

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

��������	
����
�
������
���
�����������������������������

������ � �!����"�!#�

#�������$���
�����"%��
��
�����%�	&'���������(()�

�
�#�"*+���,�((),()

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

��������	
����
�
������
���
�����������������������������

������ � �!����"�!#�

#�������$���
�����"%��
��
�����%�	&'���������(()�

�
�#�"*+���,�((),()

�-�&
����
�����.� ���$.� /	��
&
�� /	������

0�#�"* "12�

Abstract

Computers have been connected to networks for a long time. Traditional

networks usually provide only simple services. To keep up with the ever-

increasing demand for computing resources, like processing power and

storage, there is a need to leverage more power from existing networks.

One way of managing all resources of large networks, and letting multiple

organizations share these resources with each other, is called Grid comput-

ing.

In this thesis, we examine one of the services that is necessary for a Grid,

namely resource discovery, a mechanism for finding the available re-

sources on a network. Resource discovery services are often designed to

rely on some kind of central repository where all resources must be regis-

tered. But this approach does not work well in very large networks, be-

cause the central repository will become a bottleneck. Resource discovery

can also be decentralized, and we suggest that it should be built on peer-to-

peer technology to achieve maximum scalability. Using JXTA, a peer-to-

peer platform, and the Globus Toolkit for Grid services, we create and

evaluate a prototype implementation of a distributed discovery service.

Acknowledgments

I would like to thank my father, Håkan Söderström, for helping me with a

number of bugs and reading drafts of the report. I would also like to thank

all the programmers that have created the tools that I use every day, and

have depended on for this project, especially Debian GNU/Linux and

OpenOffice.org.

Table of Contents
1 Introduction..1

1.1 P2P Computing...1
1.1.1 First-Generation Networks...2
1.1.2 Second-Generation Networks... ..2
1.1.3 Third-Generation Networks...2

1.2 Overlay Networks and Distributed Hash Tables.................................3
1.3 Grid Computing...4
1.4 Merging P2P and Grids...5
1.5 Project Specification...5

1.5.1 Background..5
1.5.2 Expected Results..6
1.5.3 Problem Definition... .7
1.5.4 Architecture and Implementation of a Prototype.........................8
1.5.5 Evaluation of the Prototype..9

1.6 Thesis Overview..9
2 Survey of Relevant Technologies..10

2.1 JXTA...10
2.1.1 Peers..11
2.1.2 Peer Groups..12
2.1.3 Pipes...13
2.1.4 Advertisements13
2.1.5 The Discovery Service..14

2.2 Web Services...14
2.2.1 SOAP..14
2.2.2 WSDL.. 15
2.2.3 WSIL..15
2.2.4 UDDI...15

2.3 OGSA...16
2.3.1 Architecture of OGSA...16
2.3.2 Services in OGSA... ...16
2.3.3 Service Data...17
2.3.4 Service Identifiers..17
2.3.5 Life Cycle Management..17

2.4 OGSI Extensions to Web Services...18
2.5 The Globus Toolkit..19

2.5.1 Core.. ..19
2.5.2 Security..20
2.5.3 Data Management..20
2.5.4 Resource Management...21
2.5.5 Information Services..21
2.5.6 XIO... ...21

3 Working with the Globus Toolkit..22
3.1 Installation and Configuration..22
3.2 Creating a Simple Grid Service...22

3.2.1 Define the GWSDL Interface..22
3.2.2 Implement the Service..23
3.2.3 Configure the WSDD Deployment Descriptor............................23
3.2.4 Create a GAR File...24
3.2.5 Deploy the Service... ...25

3.3 Creating a Grid Service Client...25

3.4 Operation Providers..25
3.5 Service Data..26
3.6 Creating a UI with the Globus Service Browser................................27

4 Analysis and Design..29
4.1 Overview of the System...29

4.1.1 How the System Can Be Used..30
4.2 The Two Main Parts of the System..30
4.3 The P2P Part...31

4.3.1 The Node Class...32
4.3.2 The Client Class..32
4.3.3 The Server Class.. ...33
4.3.4 Communication between Clients and Servers............................33

4.4 The Grid Part..33
4.4.1 The GridServer Class...34
4.4.2 The GridClient Class...34
4.4.3 The ServiceConnector Interface...34

4.5 The User Interface... ..35
4.6 Design of Grid Services...36

4.6.1 The Storage Service...37
4.6.2 The Discovery Service..37

5 Implementation..38
5.1 The P2P Part...38

5.1.1 The Node Class...38
5.1.2 The Server Class.. ...39
5.1.3 The Client Class..40
5.1.4 Additional Classes..41
5.1.5 Problems with JXTA..41

5.2 The Grid Part..42
5.2.1 The GridServer Class...42
5.2.2 The ServiceConnector Interface...43
5.2.3 The GridClient Class...44
5.2.4 UI Classes...44

5.3 Implementation of Services...44
5.3.1 The Storage Service...44
5.3.2 The Discovery Service..46

5.4 Running JXTA Inside of Globus... .46
5.4.1 Java Class Loaders..46
5.4.2 Class Loaders, JXTA and Globus...47
5.4.3 The Class Loader Solution..47

6 Evaluation..50
6.1 Class Loading Overhead..50
6.2 Scalability.. ..51

7 Conclusions and Future Work..53
7.1 Is This a Good Idea?..53
7.2 Technology and Problems...53
7.3 Ease of Development...53
7.4 Possible Improvements..54

8 List of Abbreviations...55
9 References...56
A Data for Evaluation Diagrams..59
B Use Cases.. ...60
C Javadoc...63

List of Figures
Figure 1: A JXTA advertisement..13
Figure 2: The GT Core architecture..20
Figure 3: Creating a GAR file with Ant..24
Figure 4: The Globus service browser...27
Figure 5: The P2P classes.. 32
Figure 6: The main Grid classes..34
Figure 7: UI classes..35
Figure 8: The storage service as seen in the service browser....................36
Figure 9: Initializing the JXTA net peer group and basic services..............38
Figure 10: Publishing advertisements...39
Figure 11: Client trying to find advertisements..40
Figure 12: A GridServer constructor..43
Figure 13: Setting up service data..45
Figure 14: Calling constructors with reflection..48
Figure 15: Class loading system..49
Figure 16: Node start times..51
Figure 17: Average client iteration time...52
Figure 18: Unhandled requests...52

Introduction

1 Introduction
Two resource-sharing environments are currently competing for attention.

One is peer-to-peer (P2P) computing [33] and the other is Grid

computing [20]. Until recently, these technologies have been considered

very different, because although they basically address the same problem –

sharing a large set of resources in a coordinated manner – they do so from

very different angles. In traditional networks, there is a clear separation

between servers and clients, while in both P2P computing and Grid

computing, all computers can act as clients and servers in the network,

possibly simultaneously.

1.1 P2P Computing

P2P has traditionally been seen as a “grass-roots” technology, being

developed in a non-standard way. There are many P2P networks, but each

one usually has its own protocol, so they do not work well together. The

first well-known P2P network was Napster, which provided (highly

controversial) file sharing. Napster was shut down for legal reasons around

March 2001, but this did not stop the development, and today there are

countless numbers of P2P networks. Most of them are still focusing on file

sharing.

To avoid some of the legal hazards, the file sharing networks often avoid

using central servers, and try to hide the identities of their users. Some

networks, like Freenet [18], actually have anonymity as their primary

objective. The users and their resources come and go, so the availability of

the individual nodes is generally low. These characteristics have given P2P

a somewhat bad reputation. But this has changed in recent years, and P2P

has turned into a major research topic.

P2P networks can broadly be classified in the following three categories

(the exact definitions vary, though), which can also be seen as technology

generations as development has progressed. However, it should be noted

that the more recent generations have not necessarily superseded the

earlier ones – each has its own uses, and they complement each other. The

categories are:

1

Introduction

1. Networks that rely on central servers for coordination;

2. Decentralized networks, based on flooding of messages;

3. Structured networks.

1.1.1 First-Generation Networks

Napster was a typical representative of the first generation of P2P

networks, relying on central servers for coordination. When the central

servers were shut down, the network could not be used, even though the

files were still there – there was no way of finding them. But for special

applications requiring only a moderate amount of resources for

coordination, this design is viable, for example Seti@home [14] and the

increasingly popular BitTorrent [19].

1.1.2 Second-Generation Networks

The second-generation networks have removed the need for central

servers. Instead, they rely on flooding for finding things in the network.

Every node has a set of neighbor nodes. When a node wants to find a re-

source in the network, it sends a message to its neighbors, and these in

turn forward the message to their neighbors, so the network is flooded by

requests. This process goes on until either the resource is found, or the re-

quest becomes outdated. All requests have a specified lifetime, or time-to-

live (TTL) that is decreased every time a request is forwarded in the net-

work.

Completely unstructured networks do not scale well, because as the net-

work grows, more and more bandwidth is used for maintenance (for exam-

ple keeping track of neighbors) rather than useful purposes. The most im-

portant second-generation network is Gnutella. It has also served as a basis

for various design improvements, like in [16], which introduces a dynami-

cally adapted overlay topology.

1.1.3 Third-Generation Networks

One way of improving the performance of second-generation networks is

using supernodes, as in Kazaa [13]. Nodes with the highest uptime and

largest available bandwidth become supernodes, and are connected to

2

Introduction

other supernodes, forming a network of their own. Other nodes connect to

a supernode instead of directly to each other. So the supernodes serve the

same purpose as central servers, but in a distributed and more reliable

way.

Another way of improving P2P networks consists of organizing the nodes

into a structured overlay network and using distributed hash tables

(DHTs), discussed below.

1.2 Overlay Networks and Distributed Hash Tables

An overlay network is a virtual network built on top of another network.

The underlying network need not necessarily be a physical network; it

could just as well be another overlay network. The Internet could be

considered the most well-known overlay network. An overlay network

provides routing, guaranteed object location, load balancing, a self-

organizing structure, and, perhaps most importantly, very fast (usually

logarithmic-time) lookup. Some well-known overlay networks include

CAN [29], Chord [35], Pastry [30], and Tapestry [38].

A related concept is that of distributed hash tables (DHTs). A DHT requires

an identifier space (usually a range of integer numbers), which is divided

into smaller parts, one for each participating node. This partitioning can be

used as buckets for a standard hash table which becomes distributed,

hence the name. The DHT can then provide a lookup method that

efficiently determines which node is responsible for a certain key.

The problem with DHTs is how to divide the identifier space. Whenever a

node joins or leaves, buckets must be updated to make sure that the entire

identifier space is covered, and that there are no overlapping parts. Usually

the DHT only modifies buckets close to the area where the network has

changed, which decreases the cost of the operation, but also creates

suboptimal partitionings. And when the buckets change, data stored at the

nodes may have to be moved as well. So DHTs are maintenance intensive,

especially in very dynamic networks.

3

Introduction

1.3 Grid Computing

The speed of CPUs has certainly increased over the last decade, but the

speed of networks and the storage capacity has increased even faster. This

trend is likely to continue, so there is a need to use the existing processing

power more efficiently. For example, CERN's Large Hadron Collider [12] is

expected to produce petabytes (1015 bytes) of data in 2006 [20]; to be able

to store and, more importantly, process this data, a new approach is

required.

With the increase in network speed, communication will become more or

less free, so we should start to work in new, communication-intensive ways.

We should be able to use all the processing power available within an

organization. But quite possibly, the resources of a single organization will

not be enough, requiring organizations to cooperate. When organizations

start sharing resources using policies that specify what is shared and under

what conditions, they become a virtual organization (VO) [23][24]. The

purpose, scope, size, and duration of VOs may vary considerably, but they

still share a set of requirements, for example control over shared resources

and flexible sharing relationships.

So, it would be convenient if processing power (as well as other computer

resources) were as available and easy to use as electrical power grids. This

is where the term “Grid computing” originates. Contrary to P2P, Grid

computing has been developed by research institutions and major

corporations like IBM, and so has automatically gained a certain level of

credibility. However, it has also become quite a buzzword lately. Some

existing tools can be seen as simpler first-generation Grids, while others

are simply called “Grid” for marketing reasons.

There are many different definitions of what a Grid is, and what it is not.

In [21], Ian Foster, who is considered the father of Grid computing, lists

three criteria that can be seen as requirements for Grids. According to

Foster, a Grid is a system that:

1. Coordinates resources that are not subject to centralized control;

2. Uses standard, open, general-purpose protocols and interfaces;

3. Delivers nontrivial qualities of service.

4

Introduction

Grids can also provide file sharing, but, compared to P2P networks,

typically consist of a much smaller number of more advanced resources

like supercomputers or scientific instruments. These resources are usually

connected by high-speed networks, have high availability and dedicated

maintenance staff. The resources are shared in a structured way, with

policies for who can use what and when.

Instead of the anonymity of P2P users, Grid users are authenticated before

they can use the Grid, and they may not be authorized to use all resources.

However, there is still a difference when it comes to trust – current Grid

users are often researchers that can be assumed to behave well, while P2P

networks are designed for users that cannot be trusted.

1.4 Merging P2P and Grids

In summary, we have two technologies approaching the resource-sharing

problem from different angles. P2P provides simple services that are very

scalable, and Grids provide more advanced but less scalable services.

Obviously, it would be desirable to have a system that used the best parts

from each technology. Despite the differences, the Grid community has

realized that there are things to learn from P2P, mostly concerning

scalability and dynamism. The P2P community can, in turn, benefit from

the research that has been done to improve Grid technology [36].

Eventually, there may not be much difference between a Grid and a P2P

network. Ian Foster claims that P2P and Grid computing will converge into

a common technology [22]. This will certainly require more research and

development, but is indeed an interesting prospect.

1.5 Project Specification

Next, we will discuss the motivation for this project, along with a definition

of the problem we are approaching. We will also outline the goals we will

try to achieve.

1.5.1 Background

Today's Grids usually consist of a small to moderate amount of resources

from a small number of organizations. Grids can certainly be useful on this

5

Introduction

level, but the true potential of Grid computing will only be achieved when

Grids become much larger, perhaps approaching the size of today's largest

P2P networks. Managing such a network of resources is obviously very dif-

ficult. Although the P2P networks have their own technical problems (band-

width requirements being perhaps the largest), they have shown that it is

indeed possible to connect huge amounts of computers in a sensible way.

1.5.2 Expected Results

The main purpose of this Master thesis project is two-fold: (1) Study of re-

lated work on Grid and Web services, (structured) overlay networks and

their use in P2P applications; (2) Development, implementation and evalua-

tion of at least one of the Grid services specified in Open Grid Services

Architecture (OGSA) (such as storage management, searching and index-

ing, group services, and data distribution) based on an overlay network

infrastructure. The main features of the Grid service to be achieved are

good scalability and low-cost self-organization.

We expect that development and evaluation of a Grid service on an overlay

network will help evaluate whether such networks are useful and conve-

nient (easy to use) for Grid services, as well as help evaluate other proper-

ties of the network that might be useful for Grid services.

In order to evaluate a Grid service implemented on top of an overlay net-

work, we plan to develop an evaluation strategy (evaluation parameters,

experimental framework and benchmark applications) and to perform

evaluation experiments to estimate scalability and performance of the ser-

vice. If time allows, we intend to develop a simple analytical model of the

service that can allow prediction of service characteristics for different de-

sign choices at the first stages of the design, to simplify development and

implementation of the service.

Expected results of this project include but are not limited to:

1. A survey of approaches to emerging Grids, Web services and P2P

computing capabilities; and related work towards implementation

of OGSA.

6

Introduction

2. An architecture (structure, interfaces, algorithms and protocols)

and a prototype (a reference implementation) of a Grid service as a

P2P application based on an overlay network.

3. A set of design issues that must be considered in developing a Grid

service as a P2P application – derived from 2.

4. An evaluation procedure (evaluation parameters, an experimental

framework and benchmark applications) and results of evaluation

experiments.

1.5.3 Problem Definition

The problem can be divided into three smaller tasks:

1. Finding a suitable Grid service to implement on top of a structured

P2P network;

2. Creating an architecture and a prototype implementation of the ser-

vice;

3. Implementing a prototype and evaluating the architecture.

The first task is finding a Grid service to improve. It was decided that

resource discovery (also called resource location) was suitable. Resource

discovery deals with finding the resources (compute power, storage space,

data, etc) that are available in a Grid. Ian Foster, among others, claim that

this service is suitable for P2P technology [26][27][28].

In Grid environments, resource discovery has traditionally been more or

less centralized, requiring all participating nodes to register their

resources at some kind of server that keeps track of all available resources,

like the first-generation P2P networks. This works well when the Grids are

not too large and perhaps consist of resources from only one organization.

In this case, the organization can make sure that the resources deliver the

desired qualities of service.

But sharing resources within a single organization on a relatively small

level is decidedly different from handling the needs of very large virtual

organizations. If we want to connect millions of nodes, or connect

resources from hundreds of organizations, the centralized resource

discovery model becomes troublesome. Maintaining the required servers

7

Introduction

will become very difficult and expensive, and it is unlikely that any central

authority will gain the trust of all users. Here, the P2P way of dealing with

resource discovery comes in handy.

1.5.4 Architecture and Implementation of a Prototype

The second task is deciding about the architecture of a prototype resource

discovery service for Grids that uses P2P technology, and then implement

it. In [26], four requirements for an efficient resource discovery mechanism

are listed:

1. Independence of central, global control;

2. Scalability;

3. Support for intermittent resource participation;

4. Support for attribute-based search.

The first point, independence of global control, may not be obvious at first

sight. Today's Grids are being managed centrally, with administrators al-

lowing, or disallowing, users access to various resources. Again, this works

well when the Grids are small or perhaps mid-size, but it will not be practi-

cal for the large-scale Grids that are being envisioned. There is a departure

from today's Grid towards the decentralized approach of P2P. For an exam-

ple of this development, see CAS, described in section 2.5.2.

The first three of these requirements are more or less inherent in good P2P

implementations, but the fourth requirement is different – it is not present

in current P2P solutions. Also, using a global naming scheme (used in many

resource discovery solutions) with attribute-based search is difficult, if at

all possible.

From the strong position that the Globus Toolkit (GT) – a set of software

components for creating Grid services – holds, it is obvious that the Grid

service should be as interoperable as possible with GT. It must be a proper

Grid service in itself, but it would also be desirable to integrate it with

various GT tools as much as possible.

8

Introduction

1.5.5 Evaluation of the Prototype

The third and final task is the evaluation of the prototype. The benefits of

using decentralized resource discovery should be particularly visible in

large-size Grids that are difficult to simulate, requiring estimations to be

made. A number of evaluations are performed in [26] and [28], and these

could serve as a good starting point. If time allows, a simple analytical

model that can predict service characteristics depending on design

decisions could be created, but developing the model is out of the scope of

this thesis.

1.6 Thesis Overview

The remainder of this thesis is organized as follows:

In Chapter 2, a survey of related technologies is presented.

In Chapter 3, an introduction to working with the Globus Toolkit is given.

In Chapter 4, a design for solving the problem outlined above is created.

In Chapter 5, the implementation of the design from the previous chapter is

described.

In Chapter 6, the implementation is tested and evaluated.

In Chapter 7, the work that has been done for this thesis is summarized.

9

Survey of Relevant Technologies

2 Survey of Relevant
Technologies
As Grids are comprised of a large number of heterogeneous resources,

there is a clear need for open standards to define how the resources should

interact and behave. The major standard for Grid computing is OGSA

(Open Grid Services Architecture) [24]. As it builds on top of Web services,

understanding the basics of Web services is fundamental.

Before we can create any Web or Grid services for this project, we need a

P2P network to serve as a base for our services. We decided to use JXTA,

which will be discussed next.

2.1 JXTA

JXTA [11] is a set of open protocols for P2P networking. It was originally

created by Sun Microsystems, so usually the Java (J2SE) implementation of

JXTA is used. However, there are implementations for other languages, for

example C and Python [10], and a version for J2ME suitable for PDAs and

cell phones. The JXTA protocols are also designed to be independent of

transport protocols. The term JXTA is short for “juxtapose,” because P2P

can be considered a juxtaposition of the traditional client/server systems.

The JXTA protocols standardize the manner in which peers:

● Discover each other;

● Organize into peer groups;

● Advertise and discover services;

● Communicate with each other;

● Monitor each other.

The JXTA software architecture consists of three layers: (1) Platform layer,

(2) Services layer, and (3) Applications layer.

The platform layer includes the basic building blocks for P2P networks, like

discovery, transport, creation of peers and peer groups, and security.

The services layer contains additional services, for example searching, in-

dexing, and file sharing.

10

Survey of Relevant Technologies

The applications layer contains the actual applications that use JXTA. These

applications can be services themselves for other applications, so there is

not always a clear separation of the services layer and the applications

layer.

In the following subsections, a few important JXTA concepts that are rele-

vant to this project will be introduced: Peer, peer groups, pipes, advertise-

ments, and the discovery service.

For a more thorough description of these concepts, as well as some of the

more advanced features of JXTA, see [9]. However, it should be noted

that [9] is 1,5 years old, and obviously changes have been made to JXTA

since it was written. For example, it claims that peers that do not find any

rendezvous peers become rendezvous peers themselves automatically; this

is currently not the case.

Later, we will discuss some of the problems we encountered using JXTA. It

should also be noted that what we describe here is the standard building

blocks of JXTA. Naturally, these can be extended to provide additional func-

tionality, and as the source code is available, even the basic behavior of

JXTA can be modified.

2.1.1 Peers

A JXTA network, like every other P2P network, consists of a number of in-

terconnected nodes, or peers. Usually the peers are normal computers, but

it can be anything that implements one or more of the JXTA protocols, for

example PDAs or advanced cell phones. Each peer is uniquely identified by

a peer ID.

There are four kinds of peers:

● Minimal edge peers only send and receive messages, and do not

cache advertisements or help routing messages for other peers.

● A full-featured edge peer is the “standard” kind of peer. Most peers

in a network are likely to be of this kind.

● Rendezvous peers behave like the standard peers, but also forward

discovery requests to help other nodes to discover resources.

11

Survey of Relevant Technologies

● Relay peers maintain information about routes to other peers, and

help routing messages in the network.

Individual peers can provide various services, called peer services. Peers

usually discover each other on the network to create relationships called

peer groups, described next.

2.1.2 Peer Groups

A peer group is a collection of peers that are somehow related to each

other. A peer group may be open to any peers to join, but it can also be re-

stricted to a limited set of peers, depending on the purpose of the group.

Initially, all peers join the so-called Net peer group, which is a default

group that is created when a JXTA network is started. Peers are free to join

any number of groups they desire. A peer can be a member of more than

one group at the same time. The peer groups are ordered into a hierarchi-

cal structure, where each group has a “parent” group.

The JXTA protocols describe how to publish, discover, join and monitor

groups, but they do not decide about when or why peer groups are created.

Peer groups provide services called peer group services. There is a basic

set of services that all peer groups must provide (or use the default imple-

mentations provided by the Net peer group), but each group can also

create its own services for specific purposes. The core peer group services

include:

● Discovery – for finding resources such as peers and pipes (see

below for more details);

● Membership – for accepting or rejecting new members of the

group;

● Access – for validating requests, in terms of credentials;

● Pipe – for creating pipes (communication channels) between peers;

● Resolver – for sending generic query requests to other peers;

● Monitoring – for monitoring other members of the group.

12

Survey of Relevant Technologies

2.1.3 Pipes

Pipes are communication channels used by peers to send messages to other

peers. Pipes are usually asynchronous and unidirectional. The endpoints of

the pipe are called input pipe (the receiving end) and output pipe (the

sending end), respectively. There are two modes of communication: point-

to-point, where one input pipe and one output pipe are connected, and

propagate, where one output pipe is connected to many input pipes.

2.1.4 Advertisements

In JXTA, all resources (like peers, peer groups, and pipes) can be described

in terms of XML documents called advertisements. These advertisements

are published using the discovery service in JXTA. Peers discover resources

by searching for advertisements. There are a number of different advertise-

ment types, describing peers, peer groups, and pipes. Two other important

advertisement types are the module class advertisement, which provides

basic information about a service in the network, and the module specifica-

tion advertisement, which provides more details about a service.

Figure 1 shows a typical JXTA advertisement. It is a module class advertise-

ment (hence the jxta:MCA) for a storage service. First are some initial XML

tags, and then comes an ID, the name of the service, and a description of

the service.

13

<?xml version="1.0"?>
<!DOCTYPE jxta:MCA>
<jxta:MCA xmlns:jxta="http://jxta.org">
 <MCID>
 urn:jxta:uuid-EE123F318F184D6BBF83BA41E4AB64FE05
 </MCID>
 <Name>
 JXTAMOD:FSGRID_STORAGE
 </Name>
 <Desc>
 storage
 </Desc>
</jxta:MCA>

Figure 1: A JXTA advertisement

Survey of Relevant Technologies

2.1.5 The Discovery Service

The discovery service in JXTA is used heavily in the software created

during this project, so it warrants a closer look. It uses JXTA's Peer Discov-

ery Protocol (PDP) to discover any published resources. The J2SE imple-

mentation uses a combination of multicast to the local subnet and ren-

dezvous peers for network crawling.

Both P2P “clients” and “servers” use the discovery service. Clients use it to

get the available advertisements, either remotely, with a request sent over

the network, or locally, from a cache. Servers use the discovery service to

publish their services. Services can either be published directly, sending

the advertisement over the network immediately, or indirectly, waiting for

rendezvous peers to find and forward the advertisement.

2.2 Web Services

Web services is a distributed computing paradigm that is built on a founda-

tion of simple, Internet-based standards like XML and HTTP. Web services

are independent of programming languages and system software. This

flexibility makes Web services ideal for various kinds of application integra-

tion. Web services provide methods to discover available resources and to

obtain descriptions of such resources. Web services have been widely

adopted. There are a number of tools and standards that help development

of Grids, relieving developers from tedious tasks. Here is one of the obvious

advantages of basing Grid computing on existing technology, rather than

creating everything from the ground up.

There are a number of standards that have been specified by the W3C and

other organizations, a few of which will be briefly described below, namely

SOAP, WSDL, WSIL, and UDDI.

2.2.1 SOAP

Simple Object Access Protocol (SOAP) [8] defines an XML-based way to ex-

change structured data. It provides a messaging framework that is extensi-

ble and independent of underlying networking protocols and the program-

ming model being used. To ensure good interoperability, standard protocol

bindings are necessary; the SOAP 1.1 specification contains a binding for

14

Survey of Relevant Technologies

HTTP, which is the protocol that is most frequently used with SOAP. Its

text-based nature (XML) makes SOAP-based applications easier to debug.

HTTP is also easier to use with firewalls than traditional binary protocols.

The root element of a SOAP message is called envelope. It contains an op-

tional header element and a body element. The body contains the message

payload, and the header contains information for processing the payload.

For encoding of data types, SOAP uses XML Schema. This makes it easy to

specify new data types.

2.2.2 WSDL

Web Services Description Language (WSDL) [17] is used for describing and

locating a Web service using an XML document. It specifies the location of

the service and the methods it provides, so typically the WSDL description

of a service contains everything that is necessary to use it. There are four

major elements of a WSDL document:

● portType – the methods of the Web service

● message – the messages used by the Web service

● types – the data types used by the Web service

● binding – the communication protocol used by the Web service

We will encounter these elements again in GWSDL, the Grid-adapted ver-

sion of WSDL, which is discussed in section 3.2.1.

2.2.3 WSIL

Web Services Inspection Language (WSIL or WS-Inspection) [15] provides

conventions for locating service descriptions published by a service

provider. A WSIL document can contain service descriptions that are usual-

ly URLs pointing to WSDL documents, but it could also be a reference to an

entry in a UDDI registry (see below for a short introduction to UDDI).

2.2.4 UDDI

A Universal Description, Discovery, and Integration (UDDI) [7] registry ser-

vice is a Web service that contains information about various services.

UDDI is used by service providers to advertise their services. Service users

15

Survey of Relevant Technologies

can UDDI to find suitable services, and get the additional metadata they

need to use the services. Contrary to WSIL, UDDI uses a centralized model

with repositories to keep track of the data. WSIL and UDDI can often be

used together to get the best of both worlds.

2.3 OGSA

Now it is time to have a look at the major standard for Grid computing,

Open Grid Services Architecture (OGSA). We will give a short overview of

its architecture and highlight a few important concepts.

2.3.1 Architecture of OGSA

OGSA has a layered architecture with the following four layers:

1. Resources;

2. Web Services + OGSI Extensions;

3. OGSA Architected Services;

4. Grid Applications.

The resources can be either physical (like servers) or logical (like

databases). Grid services are extended Web services, and the OGSI

extensions to standard Web services are detailed below. The OGSA

Architected Services layer provides services that are useful for all Grid

applications, such as:

● Service management (installation, maintenance, etc);

● Service communication;

● Policy and security management;

● Job scheduling;

● Data services.

Domain-specific services can be added to this layer as well.

2.3.2 Services in OGSA

In OGSA, everything is represented by a service – a network-enabled entity

that provides some capability through the exchange of messages. Compute

16

Survey of Relevant Technologies

power, programs, databases etc, are all virtualized into services, or, more

specifically, Grid services. A Grid service is a Web service extended with

service data, notifications etc, as described below. Every Grid service im-

plements one or more interfaces, which are called portTypes in WSDL.

As everything is modeled as services, there will be some persistent ser-

vices, but also transient service instances. Database queries, data transfers

and reservations of processing power are typical transient service in-

stances. This means that service instances can be extremely lightweight en-

tities.

2.3.3 Service Data

A Grid service, or, to be more specific, a Grid service instance, can have a

set of structured data associated with it, called service data. The service

data is a set of XML elements called service data elements (SDEs). Service

data can be queried and retrieved through the findServiceData method.

Generally, the service data is either state information (for example inter-

mediate results of a computation) or service metadata (for example the

cost of using the service).

2.3.4 Service Identifiers

To keep track of the service instances, every instance is assigned a unique

identifier, the Grid Service Handle (GSH) when it is created. However, Grid

services may be upgraded during their lifetime, so the protocol- or in-

stance-specific information for each GSH is collected into a Grid Service

Reference (GSR). A GSR contains all the information required to interact

with a service instance. It is usually a WSDL document. More than one GSR

can be associated with each service instance. It should be noted that hav-

ing a valid GSR does not guarantee access to a service instance – for exam-

ple, the service instance may have failed since the GSR was created.

2.3.5 Life Cycle Management

We must make sure that when an instance is no longer needed, its re-

sources are reclaimed. The lifetime of a Grid service instance is handled via

soft state management. Every service instance is assigned a specified

17

Survey of Relevant Technologies

lifetime when it is created. When this time runs out, the instance is

terminated, unless another service has sent a keepalive message,

indicating that it wants to continue using this instance for some more time.

Soft state protocols are both resilient to failure (a lost message does not

cause much harm) and simple to use, because no reliable discard is

required.

2.4 OGSI Extensions to Web Services

The Open Grid Services Infrastructure (OGSI) [37] extensions deal mainly

with the fact that Grid services have state information, called service data,

and that their lifetimes vary a lot, from transient service instances to very

long-lived ones. There is a project called WSRF (Web Services Resource

Framework) [6] that aims to substitute OGSI and, eventually, make Grid

services converge with Web services. The next major version of the Globus

Toolkit (see section 2.5) will include support for WSRF, but for now, the

OGSI extensions are used for Grid services.

OGSI specifies a number of WSDL portTypes, or interfaces, for Grid

services. Here are a few important portTypes:

● GridService – A basic portType that all services must implement.

This is analogous to the Object class in Java, encapsulating the root

behavior of the component model.

● Factory – A factory is a pattern where a Grid service instance is

used by a client to create another, new Grid service instance. The

factory returns a GSH.

● Notification – The notification portTypes are used to deliver mes-

sages between services. There is a NotificationSource portType

for services that wish to send messages, a NotificationSink

portType for receiving messages, and a

NotificationSubscription portType to handle the relationship

between a source and a sink. As the only exception to the rule, a

service that implements the NotificationSink portType does not

have to implement the GridService portType.

● ServiceGroup – An interface for representing a group of services.

18

Survey of Relevant Technologies

2.5 The Globus Toolkit

During a supercomputing conference in 1995, 11 high-speed research

networks in the U.S. were temporarily connected. A set of protocols was

developed to allow users on this new network to run applications on

computers across the country. This experiment was successful and the

research continued, which led to the Globus Toolkit (GT) [5] version 1.0

being released in 1998. At the time of this writing, the current GT version

is 3.2.1, but version 4.0 is scheduled to be released in January 2005.

GT is an implementation of OGSI. It is an open-source collaboration backed

by the Globus Alliance [4]. There are other implementations of OGSI, but

GT is the de facto standard, being used in (and developed by) both

academia and corporations.

GT is not only an implementation of OGSI. It has grown to become a large

collection of software that is useful for constructing Grids. The toolkit is

divided into six major components:

1. Core – basic infrastructure for building Grid services;

2. Security – various security tools;

3. Data Management – tools for file transfers and replica location;

4. Resource Management – remote job submission and control;

5. Information Services – resource discovery and collection of service

data;

6. XIO – a single API for all Grid I/O protocols.

These components can be used either independently or together to develop

applications.

2.5.1 Core

As its name implies, the Core component is a set of building blocks that is

essential to all Grid applications, offering support for soft state manage-

ment, inspection, notification, discovery etc. There is also some security in-

frastructure and certain system-level services, for logging, management,

and administration. For developers, there are some code generation tools

that can be used to speed up the development of new services. For more in-

19

Survey of Relevant Technologies

formation about the core, see [31]. Figure 2 shows the architecture of the

GT Core.

2.5.2 Security

GT uses the Grid Security Infrastructure (GSI) for providing secure authen-

tication and communication over an open network. GSI helps to support se-

curity across organizational boundaries, and provides single sign-on for

Grid users. It uses, and in some cases extends, well-known security stan-

dards.

GT version 3.2 introduces a new part of the security component, Communi-

ty Authorization Service (CAS). CAS lets resource owners create coarse-

grained policies for how their resources are used, letting the community

handle the fine-grained access control and day-to-day management tasks.

This is an interesting step in the development towards more decentralized

Grids.

2.5.3 Data Management

The Data Management component consists of three subcomponents:

20

Figure 2: The GT Core architecture.

Core components have a white background.

From http://www-
unix.globus.org/toolkit/docs/3.2/core/key/index.html

Survey of Relevant Technologies

● GridFTP – A transfer protocol that is based on FTP. A number of ex-

tensions to FTP have been created to meet the requirements of Grid

services.

● RFT – The Reliable File Transfer Service (RFT) is a service for con-

trolling and monitoring GridFTP file transfers.

● RLS – The Replica Location Service (RLS) is used for data replica-

tion. It is currently in “alpha” status, suitable only for testing.

2.5.4 Resource Management

The Globus Resource Allocation and Management (GRAM) provides an in-

terface for requesting and using various resources in a Grid. Clients can

submit, monitor and shut down jobs remotely. GRAM is situated above local

control and access mechanisms, and below applications and higher-order

services.

2.5.5 Information Services

The Monitoring and Discovery Service (MDS) is the most important part of

the information services component. It provides a generic framework for

aggregation of service data and a soft state registry of available resources.

2.5.6 XIO

The goal of Extensible IO (XIO) is to create a single API for all Grid IO pro-

tocols. In distributed programming, many different protocols and APIs may

be used for IO operations. With XIO, developers get access to a simpler API

that is also efficient and easy to extend with new protocols.

21

Working with the Globus Toolkit

3 Working with the Globus
Toolkit
This section provides an overview of working with the Globus Toolkit. We

will focus on the requirements for creating the services developed within

this project. For a more detailed description, see the Globus Programmer's

Tutorial [34]. The tutorial also provides a script that makes it easy to de-

ploy Grid services. This script requires that special package names be

used.

3.1 Installation and Configuration

Installing and setting up GT for simple development is not so hard. The offi-

cial installation guide [3] is available at the Globus web site [4]. Our experi-

ence of the installation process, along with some hints, is collected on a

web page [25].

3.2 Creating a Simple Grid Service

Creating a simple Grid service is a five-step process. The first three steps

deal with describing and implementing the service, while the last two deal

with its deployment:

1. Define the GWSDL interface;

2. Implement the service;

3. Configure the WSDD deployment descriptor;

4. Create a GAR file;

5. Deploy the service.

3.2.1 Define the GWSDL Interface

GWSDL is a Grid-adapted extension of WSDL. It is used to describe Grid

services, in terms of the methods they provide. Note that the next version

of WSDL is likely to include the GWSDL extensions, which will make

GWSDL superfluous. Creating descriptions of complex portTypes requires

22

Working with the Globus Toolkit

some knowledge of WSDL and XML Schema, but working with primitive

types is fairly straightforward.

WSDL/GWSDL is language-neutral, but at some point the interface must be

referenced from a particular language. This is done using stub classes, a

kind of helper classes, to make it easier for the developer. Working directly

with WSDL and SOAP all the time would be very tedious. The stubs are

generated automatically from WSDL descriptions by a GT tool, but we need

to tell this tool where to deposit the stubs. This is accomplished using a file

(called namespace2package.mappings) that maps GWSDL namespaces

to Java packages.

3.2.2 Implement the Service

Implementing a basic Grid service in Java is not at all difficult. The script

we use to deploy the service requires that the service implementation file

be placed in a particular Java package. The implementation class must ex-

tend the org.globus.ogsa.impl.ogsi.GridServiceImpl class, which pro-

vides basic functionality for the Grid service. It must also import a

portType interface that is generated dynamically by the build script. Final-

ly, it must import java.rmi.RemoteException.

As noted above, the implementation class extends GridServiceImpl. It

must also implement the portType interface for the service. All public

methods must throw RemoteException. These are the only requirements

for the simplest Grid service implementation class.

3.2.3 Configure the WSDD Deployment Descriptor

Suppose, the two most important parts of a Grid service (the service inter-

face and the implementation) has been created. These pieces must be put

together and made available through a Grid services-enabled web server.

This is called deployment. The deployment descriptor describes the Grid

service to the Grid service container that will host it. It is written in the

WSDD (Web Service Deployment Descriptor) format.

23

Working with the Globus Toolkit

3.2.4 Create a GAR File

All the files that have been created so far, and a number of other files, must

be collected into a Grid Archive, or GAR file. Creating a GAR file involves

several steps:

● Converting the GWSDL into WSDL;

● Creating stub classes from the WSDL description;

● Compiling the stubs;

● Compiling the implementation class;

● Organizing all the files into a specific directory structure.

Doing this by hand would be almost infeasible, but the process can be auto-

mated using Apache Ant [2], a build tool for Java, as shown in Figure 3. All

the steps listed above can be achieved by calling the Globus Programmer's

Tutorial script, which in turn instructs Ant what to do. Running the script

will create a GAR file for the service.

24

Figure 3: Creating a GAR file with Ant.

From http://www.casa-sotomayor.net/gt3-
tutorial/multiplehtml/ch03s04.html

Working with the Globus Toolkit

3.2.5 Deploy the Service

Deploying a GAR file is once again accomplished using Ant, and is very sim-

ple. If everything has gone well so far, the service is now ready to be used

when the service container has been started.

3.3 Creating a Grid Service Client

Now that we have created a Grid service, we need some kind of client to

access this service. Again, the client implementation class needs to be

placed in a specific package. The client needs to import two stub classes

that have been generated by Ant; the portType class and a service locator

class. The locator class will return an instance of the portType class when

provided with the address of the Grid service. This instance can then be

used like any normal object.

3.4 Operation Providers

The service we described above extends the GridServiceImpl class. Being

forced to extend a particular class can sometimes be problematic, especial-

ly when an existing class that already is a subclass is to become a Grid ser-

vice. Fortunately, there is a simple solution to this problem: implementa-

tion by delegation, or, as it is called in GT, operation providers.

When using operation providers in GT, the deployment descriptor is used to

tell the service container that the basic service functionality is still provid-

ed by GridServiceImpl, but we will not be forced to extend this class.

Instead, we implement the org.globus.ogsa.OperationProvider inter-

face. The implementation by delegation approach also leads to a more

modular design, because operation providers can be plugged into many dif-

ferent services. A good example of this is the math service that is devel-

oped in the Globus Programmer's Tutorial. The service implementation it-

self only provides addition and subtraction, but existing libraries that pro-

vide other operations, for example trigonometry or matrix algebra, could

easily be plugged in to extend the functionality of the original service.

To implement an operation provider, some extra work is required. We need

to set up a namespace, a list of the methods the service provides, and an

25

Working with the Globus Toolkit

object that implements the org.globus.ogsa.GridServiceBase interface.

As noted above, when deploying the Grid service, the deployment descrip-

tor must be modified slightly to show that the implementation class is now

an operation provider. However, the GWSDL interface remains the same,

so the difference will not be noticed by clients, and hence the same client

can be used to access the new service.

3.5 Service Data

Service data is a very important concept in Grid services, so we will have a

brief look at how to work with it. As noted above, service data is a struc-

tured collection of information that is associated with a Grid service. The

service data consists of service data elements (SDEs). It should be noted

that all Grid services have some basic service data, even if the service de-

veloper does not specify any service data for a service.

Using GWSDL, we can associate SDEs to a portType. The data type and

cardinality of each SDE is specified using the XML Schema language. If

there are SDEs with complex data types (anything else than the standard

int, String etc), JavaBeans will be created by Ant that lets us access these

complex SDEs. Also, the GWSDL description of the service and the deploy-

ment descriptor need to be updated slightly when custom service data is

used.

To work with the service data on the server side, we first create an SDE ob-

ject. Then we need to create a portType object and set its initial values,

and add this object to the SDE object. Finally, the SDE object is added to

the service data set of the service. This is shown in Figure 13 (page 45).

When interacting with the service data, we use get/set methods on the

portType object we created earlier.

To work with service data on the client side, we can use the service locator

object to find the service data. The information we get from this object

must be converted using some helper classes before it can be used by the

client. When these conversion operations have finished, we have a

portType object that we can work with exactly like before.

26

Working with the Globus Toolkit

3.6 Creating a UI with the Globus Service Browser

Above, we have outlined how to create simple text-based Grid service

clients. Another way of interacting with a Grid service in a more user-

friendly way is by using the Globus service browser. This is a tool that lists

all the available services of a service container, and lets the user interact

with them. For each service, the service developer needs to create a class

that provides access to the specific methods of the service. The service

browser will add interaction with properties that are common to all Grid

services, for example life cycle management.

Figure 4 shows the service browser as it looks when it is first started. At

the top there is a list of buttons for working with the windows of the ser-

vice browser. The middle section (not shown in the figure) contains a num-

ber of tools for working with the services. At the bottom is the list of ser-

vices running on the current container. The first one is our storage service.

Below it, our discovery service, an older version of the storage service and

a number of other services can be seen. Double-clicking on a service in this

list will activate it and show its user interface.

Creating a class that integrates with the service browser is straightfor-

ward. The only requirement is that it extends the class

27

Figure 4: The Globus service browser

Working with the Globus Toolkit

org.globus.ogsa.gui.AbstractPortTypePanel. The user interface is cre-

ated in the same way as a standard Swing interface, and the code for inter-

action with the service is the same as in the text-based client described

above. One thing to keep in mind, though, is that it seems like the layout

cannot be controlled directly, always defaulting to a BorderLayout. Within

the BorderLayout, the layout can be controlled indirectly by using panels.

Before the interface can be used, a line must be added to the client-gui-

config.xml file in the Globus base directory, describing which portType is

being used and which class that implements the user interface.

28

Analysis and Design

4 Analysis and Design
This section gives an overview of how our system should behave, and intro-

duces the design of our solution. The design describes the P2P compo-

nents, how these are adapted to work within a Grid context, and what the

user interface may look like. Finally, everything is put together to create

two Grid services that use P2P. We have assumed that the system will have

only human users, but it should also be able to support computer users

without major modifications.

4.1 Overview of the System

We are about to create a P2P-based discovery service for finding the avail-

able resources of a Grid. This means that the discovery service will connect

to a P2P network (in our case realized by JXTA) to find information about

the resources. Obviously, this also requires the resources to publish infor-

mation about themselves on the same network. So at first sight servers

(nodes that provide resources) and clients (nodes that use services provid-

ed by servers) seem to be two separate parts of the system. But one of the

hallmarks of P2P is that all nodes can act as both clients and servers, and

this applies to this project too, so the client side and the server side of the

problem actually have very much in common.

When users want to find resources, they will start the discovery service and

provide it with some search criteria, like a name or description of the ser-

vice they want to use. The discovery service will connect to a JXTA net-

work. This network could be either a global, open network or a local, pri-

vate network (like a company intranet). Advertisements are published in

predetermined peer groups to delimit their scope and the network load, so

the discovery service will join a suitable peer group and try to find some

relevant services. When it has found some interesting services, it will

present a list of these services. Alternatively, if no services are found, the

user gets an error message. From this list, the users should be able to find

all the information they need for using their desired service.

When programmers create services that the discovery service should be

able to find, they must somehow publish their presence. This could be

29

Analysis and Design

achieved by calling an advertisement service with a description of the ser-

vice. The advertisement service will then connect to the same JXTA net-

work as the discovery service, join a peer group and publish an advertise-

ment of the service. The advertisement has a certain TTL, so it must be re-

published occasionally.

4.1.1 How the System Can Be Used

As a concrete example of a typical Grid service that could benefit from our

discovery service, we will design a simple storage service. This storage ser-

vice will be a completely standard Grid service. It does have one unusual

feature, though: it uses code from our discovery service to advertise itself

(this capability should become a Grid service of its own, as discussed in

section 4.6). These advertisements can be found by our discovery service.

The design of the storage service is described in section 4.6.1.

Because of the distributed nature of our discovery service, it is likely to

scale better and have higher availability. It does not rely on any kind of

central repository that will become a bottleneck as the system grows.

Instead, the “repository” is spread over a P2P network. Hopefully, these

properties will indirectly improve other services that use it, like our storage

service.

After this conceptual overview of the system, we will now describe the de-

sign of the system in some more detail.

4.2 The Two Main Parts of the System

The system can be divided into two main parts, the P2P part and the Grid

part. The P2P part, which uses JXTA as underlying overlay network, is re-

sponsible for:

● Setting up the P2P network;

● Creating peers;

● Organizing peers;

● Publishing advertisements for services;

● Finding published advertisements.

30

Analysis and Design

The Grid part builds on top of the P2P part to adapt it to the requirements

of Grid services. The Grid part adds:

● Handling of service addresses (GSHs);

● Connecting to services.

As the purpose of the project was to build a kind of P2P base for Grid ser-

vices, the Grid part obviously depends on the P2P part. However, it is desir-

able for the Grid part to be as loosely coupled to the P2P part as possible,

to make it more flexible. Using the P2P part should introduce only minor, if

any, modifications to existing Grid services. The choice of JXTA for basic

P2P functionality has forced certain design choices, but these should only

be a concern for the P2P part; the networking technology should be trans-

parent to the Grid part. During the initial development, it was also found

that it was very useful to let the P2P part be “stand-alone” so that it could

be tested on its own.

Given solid background knowledge and experience, the best way of design-

ing this system would probably be to list the requirements of the Grid part,

and then design the P2P part accordingly. However, due to lack of said

knowledge and experience, we started with the P2P part.

4.3 The P2P Part

JXTA was chosen as a provider of basic P2P technology, partly because it

works well with Java, and partly because it seemed mature (it has existed

for about 3,5 years, a long time in the P2P world). There are certainly other

interesting P2P overlay networks, some of which probably have better per-

formance than JXTA, but for this prototype, ease of development was more

important than maximum performance. For a more complete implementa-

tion, another overlay network could be used, without changing the Grid

part too much, although most of the P2P part would have to be rewritten in

this case.

A P2P network consists of peers that act as both clients and servers, so it

was obvious that there would be some functionality specific for clients and

some for servers, while some functionality is common to both kinds of

peers. So, the basic design consists of an abstract class called Node that

contains the code necessary for both clients and servers, and two classes

31

Analysis and Design

called Client and Server that extend the Node class with specific function-

ality for clients and servers, respectively (Figure 5).

Because of uncertainty about how a user interface may be integrated with

the GT tools, and for flexibility in general, it was decided that these classes

should not implement a user interface of their own. Instead, the user inter-

face is provided by subclasses. This proved to be a good idea, which will be

discussed later.

4.3.1 The Node Class

As noted above, the Node class contains the functionality that is common to

both clients and servers. It should be able to:

● Start up and initialize the JXTA network;

● Handle discovery of various kinds of advertisements;

● Create a peer group if none is found and set up its services;

● Join a peer group.

There are ways of creating secure peer groups in JXTA, where the user has

to provide user name and password etc to join the group. For simplicity, se-

curity issues have been ignored in this project.

4.3.2 The Client Class

The Client class should be able to:

● Send requests for relevant advertisements in a peer group, using

the JXTA discovery service;

● Handle incoming advertisements about relevant services;

● Present the available advertisements to the user, or

32

Figure 5: The P2P classes

Analysis and Design

● Handle the case where no advertisements are found;

● Get input from the user, to find out which service to use;

● Contact the server the user has selected.

Note that the presentation of advertisements and handling of input from

the user is to be delegated to UI subclasses that implement methods speci-

fied in this class.

4.3.3 The Server Class

The Server class should be able to:

● Create and publish advertisements for its service, using the JXTA

discovery service;

● Communicate with clients that want to use the service.

Classes that provide a user interface for a Server only need to print mes-

sages in some way.

4.3.4 Communication between Clients and Servers

As described above, clients and servers are obviously supposed to be able

to communicate with each other. The standard way of doing so in JXTA is

by using pipes (see section 2.1.3). The JXTA Server class provides a pipe

for communication, but it is only used for testing the P2P part. It is not

used in Grid environments.

In JXTA, all messages must have a so-called tag and an optional

namespace identifier. The tag that must be used is specified in a class

called FSGridConstants that provides some common constants for this

project. The messages in this system do not use namespaces. Apart from

the tag, no special protocol is used.

4.4 The Grid Part

The Grid part of the system is responsible for making the P2P part usable

for Grid services. The main classes for the Grid part are GridClient and

GridServer. As shown in Figure 6, they extend the JXTA Client and

Server classes (shown in Figure 5), respectively.

33

Analysis and Design

4.4.1 The GridServer Class

The GridServer class is fairly similar to the Server class. A GridServer can

store a GSH, or address, of the service it provides. It also handles the JXTA

user name and password. This is usually provided by the user when a JXTA-

based application runs, but the GridServer class must be usable without

user input or command line arguments when it is running within the ser-

vice container.

4.4.2 The GridClient Class

Unlike the GridServer class, the GridClient class is decidedly different

from the regular JXTA Client class. The GridClient needs to:

● Send a message to the server;

● Get a reply from the server in the form of an address of the service;

● Connect to this address and do something useful;

● Handle the case where no advertisements are found.

Most of this is implemented in other classes, so the GridClient class is in

fact very small. The first two requirements are mostly handled by the

Client class, and the last two are to be fulfilled by Grid service clients that

use this class for access to the JXTA part.

The GridClient class handles the JXTA user name and password in the

same way as the GridServer class, described above.

4.4.3 The ServiceConnector Interface

Grid service clients that wish to use the GridClient class need to imple-

ment an interface called ServiceConnector, that has two methods, one for

34

Figure 6: The main Grid classes

Analysis and Design

connecting to a service, and one for handling the case where no

advertisements are found.

4.5 The User Interface

The user interface is provided by the TextClient/GridTextClient and

TextServer/GridTextServer classes, which in turn get their functionality

from the classes ServerTextUI and ClientTextUI (Figure 7).

Separating the functionality into so many different classes may make the

design seem a little cluttered at first, but in fact it helps to increase

flexibility and avoid code duplication.

Early in the project, a simple GUI was developed for testing of the JXTA

part. However, this GUI was not updated to work with the Grid part, be-

cause we found that a better way of providing a GUI would be to use the

Globus service browser, which was described in section 3.6. This is a tool

that lists all the available services that are running in some container. The

user can click on any of the services to work with them. The service brows-

er provides access to the properties that are common to all Grid services

(life cycle management, for example), and the designer of the Grid service

can add an interface for the particular needs of each service. This proved

to be both easy to use and develop for, as well as much more powerful than

any standalone user interface we could have created within a reasonable

time. A typical user interface for a service is shown in Figure 8.

35

Figure 7: UI classes

Analysis and Design

In this case, it is the storage service described below. At the top there are a

number of buttons for the service browser window. The middle section (not

shown here) contains a set of buttons for working with general service

properties. The “Storage Example” panel contains a set of widgets for in-

teracting with the storage service.

4.6 Design of Grid Services

The design that has been described in the previous subsections might be

interesting in itself, but to see if it works in practice, we need some proto-

type service to test the system. And, as everything in OGSA is modeled as

services, making the discovery process a Grid service on its own was a

natural development. There should also be a separate

AdvertisementService for publishing advertisements, instead of services

using the Grid code directly, which is currently the case. We have not cre-

ated such a service yet, but it would be straightforward to do so.

Developing and deploying simple, prototype-level Grid services for GT is

not very difficult, but still tedious. So it was decided that the prototype ser-

vice using the existing code should be developed first, both for learning

and for checking that everything worked as expected. A Grid service that is

36

Figure 8: The storage service as seen in the service browser

Analysis and Design

both typical and easy to implement was needed, and it was decided that a

storage service would be a good choice.

4.6.1 The Storage Service

We introduced our storage service in section 4.1.1. Now we will have a

closer look at it. Let us emphasize again the fact that the service is a com-

pletely standard Grid service. The only special feature it provides is that it

uses code from our distributed discovery service to advertise itself. These

advertisements can be found by our discovery service. In a very large Grid,

a standard, centralized discovery service is likely to become a bottleneck,

which would prevent other services from being used efficiently. Using our

distributed discovery service instead should indirectly improve our storage

service.

We designed two versions of the storage service. The first is a very basic

service that can only store and retrieve a file with hard-coded name and

content. This version provided an easy way of getting used to developing

Grid services. The second version is slightly more realistic, getting rid of

the hard-coded values, and also providing a delete operation. In addition,

three service data elements were added: total capacity, remaining capaci-

ty, and a list of available files. The files that are managed by the storage

service are stored in a directory on the server the service is running on.

Again, security issues have been ignored to simplify the design and devel-

opment. A simple client for testing this service was also required.

4.6.2 The Discovery Service

The discovery service that we have created is very simple; it can only

search for service names. It would be straightforward to add searching

based on service descriptions, because descriptions of services can easily

be added to JXTA advertisements.

37

Implementation

5 Implementation
This section describes the implementation of the system.

5.1 The P2P Part

The P2P part contains of three main classes:

● Node

● Client

● Server

The Node class provides functionality that is common to both clients and

servers. The Client and Server classes extend the Node class to add specif-

ic client-side/server-side functionality.

5.1.1 The Node Class

The first thing the Node class needs to do is to start up the JXTA network

and initialize some basic JXTA services (discovery and rendezvous), as

shown in Figure 9. This is straightforward, with the exception of the ren-

dezvous service, which will be discussed later.

Then the Node class sets up the Grid peer group. First, it checks whether

there are any advertisements for this group in the local advertisement

cache. If not, it uses the discovery service to try to find one. If any adver-

tisements are found, these are stored in the local cache. When an adver-

tisement is found, the Grid peer group is created from the advertisement,

and the node joins this group.

38

 //create the JXTA net peer group, the group all peers
 //normally join when started

 try {
 netPeerGroup = PeerGroupFactory.newNetPeerGroup();

 ...
 }

 //get and initialize various JXTA services
 discoveryService = netPeerGroup.getDiscoveryService();
 discoveryService.addDiscoveryListener(this);

 rdvService = netPeerGroup.getRendezVousService();
 rdvService.addListener(this);

Figure 9: Initializing the JXTA net peer group and basic services

Implementation

The Node class defines methods for handling the three kinds of advertise-

ments that exist in JXTA: peer advertisements, peer group advertisements,

and general advertisements (all other kinds of advertisements). Only the

peer group method, as noted above, is implemented, though; the rest is left

for subclasses that may need this functionality.

Finally, the Node class defines a method for printing simple output that sub-

classes providing user interfaces should override.

5.1.2 The Server Class

When a Server starts, its main need is to create (or recreate from a file) an

advertisement for the service it provides, and then publish this advertise-

ment. In fact, three separate advertisements are required for each service

in this system. First is the module class advertisement, which only contains

basic information (name and description). Then there is a pipe advertise-

ment that is used to provide information about the pipe, or communication

channel, that this server will be listening to. Finally, there is the module

specification advertisement, which includes more detailed information

about the service, including the pipe advertisement.

The module class and module specification advertisements are then pub-

lished in the Grid peer group using the JXTA discovery service (the pipe ad-

vertisement is contained in the module specification advertisement). This is

39

//get the module class advertisement for the service
ModuleClassAdvertisement moduleClassAdv = getModuleClassAdv(

 name, description);
 gridDiscoveryService.publish(moduleClassAdv);
 gridDiscoveryService.remotePublish(moduleClassAdv);

 //get the module specification advertisement for the service
 ModuleSpecAdvertisement moduleSpecAdv = getModuleSpecAdv(

name, description, version, creator,
moduleClassAdv.getModuleClassID(), specURI);

 //get the pipe advertisement for the service

//and store it with the module spec adv
 PipeAdvertisement pipeAdv = getPipeAdv(name);
 moduleSpecAdv.setPipeAdvertisement(pipeAdv);

 //then we can publish the module spec adv as well
 gridDiscoveryService.publish(moduleSpecAdv);
 gridDiscoveryService.remotePublish(moduleSpecAdv);

Figure 10: Publishing advertisements

Implementation

shown in Figure 10. Finally, it creates a JXTAServerPipe from the pipe

advertisement, and starts listening to this pipe. Clients can send messages

on this pipe, and the server will reply. This communication is only for

testing, though, because the server does not provide any real JXTA

services. The Server class is just a building block for the Grid services that

we will create (the Grid clients will not use the pipe).

5.1.3 The Client Class

The Client class uses the Node class to set up the basic JXTA services.

Then it starts looking for advertisements that match its requirements, as

shown in Figure 11. JXTA advertisements contain basic information about

services, such as name, description, version, and creator. These informa-

tion fields can be used when trying to find advertisements. The current im-

plementation of the Client class only uses the name of the service, but it

could easily be extended to look for descriptions or other criteria.

When a suitable number of attempts to find advertisements have been

made, it continues by presenting the advertisements that were found. Alter-

natively, if no advertisements were found, a callback method is invoked,

which makes it easy for subclasses to provide their own behavior for this

case. Then it waits for the user to select the desired service, and using the

advertisement for this service, the appropriate server is contacted. As al-

ways, presenting advertisements and handling user input is taken care of

by subclasses, not the Client class itself.

40

//first we check the local cache for interesting advertisements
 discoveryEnum = gridDiscoveryService.getLocalAdvertisements(
 DiscoveryService.ADV, "Name", "JXTASPEC:" + serviceName);

 if (discoveryEnum != null && discoveryEnum.hasMoreElements()) {
 //an advertisement was found in the cache, so we can use

//it immediately
 handleAdvDiscovery(discoveryEnum);
 } else {
 //the cache did not contain anything useful,

//so we have to search remotely
 gridDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, "Name", "JXTASPEC:" +
serviceName, advThreshold, null);

 }

Figure 11: Client trying to find advertisements

Implementation

5.1.4 Additional Classes

The three classes mentioned above (Node, Client, and Server) provide the

core functionality of the JXTA part, but there are a number of other classes

in this part. These will be described next.

As noted above, the core JXTA classes do not provide any direct user inter-

face. This functionality is provides by the classes TextServer and

TextClient. But the way of interacting with the user is exactly the same in

both the JXTA part and the Grid part, so the actual interaction code is pro-

vided by two other classes, ServerTextUI and ClientTextUI.

The interface FSGridConstants provides two important constants,

GROUP_NAME and TAG. They define the name of the Grid peer group and

the tag that marks all messages, respectively. It also defines names of a

storage service and a processing power service, which have been used for

testing during development.

Finally, the ServiceDescription class provides a way of describing a ser-

vice in a friendlier way than using JXTA advertisements.

5.1.5 Problems with JXTA

We selected JXTA because we perceived it as being somewhat of an infor-

mal standard for working with P2P in Java. However, we have had major

problems with JXTA during development, which we will describe next.

● As noted in our introduction to JXTA, there is a lack of good docu-

mentation. This is certainly not an unusual problem, particularly in

open source projects, but it is nevertheless a big obstacle. The pro-

grammer's guide [11] contains a good description of the concepts of

JXTA, but it is outdated, sometimes incorrect and the example code

it provides is very limited.

● There is a lack of best practices for working with basic JXTA con-

cepts like rendezvous peers and peer groups. The programmer's

guide only describes very simple uses of JXTA functionality, which

is inadequate for real applications. Certainly there are real applica-

tions built on JXTA whose source code is available to study, but they

can be hard to understand, and there is no way of knowing if they

41

Implementation

are correct. Some information can be found in mailing list archives

and wikis, but it is unstructured and incomplete.

● During development, the rendezvous service has hardly ever

worked. We do not know whether this is due to configuration mis-

takes or coding errors somewhere. After investigating this issue

rather thoroughly, we decided to move on without a working ren-

dezvous service, because it has not really hindered the develop-

ment, only made it more difficult to test the system.

However, the single largest problem in this project, making JXTA run inside

of Globus, is of such importance that it will be discussed separately (see

section 5.4).

We have no experience working with other P2P overlay networks in Java,

but we are nevertheless convinced that there must be tools available that

are better than JXTA.

5.2 The Grid Part

The Grid part of the system is very compact. It consists of only five classes,

none of which contains more than roughly 100 lines of code. This is possi-

ble because of the modular design of the system. The classes are:

● GridServer

● GridClient

● ServiceConnector (interface)

● GridTextServer (for text UI)

● GridTextClient (for text UI)

5.2.1 The GridServer Class

The GridServer class extends the basic JXTA Server class to provide some

extra “Grid” functionality, namely storing the address, or GSH, of the ser-

vice it provides. This value is actually stored in the specURI field of JXTA

advertisements. It is not clear from the documentation what this field is

supposed to be used for, so we have taken the liberty of using it for storing

a GSH.

42

Implementation

The GridServer class must also handle the JXTA user name and password

that is required to run a JXTA peer. In the Server class, the user can speci-

fy these as command line arguments (to JXTA, not the Server class itself).

But this will not work in the Grid service container environment, as far as

we know. So, the GridServer instead uses system properties to read the

user name and password. This behavior is deprecated in the newest release

of JXTA, and it is certainly not flexible or secure, but it is a simple solution

that works well within the limits of this project. Figure 12 contains a

GridServer constructor.

In standard JXTA, the name of the JXTA configuration directory for each

node is also stored in a system property. But the GridServer class uses our

slightly modified version of JXTA (described in section 5.4) instead. Notice

the line in Figure 12 that calls Config.setJxtaHome(), which sets the JXTA

configuration directory in our version of JXTA.

5.2.2 The ServiceConnector Interface

Before we describe the GridClient class, we need to have a look at the

ServiceConnector interface. This interface describes two methods that

must be implemented by a class that wants to connect to a service. The

first method is called connectToService, and, as its name implies, this

method is called when an attempt to connect to a service is made. The sec-

ond method is called noAdvertisementsFound, and it is called if no suitable

advertisements are found.

43

 public GridServer(String name, String description, String GSH,
String version, String creator) {

 super(name, description, GSH, version, creator);

 Config.setJxtaHome(".jxta2");

 try {
 System.setProperty("net.jxta.tls.principal", "jxta");
 System.setProperty("net.jxta.tls.password", "jxtajxta");

 ...
 }
 }

Figure 12: A GridServer constructor

Implementation

5.2.3 The GridClient Class

The GridClient class has an extra instance variable, an object that imple-

ments the ServiceConnector interface. The actual code for connecting to a

service, or handling the absence of advertisements, is contained in this ob-

ject, and the GridClient just forwards everything to this object.

The GridClient class handles the JXTA user name, password and configu-

ration directory in the same way as the GridServer class does, described

above.

5.2.4 UI Classes

The classes that provide a text interface for the Grid classes

(GridTextServer and GridTextClient) are very similar to the classes of

the JXTA part with the same functionality. The only difference is that they

extend the Grid “base” classes instead of the JXTA “base” classes. And

again, the actual implementation of the user interface is delegated to

ServerTextUI and ClientTextUI, respectively.

5.3 Implementation of Services

The JXTA part and the Grid part of the system, together with the Grid dis-

covery service, constitute the foundation of this project. But to see if every-

thing works in practice, a prototype implementation of a storage service

was implemented using this system.

Creating a GT Grid service is rather straightforward in terms of develop-

ment, but deploying a service is considerably harder. To simplify this pro-

cess, we have, throughout the development, used a script from the Globus

Programmer's Tutorial [34], as described in chapter 3. This chapter also

gives an overview of working with GT.

5.3.1 The Storage Service

The storage service is implemented as an operation provider (operation

providers are described in section 3.4). The main class is called

StorageProvider. As all operation providers, it implements the

org.globus.ogsa.OperationProvider interface. It also implements the

44

Implementation

org.globus.ogsa.GridServiceCallback interface, which provides

callback methods that run when a service is created, activated, etc. We use

the postCreate() callback method to initialize the service data and start a

GridTextServer using JXTAClassLoader. The service has three public

methods: store(), retrieve(), and delete(). It also has three service

data elements: getFileNames, getTotalCapacity, and

getRemainingCapacity. The files that the storage service manages are

stored in a directory on the server the service is running on.

The most complicated part of the storage service is the code that deals

with service data, shown in Figure 13. Note that the code in Figure 13 is

only intended to briefly show how to work with service data – the code for

the storage management can be improved in many ways.

Currently, the code for publishing a storage service advertisement is inte-

grated into the storage service itself, through its use of a GridTextServer.

This should become a Grid service of its own, perhaps called

AdvertisementService, which would let all kinds of Grid services publish

their advertisements. Creating such a service would be fairly straightfor-

ward, because all the JXTA code is already created, and it just needs to be

wrapped into a Grid service.

45

 private ServiceData storageSDE;
private StorageDataType storage;

private GridServiceBase base;

...

//create service data element
 storageSDE = base.getServiceDataSet().create("StorageData");

 //create a StorageDataType instance and set intial values
 storage = new StorageDataType();
 storage.setFileNames(dataDirectory.list());
 storage.setTotalCapacity(TOTAL_CAPACITY);
 storage.setRemainingCapacity(TOTAL_CAPACITY);

 //set the value of the SDE to the StorageDataType instance
 storageSDE.setValue(storage);

 //add SDE to service data set
 base.getServiceDataSet().add(storageSDE);

Figure 13: Setting up service data

Implementation

5.3.2 The Discovery Service

The discovery service implementation is very similar to the storage service.

It is also an operation provider. It has two public methods: getServices(),

and getAddress(). getServices() returns a list of all available services

with a particular name, and getAddress() returns the address (GSH) of a

service that a user has selected (this method is not working fully). The dis-

covery service does not use any service data.

5.4 Running JXTA Inside of Globus

During this project, the discovery service and the storage/advertisement

service have been developed somewhat independently. We did not run the

services together until they were both working on their own without prob-

lems. This was a major mistake, because running both services simultane-

ously (which is obviously necessary for this project) proved to be extremely

difficult.

Each JXTA node needs to use its own configuration directory, so the name

of this directory must be set in some way. Usually, this information is col-

lected from a Java system property called JXTA_HOME. When we tried to

run more than one node within JXTA, the nodes failed to set their configu-

ration directories correctly. At first, we thought the error was caused by

the fact that system properties have global scope within each JVM. So we

took advantage of the fact that JXTA's source code is freely available, and

we modified it, removing the dependence on this system property entirely.

This helped a little, but did not solve the problem entirely. Our continued

investigations revealed that the problem did not really originate from the

system properties, but was instead related to class loaders. Before we can

discuss our solution to this redefined problem, we will introduce Java class

loaders.

5.4.1 Java Class Loaders

This section gives a short overview of class loaders. For more details,

see [32], a very good introduction to class loaders.

All Java classes are loaded by a class loader. Usually, this happens “behind

the scenes” and programmers do not need to think about it. But there are

46

Implementation

two cases where class loaders are important. One is when you want to load

class files in some new way. The best example is a standard Java applet,

which reads class files over a network instead of from a hard disk. The oth-

er case is when a larger system needs to load smaller parts that cannot be

entirely trusted, for example application servers and containers.

Class loaders are organized into a hierarchy. At the top of this hierarchy is

the bootstrap class loader which contains the basic runtime classes provid-

ed by the Java Virtual Machine. Then comes the system class loader which

handles classes from the class path. Finally, at the lowest level are the

user-defined class loaders. When a class loader is ordered to load a class, it

will usually ask its parent to load it first, and if this fails, it will try loading

the class on its own.

5.4.2 Class Loaders, JXTA and Globus

JXTA requires each node to be loaded by its own class loader. This is no

problem when running stand-alone applications, because they run in differ-

ent JVMs. Also, application servers and containers usually load their ser-

vices with different class loaders to prevent them from interfering with

each other, or the system itself (see the documentation for Apache

Tomcat [1] for an example of this behavior). But in Globus, this does not

seem to be the case.

5.4.3 The Class Loader Solution

To save us some work, we used an existing class loader from a JXTA sub-

project, called PeerClassLoader. We had to make a small but important

modification to this class as well. A client returns a list of

ServiceDescriptions that describes the services it has found, and these

need to be accessible by other classes that have not been loaded in the

same class loader. A simple solution to this problem is to treat

ServiceDescription as a kind of system class that will always be loaded

by the system class loader.

Using PeerClassLoader directly is inconvenient, so we created a class

called JxtaClassLoader that provides a simpler interface to

47

Implementation

PeerClassLoader, as well as a few methods to interact with the objects (in

fact, these are literally Java Objects) it creates.

JxtaClassLoader provides one method for creating a new server instance

(specifically a GridTextServer). As there currently are no ways of interact-

ing with a server once it has started, this is the only method required for

the server side of JxtaClassLoader. On the client side, there is one method

for creating a new client (again, it is a GridTextClient), but also methods

for running service discovery and returning information about the discov-

ered services. These methods, and constructors for creating the objects in

the first place, are called using reflection, as exemplified in Figure 14. Un-

fortunately, these methods do not work fully, so some more work is re-

quired to complete this part of the prototype.

Figure 15 shows a conceptual overview of the class loading system used in

this prototype. It is conceptual in the sense that the system class loader is

actually not only responsible for loading ServiceDescription, but

JxtaClassLoader and PeerClassLoader as well. But this is what it looks

like from a programmer's point of view.

48

 try {
 if (className.equals(CLIENT_NAME)) {

 //set up a client
 constructorArg = new Class[1];
 constructorArg[0] = Class.forName("java.lang.String");
 } else if (className.equals(SERVER_NAME)) {

 //set up a server
 constructorArg = new Class[3];
 constructorArg[0] = Class.forName("java.lang.String");
 constructorArg[1] = Class.forName("java.lang.String");
 constructorArg[2] = Class.forName("java.lang.String");
 }

 ...

 constructor = startupClass.getConstructor(constructorArg);
 //args is an array of Objects that contain the arguments

 Object startupInstance = constructor.newInstance(args);
}

Figure 14: Calling constructors with reflection

Implementation

JxtaClassLoader is specifically tailored for our needs, so it is not a general

solution.

49

Figure 15: Class loading system

Evaluation

6 Evaluation
In this section, we will run some tests to evaluate the performance and

scalability of our services. We use a storage service client that uses our dis-

covery service to find the available storage service(s). We will also study

how our solution with a special class loader affects performance.

All tests described below have been ran on the same computer, with a 1.4

GHz processor, 512 MB of memory, and Debian GNU/Linux with kernel

version 2.4.26-1-k7. We have used J2SE 1.4.2_02, J2EE 1.4, and GT 3.2.1.

(J2EE provides some XML classes that are used by all Grid services). Each

client has performed five iterations of connecting to and working with a

server each time it runs.

An important fact to keep in mind when reading the numbers is that the

time it takes for a client to perform its actions is highly dependent on how

it is configured. This performance depends on the following factors:

● How long a client waits before giving up/continuing when searching

for advertisements

● What happens when a client finds an advertisement – does it contin-

ue to search for more advertisements or does it stop searching?

● The existence of cached information. As an example, information

about the peer group a client tries to join is almost always cached,

but if it is not, it will take longer

Here, one must strike a balance between how much information you want

to find and for how long a user will have time to wait. This certainly varies

considerably. When searching for services in a huge P2P network spread

around the globe, different settings must be used compared to when a local

network is used. These issues affect all the numbers quoted in this section.

So, these numbers should only be seen as indications of how the system

performs under the circumstances we have tested.

6.1 Class Loading Overhead

As we have described in section 5.4, we were forced to use a special class

loader to be able to use JXTA within Globus. We also needed to use some of

50

Evaluation

Java's reflection capabilities to work with the objects we get from the class

loader. Before we can study the performance behavior of our services, we

will have a look at how the class loader and reflection affects the perfor-

mance. The simplest way of seeing the difference is the time it takes to

start a node, either a client or a server, as seen in Figure 16. Currently,

measuring the difference in runtime performance is more difficult.

These values are measured outside of Globus, running as ordinary pro-

grams. As we can see here, using our special class loader, together with re-

flection, adds about 20% overhead to the process of starting a client. But

this value is very optimistic, because the client spends considerable time

waiting for servers to reply, as discussed above. A server, on the other

hand, does not need to spend as much time waiting, so the value we get

here (almost 50% higher than using a standard object), is probably more

realistic.

6.2 Scalability

We will now try to find out how scalable our solution is. First, let us look at

the time it takes for a storage client to discover and connect to a storage

service and perform a simple action, like storing a small file (Figure 17). In

the tests below, a single storage service is running and used for evaluation.

We can see that when a single client is running, each iteration of connect-

ing to a service and performing some action takes a little more than seven

seconds. This time increases slowly until we run 15-20 clients simultane-

ously. At this point, the time starts growing more quickly. Another interest-

51

Figure 16: Node start times

Client, standard Client, class
loader

Server,
standard

Server, class
loader

0

2

4

6

8

10

12
10,1

12,2

4,3

6,3

Node Start Times

Node type

S
ta

rt
 t

im
e
 (

s)

Evaluation

ing issue is at which point the server gets so busy that it is no longer able

to serve all clients within the expected time (Figure 18).

Similarly to the tests we ran above, the server seems to be able to handle

up to 15 clients simultaneously, and serve all their requests. When we run

20 or more clients, the server is no longer capable of doing this, because

the CPU load becomes too high. A certain amount of requests will not be

handled in time.

52

Figure 18: Unhandled requests

5 10 15 20 25 30 35 40 45 50

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

Unhandled Requests

Number of clients

U
n

h
a
n

d
le

d
 r

e
q

u
e
st

s
(%

)

Figure 17: Average client iteration time

0 5 10 15 20 25 30 35 40 45 50

7

8

9

10

11

12

13

14

15

16

17

Average Client Iteration Time

Number of clients

T
im

e
 (

s)

Conclusions and Future Work

7 Conclusions and Future Work
We believe that there is a great potential in Grids that approach the size of

today's P2P networks, and combining these two technologies makes good

sense. In this report, we have studied one aspect of such a proposed, future

merger between P2P and Grid technology – a P2P-based discovery service

for Grids. We have designed such a service and created a prototype imple-

mentation.

7.1 Is This a Good Idea?

When we started this project, we knew we had an interesting problem in

front of us, and we were convinced that we had an equally interesting solu-

tion to this problem. Unfortunately, various problems have stopped us from

examining this problem (and its solution) as thoroughly as we would have

wished. This is certainly somewhat discouraging, but we see these prob-

lems as implementation issues, and they have not changed our view of the

ideas behind the project. We hope that our work can inspire further investi-

gations of this problem. We also hope that our prototype can serve as a

starting point for a more complete implementation.

7.2 Technology and Problems

As noted in several sections of this report (especially section 5.4), we have

faced considerable problems trying to implement and test our ideas. Some

of these were not surprising – we had no prior experience working with nei-

ther JXTA nor GT. However, JXTA caused us much more trouble than we

had reason to expect.

7.3 Ease of Development

Creating our first, very simple grid service and making it run correctly took

us a long time. Once we learned from our initial errors, it has been surpris-

ingly easy to create our Grid services, considering the complexity of GT.

However, a few things that qualify this statement must be kept in mind.

Our services are simple and cannot be compared to full-scale solutions. The

class loader also makes it more complicated for clients to use our services.

53

Conclusions and Future Work

The error messages produced by GT are often ambiguous and not

particularly helpful, and debugging is often difficult.

7.4 Possible Improvements

There are certainly a number of ways that the software developed for this

project could be improved. Here are some of the major possible improve-

ments:

● Adding features to the discovery service. The discovery service has

only the basic capability of searching for names of services. This

could be extended to searching for descriptions and other proper-

ties.

● Further integration with GT. Currently, the discovery service is in-

tegrated with GT in the sense that it is a proper Grid service, and it

has a user interface that works with the Globus service browser. It

would be interesting to integrate the discovery service with the in-

formation tools in GT as well, to provide a more transparent discov-

ery interface for Grid users. However, we have not attempted this,

due to lack of time and documentation. Also, a separate

AdvertisementService should be created.

● Replacing JXTA. As mentioned above, we have had quite a few prob-

lems with JXTA, so replacing JXTA with some other overlay network

could provide benefits for developers. It is also quite likely that

there are other overlay networks that perform better than JXTA.

● Security. Security issues have, due to time constraints, been largely

ignored during this project. JXTA provides various security mea-

sures to protect peer groups, and it is also possible to modify the

Java implementation to increase security. GT provides even more

security-related tools.

54

List of Abbreviations

8 List of Abbreviations
API Application Programming Interface
CAN Content Addressable Network
CAS Community Authorization Service
CERN Conseil Européen pour la Recherche Nucléaire
CPU Central Processing Unit
DHT Distributed Hash Table
GAR Grid Archive
GRAM Globus Resource Allocation and Management
GSH Grid Service Handle
GSI Grid Service Infrastructure
GSR Grid Service Reference
GT Globus Toolkit
GUI Graphical User Interface
GWSDL Grid Web Services Definition Language
HTTP Hypertext Transport Protocol
J2ME Java 2 Platform, Mobile Edition
J2SE Java 2 Platform, Standard Edition
JXTA “Juxtapose”
MDS Monitoring and Discovery System
OGSA Open Grid Services Architecture
OGSI Open Grid Services Infrastructure
P2P Peer-to-peer
PDA Personal Digital Assistant
PDP Peer Discovery Protocol
RFT Reliable File Transfer Service
RLS Replica Location Service
SDE Service Data Element
SOAP Simple Object Access Protocol
TTL Time-to-live
UDDI Universal Description, Discovery, and Integration
UI User Interface
URL Uniform Resource Locator
VO Virtual Organization
W3C World Wide Web Consortium
WSDD Web Services Deployment Descriptor
WSDL Web Services Definition Language
WSIL Web Services Inspection Language
WSRF Web Services Resource Framework
XIO Extensible Input/Output
XML Extensible Markup Language

55

References

9 References
[1] Tomcat Class Loading Howto. URL:

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-
howto.html

[2] Apache Ant. URL: http://ant.apache.org

[3] GT Installation Instructions. URL:
http://www.globus.org/toolkit/docs/3.2/installation/

[4] Globus Alliance Web Site. URL: http://www.globus.org

[5] Globus Toolkit. URL: http://www.globus.org/toolkit/

[6] WSRF. URL: http://www.globus.org/wsrf/

[7] UDDI: Universal Description, Discovery and Integration. URL:
http://www.uddi.org

[8] W3C: SOAP 1.1. URL: http://www.w3.org/TR/SOAP/

[9] JXTA Programmer's Guide. URL:
http://www.jxta.org/docs/JxtaProgGuide_v2.pdf

[10] JXTA Core Projects. URL: http://core.jxta.org

[11] JXTA. URL: http://www.jxta.org

[12] CERN's Large Hadron Collider. URL: http://lhc-new-
homepage.web.cern.ch/lhc-new-homepage/

[13] Kazaa. URL: http://www.kazaa.com

[14] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.
Werthimer. Seti@home: An experiment in public-resource
computing. In Communications of the ACM, volume 45, pages 56-
61, 2002.

[15] P. Brittenham. An Overview of the Web Services Inspection
Language. 2001. URL:
http://www.ibm.com/developerworks/webservices/library/ws-
wsilover/

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making Gnutella-like P2P Systems Scalable. In Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 407-418. ACM
Press, 2003.

[17] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C, Note 15, 2001.
URL: http://www.w3.org/TR/wsdl/

[18] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval system. In
Proceedings of the ICSI Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[19] B. Cohen. BitTorrent. URL: http://bitconjurer.org/BitTorrent/

56

References

[20] I. Foster. The Grid: A New Infrastructure for 21st Century Science.
Physics Today, 55 (2). 42-47. 2002.

[21] I. Foster. What is the Grid? A Three Point Checklist. GRIDToday,
July 20, 2002.

[22] I. Foster, A. Iamnitchi. On Death, Taxes, and the Convergence of
Peer-to-Peer and Grid Computing. 2nd International Workshop on
Peer-to-Peer Systems (IPTPS'03), February 2003, Berkeley, CA.

[23] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid.
Enabling Scalable Virtual Organizations. International Journal of
High Performance Computing Applications, 15 (3). 200-222. 2001.

[24] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002.

[25] F. Söderström. Installing, configuring and running Globus Toolkit
3.2. URL: http://www.student.nada.kth.se/~d99-fso/GTinstall.html

[26] A. Iamnitchi, I. Foster. A Peer-to-Peer Approach to Resource
Location in Grid Environments. In J. Weglarz, J. Nabrzyski, J.
Schopf, and M. Stroinski eds. Grid Resource Management, Kluwer
Publishing, 2003.

[27] A. Iamnitchi, M. Ripeanu, I. Foster. Locating Data in (Small-World?)
Peer-to-Peer Scientific Collaborations. 1st International Workshop
on Peer-to-Peer Systems (IPTPS'02), Cambridge, MA, March 2002.

[28] C. Mastroianni, D. Talia, O. Verta. P2P Protocols for Membership
Management and Resource Discovery in Grids. ICAR-CNR
Technical Report RT-ICAR-CS-04-02, March 2004.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proc. of ACM
SIGCOMM, Aug. 2001.

[30] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
International Conference on Distributed Systems Platforms
(Middleware), Nov. 2001.

[31] T. Sandholm, J. Gawor. Globus Toolkit 3 Core - A Grid Service
Container Framework. July 2, 2003. URL: http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf

[32] A. Schaefer, Inside Class Loaders. URL:
http://www.onjava.com/pub/a/onjava/2003/11/12/classloader.html

[33] C. Shirky. What is P2P... And What Isn't? URL:
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html

[34] B. Sotomayor. The Globus Toolkit 3 Programmer's Tutorial. URL:
http://www.casa-sotomayor.net/gt3-tutorial/

57

References

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the ACM SIGCOMM '01
Conference, San Diego, California, August 2001.

[36] D. Talia, P. Trunfio. Toward a Synergy Between P2P and Grids.
IEEE Internet Computing, vol. 7, no. 4, pp. 94-96, 2003.

[37] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, D. Snelling.
Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid
Forum Draft Recommendation, June 27, 2003.

[38] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing.
Technical Report UCB/CSD-01-1141, U. C. Berkeley, April 2001.

58

Data for Evaluation Diagrams

A: Data for Evaluation Diagrams

Node Startup Times
Type of node Startup time (s)

Client, standard 10.1

Client, class loader 12.2

Server, standard 4.3

Server, class loader 6.3

Average Client Runtime
Number of clients Average client

runtime (s)

1 7.3

5 7.6

10 7.9

15 8.2

20 8.7

25 9.7

35 12.2

50 17.0

Unhandled Requests
Number of clients Unhandled requests

(%)

5 0

10 0

15 0

20 0.40

25 0.64

35 1.26

50 1.36

59

Use Cases

B: Use Cases

Use Cases for all JXTA Peers (Clients and Servers)

● The peer looks for existing Grid peer groups

● The peer looks for existing rendezvous peers

The peer looks for existing Grid peer groups

Participating actors: The peer, an arbitrary peer from the discovered peer

group

Flow of events:

1. The peer sends a discovery request looking for a Grid peer group. It

checks the local cache for existing advertisements.

2. An arbitrary peer from an existing Grid peer group receives the request

and replies by sending the advertisement of the group.

3. The peer receives the advertisement and uses the information contained

in it to join the Grid peer group.

Extensions:

1. If no old advertisements are found in the cache, the request is propagat-

ed by the discovery service.

2. If no other peer replies, the peer creates its own Grid peer group and ad-

vertises it. The use case terminates.

The peer looks for existing rendezvous peers

Participating actors: The peer, a rendezvous peer

Flow of events:

1. The peer tries to find a rendezvous peer in the Grid peer group.

2. The rendezvous peer responds, and the two peers establish a connection.

Extensions:

2. If no rendezvous responds within a certain time, the peer becomes a ren-

dezvous peer for the Grid peer group

60

Use Cases

Use Cases for the JXTA Client

● The client looks for suitable services

● The client presents the available services to the user, and contacts the

server the user selects

The client looks for suitable services

Participating actors: The client, one or more servers

Flow of events:

1. The client sends a discovery request looking for a service. It checks the

local cache for existing advertisements.

2. One or more servers that provide relevant services respond with the ad-

vertisements of their services.

3. The advertisements are stored by the client.

Extensions:

1. If no relevant advertisements are found in the local cache, the request is

propagated by the discovery service.

2. If no servers respond in time, the client notifies the user, and the use

case terminates.

The client presents the available services to the user, and
contacts the server the user selects

Participating actors: The client, a server

Flow of events:

1. The client presents the stored service advertisements to the user.

2. The user selects one of the available services.

3. Using the information in the advertisement, the client contacts the serv-

er that provides the service.

4. The server responds with an address where the actual service can be

found.

61

Use Cases

Use Cases for the JXTA Server

● The server initializes its service and advertises it

● The server listens for incoming client connections

The server initializes its service and advertises it

Participating actors: The server

Flow of events:

1. The server initializes its service.

2. The servers uses the discovery service to publish the advertisement for

the service.

The server listens for incoming client connections

Participating actors: The server, one or more clients

Flow of events:

1. The server listens for incoming client connections on the communication

channel specified in the advertisement.

2. When the server receives a message from a client, it responds with the

address of the service it provides.

62

Javadoc

C: Javadoc

Class Node
java.lang.Object

 fsgrid.Node

All Implemented Interfaces:
net.jxta.discovery.DiscoveryListener, java.util.EventListener,
net.jxta.rendezvous.RendezvousListener

Direct Known Subclasses:
Client, Server

public abstract class Node
extends java.lang.Object
implements net.jxta.discovery.DiscoveryListener, net.jxta.rendezvous.RendezvousListener

This class represents an abstract JXTA network node or peer. It provides basic services that are
common to both client and server nodes.

Field Summary

protected int advThreshold

 The number of advertisements that a single peer will be allowed to

deliver when it has been discovered

protected

 java.lang.String

description

 A general description of the service that this peer provides or looks

for

protected

 net.jxta.discovery.Dis

coveryService

discoveryService

 This is the discovery service for the net peer group, the default

group that all JXTA peers join when they are started.

protected

 net.jxta.discovery.Dis

coveryService

gridDiscoveryService

 This is the discovery service for the grid peer group, the group for

all grid service related peers.

protected

 net.jxta.peergroup.Pee

rGroup

gridPeerGroup

 The grid peer group is a group that all grid service JXTA peers are

supposed to join.

protected

 java.lang.String

name

 The name of the peer, or more specifically, the name of the service

that it provides or will look for

Constructor Summary

63

Javadoc

Node(java.lang.String name)

 Basic constructor for a grid service peer that sets its name

Node(java.lang.String name, java.lang.String description)

 Basic constructor for a grid service peer that sets its name and description

Method Summary

 void clearAdvCache()

 This method clears the advertisement cache

 void discoveryEvent(net.jxta.discovery.DiscoveryEvent discoveryEvent)

 Handles discovery events that occur when this peer discovers other peers, peer

groups and advertisements.

protected

 void

handleAdvDiscovery(net.jxta.discovery.DiscoveryEvent discoveryEvent)

 This method is usually called when a general advertisement (not peer or peer

group advertisement) is discovered

protected

 void

handleGroupDiscovery(net.jxta.discovery.DiscoveryEvent discoveryEvent)

 This method is usually called when a peer group advertisement is discovered.

protected

 void

handlePeerDiscovery(net.jxta.discovery.DiscoveryEvent discoveryEvent)

 This method is usually called when a peer advertisement is discovered

protected

 void

initializeGridPeerGroup()

 Initializes the grid peer group, the group that all grid service JXTA peers are

supposed to join.

protected

 void

initializeRendezvous()

 Initializes the rendezvous service for both the net peer group and the grid peer

group.

 void printMessage(java.lang.String message)

 This method provides a way of showing output to the user in a way that is not

dependent on the UI that is used

 void rendezvousEvent(net.jxta.rendezvous.RendezvousEvent rendezvousEvent)

 Handles rendezvous events that occur when this peer is contacted by other

rendezvous peers.

protected

 void

startJxta()

 Starts the JXTA environment, and initializes basic services like discovery and

rendezvous

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Field Detail

64

Javadoc

discoveryService

protected net.jxta.discovery.DiscoveryService discoveryService

This is the discovery service for the net peer group, the default group that all JXTA peers join
when they are started. A discovery service provides methods for discovering various things in a
JXTA network, like peers and peer groups.

gridDiscoveryService

protected net.jxta.discovery.DiscoveryService gridDiscoveryService

This is the discovery service for the grid peer group, the group for all grid service related peers.
A discovery service provides methods for discovering various things in a JXTA network, like
peers and peer groups.

name

protected java.lang.String name

The name of the peer, or more specifically, the name of the service that it provides or will look
for

description

protected java.lang.String description

A general description of the service that this peer provides or looks for

gridPeerGroup

protected net.jxta.peergroup.PeerGroup gridPeerGroup

The grid peer group is a group that all grid service JXTA peers are supposed to join. There they
can privately advertise and search for grid services. Special care of synchronization is required
when this variable is used.

advThreshold

protected int advThreshold

The number of advertisements that a single peer will be allowed to deliver when it has been
discovered

Constructor Detail

Node

public Node(java.lang.Stringname,
 java.lang.Stringdescription)

65

Javadoc

Basic constructor for a grid service peer that sets its name and description

Parameters:
name - The name of the peer, or more specifically, the name of the service that it provides or will
look for
description - A general description of the service that this peer provides or looks for

Node

public Node(java.lang.Stringname)

Basic constructor for a grid service peer that sets its name

Parameters:
name - The name of the peer, or more specifically, the name of the service that it provides or will
look for

Method Detail

startJxta

protected void startJxta()

Starts the JXTA environment, and initializes basic services like discovery and rendezvous

initializeGridPeerGroup

protected void initializeGridPeerGroup()

Initializes the grid peer group, the group that all grid service JXTA peers are supposed to join. It
tries to discovery any existing groups. If none is found, it creates one itself. Finally it joins this
group.

initializeRendezvous

protected void initializeRendezvous()

Initializes the rendezvous service for both the net peer group and the grid peer group. At the
moment, none of this is working very well...

rendezvousEvent

public void rendezvousEvent(net.jxta.rendezvous.RendezvousEventrendezvousEvent)

Handles rendezvous events that occur when this peer is contacted by other rendezvous peers.

Specified by:
rendezvousEvent in interface net.jxta.rendezvous.RendezvousListener

Parameters:
rendezvousEvent - the rendezvous event that has just occurred

66

Javadoc

discoveryEvent

public void discoveryEvent(net.jxta.discovery.DiscoveryEventdiscoveryEvent)

Handles discovery events that occur when this peer discovers other peers, peer groups and
advertisements. It delegates the handling to the handleXYZDiscovery methods.

Specified by:
discoveryEvent in interface net.jxta.discovery.DiscoveryListener

Parameters:
discoveryEvent - the discovery event that has just occurred

handleAdvDiscovery

protected void handleAdvDiscovery(net.jxta.discovery.DiscoveryEventdiscoveryEvent)

This method is usually called when a general advertisement (not peer or peer group
advertisement) is discovered

Parameters:
discoveryEvent - the discovery event that has just occurred

handlePeerDiscovery

protected void handlePeerDiscovery(net.jxta.discovery.DiscoveryEventdiscoveryEvent)

This method is usually called when a peer advertisement is discovered

Parameters:
discoveryEvent - the discovery event that has just occurred

handleGroupDiscovery

protected void handleGroupDiscovery(net.jxta.discovery.DiscoveryEventdiscoveryEvent)

This method is usually called when a peer group advertisement is discovered. This method is
synchronized because it handles some initialization of the grid peer group.

Parameters:
discoveryEvent - the discovery event that has just occurred

printMessage

public void printMessage(java.lang.Stringmessage)

This method provides a way of showing output to the user in a way that is not dependent on the
UI that is used

Parameters:
message - the text that should be presented to the user

67

Javadoc

clearAdvCache

public void clearAdvCache()

This method clears the advertisement cache

Class Server
java.lang.Object

 fsgrid.Node

 fsgrid.Server

All Implemented Interfaces:
net.jxta.discovery.DiscoveryListener, java.util.EventListener,
net.jxta.rendezvous.RendezvousListener, java.lang.Runnable

Direct Known Subclasses:
GridServer

public class Server
extends Node
implements java.lang.Runnable

This class extends the general Node class to provide server-side capabilities, that is to provide some
kind of service

Field Summary

Fields inherited from class fsgrid.Node

advThreshold, description, discoveryService, gridDiscoveryService, gridPeerGroup, name

Constructor Summary

Server(java.lang.String name)

 A basic constructor for the Server class requiring only the name of the service it provides to

be set

Server(java.lang.String name, java.lang.String description)

 A constructor for Server where the name of and a description of the service it provides is

given

Server(java.lang.String name, java.lang.String description, java.lang.String specURI)

 A constructor for Server where the name of and a description of the service it provides is

given

68

Javadoc

Server(java.lang.String name, java.lang.String description, java.lang.String specURI,

java.lang.String version, java.lang.String creator)

 A constructor for Server that sets all its available properties

Method Summary

protected

 void

initializeAdvertisements()

 This method creates (or recreates from files) a number of necessary

advertisements, and performs some other initialization

 void run()

 Is this stuff really necessary?

protected

 void

startConnectionThread()

 Starts the thread that listens for incoming client connections

 void startWork()

 This method initializes the JXTA environment and starts the server's work

protected

 void

waitForClientMessages(java.lang.String reply)

 This method waits for clients to connect to the server, and when they connect it

replies with the GSH of this service

Methods inherited from class fsgrid.Node

clearAdvCache, discoveryEvent, handleAdvDiscovery, handleGroupDiscovery,

handlePeerDiscovery, initializeGridPeerGroup, initializeRendezvous, printMessage,

rendezvousEvent, startJxta

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Constructor Detail

Server

public Server(java.lang.Stringname,
 java.lang.Stringdescription,
 java.lang.StringspecURI,
 java.lang.Stringversion,
 java.lang.Stringcreator)

A constructor for Server that sets all its available properties

Parameters:
name - the name of the service this server provides
description - a description of the service that this server provides
version - the version of the service that this server provides
specURI - included here to cover all advertisment properties - only used by subclasses

69

Javadoc

(GridServer)
creator - The name of the creator of this service

Server

public Server(java.lang.Stringname,
 java.lang.Stringdescription,
 java.lang.StringspecURI)

A constructor for Server where the name of and a description of the service it provides is given

Parameters:
name - the name of the service this server provides
description - a description of the service that this server provides
specURI - included here to cover all advertisment properties - only used by subclasses
(GridServer)

Server

public Server(java.lang.Stringname,
 java.lang.Stringdescription)

A constructor for Server where the name of and a description of the service it provides is given

Parameters:
name - the name of the service this server provides
description - a description of the service that this server provides

Server

public Server(java.lang.Stringname)

A basic constructor for the Server class requiring only the name of the service it provides to be
set

Parameters:
name - the name of the service this Server provides

Method Detail

startWork

public void startWork()

This method initializes the JXTA environment and starts the server's work

startConnectionThread

protected void startConnectionThread()

Starts the thread that listens for incoming client connections

70

Javadoc

run

public void run()

Is this stuff really necessary?

Specified by:
run in interface java.lang.Runnable

See Also:
Thread.run()

initializeAdvertisements

protected void initializeAdvertisements()

This method creates (or recreates from files) a number of necessary advertisements, and
performs some other initialization

waitForClientMessages

protected void waitForClientMessages(java.lang.Stringreply)

This method waits for clients to connect to the server, and when they connect it replies with the
GSH of this service

Parameters:
reply - the reply the server should send to connecting clients

Class Client
java.lang.Object

 fsgrid.Node

 fsgrid.Client

All Implemented Interfaces:
net.jxta.discovery.DiscoveryListener, java.util.EventListener,
net.jxta.rendezvous.RendezvousListener

Direct Known Subclasses:
GridClient

public class Client
extends Node

This class extends the general node class to provide client-side capabilities, which means finding and
connecting to interesting servers

71

Javadoc

Field Summary

Fields inherited from class fsgrid.Node

advThreshold, description, discoveryService, gridDiscoveryService, gridPeerGroup, name

Constructor Summary

Client(java.lang.String name)

 A constructor for Client that sets the name of the service it will look for

Client(java.lang.String name, java.lang.String description)

 A constructor for Client that sets the name and description of the service it will look for

Method Summary

 fsgrid.ServiceDescri

ption[]

getCollectedAdvertisements()

 Returns the service descriptions this client has collected

protected void getServiceAdvertisements(java.lang.String serviceName)

 Sends out requests looking for interesting services, handles the incoming advertisements

and prints the results

protected void handleAdvDiscovery(net.jxta.discovery.DiscoveryEvent discoveryEvent)

 Handles incoming advertisements

protected void handleAdvDiscovery(java.util.Enumeration discoveryEnum)

 Handles incoming advertisements

protected void noAdvertisementsFound()

 This method is called if no appropriate advertisements are found

protected void presentAdvertisements()

 Presents a list of advertisements that this client has collected

protected void printServiceList(fsgrid.ServiceDescription[] serviceArray)

 Presents a list of services that this client has found.

 java.lang.String returnSelection(int value)

 This method is called when the user has made a selection from the list of services.

 void runDiscovery()

 This method runs the discovery process and presents the results

 void runDiscovery(java.lang.String serviceName)

 This method runs the discovery process and presents the results

protected

 java.lang.String

sendMessageToServer(net.jxta.protocol.ModuleSpecAdvertisement moduleSpecAdv)

 Sends a predetermined message to a server and returns the reply from the server

 void startWork()

 Initializes the JXTA environment and starts the client's work

 void startWork(java.lang.String serviceName)

 Initializes the JXTA environment and starts the client's work

72

Javadoc

Methods inherited from class fsgrid.Node

clearAdvCache, discoveryEvent, handleGroupDiscovery, handlePeerDiscovery,

initializeGridPeerGroup, initializeRendezvous, printMessage, rendezvousEvent, startJxta

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Constructor Detail

Client

public Client(java.lang.Stringname,
 java.lang.Stringdescription)

A constructor for Client that sets the name and description of the service it will look for

Parameters:
name - the name of the service that this client will look for
description - a description of the service that this client will look for

Client

public Client(java.lang.Stringname)

A constructor for Client that sets the name of the service it will look for

Parameters:
name - the name of the service that this client will look for

Method Detail

startWork

public void startWork(java.lang.StringserviceName)

Initializes the JXTA environment and starts the client's work

Parameters:
serviceName - the name of the service the client will search for

startWork

public void startWork()

Initializes the JXTA environment and starts the client's work

73

Javadoc

runDiscovery

public void runDiscovery(java.lang.StringserviceName)

This method runs the discovery process and presents the results

Parameters:
serviceName - the name of the service to search for

runDiscovery

public void runDiscovery()

This method runs the discovery process and presents the results

getServiceAdvertisements

protected void getServiceAdvertisements(java.lang.StringserviceName)

Sends out requests looking for interesting services, handles the incoming advertisements and
prints the results

Parameters:
serviceName - the name of the service the client will search for

presentAdvertisements

protected void presentAdvertisements()

Presents a list of advertisements that this client has collected

noAdvertisementsFound

protected void noAdvertisementsFound()

This method is called if no appropriate advertisements are found

handleAdvDiscovery

protected void handleAdvDiscovery(net.jxta.discovery.DiscoveryEventdiscoveryEvent)

Handles incoming advertisements

Overrides:
handleAdvDiscovery in class Node

Parameters:
discoveryEvent - a discovery event

74

Javadoc

handleAdvDiscovery

protected void handleAdvDiscovery(java.util.EnumerationdiscoveryEnum)

Handles incoming advertisements

Parameters:
discoveryEnum - an enumeration of discovered advertisements

sendMessageToServer

protected java.lang.String sendMessageToServer
(net.jxta.protocol.ModuleSpecAdvertisementmoduleSpecAdv)

Sends a predetermined message to a server and returns the reply from the server

Parameters:
moduleSpecAdv - the module specification of the server/service to be contacted

Returns:
the reply from the server - null if none is received

printServiceList

protected void printServiceList(fsgrid.ServiceDescription[]serviceArray)

Presents a list of services that this client has found. UI classes should override this method to
provide their own way of presenting the information to the user.

Parameters:
serviceArray - an array of ServiceDescriptions that will be presented to the user

returnSelection

public java.lang.String returnSelection(intvalue)

This method is called when the user has made a selection from the list of services. It uses
sendMessageToServer to contact the appropriate server.

Parameters:
value - the value of the user's selection - should be a number between 1 and the number
of services available

Returns:
the reply from the server

getCollectedAdvertisements

public fsgrid.ServiceDescription[] getCollectedAdvertisements()

Returns the service descriptions this client has collected

Returns:
an array of ServiceDescriptions that this client has collected

75

Javadoc

Class GridServer
java.lang.Object

 fsgrid.Node

 fsgrid.Server

 fsgrid.GridServer

All Implemented Interfaces:
net.jxta.discovery.DiscoveryListener, java.util.EventListener,
net.jxta.rendezvous.RendezvousListener, java.lang.Runnable

public class GridServer
extends Server

A GridServer is a Grid-adapted version of a standard Server. It can store a GSH (Grid Service Handle),
a grid service "address." It also deals with some JXTA settings (configuration directory, user name,
password).

Field Summary

Fields inherited from class fsgrid.Node

advThreshold, description, discoveryService, gridDiscoveryService,

gridPeerGroup, name

Constructor Summary

GridServer(java.lang.String name, java.lang.String description, java.lang.String GSH)

GridServer(java.lang.String name, java.lang.String description, java.lang.String GSH,

java.lang.String version, java.lang.String creator)

Methods inherited from class fsgrid.Server

initializeAdvertisements, run, startConnectionThread, startWork, waitForClientMessages

Methods inherited from class fsgrid.Node

clearAdvCache, discoveryEvent, handleAdvDiscovery, handleGroupDiscovery,

handlePeerDiscovery, initializeGridPeerGroup, initializeRendezvous, printMessage,

rendezvousEvent, startJxta

76

Javadoc

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Constructor Detail

GridServer

public GridServer(java.lang.Stringname,
 java.lang.Stringdescription,
 java.lang.StringGSH,
 java.lang.Stringversion,
 java.lang.Stringcreator)

Parameters:
name - the name of the service this server provides
description - a description of the service that this server provides
GSH - the address of the service this server provides
version - the version of the service that this server provides
creator - The name of the creator of this service

GridServer

public GridServer(java.lang.Stringname,
 java.lang.Stringdescription,
 java.lang.StringGSH)

Parameters:
name - the name of the service this server provides
description - a description of the service that this server provides
GSH - the address of the service this server provides

Class GridClient
java.lang.Object

 fsgrid.Node

 fsgrid.Client

 fsgrid.GridClient

All Implemented Interfaces:
net.jxta.discovery.DiscoveryListener, java.util.EventListener,
net.jxta.rendezvous.RendezvousListener

public class GridClient
extends Client

77

Javadoc

A GridClient is a grid-adapted version of a standard Client. The main difference is that it has a
ServiceConnector member object that it uses for interaction with Grid services. It also deals with some
JXTA settings (configuration directory, user name, password).

Field Summary

Fields inherited from class fsgrid.Node

advThreshold, description, discoveryService, gridDiscoveryService, gridPeerGroup, name

Constructor Summary

GridClient(java.lang.String name)

 A constructor for the GridClient

GridClient(java.lang.String name, java.lang.String description)

 A constructor for the GridClient

GridClient(java.lang.String name, java.lang.String description,

fsgrid.ServiceConnector connector)

 A constructor for the GridClient

Method Summary

 void connectToService(java.lang.String address)

 Tries to connect to a service at the given address

 void noAdvertisementsFound()

 Called when no advertisements are found

 java.lang.String sendMessageToServer(net.jxta.protocol.ModuleSpecAdvertisement moduleSp

ecAdv)

 Reads the address of a grid service from the specURI field, and tries to

contact it

Methods inherited from class fsgrid.Client

getCollectedAdvertisements, getServiceAdvertisements, handleAdvDiscovery,

handleAdvDiscovery, presentAdvertisements, printServiceList, returnSelection,

runDiscovery, runDiscovery, startWork, startWork

Methods inherited from class fsgrid.Node

clearAdvCache, discoveryEvent, handleGroupDiscovery, handlePeerDiscovery,

initializeGridPeerGroup, initializeRendezvous, printMessage, rendezvousEvent, startJxta

78

Javadoc

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,

wait

Constructor Detail

GridClient

public GridClient(java.lang.Stringname,
 java.lang.Stringdescription,
 fsgrid.ServiceConnectorconnector)

A constructor for the GridClient

Parameters:
name - the name of the service this client will look for
description - a description of the service this client will look for
connector - the connector provides the implementation of what the GridTextClient will actually
do

GridClient

public GridClient(java.lang.Stringname,
 java.lang.Stringdescription)

A constructor for the GridClient

Parameters:
name - the name of the service this client will look for
description - a description of the service this client will look for

GridClient

public GridClient(java.lang.Stringname)

A constructor for the GridClient

Parameters:
name - the name of the service this client will look for

Method Detail

sendMessageToServer

public java.lang.String sendMessageToServer
(net.jxta.protocol.ModuleSpecAdvertisementmoduleSpecAdv)

Reads the address of a grid service from the specURI field, and tries to contact it

Overrides:
sendMessageToServer in class Client

79

Javadoc

Parameters:
moduleSpecAdv - a module specification advertisement describing a service

Returns:
always null (the String return type is only used because of inheritance)

connectToService

public void connectToService(java.lang.Stringaddress)

Tries to connect to a service at the given address

Parameters:
address - the address of the service to connect to

noAdvertisementsFound

public void noAdvertisementsFound()

Called when no advertisements are found

Overrides:
noAdvertisementsFound in class Client

80

