String - the special attribute that differs some constants with similar names

Returns:
String - the constant value, it may be parsed if necessary

 79

Class params
chord
java.lang.Object
 chord.parametersManager
 chord.params
public class params
extends parametersManager
Constructor Summary Page
params()

Constructor of the class. 79

Method Summary Page
boolean getChannel(String name)

This method gives access to constants of the type CHANNEL. 79
String getChannelNameByPosition(int position)

This method retrieves the name of the POSITIONth channel found in the
XML file

80

int getChannelsCount()
This method informs of the total number of CHANNEL names found in the

XML file
80

String getChannelTypeByPosition(int position)
This method retrieves the type of the POSITIONth CHANNEL found in the

XML file
80

int getConstant(String name)
This method gives access to numeric constants of the type CONSTANT. 79

int getDelay() 80
int getDelayE() 80

String getFile(String name)
This method gives access to constants of the type FILE. 79

String getTextConstant(String name)
This method gives access to text constants of the type CONSTANT. 80

Methods inherited from class chord.parametersManager
beginManager, get
Constructor Detail
params
public params()

Constructor of the class. Creates a params object by calling the superclass
constructor, and sets the operating system variable.

Method Detail
getFile
public String getFile(String name)

This method gives access to constants of the type FILE. These are dependent of the
operating system, so each entry will need to be duplicated in the XML file that stores
the constants, having one entry for each platform
Parameters:

name - String - the name of the FILE that wants to be accessed (meaning regular file, path, or
program)

Returns:
String - the value of the constant

getChannel
public boolean getChannel(String name)

This method gives access to constants of the type CHANNEL.
Parameters:

name - String - the name of the CHANNEL that wants to be accessed
Returns:

boolean - TRUE if the channel is going to be available for communication
getConstant
public int getConstant(String name)

This method gives access to numeric constants of the type CONSTANT.

 80

Parameters:
name - String - the name of the CONSTANT that wants to be accessed

Returns:
int - the value of the CONSTANT requested

getTextConstant
public String getTextConstant(String name)

This method gives access to text constants of the type CONSTANT.
Parameters:

name - String - the name of the CONSTANT that wants to be accessed
Returns:

String - the value of the CONSTANT requested
getChannelsCount
public int getChannelsCount()

This method informs of the total number of CHANNEL names found in the XML file
Returns:

int - the number of CHANNEL constants
getChannelNameByPosition
public String getChannelNameByPosition(int position)

This method retrieves the name of the POSITIONth channel found in the XML file
Parameters:

position - int - a int with the index in which we want to find the constant
Returns:

String - the name of the found channel
getChannelTypeByPosition
public String getChannelTypeByPosition(int position)

This method retrieves the type of the POSITIONth CHANNEL found in the XML file
Parameters:

position - int - a int with the index in which we want to find the constant
Returns:

String - the type of the found item
getDelay
public int getDelay()
getDelayE
public int getDelayE()

Class progressMon

chord
java.lang.Object
 chord.commChannel
 chord.progressMon
public class progressMon
extends commChannel
Title: progressMon
Description: progress monitor, a bar showing the percentage of the simulation that has so
far been completed, it's a subclass of commChannel
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer
Version:

1.0
See Also:

commChannel, params
Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
progressMon(String name, params p)

Constructor of the class, it initializes the monitor by creating the instance of the
superclass and setting various parameters.

81

 81

Method Summary Page
void close()

Implementation of the abstract method specified by the superclass. 81
void write(String what)

Implementation of the abstract method specified by the superclass. 81

Methods inherited from class chord.commChannel
close, write
Constructor Detail
progressMon
public progressMon(String name,
 params p)

Constructor of the class, it initializes the monitor by creating the instance of the
superclass and setting various parameters.
Parameters:

name - String - the name of the communicationChannel, so that it can be addressed within the
program to update the status
p - params - the constant parameters manager, so constant values can be addressed if
necessary (needed to call the superclass constructor)

Method Detail
write
public void write(String what)

Implementation of the abstract method specified by the superclass. It provides the
information of how much of the task has been completed
Overrides:

write in class commChannel
Parameters:

what - String - the text to be shown on the progress bar
close
public void close()

Implementation of the abstract method specified by the superclass. It closes the
monitor.
Overrides:

close in class commChannel

Class screen
chord
java.lang.Object
 chord.commChannel
 chord.screen
All Implemented Interfaces:

ActionListener, EventListener
public class screen
extends commChannel
implements ActionListener
Title: screen
Description:
Copyright: Copyright (c) 2005
Company:
Author:

not attributable
Version:

2.0
Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
screen(String name, params p) 82

 82

Method Summary Page
void actionPerformed(ActionEvent e) 82
void close()

So far, SWING windows showing don't need specific handling 82
void write(String what)

Specific operation that makes information to be shown on the screen
channel

82

Methods inherited from class chord.commChannel
close, write
Constructor Detail
screen
public screen(String name,
 params p)
Method Detail
actionPerformed
public void actionPerformed(ActionEvent e)

Specified by:
actionPerformed in interface ActionListener

write
public void write(String what)

Specific operation that makes information to be shown on the screen channel
Overrides:

write in class commChannel
Parameters:

what - String
close
public void close()

So far, SWING windows showing don't need specific handling
Overrides:

close in class commChannel

Class simulator
chord
java.lang.Object
 chord.simulator
public class simulator
extends Object
Title: Simulator
Description: network simulator, container of the main routine
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer
Version:

2.0
Constructor Summary Page
simulator()

Default initialization function 82

Method Summary Page
static
void main(String[] args)

Program launcher, calls the simulator to run 83

Constructor Detail
simulator
public simulator()

 83

Default initialization function
Method Detail
main
public static void main(String[] args)

Program launcher, calls the simulator to run
Parameters:

args - String[]

Class stat
chord
java.lang.Object
 chord.commChannel
 chord.stat
public class stat
extends commChannel
Title: stat
Description: the module that accumulates statistical data and plots it
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

Samer Al-Kassimi
Version:

1.0
See Also:

commChannel, params
Field Summary Page
protected String baseFName

The Strings containing the names of the files 84
protected String dataFName

The Strings containing the names of the files 84
protected

FileOutputStream dataFOS The streams that are used to gather the data necessary to generate
the plot

84

protected float failure 85
protected float failureDocument 85
protected float fixFingersCount 85
protected float fixFingersLengthAccum 85
protected float left 85

protected
Hashtable lengths 85

protected float lookupCount 85
protected float lookupLengthsAccum 85
protected float lookupResultCount 85
protected float maxLength 85
protected float maxTimeout 85
protected float minLength 85
protected float notClean 85

protected String scriptFName
The Strings containing the names of the files 84

protected
FileOutputStream scriptFOS The streams that are used to gather the data necessary to generate

the plot
84

protected float stabilizationCount 85
protected String summary

The Strings containing the names of the files 85
protected String summaryFName

The Strings containing the names of the files 84
protected

FileOutputStream summaryFOS The streams that are used to gather the data necessary to generate
the plot

84

protected float timeoutCount 85
protected String timeoutFName

The Strings containing the names of the files 85

 84

protected
FileOutputStream timeoutFOS

The streams that are used to gather the data necessary to generate
the plot

84

protected
Hashtable timeouts 85

Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
stat(String name, params p)

This is the constructor of the class, it is initialized with a name and a params object. 85

Method Summary Page

float calculatePercentile(float[] data, float whichPercentile, int step) 86
float calculateTimeoutPercentile(float[] data, float whichPercentile, int step) 86
void close()

Implementation of the abstract method defined in the superclass. 86
float doCalculation(float[] pAccums, float vTCR, int s) 86

protected
String format(float value) 86

protected
String format2(float value) 86
void generateDataFiles() 86
void generatePlots() 86

String genSummary() 86
protected

void initializeFileNames() 85
protected

void initializeFiles(String initSettingsForFile) 85
float percentile(Hashtable data, float whichPercentile) 86
float percentileTimeouts(Hashtable data, float whichPercentile) 86

float[] putDataIntoArray(Hashtable data) 86
float[] putTimeoutDataIntoArray(Hashtable data) 86

void showStats() 86
void write(String what)

Implementation of the abstract method defined in the superclass. 85

Methods inherited from class chord.commChannel
close, write
Field Detail
scriptFOS
protected FileOutputStream scriptFOS

The streams that are used to gather the data necessary to generate the plot
dataFOS
protected FileOutputStream dataFOS

The streams that are used to gather the data necessary to generate the plot
summaryFOS
protected FileOutputStream summaryFOS

The streams that are used to gather the data necessary to generate the plot
timeoutFOS
protected FileOutputStream timeoutFOS

The streams that are used to gather the data necessary to generate the plot
baseFName
protected String baseFName

The Strings containing the names of the files
scriptFName
protected String scriptFName

The Strings containing the names of the files
dataFName
protected String dataFName

The Strings containing the names of the files
summaryFName
protected String summaryFName

The Strings containing the names of the files

 85

timeoutFName
protected String timeoutFName

The Strings containing the names of the files
summary
protected String summary

The Strings containing the names of the files
lengths
protected Hashtable lengths
timeouts
protected Hashtable timeouts
maxLength
protected float maxLength
minLength
protected float minLength
lookupCount
protected float lookupCount
lookupResultCount
protected float lookupResultCount
fixFingersCount
protected float fixFingersCount
fixFingersLengthAccum
protected float fixFingersLengthAccum
stabilizationCount
protected float stabilizationCount
lookupLengthsAccum
protected float lookupLengthsAccum
timeoutCount
protected float timeoutCount
maxTimeout
protected float maxTimeout
notClean
protected float notClean
left
protected float left
failure
protected float failure
failureDocument
protected float failureDocument
Constructor Detail
stat
public stat(String name,
 params p)

This is the constructor of the class, it is initialized with a name and a params object.
After initialization (by calling the superclass constructor), it obtains the names of the
files that are going to be used and initializes the files so the necessary data can be
read or write, as necessary.
Parameters:

name - String - the name of the gnuPlot instance (the channel name)
p - params - access to the constants

Method Detail
initializeFileNames
protected void initializeFileNames()
initializeFiles
protected void initializeFiles(String initSettingsForFile)
write
public void write(String what)

Implementation of the abstract method defined in the superclass. It updates the
statistical data referred by the contents of the parameter
Overrides:

write in class commChannel

 86

Parameters:
what - String - the statistical data that needs to be updated

close
public void close()

Implementation of the abstract method defined in the superclass. It closes the
communication channel. Before closing, the statistical data is prepared to be inserted
into data files. After generating these files, they will be fed, along with a script, to the
gnuPlot program. The script file instructs gnuPlot to generate GIF images containing
the plots.
Overrides:

close in class commChannel
format
protected String format(float value)
format2
protected String format2(float value)
showStats
public void showStats()
genSummary
public String genSummary()
putDataIntoArray
public float[] putDataIntoArray(Hashtable data)
putTimeoutDataIntoArray
public float[] putTimeoutDataIntoArray(Hashtable data)
percentile
public float percentile(Hashtable data,
 float whichPercentile)
percentileTimeouts
public float percentileTimeouts(Hashtable data,
 float whichPercentile)
calculatePercentile
public float calculatePercentile(float[] data,
 float whichPercentile,
 int step)
calculateTimeoutPercentile
public float calculateTimeoutPercentile(float[] data,
 float whichPercentile,
 int step)
doCalculation
public float doCalculation(float[] pAccums,
 float vTCR,
 int s)
generatePlots
public void generatePlots()
generateDataFiles
public void generateDataFiles()

Class std

chord
java.lang.Object
 chord.commChannel
 chord.std
public class std
extends commChannel
Title:std
Description: this provides the functionality to easily log information out to STDOUT and
STDERR channels, in accordance to the rest of the program, making it easy to activate
and deactivate this level of information display
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer

 87

Version:
1.0

See Also:
commChannel, params

Fields inherited from class chord.commChannel
howMany, name, p

Constructor Summary Page
std(String name, params p)

This is the constructor of the class 87

Method Summary Page

void close()
Implementation of the abstract method defined in the superclass. 87

void write(String what)
Implementation of the abstract method defined in the superclass. 87

Methods inherited from class chord.commChannel
close, write
Constructor Detail
std
public std(String name,
 params p)

This is the constructor of the class
Parameters:

name - String - the name of the CHANNEL
p - params - access to the constants

Method Detail
write
public void write(String what)

Implementation of the abstract method defined in the superclass. It displays the
information into STDERR or STDOUT as wished
Overrides:

write in class commChannel
Parameters:

what - String - the content that will be added at the end of the file
close
public void close()

Implementation of the abstract method defined in the superclass.
Overrides:

close in class commChannel

Class timedNode
chord
java.lang.Object
 chord.timedNode
Direct Known Subclasses:

distributedNode
abstract public class timedNode
extends Object
Title: timedNode
Description: Basic node of a network, provides a queue of events to be executed in timely
fashion, and the interface by the means of which those events will eventually be executed
Copyright: Copyright (c) 2005 Samer Al-Kassimi
Company:
Author:

samer

 88

Version:
2.0

See Also:
message, commChannelsManager

Field Summary Page
commChannelsManager commChannels

Tool used to log information through different channels. 88
int id

Identifier of the node 88
int now

Current time, it is updated on creation of the node and upon calls
to the trigger method

88

Hashtable queue
Queue of events that a node has to perform. 88

Constructor Summary Page
timedNode(int id, int time, commChannelsManager channels)

This is the constructor method for timedNode. 88

Method Summary Page
abstract

void execute(message event) Abstract method to be implemented by a lower class in the inheritance
hierarchy of nodes.

89

void scheduleEvent(message message, int time)
This is the way messages are inserted in the queue of events of a node. 89

void trigger(int time)
This is the public method offered in order to execute all events that might

have been scheduled for a given time.
88

Field Detail
id
public int id

Identifier of the node
queue
public Hashtable queue

Queue of events that a node has to perform. The keys are Integer objects. The int
value stored in those objects represents a time moment, and the object stored for
that key is a Vector. The elements of this Vector are messages, and those messages
can be executed with the execute method.

now
public int now

Current time, it is updated on creation of the node and upon calls to the trigger
method

commChannels
public commChannelsManager commChannels

Tool used to log information through different channels.
Constructor Detail
timedNode
public timedNode(int id,
 int time,
 commChannelsManager channels)

This is the constructor method for timedNode. The ID of the node, the time of creation
and a valid reference to the Communication Channels tool have to be provided.
Parameters:

id - int - identifier of the node
time - int - time of creation
channels - commChannelsManager - access to the logging means

Method Detail
trigger
public void trigger(int time)

 89

This is the public method offered in order to execute all events that might have been
scheduled for a given time. The caller has to take care of the correct generation of
time sequences for the simulation to make sense.
Parameters:

time - int - the time of the actions to be performed
scheduleEvent
public void scheduleEvent(message message,
 int time)

This is the way messages are inserted in the queue of events of a node. A message
is only scheduled for execution if the time at which this message is supposed to be
executed is bigger (which means later) that the current time.
Parameters:

message - message
time - int

execute
public abstract void execute(message event)

Abstract method to be implemented by a lower class in the inheritance hierarchy of
nodes. It provides an interface by the means of which messages sent to a node can
be executed, if the node provides a valid interface for the execution of the message.
Parameters:

event - message - the message to be executed

 90

8.4 References

[STO-1] ION STOICA, ROBERT MORRIS, DAVID LIBEN-NOWELL, DAVID R. KARGER, M.
FRANS KAASHOEK, FRANK DABEK, HARI BALAKRISHNAN, Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications. ACM SIGCOMM (San Diego, CA, 2001) pp. 149-160

[FRE-2] CLARKE, I. Freenet: A distributed decentralized information storage and retrieval system.
Master’s thesis, University of Edinburgh, 1999

[FRE-3] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T.W. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of the ICSI Workshop on
Design Issues in Anonymity and Unobservability (Berkeley, California, June 2000)

[OCS-4] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D.,
GUMMADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore: An architecture for global-scale persistent storage. In Proceedings of the Ninth
international Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000) (Boston, MA, November 2000), pp. 190-201.

[PLA-5] PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Accessing nearby copies of replicated
objects in a distributed environment. In Proceedings of the ACM SPAA (Newport, Rhode Island,
June 1997), pp. 311-320

[NAP-6] Napster

 http://www.napster.com/

[GNU-7] Gnutella

 http://gnutella.wego.com/
[SEA-8] EL-ANSARY, S. A Framework For The Understanding, The Optimization, and Design Of
Structured Peer-To-Peer Systems. Licentiate Philosophy Dissertation, Royal Institute of
Technology, 2003.
[ORA-9] ORAM, A. Peer-To-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, first
edition, March 2001. ISBN:0-596-00110-X.
[ORA-10] ORAM, A. What is P2P... And What isn’t?, November 2000.
 http://www.oreillynet.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html.
[MIL-11] MILLER, M. Discovering P2P. Sybex International, November 2001. ISBN-0782140181.
[PTP-12] Peer-To-Peer Working Group. What is Peer-To-Peer?, 2001.
 http://www.peer-to-peerwg.org/whatis/index.html.
[MAR-13] MARKATOS, E.P. Tracing a Large-Scale Peer to Peer System: An Hour in the Life of
Gnutella. In The Second International Symposium on Cluster Computing and the Grid, 2002.
 http://www.ccgrid.org/ccgrid2002
[RIP-14] RIPEANU, M., FOSTER, I., IAMNITCHI, A. Mapping The Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems And Implications For System Design. IEEE Internet Computing
Journal, 6(1), 2002
[KAZ-15] Kazaa
 http://www.kazaa.com
[CAN-16] RATSANAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., SHENKER, S. A Scalable
Content Addressable Network. Technical Report TR-00-010, Berkeley, CA, 2000
[PAS-17] ROWSTRON, A., DRUSCHEL, P. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science, 2218, 2001.
 http://citeseer.nj.nec.com/rowstron01pastry.html
[TAP-18] ZHAO, B.Y., KUBIATOWICZ, J.D., JOSEPH, A.D. Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. U. C. Berkeley Technical Report UCB//CSD-01-1141,
April 2000
[ALI-19] ALIMA, L.O., HARIDI, S., GHODSI, A., EL-ANSARY, S., BRAND, P. Position Paper: “Self-
”properties in Distributed K-ary Structured Overlay Networks. KTH, Royal Institute of Technology,
SICS, Swedish Institute of Computer Science, Kista, Sweden.
[DIJ-20] DIJKSTRA, E. W. Self-stabilizing systems in spite of distributed control, Communications of
the ACM 17 (1974), 643–644.
[LAS-21] LASZLO, E. Basic constructs of systems philosophy, Systematics 10 (1972), 40–54.
[STU-22] STUTZBACH, D., REJAIE, R. Characterizing Churn in Peer-to-Peer Networks Technical
Report CIS-TR-2005-03 University of Oregon June 3, 2005

 91

[MAH-23] MAHAJAN, R., CASTRO, M., ROWSTRON, A. Controlling the cost of reliability in peer-
to-peer overlays, LNCS 2735, Proceedings of the Second International Workshop IPTPS 2003
(Berkeley), Springer, 2003.
[ALI-24] ALIMA, L.O., EL-ANSARY, S., BRAND, P., HARIDI, S. DKS(N, k, f): A Family of Low
Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications, The 3rd
International workshop CCGRID2003 (Tokyo, Japan), May 2003.
[CAS-25] CASTRO, M., COSTA, M., ROWSTRON, A. Should we build Gnutella on a structured
overlay? Microsoft Research, Cambridge, CB3 0FB, UK
 http://nms.lcs.mit.edu/HotNets-II/papers/structella.pdf
[AND-26] ANDROUTSELLIS-THEOTOKIS, S., SPINELLIS, D. A Survey of Peer-to-Peer File
Sharing Technologies. White paper, Electronic Trading Research Unit (ELTRUN), Athens University
for Economics and Business, 2002.
 http://www.eltrun.aueb.gr/whitepapers
[LVQ-27] LV, Q., CAO, P., COHEN, E., LI, K., SHENKER, S. Search and Replication in
Unstructured Peer-to-Peer Networks. In Scott T. Leutenegger, editor, Proceedings of the 2002
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS-02),
volume 30, 1 of SIGMETRICS Performance Evaluation Review, pages 258–259, New York, June
15–19 2002. ACM Press.
[RIS-28] RISSON, J., MOORS, T., Survey of Research towards Robust Peer-to-Peer Networks:
Search Methods. Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney,
Australia, Sep. 2004.
 http://www.ee.unsw.edu.au/?timm/pubs/robust_p2p/submitted.pdf
[JLI-29] LI, J., LOO, B.T., HELLERSTEIN, J., KAASHOEK, F., KARGER, D.R., MORRIS, R. On the
Feasibility of Peer-to-Peer Web Indexing and Search. In 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), Berkeley, CA, USA, February 2003.
[HAR-30] HARREN, M., HELLERSTEIN, J.M., HUEBSCH, R., LOO, B.T., SHENKER, S., STOICA,
I., Complex Queries in DHT-based Peer-to-Peer Networks. In The 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), 2002.
 http://www.cs.rice.edu/Conferences/IPTPS02/
[AND-31] ANDRZEJAK, A., XU, Z. Scalable, Efficient Range Queries for Grid Information Services.
In 2nd International Conference on Peer-To-Peer Computing, pages 33–40, Linköping, Sweden,
September 2002. IEEE Computer Society. ISBN-0-7695-1810-9.
[SCH-32] SCHLOSSER, M., STINEK, M., DECKER, S., NEJDL, W. A Scalable and Ontology-
Based P2P Infrastructure for Semantic Web Services. In 2nd International Conference on Peer-To-
Peer Computing, pages 104–111, Linköping, Sweden, September 2002. IEEE Computer Society.
ISBN-0-7695-1810-9.
[DAB-33] DABEK, F., KAASHOEK, M.F., DARGER, D., MORRIS, R., STOICA, I. Wide-Area
Cooperative Storage With CFS. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, October 2001.
[ZXU-34] XU, Z., MALLIK, M., KARLSSON, M. Turning Heterogeneity into an Advantage in Overlay
Routing. Technical Report HPL-2002-126R2, Hewlett-Packard Labs, July 2002.
 http://www.hpl.hp.com/techreports/2002/HPL-2002-126R2.html
[STO-35] STOICA, I., ADKINS, D., RATNASAMY, S., SHENKER, S., SURANA, S., ZHUANG, S.
Internet Indirection Infrastructure. In The 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.
 http://www.cs.rice.edu/Conferences/IPTPS02/
[RAT-36] RATNASAMY, S., HANDLEY, M., KARP, R., SHENKER, S., Application-level Multicast
using Content-Addressable Networks. In Third International Workshop on Networked Group
Communication (NGC ’01), 2001.
 http://www-mice.cs.ucl.ac.uk/ngc2001/
[CAS-37] CASTRO, M., DRUSCHEL, P., KERMARREK, A.M., ROWSTRON, A., SCRIBE: A Large-
Scale And Decentralized Application-Level Multicast Infrastructure. IEEE Journal on Selected Areas
in Communications (JSAC) (Special issue on Network Support for Multicast Communications, 2002.
[TAN-38] TANENBAUM, A.S., VAN STEEN, M., Distributed Systems: Principles and Paradigms.
Prentice Hall, Inc., 2002. ISBN-0-13-088893-1.
[BAE-39] BAEHNI, S., EUGSTER, P., GUERRAOUI, R. OS Support For P2P Programming: A
Case For TPS. In 22nd International Conference on Distributed Computing Systems (ICDCS ’02),
pages 355–362, Washington - Brussels - Tokyo, July 2002. IEEE.

 92

[IIC-40] The IEEE International Conference on Peer-To-Peer Computing, Use of Computers at the
Edge of Networks P2P, Grid, Clusters.
 http://www.ida.liu.se/conferences/p2p/p2p2002/
[ISC-41] The IEEE International Symposium on Cluster Computing and the Grid.
 http://www.ccgrid.org
[GGF-42] The Global Grid Forum, 2003.
 http://www.gridforum.org
[ROG-43] Relation of OGSA/Globus and Peer2Peer, 2003.
 http://www.gridforum.org/4 GP/ogsap2p.htm

[STO-44] ION STOICA, ROBERT MORRIS, DAVID LIBEN-NOWELL, DAVID R. KARGER, M.
FRANS KAASHOEK, FRANK DABEK, HARI BALAKRISHNAN, Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications. Technical Report TR-819, MIT LCS, Jan 2002

 http://www.pdos.lcs.mit.edu/chord/papers

[CAR-45] CARTER, J.L., AND WEGMAN, M.N. Universal classes of hash functions. Journal of
Computer and System Sciences 18,2 (1979)

[FIP-46] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, Apr. 1995

[KAR-47] DAVID R. KARGER, E. LEHMAN, F. LEIGHTON, M. LEVINE, D. LEWIN, R. PANIGRAHY
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. 29th Annual ACM Symposium on Theory of Computing (El Paso, TX, May 1997)

[LEW-48] D. LEWIN Consistent hashing and random trees: Algorithms for caching in distributed
networks. Masters Thesis, Department of EECS, MIT, 1998

 http://thesis.mit.edu

[HAC-49] Hack’s at O’Reilly, available at

 http://hacks.oreilly.com/pub/h/1092

[TCP-50] Transmission Control Protocol, RFC 793

 http://www.faqs.org/rfcs/rfc793.html

[WIK-51] Definition of “peer to peer” at wikipedia:

 http://en.wikipedia.org/wiki/Peer-to-peer

[WEB-52] Definition of “peer to peer” at webopedia
 http://www.webopedia.com/TERM/p/peer_to_peer_architecture.html

[LSO-53] Definition of “scalability” at LSoft:

 http://www.lsoft.com/resources/glossary.asp#S

[WIK-54] Definition of “scalability” wikipedia:

 http://en.wikipedia.org/wiki/Scalability

[CIS-55] Definition of “scalability” at CISCO:
 http://www.cisco.com/univercd/cc/td/doc/product/dsl_prod/6160/hwguide/glossary.htm

[WIK-56] Definition of “fully distributed systems” at wikipedia:
 http://en.wikipedia.org/wiki/Distributed_computing

[WIK-57] Definition of “distributed hash tables” at wikipedia:
 http://en.wikipedia.org/wiki/Distributed_hash_table

[WIK-58] Definition of “modulo” at wikipedia:

 http://en.wikipedia.org/wiki/Modular_operation

[MAT-59] Definition of “modulo” at the glossary of the Mathematics Lair:
 http://www.stormloader.com/ajy/glossary.html

[UCC-60] Definition of “modulo” at the Uniform Code Council:
 http://usnet03.uc-council.org/glossary/#M

 93

[WIK-61] Definition of “RPC” at wikipedia:

 http://en.wikipedia.org/wiki/Remote_procedure_call

[WIK-62] Definition of “message passing” at wikipedia:
 http://en.wikipedia.org/wiki/Message_passing

[NAP-63] Definition of “message passing” at the National Academies Press
 http://books.nap.edu/html/up_to_speed/appD.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

