
Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LCN 2005-06

I N M A C U L A D A R A N G E L V A C A S

Context Aware and Adaptive Mobile
Audio

Context Aware and Adaptive Mobile Audio

Inmaculada Rangel Vacas

9th March 2005

Masters of Science thesis performed at
Wireless Center, KTH
Stockholm, Sweden

Supervisor: Gerald Q. Maguire Jr.
Examiner: Gerald Q. Maguire Jr.

School of Information and Communication
Technology (ICT)

Royal Institute of Technology (KTH)
Stockholm, Sweden

Abstract

Today a large percentage of the population uses a handheld (either a mobile phone or a
PDA) a laptop computer, or some other computing device. As this penetration increases,
the user wants to take as great an advantage of these devices as possible. It is for that
reason that communication is demanded almost everywhere. Simply having continuous
access to the network is no longer sufficient thus context awareness and easy
accessibility are becoming more and more relevant.

The idea of this masters thesis is to explore these ideas building on the prior work of
Maria José Parajón Domínguez. The devices used for this study will be an HP iPAQ
h5550 and a laptop. A client-server application, whose components will be explained in
detail in further sections, was designed to study some factors that may be taken into
account when trying to satisfy the users´ demands as stated above. One of these factors
could be, for example, what are the effects of having a personal voice interface on the
traffic to and from the user’s mobile device. The aim of this voice interface will be to
provide more freedom to the user and also satisfy the demand for greater accessibility
and facilitate mobile usage, not only for the common user, but also for handicapped
people. Regarding the user’s desire to always have connectivity everywhere, we wish to
examine the effects on the traffic to and from the user’s handheld, when exploiting
significant local storage. Also related to the requirements on current devices to be
always and everywhere connected and the huge amount of resources that this entails, it
will be of interest to study the possibility of exchanging personalized CODECs (in the
extreme case exchanging voice synthesis modules) and how this might affect traffic to
and from the user’s mobile device. This last method could potentially greatly reducing
both the demands on the communication links and the cost of this connectivity.

With all these ideas in mind, this thesis aims to research an area that is nowadays
continuously attracting new users and the goal is to find solutions to the demands that
have resulted for these trends.

i

Sammanfattning

Användningen av portabla elektroniska apparater så som mobiltelefoner, handdatorer
med mera är nu för tiden vida utbrett. Ju fler apparater som används desto större blir
efterfrågan efter mobila tjänster för dessa. Som ett resultat ökar behovet av goda
kommunikationslösningar, ofta mer komplexa än endast kontinuerlig dataåtkomst.

Syftet med detta examensarbete är att fortsätta att utforska de idéer som Maria José
Parajón Domínguez presenterat. För att utföra detta kommer en HP iPAQ h5550 och en
bärbar dator att användas. En klient-server applikation kommer att tas fram för att
undersöka några faktorer som påverkar kommunikationslösningarna. Ett exempel på en
sådan faktor skulle kunna vara effekten av att ha ett personligt röstgränssnitt för
trafiken. Syftet med detta gränssnitt skulle vara att erbjuda användaren större frihet och
flexibilitet för sitt mobilanvändande, oavsett om användaren lider av något handikapp
eller ej. Försök kommer även att göras med att lagra mycket data lokalt på användarens
apparat, detta i ett försök att minska datatrafiken då många apparater kräver ständig och
intensiv datakommunikation. Det är även av intresse att studera möjligheten av utbyte
av personliga algoritmer, så kallade CODEC, och hur dessa skulle kunna påverka
datatrafiken till och från den portabla apparaten. Det genomgående syftet för alla dessa
faktorer är att sänka belastningen på de kommunikationslänkar som utnyttjas.

Målet med denna studie är att undersöka några sätt att möta den ökade belastning på
kommunikationssystemen som väntas om trenden för mobilt användande ökar.

ii

Acknowledgements

First of all I would like to express my most sincere gratitude to my project advisor,
Professor Gerald Q. Maguire Jr., for helping me when I needed, encouraging me when
problems rose, answering all my doubts, and being always willing to transmit his
positivism and share his knowledge.

I would like also to thank all my colleagues at the lab for maintaining such a good
atmosphere that made work easier and more comfortable.

All my friends need to be mentioned here, those who were encouraging me from Spain
and those who were here, thanks to all them for supporting me in bad moments and
make me feel much better when it was necessary. I would like also to thank Staffan for
offering me all his help from the moment I arrived in Sweden.

My family was always present during the development of this project, they have been
one of the most important pillars to maintain me up and thanks to their encouragements
is that I could continue when things went wrong. It is for that reason that I would like to
thank deeply my father José, my mother María and my sister Eva.

And last but not least, I would like to thank with all my heart the support of my
boyfriend Sergio, for encouraging me in the bad moments, making me feel that I was
able to overcome them and for sharing with me all the good ones.

iii

Table of contents
Abstract...i
Sammanfattning...ii
Acknowledgements ... iii
Table of contents.. iv
List of figures, tables and acronyms... vi

Figures.. vi
Tables... vi
Acronyms.. vii

1 Introduction...1
1.1 Overview of the Problem Area.. 1
1.2 Problem Specification..2

2 Background...3
2.1 Previous and related work... 3

2.1.1 Audio for Nomadic Users...3
2.1.2 Pocket Streamer.. 4

2.2 Useful concepts..5
2.2.1 Audio transmission... 5
2.2.2 Speaker recognition .. 12
2.2.3 Speech Recognition.. 15
2.2.4 Microsoft Speech SDK .. 16
2.2.5 Wireless Local Area Network (WLAN)... 17
2.2.6 HP iPAQ h5550 Pocket PC.. 18
2.2.7 Microsoft’s .NET Framework and .NET Compact Framework..................... 19
2.2.8 Playlists...20
2.2.9 Extensible Markup Language (XML)...20
2.2.10 Microsoft’s ActiveSync.. 21
2.2.11 Windows Mobile Developer Power Toys...21
2.2.12 Context Information..22

3 Design... 22
3.1 Overview..22

3.1.1 Methodology...24
3.2 Context information use with these applications...26
3.3 Playlists representation.. 27
3.4 Description of the Media Organizer program..29
3.5 Description of the File Sender program...30
3.6 Description of the Audio Recorder program... 33
3.7 Description of the Audio Player program..34
3.8 Description of the Player program...34
3.9 Description of the Speech Recognizer program.. 35
3.10 Description of the Manager program...36
3.11 Description of the TextToSpeech program..37

4 Design Evaluation...37
4.1 Amount of traffic... 37

4.1.1 Amount of network traffic using System 1...38
4.1.2 Amount of network traffic using System 2...38
4.1.3 Comparison between System 1 and System 2 regarding the amount of
network traffic... 39

4.2 Effect of communication errors... 42

iv

4.2.1 Effect of errors when using System 1... 42
4.2.2 Effect of errors when using System 2... 45

4.3 Users opinion...46
4.4 Voice interface...48

5 Conclusions.. 48
6 Open issues and future work...49
7 References...51

v

List of figures, tables and acronyms

Figures

Figure 1: Overview of the system used , pg. 3.
Figure 2: Overview of the Pocket Streamer schema, pg. 5.
Figure 3: Process of obtaining an audio file from the server, pg. 5.
Figure 4: Transmission of an audio stream, pg. 7.
Figure 5: The H.323 architectural model for internet telephony, pg. 10.
Figure 6: The H.323 protocol stack, pg. 11.
Figure 7: Speaker recognition system modules, pg. 13.
Figure 8: Speech recognition system modules, pg. 15.
Figure 9: Layout of the second system, pg. 23.
Figure 10: Flow of execution of the system, pg. 23.
Figure 11: Signal Strength, pg. 27.
Figure 12: Playlist representation, pg. 28.
Figure 13: Media Organizer, pg. 29.
Figure 14: Comparison between Case 1 & Case 2 regarding File Sender performance,
pg. 32.
Figure 15: Flowchart of Audio Recorder, pg. 33.
Figures 16: Player Main Form, pg. 34.
Figure 17: Audio Alerts Form, pg. 34.
Figure 18: Flowchart of Speech Recognizer, pg. 36.
Figure 19: Flowchart of Manager, pg. 37.
Figure 20: Packets Sent / Received for each system, pg. 40.
Figure 21: Bytes Sent / Received for each system, pg. 41.
Figure 22: Transmission Time, pg. 41.
Figure 23: Users Opinion (System), pg. 46.
Figure 24: Users Opinion (Voice Interface), pg. 47.

Tables

Table 1: Commands from the player to the server, pg. 9.
Table 2: SIPs methods, pg. 12.
Table 3: HP iPAQ h5550 specifications, pg. 18.
Table 4: Some possible Awareness for a mobile device, pg. 22.
Table 5: Available commands, pg. 24.
Table 6: File Sender performance (Case 1), pg. 31.
Table 7: File Sender performance (Case 2), pg. 32.
Table 8: Network state checking delay, pg. 33.
Table 9: Statistics from Ethereal when using System 1, pg. 38.
Table 10: Statistics from Ethereal when using System 2 (Case 1), pg. 39.
Table 11: Statistics from Ethereal when using System 2 (Case 2), pg. 39.
Table 12: Amount of packets sent / received by each system, pg. 40.
Table 13: Amount of bytes sent / received by each system, pg. 41.
Table 14: Recovering connectivity after [0, 10] seconds, pg. 43.

vi

Table 15: Pause in sound observed with loss of connectivity [0, 10] seconds, pg. 43.
Table 16: Recovering connectivity after [10, 15] seconds, pg. 44.
Table 17: Pause in sound observed with loss of connectivity [10, 15] seconds, pg. 44.

Acronyms

API Application Program(ming) Interface
ASCII American Standard Code for Information Interchange
COM Component Object Model
CPU Central Processing Unit
DTW Dynamic Time Warping
HMM Hyden Markov Model
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
I/O Input/Output
IEEE Institute of Electrical & Electronics Engineers
IP Internet Protocol
ISM Industrial, Scientific and Medical (radio spectrum)
ISP Internet Service Provider
ITU International Telecommunication Union
JIT Just In Time
LAN Local Area Network
LCD Liquid Crystal Display
MAC Media Access Control
MIME Multipurpose Internet Mail Extensions
MMC MultiMedia Card
MSIL Microsoft Intermediate Language
NAT Network Address Translation
PC Personal Computer
PCM Pulse-Code Modulation
PDA Personal Digital Assistant
PSTN Public Switched Telephone Network
RAS Registration/Admission/Status
ROM Read Only Memory
RTCP Real Time Control Protocol
RTP Real Time Protocol
RTSP Real Time Secure Protocol
SAPI Speech API
SCTP Simple Control Transport Protocol
SD Secure Digital
SDIO Secure Digital Input/Output
SDK Software Development Kit
SIP Session Initiation Protocol
TCP Transport Control Protocol
TFT Thin Film Transistor
TTS Text To Speech
UDP User Datagram Protocol

vii

URL Uniform Resource Locator
USB Universal Serial Bus
VQ Vector Quantization
WLA
N

Wireless Local Area Network

XML Extensible Markup Language

viii

1 Introduction

1.1 Overview of the Problem Area

The number of mobile devices that surround us is increasing day by day. Different kinds
of mobile phones, personal digital assistants (PDAs) and many other handhelds are
becoming increasingly essential to a new user profile. Users have started to become
familiar and comfortable with these devices and associated services. The possibilities
that this wide range of devices offers to the user spans from establishing a conversation
everywhere to having internet connectivity and all the opportunities that this constant
connectivity gives to the user.

All this seems to be wonderful, but users want even more. The advantages of being
connected everywhere, has to be complemented with context awareness and improved
accessibility.

Having multiple devices that don’t care about the user’s state has been studied by Maria
José Parajón Domínguez in her masters thesis [1]. She focused on finding a solution to
this problem by unifying all these devices in a single device [16]. The application that
she developed to evaluate the performance of her system is explained in detail in section
2.1.

Given this earlier work and taking into account the new needs of users, new ideas have
been developed to try to address to these new needs.

Context awareness, is useful because it provides a mechanism to be able to detect, in
some way, the situation of the user so that applications can provide (subject to the
resources available) the best possible services that may be of interest to the user at a
specific moment and in a specific situation.

As far as accessibility, the advantage of a voice interface is obvious. With a graphical or
textual interface, the user is forced to concentrate his/her attention uppon choosing from
a menu or typing. For many tasks this is not really efficient, especially in a world where
time is one of the most valuable things a user possesses. Using a voice interface, the
user doesn’t have to pay attention to the device or start typing a command, but can
simply tell the device what he/she is interested in doing at the moment. This advantage
leads to using a voice interface exploiting both speaker and speech recognition. The first
helps provide a certain level of security and the second enables interpretion of the
commands as dictated by the user.

Another aspect that should be taken into account is the desire of the user to have
connectivity everywhere. Analyzing this, on one hand it might be really useful, but on
the other hand it could be very expensive for the user, due to the resources that it will
consume or that need to be reserved, even if they are not used. A solution for this
problem is to take advantage of the local storage of the mobile device. By providing a
sufficient local cache we could continue with an activity (such as listening to a song or
message), even if the connection is lost. Another solution to try to reduce, in this case,
the amount of bandwidth used, for example by exchanging personal CODECs (in the

1

extreme case exchanging voice synthesis modules). These potentially allow low
bandwidth links to provide very high quality audio.
Having all these ideas in mind, the next step was to design and implement a prototype
providing solutions to the needs stated above. A description of the platform for this
study can be found in the next section.

1.2 Problem Specification

This masters thesis builds upon the previous work by María José Parajón Domínguez
[1]. A description of the system and the application that she developed can be found in
section 2.1.

In our case, the wearable device that we will utilize in our study is the HP iPAQ h5550
[10]. A complete specification of this device is given in section 2.2.6. To complete our
system, a laptop will be used. Both the wearable device and the laptop will be running
Microsoft’s Windows operating systems. In the case of the PDA, Microsoft®
Windows® Pocket PC 2003 Premium, and in the case of the laptop, Microsoft’s
Windows XP.

The environment chosen for our development tasks is Microsoft’s Visual Studio .NET
2003 using the .NET Framework for the laptop and Compact Framework for the iPAQ.
A description of the features and usage of this framework can be found at section 2.2.7.
When using this environment, the programming language used for the applications is
C#. In some cases it was also necessary to use C++ and for those applications, the
environment used was eMbedded Visual C++ 4.0.

What we want to do is to use our PDA as a mobile audio device providing it with
context awareness and easy accessibility. Having this in mind we will study and
compare the amount of network traffic that needs to be sent in two different situations,
on one hand, we will study the amount of traffic that needs to be sent when streaming
audio from the laptop computer to the PDA and on the other hand, we will obtain the
amount of traffic that needs to be sent in the case that we download the audio first from
the laptop computer to the PDA and then we play it locally. Another point that we are
going to study is the effect of communication errors using the two different situations
comented before. We would like to have a brief idea of the users opinion regarding
these two different ways of using a mobile audio device. It is for that reason that we will
perform a study to know their preferences regarding streaming audio or playing audio
locally. The last point that we want to evaluate will be the study of the advantages and
and disadvantages of having a voice interface, also from the users point of view.

A complete specification of the design of our system can be found at section 3. The
scenario we will use to evaluate our solution is described in section 3.1.1. And the
details of the context information we will utilize will be given in section 3.2.

2

2 Background

2.1 Previous and related work

2.1.1 Audio for Nomadic Users

The present master thesis extends the work of María José Parajón Domínguez [1]. The
aim of her thesis was to solve the problems of having multiple wearable devices by
introducing a new device, capable of combining all of them and offering an audio
interface.

Smart Badge [16] was used as the wearable device and a laptop completed the system.
An overview of the system she developed is shown in Figure 1.

Figure 1: Overview of the system used

Both, the laptop and the wearable device, were running the Linux operating system. To
test this environment, she developed a client-server application in the programming
language C using the UDP protocol with the following components:

• Master: the server part of the application. It executes at the wearable device and
its main function is to create and maintain a playlist by processing the requests
from clients.

• Player: this client also executes at the wearable device. Its main function is to
ask to the Master for the first element of the playlist and to invoke a suitable
player to reproduce the content of this element.

• User Interface: this client is running at the laptop and its main function is to
accept commands from the user and transmit them to the Master.

3

• Alert Generator: this client also executes on the laptop, accepts textual input and
transforming it into audio alerts. For this María José Parajón used and modified
a client developed earlier by Sean Wong [2].

More information about her thesis can be found at [1].

2.1.2 Pocket Streamer

David Evans’ open source Pocket Streamer project [29] has been very useful to us, not
only to compare two different ways of playing audio (in this case streaming vs. local
storage). It also gave us new ideas.

Pocket Streamer consists of two parts: a server and a client. The server runs at the laptop
and the client at the PDA. The requirements to run this application are:

• At the laptop:
o Windows Media Player 9 [30] and SDK [32],
o Windows Media Encoder 9 [31] and SDK [33], and
o .NET Framework.

• At the PDA:
o Windows Media Player 9,
o Pocket Pc 2000, 2002 or 2003, and
o .NET Compact Framework.

Information about Windows Media, can be found at [30], [31], [32], and [33].

To run this application, the first step is to start the server on the laptop, this application
will appear as a system tray icon. The next step is to start the client at the PDA. In this
client, the user is able to obtain the content at the Media Library in the laptop and select
a track or playlist. When play is pressed at the PDA, the Windows Media Player [30] is
started both at the laptop and at the PDA. As the audio is locally stored at the laptop, the
output of the sound card is redirected to be the input of the Windows Media Encoder
[31] which starts a broadcast session sending the audio to the PDA. From this moment
on, a relationship between both players is established and the user is able to control the
session from the PDA, e.g., going to the previous track, to the next one, and other
controls typical of a normal media player.

An overview of this system can be found at the following figure. We see that the
architecture is similar to the earlier thesis builds upon the previous one, [1], but in this
case, we use a PDA as a wearable device.

4

Figure 2: Overview of the Pocket Streamer schema

2.2 Useful concepts

Some basic concepts, useful for the reader (to understand the rest of the thesis) are
introduced in this section.

2.2.1 Audio transmission

2.2.1.1 Streaming audio

The Internet has many web sites, many of which list song titles that users can click on to
play the songs. This process is illustrated below:

5

1. Establish TCP
connection.

2. Send HTTP GET
request.

3. Server gets file from
disk.

4. File sent back to
browser.

5. Browser writes file to
local disk.

6. Media Player fetches
file block by block
and plays it.

Figure 3: Process of obtaining an audio file from the server

The figure above shows the process that starts when the user clicks on a song. Their
browser (step 1) establishes a TCP connection to the web server (i.e., where the song is
hyperlinked). In step 2 the browser sends a HTTP GET request to request the song. Next
(steps 3 and 4), the server fetches the song (which might encoded as MP3 or some other
format) from the disk and sends it to the browser. If the file is larger than the server's
memory, it may fetch and send the file in blocks.

Using a MIME type, for example, audio/mp3, (or the file extension), the browser
determines how it is supposed to display the file. Normally, there will be a helper
application such as RealOne Player [17], Microsoft’s Windows Media Player [18], or
Winamp [19], associated with this type of file. Since the usual way for the browser to
communicate with a helper is to write the content to a scratch file, it will save the entire
(music) file as a temporary file on the disk (step 5), then it will start the media player
and pass it the name of the scratch file. In step 6, the media player fetches the content
and plays the music, block by block.

In principle, this approach is completely correct and will play the selected music. The
only trouble is that the entire song must be transmitted over the network before the
music starts. If the song is 4 MB (a typical size for an MP3 song) and the transfer rate is
56 kbps, the user will wait for almost 10 minutes (in silence) while the song is being
downloaded.

To avoid this problem without changing how the browser works, music sites have come
up with the following scheme. The file linked to the song title is not the actual music
file. Instead, it is what is called a metafile, a very short file that simply names the music.
A typical metafile might be only one line of ASCII text, such as:

rtsp://eva-audio-server/song-0014.mp3

When the browser gets this 1-line file, it writes it to disk in a temporary file and starts
the media player as a helper handing it the name of the temporary file, (as usual). The
media player reads this file and sees that it contains a URL. The player then contacts
the eva-audio-server and asks for the actual song to be streamed to it. Note that the
browser is no longer involved.

In most cases, the server named in the metafile is not the same as the web server. In
fact, it is generally not even an HTTP server, but rather it is a specialized media server.
In this example, the media server uses the Real Time Streaming Protocol (RTSP), as
indicated by the URL scheme name “rtsp”.

6

The media player has four major taks:

• provide a user interface,

• handle transmission errors,

• decompress and decode the music,

• and eliminate (or at least try to hide) jitter.

As noted, the second job is dealing with errors. Real-time music transmission rarely
uses TCP because if there where an error the resulting TCP based retransmission might
introduce an unacceptably long delay, leading to a break in the music. Instead, the actual
transmission is usually done using a protocol such as RTP [20]. Like most real-time
protocols, RTP is layered on top of UDP, so that packets may be lost. However, it is up
to the player to deal with these losses.

The media player's third job is decompressing and decoding the music. Although this
task is computationally intensive, it is fairly straightforward.

The fourth job is to eliminate (or hide) jitter. All existing streaming audio systems start
by buffering about 10–15 seconds worth of music before starting to play, thus they are
able to hide a very large amount of jitter.

Figure 4: Transmission of an audio stream

7

Two approaches can be used to keep the buffer full. With a pull server, as long as there
is room in the buffer for another block, the media player sends a request for an
additional block to the server. Its goal is to keep the buffer as full as possible. The
disadvantage of a pull server is all the unnecessary data requests. The server knows that
it has to send the entire file, so why does the player need to keep asking? For this
reason, this approach is rarely used.

With a push server, the media player sends a PLAY request to the server and the server
continues to push data to it. There are two possibilities: the media server runs at normal
playback speed or it runs faster. In both cases, some data is buffered before playback
begins. If the server runs at normal playback speed, then the rate at which data arrives
from the server should be the same rate that the player removes data from the front of
the buffer (for playing). As long as everything works perfectly, the amount of data in the
buffer remains constant in time. This scheme is simple because no control messages are
required in either direction.

The other push scheme exploits the fact that the server can send data faster than it is
needed (i.e., faster than the playout rate). The advantage is that if the server cannot
execute at a constant rate, it has the opportunity to catch up if it ever gets behind.
However a problem here, is that potentially the buffer can overflow if the server pumps
out data faster than it is consumed (note that out of content it has to be able to do this to
avoid the player encountering gaps, i.e., out of content).

The solution is for the media player to define a low-water mark and a high-water mark
in the buffer. Basically, the server only sends data until the buffer is filled to the high-
water mark, then the media player pauses. Since some data will continue to arrive before
the server has gotten the pause request, the distance between the high-water mark and
the end of the buffer has to be greater than the bandwidth-delay product of the network.
After the server has stopped, the buffer will begin to empty. When the amount buffered
reaches the low-water mark, the media player tells the media server to start transmitting
again. The low-water mark has to be positioned so that a buffer underrun does not
occur.

To operate a push server, the media player needs a remote control protocol. RTSP
provides the necessary mechanism for the player to control the server. However, it does
not specify the data stream, which is usually sent using RTP. The main commands
provided by RTSP are:

8

Command Server action

DESCRIBE List media parameters

SETUP Establish a logical channel between the player and the server

PLAY Start sending data to the client

RECORD Start accepting data from the client

PAUSE Temporarily stop sending data

TEARDOWN Release the logical channel

Table 1: Commands from the player to the server

2.2.1.2 Internet radio

There are two general approaches to “Internet radio”, the provision of a service similar
to a radio broadcast. In the first, the programs are prerecorded and stored on disk.
Listeners can connect to the radio station's archives and pull up any program and
download it for listening. In fact, this is exactly what is done with the streaming audio
we just discussed. It is also possible to store each program just after it is broadcast live,
so that the archive is only perhaps, half an hour, or less behind the live feed. The
advantages of this approach are that it is easy to do, all the techniques we have discussed
also work here, and listeners can pick and choose from among all the programs in the
archive.

The other approach is to broadcast in real-time over the Internet. Some of the techniques
that are applicable to streaming audio are also applicable to live Internet radio, but there
are some key differences.

One key difference is that streaming audio can be pushed out at a rate greater than the
playback rate; since the receiver can stop the server when the high-water mark is hit.
Potentially, this gives the server time to retransmit lost packets, although this strategy is
not commonly used. In contrast, live radio content is always broadcast at exactly the rate
that it is originated and played. Another difference is that a live radio station usually has
hundreds of thousands of simultaneous listeners whereas streaming audio is a client-
server application. Given these differences, Internet radio uses multicasting (when it
can) with the RTP/RTSP protocols. This is clearly the most efficient way to operate
such a service.

Unfortunately, current, Internet radio does not work this way. What generally happens
is that the user establishes a TCP connection to the station and the content (feed) is sent
over a TCP connection. This is because most internet providers (ISPs), do not support
multicast and in addition most firewalls (and NATs) do not support multicast. Hence the
use of one-to-one transmission via lots of TCP connections.

9

2.2.1.3 Voice over IP

Initially, public switched telephony systems, were used for carrying voice. Some years
later, the movement of data bits over this system started increasing. Today, far more bits
of data are carried than voice calls. Together with the cost advantages of packet-
switching networks, today even traditional network operators are very interested in
carrying voice over their data networks.

2.2.1.3.1 H.323

One thing that was clear to everyone from the start was that if each vendor designed its
own protocol stack, interconnected systems would never work. In 1996, ITU issued
recommendation H.323 entitled ''Visual Telephone Systems and Equipment for Local
Area Networks Which Provide a Non-Guaranteed Quality of Service” [21]. The
recommendation was revised in 1998, and this revised H.323 was the basis for the first
widespread Internet telephony systems.

H.323 is more of an architectural overview of Internet telephony than a specific
protocol. It references a large number of specific protocols for speech coding, call setup,
signaling, data transport, and other areas rather than specifying these things itself. The
general model is depicted in Figure 5. At the center is a gateway that connects the
Internet to the traditional public switch telephone network (PSTN). The H.323 protocols
are used on the Internet side and the PSTN protocols on the telephone side of the
gateway. The communicating devices are called terminals. A LAN may also have a
gatekeeper, which controls the end points under its jurisdiction, called a zone.

Figure 5: The H.323 architectural model for internet telephony

A telephony network utilizes a number of protocols. To start with, there is a protocol for
encoding and decoding speech. A Pulse Code Modulation (PCM) system is defined in
ITU recommendation G.711 [22]. It encodes a single voice channel by sampling it 8000

10

times per second and encoding it as an 8-bit sample, resulting in uncompressed speech
at 64 kbps. All H.323 systems must support G.711. However, speech compression
protocols are also permitted (but not required). They use different compression
algorithms and encodings, traditionally based on making different trade-offs between
quality and bandwidth.

Since multiple compression algorithms are permitted, a protocol is needed to allow the
terminals to negotiate which algorithm they are going to use for a given session. This
protocol is called H.245. It also negotiates other aspects of the connection, such as the
bit rate. Also required is a protocol for establishing and releasing connections, providing
dial tones, generating ringing sounds, and the rest of the standard telephony. ITU Q.931
[46] is used for this. Additionally the terminals need a protocol for talking to the
gatekeeper (if present), for this purpose, H.225 [47] is used. The PC-to-gatekeeper
channel is called the Registration/Admission/Status (RAS) channel. This channel allows
terminals to join and leave the zone, request and return bandwidth, and provide status
updates, among other functions. Finally, a protocol is needed for the actual data
transmission. RTP is used for this purpose, and as usual it is managed by RTCP, as
usual. The relations between all these protocols is shown in Figure 6.

Figure 6: The H.323 protocol stack

2.2.1.3.2 SIP – Session Initiation Protocol

Because H.323 was designed by ITU, many people in the Internet community saw it as a
typical telecommunication standard: large, complex, and inflexible. Consequently, IETF
set up a committee to design a simpler and more modular way to provide voice over IP.
The major result to date is the Session Initiation Protocol (SIP). This protocol describes
how to set up Internet telephone calls, video conferences, and other multimedia
connections. Unlike H.323, which is a complete protocol suite, SIP has been designed to
interwork with existing Internet applications. For example, it defines telephone numbers
as URLs, so that Web pages can contain them, allowing a click on a link to initiate a
telephone call (the same way the “mailto” URL scheme allows a click on a link to cause
the browser to bring up a program to send an e-mail message).

11

SIP can establish two-party sessions (ordinary telephone calls), Push-to-talk [23]
multiparty sessions (where everyone can hear and speak), and multicast sessions (one
sender, many receivers). The sessions may contain audio, video, or data, the latter being
useful for multiplayer real-time games, for example. SIP only handles setup,
management, and termination of sessions. Other protocols, such as RTP/RTCP, are used
for data transport. SIP is an application-layer protocol and can run over UDP, TCP, or
SCTP. SIP supports a variety of services, including locating the callee (who may not be
at his home machine) and determining the callee's capabilities and preferances as well as
handling the mechanics of call setup and termination. In the simplest case, SIP sets up a
session from the caller's computer to the callee's computer, so we will examine that case
first.

The SIP protocol is a text-based protocol modeled on HTTP. One party sends a message
in ASCII text consisting of a method name on the first line, followed by additional lines
containing headers for passing parameters. Many of the headers are taken from MIME
[48] to allow SIP to interwork with existing Internet applications. The six methods
defined by the core specification are listed in Table 2.

Method Description
INVITE Request initiation of a session
ACK Confirm that a session has been initiated
BYE Request termination of session
OPTIONS Query a host about its capabilities
CANCEL Cancel a pending request
REGISTER Inform a redirection server about the user’s current location

Table 2: SIP’s methods

2.2.2 Speaker recognition

We can differentiate between speaker identification, which means identifying an user
from a set of known users, or speaker verification, which consists in verifying if the user
is who they claim to be. Figure 7, illustrates a speaker recognition system. It is
composed of the following modules:

1. Front-end processing
The "signal processing" part, which converts the sampled speech signal into a set

of feature vectors, which characterize the properties of speech that can distinguish
different speakers. Front-end processing is performed both in training- and
recognition phases.

2. Speaker modelling
 Performs a reduction of feature data by modelling (typically clustering) the

distributions of the feature vectors.

3. Speaker database
The speaker models are stored here.

12

4. Decision logic
Makes the final decision about the identity of the speaker by comparing a

unknown set of feature vectors to all models in the database and selecting the best
matching model, thus identifying the speaker.

As the set of possible speakers who might use a given device is often small, we can use
speaker recognition to personalize the device, i.e., we automatically install a given user
profile for this device.

Figure 7: Speaker recognition system modules

2.2.2.1 Speech Signal Acquisition

Initially, the acoustic sound pressure wave is transformed into a digital signal suitable
for voice processing. A microphone or telephone handset can be used to convert the
acoustic wave into an analog signal. This analog signal is conditioned with antialiasing
filtering (and possibly additional filtering to compensate for any channel impairments).
The antialiasing filter limits the bandwidth of the signal to approximately the Nyquist
rate (half the sampling rate) before sampling, to prevent aliasing. The conditioned
analog signal is then sampled to form a digital signal by an analog-to-digital (A/D)
converter. The result is a digital encoding of the speech signal as a time series.

13

2.2.2.2 Feature Selection

The speech signal can be represented by a sequence of feature vectors. Traditionally,
pattern-recognition paradigms to be applied to these vectors are divided into three
components: feature extraction and selection, pattern matching, and classification.

Feature extraction is the estimation of variables, called a feature vector, from another set
of variables (e.g., an observed speech signal time series). Feature selection is the
transformation of these observation vectors to feature vectors. The goal of feature
selection is to find a transformation to a relatively low-dimensional feature space that
preserves the information pertinent to the application while enabling meaningful
comparisons to be performed using simple measures of similarity.

2.2.2.3 Pattern Matching

The pattern-matching task of speaker verification involves computing a match score,
which is a measure of the similarity of the input feature vectors to some model. Speaker
models are constructed from the features extracted from the speech signal. To enroll
users into the system, a model of the voice, based on the extracted features, is generated
and stored (possibly encrypted on an smart card). Then, to authenticate a user, the
matching algorithm compares/scores the incoming speech signal in comparison with the
model of the claimed user while for speaker recognition we simply return the closest
match to the input feature set.

There are two types of models: stochastic models and template models. In stochastic
models, the pattern matching is probabilistic and results in a measure of the likelihood,
or conditional probability, of the observation given the model. For template models, the
pattern matching is deterministic.

Pattern-matching methods include dynamic time warping (DTW), hidden Markov
model (HMM), artificial neural networks, and vector quantization (VQ). Template
models are used in DTW, statistical models are used in HMM, and codebook models are
used in VQ. For more information see [4] and [5].

2.2.2.4 Classification and Decision Theory

Having computed a match score between the input speech-feature vector and a model of
the claimed speaker’s voice, a verification decision is made whether to accept or reject
the speaker or to request another utterance (or, without a claimed identity, an
identification decision is made). The accept or reject decision process can be an accept,
continue, time-out, or reject hypothesis-testing problem. In this case, the decision-
making, or classification, procedure is a sequential hypothesis-testing problem.

An example of the implementation of a speaker verification and speech recognition
system can be found in [24].

14

2.2.3 Speech Recognition

Speech recognition refers to the process of translating spoken phrases into their
equivalent strings of text. A possible approximation of this process is described at the
following figure:

Figure 8: Speech recognition system modules

Having this scheme in mind, now we can explain this process in more detail:

1. Preparing the signal for processing

After capturing the signal by means of a device as a microphone, the first step is
preparing it for the recognition process. One of, the most important treatments of
the signal is the one to detect the presence of speech in the signal, thus
discarding those parts of the signal corresponding to silences. Once we have
identified the parts of the signal containing silences, we are able to isolate the
words that form the spoken phrase.

2. Signal modelling

This step consists of representing the spoken signal as an equivalent sequence of
bits and extract parameters from it that will be useful for posterior statistic
treatments.

15

3. Vector quantizations

Vector Quantization VQ is the process where a continuous signal is
approximated by a digital representation (quantization) utilizing a set of
parameters to model a complete data pattern (i.e., a vector).

4. Phone estimations

A phone is the acoustical representation of a phoneme. Thus, the “sound”
emitted when a “letter” is pronounced, would be the correspondent phone of that
particular phoneme. The goal of phone estimation in speech recognition
technology is to produce the most probable sequence of phones that represent a
segmented word for further classification with other higher level recognizers
(word recognizers). In this phase, the distance between training vectors and test
frames is computed to produce a pattern-matching hypothesis.

5. Word recognition

The last step is word recognition, here the most probable world obtained during
all the processing is returned as output.

Additionally, higher level reasoning (spell checker, grammar checker, speaker models,
…) can also be used.

2.2.4 Microsoft Speech SDK

The Microsoft Speech SDK (SAPI 5.1) [27], provides a high-level interface between the
application we want to build and the underlying speech engines. The SAPI implements
all the low-level details needed to control and manage the real-time operations of
various speech engines.

There are two basic types of SAPI engines available, text-to-speech (TTS) systems and
speech recognizers. TTS systems synthesize text strings and files into spoken audio
using synthetic voices. Speech recognizers convert (human) spoken audio into
(readable) text strings and files.

2.2.4.1 API for Text-To-Speech

Applications can control text-to-speech (TTS) using the ISpVoice Component Object
Model (COM) interface [49]. The first step in creating a TTS application using this API
is to create an ISpVoice object. Subsequently the application only needs to call
ISpVoice::Speak() to generate speech output from some text data. In addition, the

16

IspVoice interface also provides several methods for changing voice and synthesis
properties, such as speaking rate (ISpVoice::SetRate), output volume
(ISpVoice::SetVolume), and changing the current speaking voice (ISpVoice::SetVoice).

2.2.4.2 API for Speech Recognition

The equivalent of ISpVoice as the main interface for speech synthesis, is for speech
recognition the interface ISpRecoContext.

An application has the choice of two different types of speech recognition engines
(ISpRecognizer). A shared recognizer that could possibly be shared with other speech
recognition applications is recommended for most speech applications, mainly those
using a microphone as input. In this case, the SAPI will set up the audio input stream,
and select the SAPI's default audio input stream. For large server applications that
would run alone on a system, and for which performance is important, an InProc speech
recognition engine is more appropriate. Here the audio input stream will be set to a file
which will contain the audio to be recognized. However, as we will see, the later
approach has greater delay.

Once we have set the input for the recognizer, be it shared or InProc, the next step is to
define the events that are of interest to us. We can subscribe the recognizer to many
different sets of events, but the most important will be “Recognition”. This set of events
will be raised each time that a recognition takes place, then its event handler will invoke
the code that we want to be executed (each time).

Finally we need to define a grammar containing the words that we want to use.

2.2.5 Wireless Local Area Network (WLAN)

Wireless Local Area Networks (WLANs) are designed to cover limited areas such as,
buildings and office areas. Today they are becoming more and more widely used not
only in office and industrial settings, but also on the university campus and at users’
homes.

Just as in an Ethernet LAN, every device has its own Media Access Control (MAC)
address in order to be able to distinguish the link layer end points of the transmissions.
IP addresses, can be statically or dynamically mapped to these MAC addresses.

IEEE 802.11 [50] is the family of specifications developed by IEEE for WLAN
technology. Some of the members of this family include:

1. 802.11
Wireless LAN up to 2 Mbps transmission in the 2.4 GHz band, ISM band.

17

2. 802.11a
An extension to 802.11 providing up to 54 Mbps in the 5 GHz band.

3. 802.11b
An extension to 802.11 providing up to 11 Mbps in the 2.4 GHz band.

4. 802.11g
Provides 20+ Mbps in the 2.4 GHz band.

2.2.6 HP iPAQ h5550 Pocket PC

Some of the interesting features of this hand held device are the following:

• Integrated biometric fingerprint reader can be used to protect the information
stored in the Pocket PC. Software allows the user to easily authenticate
himself/herself to the device using his or her fingerprints, or a combination of a
PIN code and/or fingerprints.

• Increased memory capacity (128 MB RAM) enables the user to store many
programs and files. With the iPAQ File Store, up to 17 MB Flash ROM, enables
the user to store data in a safe place protected from battery discharge or device
resets.

• An integrated IEEE 802.11b WLAN interface enables high speed wireless access
to the internet or intranet.

• Integrated Bluetooth® wireless technology allows printing to a Bluetooth
equipped printer, access to the Internet via a Bluetooth enabled mobile phone, or
use of a Bluetooth headset.

Further detailed specifications of this PDA are shown in the following table:

Operating system
preinstalled

Microsoft® Windows® Pocket PC 2003 Premium

Enhanced security Biometric Fingerprint Reader
Connectivity Integrated Bluetooth® wireless technology, WLAN 802.11b
Expansion slot SD slot: SD, SDIO, and MMC support
Processor Intel® 400 MHz processor with Xscale™ technology
Memory, std. 128 MB SDRAM, 48 MB Flash ROM
Display Transflective TFT LCD, over 65K colors 16-bit, 240 x 320

resolution, 3.8" diagonal viewable image size
Input type Pen and touch interface
Audio Microphone, speaker, and a four pole 3.5 mm headphone jack

providing output and mono input to/from a headset
External I/O ports USB slave and serial I/O
Dimensions
 (L x W x H)

13.8 x 8.4 x 1.6 cm.

Weight 206.5 g
Table 3: HP iPAQ h5550 specifications

18

2.2.7 Microsoft’s .NET Framework and .NET Compact Framework

The Microsoft’s .NET Framework is made up of four parts: a Common Language
Runtime, a set of class libraries, a set of programming languages, and the ASP.NET
environment. This framework was designed with three goals in mind. First, it was
intended to make Microsoft’s Windows’ applications much more reliable. Second, it
was intended to simplify the development of Web applications and services that not
only work in the traditional sense, but also work on mobile devices as well. Lastly, the
framework was designed to provide a single set of libraries that would work with
multiple languages.

The .NET Compact Framework is its equivalent for portable devices. The .NET
Compact Network, as it name states, is a compact version of the .NET Framework, it
contains most of the features of the .NET Framework, but some features are missing due
to the differences between the architectures and operating systems of Windows for
portable and non-portable devices.

One of the most important features of the .NET Framework, is the portability of the
code. Using Visual Studio .NET, the code that is output by the compiler is encoded in a
language called Microsoft Intermediate Language (MSIL). MSIL consists of a specific
instruction set that specifies how the code should be executed. However, MSIL is not an
instruction set for a specific physical CPU, but rather MSIL code is turned into CPU-
specific code when the code is run for the first time. This process is called “just-in-
time” compilation (JIT). A JIT compiler translates the generic MSIL code to machine
code that can be executed by the CPU we are currently using.

By installing the .NET Framework in our laptop computer and the .NET Compact
Framework in our portable device, we obtain JIT compilers for both of them, thus we
can generate MSIL code and afterwards the JIT compiler can generate the specific CPU
code for either or a laptop or a handheld, i.e., the specific device we want to use to run
our application.

To install and configure both frameworks in our system, given that we had already
installed Microsoft’s Active Sync, required installing the following:

1. Microsoft’s Visual Studio .NET 2003 [25]
This provides an integrated development environment for C# for mobile
applications.

2. Microsoft’s Pocket PC 2003 SDK [13]
This provides the specific libraries and emulators for use when developing
applications for use a Pocket PC 2003 equipped device.

3. Microsoft’s .NET Compact Framework 1.0 SP2 [11] and [14]
This provides the specific libraries for use on top of the Pocket PC 2003
operating system.

19

4. Microsoft’s Windows Mobile Developer Power Toys [15]
Some useful tools for developing and testing mobile applications.

Inside the directory created after installing Microsoft’s Windows Mobile Developer
Power Toys, we can find several useful tools. Here we specifically mention two of them,
contained in the folders named: RAPI_Start and PPC_Command_Shell. These tools
provide the ability to remotely initiate an application and a shell window on the device
respectively. Following the instructions of the “readme” files in both folders installs
both tools.

To remotely install of all these components, the reader should follow the
recommendations of [7] and [8]. After installing all this software in our laptop and then
via Active Sync to our PDA, we were ready to start developing mobile applications.

2.2.8 Playlists

Today we are surrounded by mobile audio devices, many of them have a very large
amount of storage, hece the usage of playlists is essential. Not only for mobile audio
devices, but also for non-portable ones, playlists are really useful, otherwise the user
would have to manually or randomly select the next song to play.

A playlist can be described as a metafile that contains the required information for
playing a set of pre-selected tracks. The format of these files can vary, depending on the
player that is going to be used. Some examples of possible formats can be: .asx, .m3u, .
wvx, .wmx, and the most gereric one, .xml. We say “the most generic one” because most
of the possible extensions used for building playlists, are proprietary or dependent on
the specific player that is going to be used. In the case of Extensible Markup Language
(XML), a playlist can be described such that a simple application can play the desired
audio content using whichever player necessary.

More information about playlists formats can be found in [34], [35], [36], and [37].

2.2.9 Extensible Markup Language (XML)

Extensible Markup Language (XML) [38] is markup language very similar to
HyperText Markup Language (HTML) [39], but with some differences:

• XML was designed to describe data and to focus on what the data is.
• HTML was designed to display data and to focus on how data looks.
• HTML’s focus is about displaying information, while XML’s is describing

information.

The tags used to mark up HTML documents and the structure of these tags are
predefined. XML, on the contrary, allows the author to define his own tags and his own
document structure.

20

It is important to understand that XML is not a replacement for HTML. Future web
development most likely will use XML to describe the data, while HTML will continue
to be used to format and display the content. When HTML is used to display data, the
data is stored inside HTML. With XML, data can be stored in separate XML files. This
way you can concentrate on using HTML for data layout and display, while being sure
that changes in the underlying data will not require any changes to your HTML. XML
data can also be stored inside HTML pages as "Data Islands". Thus continuing to use
HTML only for formatting and displaying the data.

One of the main features of XML is that data is stored in plain text format, this enables
XML to provide a software- and hardware-independent way of sharing data. This makes
it much easier to create data that different applications can work with.

XML can also be used to store data in files or in databases. Applications can be written
to store and retrieve information from the data base, and generic applications can be
used to display the data.

2.2.10 Microsoft’s ActiveSync

Microsoft’s ActiveSync [51] is a tool to provide synchronization between a computer
and a handheld device. It offers the possibility of synchronizing e-mail, favourites, and
shared files between the computer and the hanheld device. This feature for sharing files
is the most interesting for our study because it will provide us a method to exchange
files between both machines.

ActiveSync enables the use of synchronization services over a serial link, USB, infrared,
or over TCP/IP (which could run over WLAN, Bluetooth, or an additional interface
network card). Regarding the first two possibilities, the handheld has to be docked in its
cradle to perform the synchronization and at the same time, the cradle has to be
connected to the computer which we want to synchronize with. When using infrared,
then IrDA ports both at the computer and the device have to be active, pointed at each
other, and ready to send and receive data. For mobile device, the most interesting way of
performing synchronization is wirelessly, over TCP/IP. In this case, ActiveSync listens
on port 5679 of the host PC for a PDA attempting network synchronization. When a
PDA is synchronized through the cradle, port 5679 is closed.

2.2.11 Windows Mobile Developer Power Toys

Windows Mobile Developer Power Toys [15], are a set of tools whose main purpose is
to allow the developer to test mobile applications as they are being built. The most
interesting “toys” are:

21

• CeCopy: given a file on the laptop computer that we are running, using CeCopy,
we can copy it to the PDA using the following statement:

o CeCopy [options] <Source_FileSpec> <Destination>

• RapiStart: enables the user to launch a program remotely from the laptop
computer to the PDA using the following statement:

o RapiStart <executable> <arguments>

• CmdShell: a shell (on the PDA) for executing commands.

2.2.12 Context Information

Context information can be described as the set of data related with the user, device
being used, situation, environment, time, and all the possible combinations that can be
considered of interest for a concrete purpose. After retrieving this information and
processed it, we draw conclusions and make decisions according to them.

When an application uses context information, it is said to be “Context-Aware” and its
context-awareness depends on the context information that it uses. Not all of the
possible data available is relevant for an application. Some of the possible context items
that an application can use are shown at the following table:

Network-Awareness Transmission rate, link quality, RSSI, AP being used
Memory-Awareness Total capacity, available capacity
Storage-Awareness Total capacity, available capacity
Battery-Awareness Percentage of availability, remaining life time

Table 4: Some possible Awareness for a mobile device

3 Design

3.1 Overview

For our study, we want to introduce and compare two different systems. The first one
corresponds to Pocket Streamer (an explanation about it and an overview can be found
in section 2.1.2). Remember that Pocket Streamer consisted of a server (running at the
laptop) and a client (running at the PDA). First the user has to start the server, then the
client, and after selecting a playlist at the client, the audio is streamed from the laptop to
the PDA.

The second system that we are going to use for our study is shown in the following
image:

22

Figure 9: Architecture of the second system

As can be seen in Figure 9, we use a PDA and a laptop computer, both are running
Microsoft’s Windows Operating Systems, in the case of the PDA, Microsoft®
Windows® Pocket PC 2003 Premium, and in the case of the laptop, Microsoft’s
Windows XP. Microsoft’s Active Sync 3.7 is also installed in both devices. A possible
schema of this system running (when using the voice interface) is shown in Figure 10.
An explanation of all the applications that are going to be used, can be found in the
following sections.

Figure 10: Flow of execution of the system

Figure 10 a) shows the execution on the PDA and the Figure 10 b) the laptop. The
Audio Recorder captures audio input at the PDA, encapsulates it in RTP [20] packets

23

and sends them to the Speech Recognizer. The later application is always waiting for
audio to recognize, when it receives the audio packets, it extracts the audio from them,
transforms the data received into a stream and passes it as input to the recognition
engine. The possible words or phrases recognized (i.e., commands to execute) are:

Word or Phrase Recognized Command to Execute (Action Performed)
Start Start Player at the PDA
Close Close Speech Recognizer at Laptop
Play Start playing selected track at Player at the PDA
Stop Stop playing at Player at the PDA

Previous Play the previous track at Player at the PDA
Next Play the next track at Player at the PDA
Exit Close Player application at the PDA

Table 5: Available commands

3.1.1 Methodology

In our study, we want to compare the two different systems described above with regard
to the following points:

• Compare the amount of traffic which needs to be sent during the network usage
peak period via high cost network connection versus the possibility of being able
to send traffic only when we have a large amount of low cost bandwidth.

• The effects of errors in the case of streaming audio versus the case in which we
are caching and have cached data.

• Brief comparison, from the user’s point of view, of both systems. What do users
like and dislike about having cached files based on a playlist versus only
streamed content.

• Regarding the voice interface, what are the advantages and disadvantages of
having voice commands versus typing on the screen of the PDA.

To facilitate this study we propose to study two different system configurations, from
this moment on, System 1 will refer to Pocket Streamer (i.e., the case in which audio is
streamed) and System 2 will refer to the case in which the audio is stored locally at the
PDA.

3.1.1.1 Scenario using System 1.

Eva loves listening to music. She has received as a present a new PDA for her birthday
and now she wants to enjoy it as much as possible. Looking at the web she has found an

24

interesting application called Pocket Streamer, she has downloaded it and installed both
the server and the client that the application requires.

Once she has installed Pocket Streamer, she decides to organize all the media content
that she has at her laptop. For that purpose she starts Windows Media Player and opens
the utility Media Library. At this point she selects her favourite songs and adds them to
the Media Library, then closes Windows Media Player.

Before going to visit her friend Susana, she decides to take her new PDA with her to
listen to music on the way to Susana’s house. She starts a Pocket Streamer Server on her
laptop and Pocket Streamer Client on the PDA and leaves. On her way, she refreshes the
list of media content, previously organized at the laptop, to the PDA, selects a playlist
and starts listening to her favourite songs.

When she arrives at Susana’s house she stops the currently playing track to resume for
her way back home.

3.1.1.2 Scenario using System 2

Eva was generally very happy with the previous system, but she found that there were
places where she lost the contact with the server. Some days later she hears about
another possibility and decides to test it, too. For this new system, she installs Player,
Audio Player, and Audio Recorder on the PDA and Speech Recognizer, Media
Organizer, TextToSpeech, Manager, and File Sender on her laptop.

As she had already organized her media content some days before using Windows
Media Player and Windows Media Library on the laptop, there is no need to do it again.

Following the instructions for this new system, she decides to start the Media Organizer
and select her favourite songs to form a new playlist. Once she has decided the order of
all the songs she exits the Media Organizer after creating an XML file containing her
desired playlist.

While she does her homework, she decides to transfer the audio files to the PDA to have
it prepared for when she will go out later. To do this, she starts the Player program on
the PDA and the Manager program on the laptop computer. Then at the Player she
selects to download new content by entering the following file name:

“MyPlayList.xml”

The Player program will verify if it is an XML file and if so it will send a message to the
Manager to ask for information about “MyPlayList.xml”. The Manager will check that
the file exists and if so it will send an answer to the Player containing the number of
Megabytes and the playout minutes of the playlist. With this information, the Player will
first check, if it has storage enough to save the audio files, then it checks if it has battery
enough to download all the audio content and finally it checks the network state. If all
these parameters are favourable then a message will be sent to the Manager in order to
start downloading the playlist by means of the File Sender program. While the
transmission takes place, a connection is established between the Player and the File

25

Sender program in order to be able to monitor the network state and recover from errors
or stop and wait until better conditions exist, if necessary.

The new audio content will be stored in a new 512Mb SDIO memory card inserted into
the PDA that Eva received also as a present from her parents and her sister.

While Eva finishes her homework, the audio content is downloaded to her PDA. Now
she has finished studying, she starts the Audio Recorder on the PDA and the Speech
Recognizer on the laptop and goes for a walk to have some fresh air after a long study
session.

On her way she says to her PDA: “Start”. The Audio Recorder gets this audio and sends
it to Speech Recognizer at the laptop. The phrase is recognized and Eva sees that the
Player is started on the PDA. She loads an existing playlist and presses “Play” to start
listening to this audio. After listening for some seconds to this song she decides that she
doesn’t like it so much so she wants to go to the next one. For this purpose she has two
options, either say: “Next” or press the “Next” button on the screen.

Eva’s parents have told her to call them at 18:35, to remind herself, she decides to add a
new audio alert. By pressing the “Audio Alerts” button she starts this process. First she
enters the time when the audio alert has to be played, in this case, 18:35, and then the
text which in this case will be “Remember to call your parents”. The message with the
text will be sent to the Manager program and via the TextToSpeech program the
message will be synthesized and the resulting .wav file stored at the PDA. The audio
alert will be now ready to be played at 18:35. When the time arrives, the current playing
is stopped to be able to play the audio alert and when this has finished, the Player
program will continue with the current track.

Suddenly, she realizes that the cached audio content will not be enough for all the time
she is going to be out and that she would like to get some additional tunes. She presses
the button “New Content”, and the same process as before at home is started for
downloading extra content from the laptop computer. In the mean time, she continues
listening to the local cached audio content.

When she comes back home she decides to stop the Player, again she can, either say
“Exit” or press the “Exit” button.

3.2 Context information use with these applications

As stated in section 2.2.12, context information can be described as the set of data
related to the user, the device being used, the user’s situation, the local environment,
time of the day and all the possible combinations. In that section, some examples of the
possible items of information that could be used to provide an application with context-
awareness were given.

The items of information that we consider as most interesting for our purposes and that
we are going to use to provide our system with context-awareness are the following:

26

• Storage-Awareness
o Available capacity: refers to the total amount of free space, measured in

Mb, in all the locally available storage devices.

• Battery-Awareness
o Percentage of availability: the available battery measured in percentage.
o Remaining life time: minutes of remaining battery life.

• Network-Awareness
o Link quality: the quality of the link measured in percentage.
o RSSI: Received Signal Strength Indicator.

To illustrate the use of the Network-Awareness’ a simple experiment was performed. As
an access point we have used a D-Link AirPlus G+ Wireless Router [53] which was
situated inside a room. To make this experiment more realistic (i.e., more similar to a
normal use of our system), we have taken our PDA and gone to the street so as to be
able to measure how the signal strength that we receive from this access point decreases
with the distance. The measures were taken directly from the PDA. A graph containing
the results obtained is shown in figure 11:

Signal Stregth

-100

-80

-60

-40

-20

0

0 5 10 15 20 25

Meters

dB

Figure 11: Signal Strength

3.3 Playlists representation

As stated in section 2.2.8, a playlist can be considered to be a metafile containing
information about a set of audio content to be played at some later time. It was also
stated that there are several formats for a playlist. For our system, we have decided to
use XML [38], to represent our playlist. The reasons for using this format and not
another are mainly due to the fact that we did not want to force the user to use a specific
format of playlist which might limit them to a specific player. By using XML the default
player that we are using, can easily be substituted by another player.

27

The elements and attributes that we have used in our playlist are the following:

• playListBase / playListBaseID: the full name and location of the XML file that
contains the playlist.

• playListAuthor / playListAuthorID: the author of the playlist.
• track

o title / titleID: the title of the track.
o author / authored: the group or solist author of the track.
o bitRate / bitRate: bit rate of the track in bits per second.
o duration / durationID: duration of the track in minutes.
o fileSize / fileSizeID: size of the file in Mb.
o fileType / fileTypeID: type of the file (mp3, wav …).
o sourceURL / sourceURLID: location of the file at the laptop.
o sourcePDA / sourcePDAID: location where the file will be at the PDA.
o fileName / fileNameID: name of the file (without location).

An example of a possible playlist is shown in figure 12, only two tracks have been
added in order to simplify the example:

Figure 12: Playlist representation

28

 <?xml version="1.0" encoding="utf-8" ?>
 - <playList>
 <playListBase playListBaseID="C:\Documents and Settings\
 Inma\Escritorio\prueba.xml" />
 <playListAuthor playListAuthorID="Inmaculada Rangel Vacas" />
 - <track>
 <title titleID="Vertigo" />
 <author authorID="u2" />
 <bitRate bitRateID="372,76" />
 <duration durationID="3,28" />

 <fileSize fileSizeID="3,39" />
 <fileType fileTypeID="mp3" />
 <sourceURL sourceURLID="E:\Musica\How to dismantle an atomic bomb\
 u2 - 01 - Vertigo.mp3" />
 <sourcePDA sourcePDAID="\Storage Card" />
 <fileName fileNameID="u2 - 01 - Vertigo.mp3" />

 </track>
 - <track>
 <title titleID="Miracle Drug" />
 <author authorID="u2" />
 <bitRate bitRateID="410,42" />
 <duration durationID="4,02" />
 <fileSize fileSizeID="4,08" />
 <fileType fileTypeID="mp3" />
 <sourceURL sourceURLID="E:\Musica\How to dismantle an atomic bomb\
 u2 - 02 - Miracle Drug.mp3" />
 <sourcePDA sourcePDAID="\Storage Card" />
 <fileName fileNameID="u2 - 02 - Miracle Drug.mp3" />

 </track>
 </playList>

3.4 Description of the Media Organizer program

This application was developed using Microsoft’s Visual Studio .NET 2003 as
environment and C# as the development language. The device that will be used to run
this application will be a laptop computer. As this application has a Graphical User
Interface (GUI), perhaps the best way to introduce it is to show screenshots of its
execution.

Figure 13: Media Organizer

When the program is first launched, the only buttons available are “Update” and “Exit”.
If “Update” is pressed, then a call to the Windows Media Library will be performed to
obtain the audio content that the user has previously added to the library. This audio
content is displayed as a tree at the Audio tab. By browsing this tree, the user can add
tracks to the playlist using a popup menu. After the first track is added to the playlist,
the buttons “Clear” and “Save” are enabled. Once we have more than one track, it is
also possible, by means of a popup menu, to change the order of the tracks or to delete a
selected track.

By pressing “Clear” all the items currently in the playlist will be deleted. If the user
presses “Save” a dialog will ask the user the name of the XML file in which the plyalist
is to be written. Once a name has been entered, the dialog will also check if the file
exists and if so, it will query the user if he wants to overwrite it. Finally, the content will
be written into the XML file as explained in the previous section.

29

3.5 Description of the File Sender program

This program is a console application built using Microsoft Visual Studio .NET 2003 as
the IDE and C# as the development language. The input that this program receives is the
full name of an XML file (its full pathname). An example of a call to this program could
be:

FileSender.exe “E:\Proyecto\PlayLists\MyPlayList.xml”

The program will check if the file exists, if it is valid and if so it will perform the
following actions:

• Create a new process to start the tool “CeCopy” to copy to the PDA the XML
file containing the playlist.

• Start reading the XML file and for each track, copy it to the PDA using the same
procedure as above. The procedure of copying each track is explained in more
detail later.

• For each audio file sent to the PDA, the program will first check if the WLAN
link existing between the laptop computer and the PDA is still active, if so, it
will ask the Player application about the state of this link. If the link quality is
below a certain threshold, then the File Sender will wait and check again 10
seconds later. When these parameters will be favourable again, then the
transmission will continue.

This program uses the “CeCopy” tool for downloading files to the PDA and “CeCopy”
at the same time is using ActiveSync to copy files from the laptop computer to the PDA.
The reason for using this tool rather than another is because we have found that when
using Microsoft’s Windows operating systems in both the laptop computer and the
handheld device, the most common way of transmitting files between them is using
ActiveSync that is already installed in both machines. Some good features have been
found when using “CeCopy” by means of ActiveSync these include:

• Transmission speed ~ 400 Kbytes/s.

• The tool checks if the file to download already exists. If so, then it checks if it is
identical to the previous one. In this case it will only perform the download if the
“/is” option is provided. For our purposes, we are only interested in download
files that have not yet been downloaded yet or in the worst case, existing files
but that have changed, for this reason do not give the “/is” option.

Not everything is perfect when using “CeCopy” and ActiveSync, we have also
encountered some problems such as:

• When network connection is lost and we are running ActiveSync wirelessly (as
in our case) then ActiveSync is disconnected and the user has to connect it
(manually) again when the connection is recovered.

30

• As “CeCopy” works over ActiveSync, when a disconnection occurs, then the
transmission will be stopped and no error recovery is provided.

Balancing the good points and the bad ones, we decided that “CeCopy” and ActiveSync
were a very effective way of transmitting our audio files but we need to provide our File
Sender program with some features to come over the problems:

• As stated above, for each audio file sent, we check the network state.

• If we are disconnected that means that perhaps the last file has not been
completely delivered. To solve this we try to send again the file when the
connection is recovered.

• Observe that, when the file has not been copied completely, then “CeCopy” will
detect that the files are not identical so it will transmit it again, while if the file
was successfully sent, then it will discover that the files are identical so it will
continue with the next audio file instead of retransmitting the file.

To illustrate the File Sender performance, two different simple experiments are shown.
In the first one, we will call it Case1, no errors are expected at the network. Taking this
into consideration we can evaluate the performance of sending files without checking
the network state. The results of this experiment are shown at the following table:

Number of tracks Megabytes Minutes Kbytes/s
11 50,01 2,26 377,66
24 101,35 4,55 380,16
34 150,61 7,21 356,51
46 200,22 9,45 361,60
56 246,66 12,00 350,81
68 302,82 14,44 357,90
79 350,25 16,59 360,31
90 403,52 19,38 355,35
100 453,58 22,09 350,36

Table 6: File Sender performance (Case 1)

Now we are going to evaluate a second situation, called Case 2, in which network errors
can occur and for this reason File Sender will be communicating with the Player
program in order to check the connection state. No errors were generated but an increase
of the delay when sending the same amount of audio content but being aware of the
network state can be observed at the following table:

31

Number of tracks Megabytes Minutes Kbytes/s
11 50,01 2,57 332,10
24 101,35 6,08 284,49
34 150,61 9,05 284,02
46 200,22 12,07 283,11
56 246,66 14,53 289,72
68 302,82 18,12 285,22
79 350,25 21,05 283,97
90 403,52 24,05 286,35
100 453,58 27,04 286,22

Table 7: File Sender performance (Case 2)

To be able to evaluate the increase of delay when being aware of the network state we
have created the following graph comparing the results obtained in Case 1 and Case 2:

Comparison Case 1 / Case 2

0

5

10

15

20

25

30

0 100 200 300 400 500

Mb

M
in

ut
es Case 1

Case 2

Figure 14: Comparison between Case 1 & Case 2 regarding File Sender performance

As can be observed at the last graph, the difference between the time that the audio
content needs to be sent in both situations increases with the amount of Mb. The
explanation for this fact is that for each audio track that is sent, File Sender is checking
the network state so the more tracks we are sending (also more Mb) the more delay we
are experimenting due to the network state checking. To be able to evaluate this in more
detail, the following table shows the relationship between the amount of tracks sent and
the time to complete the transmission. The first column shows the amount of tracks sent,
the second one the amount of minutes that takes to sent them all without checking the
network state (Case 1), and the third one, the same but being aware of the network state
(Case 2). With all this information, we can add a last column that will perform the
difference between the minutes obtained in both cases and divide between the number
of tracks in order to get the delay produced by the network state checking.

32

Tracks Minutes (Case 1) Minutes (Case 2) Delay (Minutes)
11 2,26 2,57 0,03
24 4,55 6,08 0,06
34 7,21 9,05 0,05
46 9,45 12,07 0,06
56 12 14,53 0,05
68 14,44 18,12 0,05
79 16,59 21,05 0,06
90 19,38 24,05 0,05
100 22,09 27,04 0,05

Table 8: Network state checking delay

3.6 Description of the Audio Recorder program

This program was developed by Johan Sverin in [54] using C# as a programming
language under Microsoft’s Visual Studio .NET 2003 environment. It runs on the PDA
and a flowchart of its execution can be found below:

Figure 15: Flowchart of Audio Recorder

As it can be seen in the flowchart, when the Audio Recorder program starts, the first
thing that it does is to get the hostname and to open and bind a socket to communicate
with the Speech Recognizer at the laptop. Thus it will always be capturing new audio
and sending these samples to the Speech Recognizer program.

33

3.7 Description of the Audio Player program

This is an application developed with Microsoft Visual Studio .NET 2003 as an IDE and
using C# as the programming language. The program is run at the PDA and its main
purpose is to play a .wav file. It receives as input a string containing the file name
(including the full path to the file), checks if the file exists and if it is valid and starts the
process to play the file. This uses the Microsoft’s Waveform Audio Interface, [40].

3.8 Description of the Player program

This application was built using Microsoft’s Visual Studio .NET 2003 as a development
environment and C# as the programming language. It has a Graphical User Interface,
(GUI), and it runs on the PDA. Screen captures of the program at the start of its
execution, are shown in figures 16 and 17.

As can be seen, initially, only the buttons “Load PlayList”, “New Content”, “Audio
Alerts”, and “Exit” are enabled at the Player Main Form. If “Load PlayList” is pressed,
an open file dialog queries the user to select an XML file containing the playlist. Once a
file has been selected, the application checks if the file is valid. If so, the content of the
file will be read and the playlist displayed within the listbox.

At this point, the “Play” button will become available and if pressed it will start to play
tunes in the playlist. In this case two different actions can take place depending on the
type of the current file to be played:

• If the file type is mp3 or wma, then Windows Media Player will be launched to
play the file.

• If the file type is wav, then the Audio Player will be launched to play this file.

34

Figure 17: Player Audio Alerts Form Figure 16: Player Main Form

Once the “Play” button is pressed, the buttons “Stop”, “Next”, and “Prev” are enabled.
These functions are the same as in all the common players, i.e., stop playing, go to next
track, and go to the previous one, respectively.

When “Exit” is pressed, the application is terminated. This ends the current playout.

One of the main features of this application is its context awareness. By pressing the
button “New Context”, a dialog will be shown to the user asking for the name of a file
containing a playlist. When the name is entered, the Player sends a message to the
Manager application at the laptop asking for information about this file. If the file exists
and is valid, the reply contains the total size in Mb of the playlist and its playout
duration (in minutes). Given this information the Player starts the process of deciding if
the playlist should be downloaded or not based on the current context information.

First, the Player will check if there is enough space to store all the audio content locally.
If so, it will check whether the PDA has enough battery to receive all the audio content.
If so, the last check will examine the network state. If the link quality and the RSSI are
favourable, then the playlist will start automatically being downloaded. If the
conditions are not favourable, then a message box will alert the user that the network
conditions are not favourable for downloading and ask if it should proceed anyway or
defer to later.

During the transmission of the playlist content, the Player will be answering for the
requests of the File Sender about the state of the network. When all the content has
arrived to the PDA, then a message box will be shown to the user to inform him/her that
the new audio content is ready.

Another interesting feature of this program is that it offers the possibility of inserting
audio alerts for the user. By pressing the button “Audio Alerts” at the Player Main
Form, another form will be displayed, in this case the Audio Alerts Form. At the
beginning, the Audio Alerts Form will just show a list box containing the pending audio
alerts. If the user presses the “New” button, then the process of creating a new audio
alert is started. Two text boxes are now displayed for the user to insert both the time at
which the audio alert has to be played and the message of the audio alert. If these two
values are correct (i.e., the time for the audio alert to be played has to be later than the
current time), then a message will be sent to the Manager program with the text of the
audio alert. The Manager program will process the message and pass the text string to
the TextToSpeech program. This last program will perform the synthesis of the text into
voice and send the file containing the audio alert back to the PDA.

3.9 Description of the Speech Recognizer program

This application is built using C# using Microsoft’s Visual Studio .NET 2003 IDE. This
program runs on the laptop. A flowchart of the Speech Recognition program is shown in
figure 18.

35

Figure 18: Flowchart of Speech Recognizer

As shown in the flowchart, when the Speech Recognizer program starts, it first gets the
hostname of the laptop computer in which is running, and tries to open and bind a
socket for communication with the Audio Recorder at the PDA. Subsequently it will
always be listening for new incoming audio samples to recognize.

3.10 Description of the Manager program

This application was developed using C# as the programming language using
Microsoft’s Visual Studio .NET 2003 IDE. This program runs on the laptop. Its
flowchart is shown at the following image:

36

Figure 19: Flowchart of Manager

As described in the flowchart, when the Manager program starts, the first thing it does is
to get the hostname of the laptop computer in which it is running and to open and bind a
socket for communication with the Player program at the PDA. Subsequently it will
always be listening for new incoming requests.

3.11 Description of the TextToSpeech program

This application was developed using C# as the programming language using
Microsoft’s Visual Studio .NET 2003 IDE. This program runs on the laptop. The main
goal of this program is to synthesize a string of text that receives as input and return to
create a .wav file.

4 Design Evaluation

Taking into account the design described in the previous section, now we want to
evaluate it with regard to the points also described in section 3.1.1.

4.1 Amount of traffic

In this section we evaluate the amount of traffic that has to be sent using the two
different systems that we have proposed. Clearly when using System 1 to stream audio

37

content from the laptop we require constant connectivity. Conversely in System 2, when
local storage is available, most of the time the player is able to play audio from its local
storage and not download extra content, hence it does not need constant connectivity.

We will consider the voice interface not being used and we will study its effect on the
network traffic later.

4.1.1 Amount of network traffic using System 1

For this study we created a playlist using Windows Media Library and we observed how
much traffic had to be sent while the user was listening to the audio specified in this
playlist.

Some interesting details of the playlist are that it contains 2 hours of audio distributed
over 29 audio tracks, and the total size of these audio files is of 149.94 Mb.

To study the amount of traffic and its patterns we use Ethereal [45]. The results
obtained are presented are the following table:

Between first and last packet 7561,207 sec
Packets 121862

Avg. packets/sec 16,12
Avg. packet size 585,682 bytes

Bytes 71372360
Avg. bytes/sec 9439,281
Avg. MBit/sec 0,076

 Table 9: Statistics from Ethereal when using System 1

4.1.2 Amount of network traffic using System 2

To be able to compare properly these two systems according to the amount of traffic, we
created the same playlist using the Media Organizer program and requested it as new
content from the Player program.

We are going to differentiate between two situations, Case 1, in which we consider that
no errors can occur during the transmission so we don’t have to check the network state,
and Case 2, in which we will be aware of the network state during the transmission.
This awareness will be necessary in the normal use of System 2 to be able to perform
secure transmissions but obviously it will increase the network traffic due to the
communication between applications to check the network state.

38

 4.1.2.1 Case 1

The following table shows the statistics obtained with Ethereal [45] when sending our
playlist:

Between first and last packet 443,679 sec
Packets 164737

Avg. packets/sec 371,298
Avg. packet size 987,312 bytes

Bytes 162646858
Avg. bytes/sec 366586,592
Avg. MBit/sec 2,933

Table 10: Statistics from Ethereal when using System 2 (Case 1)

4.1.2.2 Case 2

The following table shows the statistics obtained with Ethereal when sending our
playlist:

Between first and last packet 643,536 sec
Packets 165946

Avg. packets/sec 257,835
Avg. packet size 981,144 bytes

Bytes 162797255
Avg. bytes/sec 252972,980
Avg. MBit/sec 2,024

Table 11: Statistics from Ethereal when using System 2 (Case 2)

4.1.3 Comparison between System 1 and System 2 regarding the
amount of network traffic

In this section we compare the results obtained in previous sections regarding to the
following points:

• Packets sent / received for each system.

• Bytes sent / received for each system.

• Time to perform the transmission in seconds.

39

4.1.3.1 Packets Sent / Received for each system

The following graph shows the number of packets sent and received for each system
while performing the transmission of the stated playlist.

Figure 20: Packets Sent / Received for each system

As it can be seen the worst case is the System 2 in a Case 2. This is because in addition
to the packets containing the audio tracks, the system is also checking the network state
so it needs to exchange more packets due to this network state checking. The following
table shows the number of packets sent by each system:

System 1 System 2 (Case 1) System 2 (Case 2)
Amount of packets 121862 164737 165946

Table 12: Amount of packets sent / received by each system

From this table, we can obtain easily that the fact of checking the network state adds an
amount of 1209 packets when sending the previous described playlist which represents
the 0,73% of the packets sent / received by System 2 (Case 2).

Now we are going to have a look at the total amount of bytes sent and received for each
system.

40

Packets Sent / Received

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

Pa
ck

et
s System 1

System 2 (Case 1)

System 2 (Case 2)

Bytes Sent / Received

0
20000000
40000000

60000000
80000000

100000000
120000000

140000000
160000000
180000000

B
yt

es
System 1

System 2 (Case 1)

System 2 (Case 2)

Figure 21: Bytes Sent / Received for each system

Again we find that the worst case corresponds to System 2 (Case 2). The following table
shows the total amount of bytes transmitted for each system:

System 1 System 2 (Case 1) System 2 (Case 2)
Amount of bytes 71372360 162646858 162797255

Table 13: Amount of bytes sent / received by each system

From the previous table we can see that the amount of bytes added by the network state
checking when transmitting the previous stated playlist is of 150397 bytes. This value
represents the 0,09% of the total amount of bytes transmitted by System 2 (Case 2).

When considering transmission time the results are very different. In this study the
worst case is System 1 as it is streaming the audio content while the user is listening to
it. The results are shown in the following graph:

Transmission Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Se
co

nd
s System 1

System 2 (Case 1)

System 2 (Case 2)

Figure 22: Transmission Time

41

The implication of this is that the use of System 2 requires being in a WLAN coverage
area for at most 643 seconds vs System 1 which requires the user to have good network
connectivity for the entire two hours.

4.2 Effect of communication errors

4.2.1 Effect of errors when using System 1

To study the effect of errors while using System 1 (remember that System 1 corresponds
to the case of streaming audio), we have used the following procedure. The Pocket
Streamer Server was running on a laptop and the Pocket Streamer Client was running
on a PDA. Both were connected using an ad-hoc WLAN link. The IP address for the
laptop was 192.168.0.4 and 192.168.0.3 in the case of the PDA.

The most extreme error that we can encounter when using this configuration is loss of
the connectivity.

All the cases of lost of service will be simulated while streaming the same song in order
to be able to compare effects under the same conditions. The track was “Vertigo” from
“U2”. Some interesting features of this song include:

• BitRate: 372 Kbps.
• Duration: 3’16’’
• File size: 3.39 Mb

The error of loosing the network connection will be simulated by disabling the PDA’s
WLAN interface for a certain amount of time (this will be described later) and it will
depend on how critical is the error that we want to simulate.

The reason of choosing this way of generating the error is because we think it can
simulate the most exteme error that we can have while using our mobile device (i.e., on
the street). When disabling the WLAN feature the connection is completely lost. Upon
enabling the WLAN interface again, first it starts the WLAN adapter and then the PDA
is configured to connect automatically to the ad-hoc WLAN link that is established
between the laptop computer and the PDA. We are considering the case that it is always
possible to reconnect to this existing WLAN link between the laptop computer and the
PDA. Were this not be possible, then the effect of this error is pretty obvious, the server
will not be able to reach the client any more so the audio streaming will be stopped and
this system will not be able to work until the connection is recovered.

We have decided to divide this study into three parts simulating a loss of connectivity of
less than 10 seconds, between 10 and 15 seconds and more than 15 seconds. The results
obtained are described in the following sections.

42

4.2.1.1 Loss of connectivity of [0, 10] seconds

To simulate this case we are going to disable the WLAN interface of the PDA and then
re-enable it. For the evaluation of how much time it takes to recover the connectivity in
this case we have made the following observations:

Observation Number Time to recover the connectivity (sec)
1 9,31
2 9,95
3 9,57
4 9,29
5 9,18
6 9,81
7 9,47
8 9,14
9 9,59
10 9,49

Average 9,48
Table 14: Recovering connectivity after [0, 10] seconds loss of connectivity

Taking into account these data we can simulate now a loss of connectivity of [0, 10]
seconds when using our system. The evaluation of its effects is shown in the following
table:

Observation Number Pause in sound (sec)
1 4,85
2 5,35
3 4,02
4 4,1
5 4,81
6 5,63
7 4,17
8 4,05
9 5,3
10 3,97

Average 4,63
Table 15: Pause in sound observed with loss of connectivity [0, 10] seconds

4.2.1.2 Loss of connectivity of [10, 15] seconds

To simulate this case we are going to disable the WLAN interface of the PDA and
enable it again after 5 seconds. For the evaluation of how much time it takes to recover
the connectivity in this case we have made the following observations:

43

Observation Number Time to recover the connectivity (sec)
1 14,22
2 14,05
3 13,42
4 14,23
5 14,32
6 14,67
7 14,09
8 14,17
9 14,42
10 14,16

Average 14,18
Table 16: Recovering connectivity after [10, 15] seconds

Given these data we can simulate now a loss of connectivity of [10, 15] seconds when
using our system. The evaluation of its effects is shown in table 17.

Observation Number Pause in sound (sec)
1 8,65
2 8,44
3 8,54
4 8,59
5 *
6 *
7 8,75
8 8,82
9 *
10 8,78

Average 8,65
Table 17: Pause in sound observed with loss of connectivity [10, 15] seconds

The symbol “*” indicates that in the current observation the system was not able to
recover and a fatal error was shown to the user. As it can be seen at the table, this case
occurred in 30% of these observations. The connectivity is restablished atomatically in
all other cases but in those which the system is not able to recover on its own, then the
user has to restart the program to continue listening to the audio content once the
connectivity is restored.

4.2.1.3 Loss of connectivity > 15 seconds

If after 15 seconds the connection is not recovered, then the link between the Server and
the Client application is lost in 100% of the cases and the application has to be restarted

44

when network connectivity is available again in order to be able to continue listening to
the audio content.

4.2.2 Effect of errors when using System 2

When using System 2, the user doesn’t depend on 100% connectivity to the WLAN. In
this case the user can be affected by a transmission error only when using this WLAN
connection that could be:

• downloading extra content,
• creating a new audio alert, or
• using the voice interface.

4.2.2.1 Downloading extra content

System 2 offers the possibility for the user to decide to have more audio content stored
locally. To be able to obtain extra content, the user has to start the Player program (if not
started yet) and press the “New content” button. The user will be asked for the name of
an XML file containing the new audio content. When the user enters the name of the
file, the process of validating the name of the file and the context information starts.
More information about this process can be found at sections 3.5 and 3.8.

As was explained in previous sections, System 2 uses File Sender (section 3.5) to
transfer extra audio content to the PDA. It was also stated at section 3.5 that File Sender
uses the “CeCopy” tool and this in turn uses Active Sync to copy files remotely. The
main problem we encountered when dealing with File Sender was the case of loosing
the WLAN connection in the middle of a transmission. The solution we found for this
problem was to check the network state after each song is sent. If at that time we realize
that we are disconnected then it is possible that the last track was not delivered properly
and we will try to send it again. The “CeCopy” tool will check if the file already exists,
if it was properly delivered it will not send it again.

Taking all this information into consideration, we can now answer the question of what
would happen if lost WLAN connectivity while downloading extra content? If this
happens we can differentiate between two cases:

• Best case: the last track was delivered properly. In this case File Sender doesn’t
have to send the last track again, but it will have to wait until the connection is
recovered again to continue sending.

• Worst case: the last track was almost completely delivered. Then the File Sender
will have to wait until the connection is established again and then proceed to
send the last track again before continuing with the rest of the tracks.

45

4.2.2.2 Creating a new audio alert

This case refers to the situation in which the file containing the audio alert is not able to
arrive properly to the PDA due to, for example, a loss of connectivity or a problem
while delivering the file.

To overcome this problem in some way, the Player program provides an alternative
mechanism. When the user enters the text for a new audio alert, the Player program
saves it in a .txt file at the PDA. When the time to play an audio alert arrives, the Player
program will check first if the .wav file arrived, if an error occurred and the file is not
present, then a message box will announce to the user that the audio alert didn’t arrive
due to a communication problem and it will also show the user the text from the audio
alert (.txt) file stored previously. It is not as nice reading the “text alert” as listening to
the “audio alert” but at least and in some way, the user reads the same message that it
was supposed to listen. Of course this needs to be an audio alert telling the user to look
at the screen but this can be pre-recorded.

4.2.2.3 Using the voice interface

This section and all the studies related with the effects of using the voice interface
implemented for this study will be explained in detail at Johan Sverin’s Masters Thesis,
Context Aware and Adaptive Mobile Audio [54].

4.3 Users opinion

To perform this study we have asked 15 users (selected from our fellow students) about
their preferences. First we explained to them how System 1 and System 2 work and then
asked them which one would they prefer to use and why. The results obtained are shown
at the following graph:

Users Opinion (System)

0

2

4

6

8

10

12

14

16

System 1

System 2

Figure 23: Users Opinion (System)

46

As it can be seen, the majority chose System 2 and the main reasons they gave where:

• Better to have less total storage but certain local storage.

• The effect of loosing the connection in System 1 and resulting pause in the
sound can be very annoying.

• In case of System 2 you can also download additional content when the WLAN
connection is available.

When asking the users for their opinion when using the voice interface, the results were
more mixed as can be appreciated in the following graph:

Users Opinion (Voice Interface)

6

7

8

9

Yes

No

Figure 24: Users Opinion (Voice Interface)

Main reasons for those who chose Yes:

• Very useful for handicapped people.

• More comfortable than typing.

• In case of experiencing big delay, the user can always change to the typing
mode.

Main reasons for those who chose No:

• No privacy, everybody can hear what you command.

• Greater delay in the command being executed.

47

4.4 Voice interface

This section and all the studies related with the effects of using the voice interface
implemented for this study will be explained in detail at Johan Sverin’s Masters Thesis,
Context Aware and Adaptive Mobile Audio [54].

5 Conclusions

The main objectives of this masters thesis were:

• Compare the amount of traffic which needs to be sent in peak period via high
cost network connection versus the possibility of being able to send traffic only
when we have a large amount of low cost bandwidth.

• The effects of errors in the case of streaming audio versus the case in which we
are caching and have cached data.

• Brief comparison, from the user’s point of view, of both systems. What do users
like and dislike about having cached files based on a playlist versus only
streamed content.

• Regarding the voice interface, what are the advantages and disadvantages of
having voice commands versus typing on the screen of the PDA.

To evaluate all these points we presented two different systems. System 1 was already
built and its main feature was that that it allowed the user to stream audio constantly
from the laptop computer to the PDA. Further information about this system can be
found at section 2.1.2. Then we needed a system that took profit of having local storage,
so we built System 2. This last system was formed of several application running at the
laptop computer and at the PDA. Further information about this system and its
applications can be found at section 3. Now that we had these two systems we could
perform some studies to be able to answer to the previous stated points according to
each system and extract some conclusions. The experiments performed and the results
obtained are show in section 4.

One thing that I would like to highlight of this project is the utility founded when using
context information. Our system was provided with context information such us,
network state, battery state and storage state. These items resulted very useful when
developing our applications in order to make them aware of the user’s and device’s state
and act consequently with this situation. They also contributed on performing more
effective transmissions and minimize the probability of transmission errors because
transmissions were only advisable when network state was favourable. Further
information about the context awareness used in our studies can be found at section 3.2.

48

6 Open issues and future work

The biggest problem we have encountered in this masters thesis was with developing
the voice interface. Our idea was to perform the speech recognition process locally at
the PDA but there were no speech engines accepted for our current configuration of the
handheld device. There is a portable version of Sphinx [55] for Linux operating systems
running at the PDA but that was not our case. The solution we encountered for that was
to develop our own speech recognition application to run at the laptop computer and to
build another application at the PDA to be able to capture and send the audio and feed
the recognizer with it.

With this schema, of course, we are adding some delay to the performance of our system
so two possible future approaches could be taken into account:

• Find the way of performing the speech recognition process locally at the PDA

• Establishing a SIP session (further information in section 2.2.1.3.2) between the
program that captures the audio and the speech recognition application. With
this solution we could minimize the delay and also solve all the problems we
encountered with buffering and sending the audio from the PDA to the laptop.

It was highlighted before the utility that we found when using context information but
maybe in future approaches some other items could be added. Perhaps some context
information about the user’s location could be of interest in order to take it into account
and be able to guess in some way what could be the needs of the user in each moment
and act consequently.

Regarding also the use of context information, some improvements can be done in
future approaches of this thesis. In our study, we have obtained the status of the battery
before starting the transmissions but not at the end of them. By checking the battery
status when a transmission is finished, we could obtain the amount of battery consumed
during the process of downloading audio. In order to save battery consumption, new
ideas could be added to our system. As we are taking advantage of having local storage
and we are not using the wireless interface 100% of the time, it could be useful to
disable this interface during the periodes that we are not going to use it and enable it
again when necessary.

Another thing that could be also improved is the way of sending the audio tracks from
the laptop computer to the PDA. In our system we check the network state after sending
each audio track and if by any chance we discover that we are disconnected, then we
attempt to send it again. Before sending each track, we check if the file already exists at
the PDA, if not, we will send it again. In the case that the file already exists we have two
alternatives, if the file at the PDA is identical to the one existing at the laptop computer,
then there is not need on sending the file again, but if both files differ, then we send the
hall file again. This approach can be improved by dividing the files in blocks and send
block by block. In this way if we discover that we are disconnected after sending one
track, then we could just have a look at which is the last block that was completely

49

delivered (by comparing the blocks existing at the track at the laptop and the ones of the
track stored at the PDA) and simply send the blocks that are left to send. With this
approach we can save from sending a large amount of useless data.

50

7 References

[1] María José Parajón Domínguez, “Audio for Nomadic Users”, Department of
Microelectronics and Information Technology (IMIT), Royal institute of Technology
(KTH), Master of Science Thesis performed at KTH, Stockholm, December 2003.

[2] Sean Wong, “Context-Aware Support for Opportunistic Mobile Communication”,
Aberdeen, Scotland, BEng (Hons) EE, Thesis performed at KTH, Stockholm, December
2003.

[3] Andrew S. Tanenbaum, “Computer Networks”, 4th Edition, Prentice Hall, March 17,
2003. ISBN: 0-13-066102-3.

[4] Homepage of the project “Vector Quantization in Speaker Recognition”, University
of Joensuu, Department of Computer Science,
http://www.cs.joensuu.fi/pages/tkinnu/research/, last accessed 2004-10-19.

[5] Joseph P. Campbell, Jr., “Speaker Recognition: A Tutorial”,
http://www.ee.columbia.edu/~patricia/papers/tutorials/tutorial.pdf, last accessed 2004-
10-19.

[6] Jeff Ferguson, Brian Patterson, Jason Beres, Pierre Boutquin, and Meeta Gupta, “C#
Bible”, Wiley Publishing, Inc. ISBN: 0-7645-4834-4.

[7] Frequently Asked Questions (FAQ),
http://msdn.microsoft.com/mobility/netcf/faq/default.aspx, last accessed 2004-10-19.

[8] Introduction to Development Tools for Windows Mobile-based Pocket PCs and
Smartphones,
http://msdn.microsoft.com/mobility/gettingstarted/windowsmobile/default.aspx?pull=/li
brary/en-us/dnppcgen/html/devtoolsmobileapps.asp, last accessed 2004-10-19.

[9] Visual C++,
http://msdn.microsoft.com/mobility/gettingstarted/windowsmobile/default.aspx?pull=/li
brary/en-us/dnppcgen/html/devtoolsmobileapps.asp, last accessed 2004-10-19.

[10] HP iPAQ Pocket PC h5550 - overview and features,
http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/215348-64929-215381-314903-
f66-322916.html, last accessed 2004-10-19.

[11] Getting Started with Visual Studio .NET and the Microsoft .NET Compact
Framework, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetcomp/html/netcfgetstarted.asp, last accessed 2004-10-19.

[12] Frequently Asked Questions About Visual C++ .NET,
http://msdn.microsoft.com/visualc/productinfo/faq/default.aspx, last accessed 2004-10-
19.

51

[13] SDK for Windows Mobile 2003-based Pocket PCs,
http://www.microsoft.com/downloads/details.aspx?FamilyID=9996b314-0364-4623-
9ede-0b5fbb133652&displaylang=en, last accessed 2004-10-19.

[14] .NET Compact Framework 1.0 SP2 Redistributable (Re-release),
http://www.microsoft.com/downloads/details.aspx?FamilyID=359ea6da-fc5d-41cc-
ac04-7bb50a134556&displaylang=en, last accessed 2004-10-19.

[15] Windows Mobile Developer Power Toys,
http://www.microsoft.com/downloads/details.aspx?familyid=74473fd6-1dcc-47aa-
ab28-6a2b006edfe9&displaylang=en, last accessed 2004-10-19.

[16] Smart Badge 4, Gerald Q. Maguire Jr., http://www.it.kth.se/~maguire/badge4.html,
last accessed 2004-10-18.

[17] RealOne Player, http://www.real.com/player/, last accessed 2004-10-18.

[18] Microsoft’s Windows Media Player,
http://www.microsoft.com/windows/windowsmedia/default.aspx, last accessed 2004-
10-18.

[19] Winamp, http://www.winamp.com/, last accessed 2004-10-18.

[20] Real-Time Transport Protocol, Network Working Group Audio-Video Transport
Working Group, http://www.ietf.org/rfc/rfc1889.txt?number=1889, last accessed 2004-
10-18.

[21] ''Visual Telephone Systems and Equipment for Local Area Networks Which
Provide a Non-Guaranteed Quality of Service.''
http://www.iec.org/online/tutorials/h323/topic01.html, last accessed 2004-10-18.

[22] G.711 ITU-T Standard, http://en.wikipedia.org/wiki/G.711, last accessed 2004-10-
19.

[23] Florian Maurer, “Push-2-talk Decentralized”, Royal institute of Technology
(KTH), Semester Project performed during May-August 2004.

[24] Tejaswini Hebalkar, Lee Hotraphinyo, Richard Tseng, “Voice Recognition and
Identification System (Text Dependent Speaker Identification)”, Final Report, 18-551
Digital Communications and Signal Processing Systems Design, Spring 2000, Group
11, http://www.ece.cmu.edu/~ee551/Final_Reports/Gr11.551.S00.pdf, last accessed
2004-10-19.

[25] Microsoft’s Visual Studio .NET 2003,
http://msdn.microsoft.com/vstudio/productinfo/, last accessed 2004-10-19.

[26] http://www.mor.itesm.mx/~omayora/Tutorial/tutorial.html , last accessed 2005-01-
21.

[27] Microsoft Speech SDK (SAPI 5.1) Documentation. Available after installing
Microsoft Speech SDK or from: http://www.microsoft.com/speech/download/sdk51/.

52

[28] Running ActiveSync Wirelessly,
http://www.pocketpcmag.com/forum/topic.asp?TOPIC_ID=173&whichpage=6, last
accessed 2005-01-30.

[29] Pocket Streamer, http://www.thecodeproject.com/netcf/PocketStreamer.asp, last
accessed 2005-02-06.

[30] Windows Media Player 9 Series,
http://www.microsoft.com/windows/windowsmedia/9series/player.aspx, last accessed
2005-02-06.

[31] Windows Media Encoder 9 Series,
http://www.microsoft.com/windows/windowsmedia/9series/encoder/default.aspx, last
accessed 2005-02-06.

[32] Windows Media Player 9 SDK,
http://www.microsoft.com/downloads/details.aspx?FamilyID=e43cbe59-678a-458a-
86a7-ff1716fad02f&DisplayLang=en, last accessed 2005-02-06.

[33] Windows Media Encoder 9 SDK,
http://www.microsoft.com/downloads/details.aspx?FamilyID=000a16f5-d62b-4303-
bb22-f0c0861be25b&DisplayLang=en, last accessed 2005-02-06.

[34] BCL Technologies, VoiceMP3,
http://www.bcltechnologies.com/voice/products/voicemp3/voicemp3.htm, last accessed
2005-02-06.

[35] Introduction to Windows Media Metafiles,
http://www.meetnewplayers.com/bend/Windows%20Media%20-%20Fun%20with%
20asx%20files.htm, last accessed 2005-02-06.

[36] Media Playlists, http://www.phm.lu/documentation/Windows/WMP-Playlists.asp,
last accessed 2005-02-06.

[37] Overview of ASX Metafiles, http://cita.rehab.uiuc.edu/mediaplayer/asx-
overview.html, last accessed 2005-02-06.

[38] XML Tutorial, http://www.w3schools.com/xml/default.asp, last accessed 2005-02-
06.

[39] HTML, http://www.w3.org/MarkUp/, last accessed 2005-02-06.

[40] Recording and Playing sound with the Waveform Audio Interface,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetcomp/html/WaveInOut.asp, last accessed 2005-02-07.

[41] Acronym Finder, http://www.acronymfinder.com/, last accessed 2005-02-08.

53

[42] Enabling C# Applications for Mobility,
http://or1cedar.intel.com/media/training/C_appsMobility/tutorial/index.htm, last
accessed 2005-02-20.

[43] Global Memory Status,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/memory/base/globalmemorystatus.asp, last accessed 2005-02-20.

[44] OpenNETCF.org – Library, http://www.opennetcf.org/library/, last accessed 2005-
02-20.

[45] Ethereal, http://www.ethereal.com/, last accessed, 2005-02-21.

[46] ITU Q.931,
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-
Q.931, last accessed 2005-02-23.

[47] H.225, http://www.iec.org/online/tutorials/h323/topic08.html, last accessed 2005-
02-23.

[48] MIME, http://www.mhonarc.org/~ehood/MIME/, last accessed 2005-02-23.

[49] The Component Object Model: A Technical Overview,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomg/html/msdn_therules.asp, last accessed 2005-02-23.

[50] IEEE 802.11, http://standards.ieee.org/getieee802/802.11.html, last accessed 2005-
02-23.

[51] Microsoft’s ActiveSync 3.7, http://www.cewindows.net/faqs/activesync3.7.htm,
last accessed 2005-02-25.

[52] Pascal Meunier, Sofie Nystrom, Seny Kamara, Scott Yost, Kyle Alexander, Dan
Noland, Jared Crane, “ActiveSync, TCP/IP and 802.11b Wireless Vulnerabilities of
WinCE-based PDAs”, http://www.cs.nmt.edu/~cs553/paper3.pdf, 2005-02-25.

[53] D-Link AirPlus G+ Wireless Router,
http://www.dlink.com/products/resource.asp?pid=6&rid=7&sec=0, last accessed 2005-
03-06.

[54] Johan Sverin, “Context Aware and Adaptive Mobile Audio”, Department of
Microelectronics and Information Technology (IMIT), Royal institute of Technology
(KTH), Master of Science Thesis performed at KTH, Stockholm.

[55] The CMU Sphinx Group Open Source Speech Recognition Engines,
http://cmusphinx.sourceforge.net/html/cmusphinx.php, last accessed 2005-03-08.

54

www.kth.se

IMIT/LCN 2005-06

