
Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LCN 2004-04

K O N S T A N T I N O S A V G E R O P O U L O S

Service Policy Management for User
User-Centric Services in Heterogeneous

Mobile Networks

Master of Science ThesisMaster of Science Thesis

Service Policy Management for UserService Policy Management for User--CentricCentric
Services in Heterogeneous Mobile NetworksServices in Heterogeneous Mobile Networks

Konstantinos AvgeropoulosKonstantinos Avgeropoulos

March 31, 2004March 31, 2004

Supervisor: Professor Gerald Q. Maguire Jr.
Advisors: Dr Theo Kanter, Andreas Wennlund M. Sc.
Sponsor: R2Meteon

Abstract

The Session Initiation Protocol (SIP) is a signaling protocol for IP-based media services that
will be the de facto standard for future media-over-IP services. Since SIP User Agents (UAs)
support a limited number of service types (usually one or two), we assume that the future user
will need to operate several UAs simultaneously. These UAs will constitute the user's personal
service network. In this thesis, we investigate architectures for policy-based management of
this network so that it can be used in an efficient manner. To achieve this, we propose a new
SIP entity, called the SIP Service Manager (SSM), which lies in the core of the management
system. Finally, we evaluate our proposal by implementing one version of the SIP Service
Manager.

i

Sammanfattning

Session Initiation Protocol (SIP) är ett signaleringsprotokoll för IP-baserade mediatjänster
som kommer att bli "de facto"-standard för framtida "media-över-IP"-tjänster. Då SIP User
Agents (UAs) stöder ett begränsat antal typer av tjänster (oftast en eller två), antar vi att
framtida användare kommer att behöva använda sig av flera UAs samtidigt. Dessa UAs utgör
en användares personliga tjänstenätverk. I denna rapport, undersöker vi arkitekturer för
policybaserad hantering (management) av detta nätverk, så att det kan användas effektivt. För
att uppnå detta, föreslår vi en ny SIP-enhet, kallad SIP Service Manager (SSM), som är
placerad i kärnan av hanteringssystemet. Slutligen utvärderar vi vår föreslagna lösning genom
att implementera en version av en SIP Service Manager.

ii

Acknowledgments

First of all, I would like to thank my supervisor Professor Gerald Q. Maguire Jr. and the
Adaptive and Context Aware Services (ACAS) project for allowing me to work on this thesis
project. Furthermore, I would like to thank Professor Maguire for his immediate help whenever
I needed it, and also for sharing his insight and experience with me, making this thesis a
learning experience.

A great thanks to my advisers Dr. Theo Kanter and Andreas Wennlund M. Sc. for their
guidance throughout the project. Andreas Wennlund was always by my side helping me to
avoid deadlocks, especially during the implementation phase of the project.

This project owes a great deal to my sponsor R2Meteon and especially Ulf Börjeson. I would
like to thank him for his trust, his patience and his support at times when it was needed. I hope
that this thesis is a contribution to R2Meteon's research.

I would also like to thank Intel their generous grants to Wireless@KTH and more specifically
for the donation of Dell Precision 450 workstations (used as infrastructure computers and for
testing the implementation), and the Dell True Mobile 1170 Access Points (used for testing SIP
across WLANs). In addition, I would like to thank Hewlett-Packard's Applied Mobile
Technology Solutions in Learning Environments - Grant 2003, for the donation of the iPAQ
5550 (used with the X-lite User Agent and the Dell Access points as monitored services).

All software used to perform this project (even for writing this report) is free and most of it
open source. Therefore, I would like to express my gratitude to the various open source and
free software organizations and communities.

Finally, I would like to thank my fellow students Gustavo Zago Basilio, Philippe Villeneuve and
Diego Urdiales Delgado for their help in practical matters related to Java programming.

This work is entirely devoted to my secret project mates: my family.

iii

Table of Contents

1. Introduction..1
1.1 IP and mobile communications...1
1.2 Modern services in a heterogeneous environment...2

2. Background..4
2.1 Session Initiation Protocol (SIP)..4

2.1.1 Uniform Resource Identifier (URI)...5
2.1.2 SIP entities..5
2.1.3 SIP requests...6
2.1.4 SIP responses...9
2.1.5 SIP message headers..10
2.1.6 SIP and SDP..10
2.1.7 SIP example...12

2.1.7.1 Registration..12
2.1.7.2 Session initiation and termination...15

2.1.8 SIP Transactions and Dialogs..21
2.2 IP Multimedia Subsystem (IMS)...22

3. Service policy management for SIP-based services...26
3.1 Policy management concepts...26

3.1.1 Policy-based and non-policy-based management..26
3.1.2 Generic policy-based management model...27
3.1.3 Service policy management...28

3.2 User-side service policy management in generic SIP networks.......................................29
3.2.1 Call Processing Language (CPL)...29
3.2.2 Other methods...31

3.3 User-side service policy management in the IMS...32
4. Proposed architectures for user-side service policy management in sip networks..................33

4.1 Motivation and goals...33
4.2 Proposed design..35

4.2.1 Overview ..35
4.2.2 SIP Service Manager without PEP functionality...36
4.2.3 SIP Service Manager with PEP functionality..38
4.2.4 Monitoring services...44

4.3 Usage scenarios...45
4.3.1 SSM without PEP on a portable device...45
4.3.2 SSM with PEP on a non-portable device...45

5. Implementation and results..47
5.1 Goals of the implementation...47
5.2 Methods and tools...47
5.3 Software design...48
5.4 Testing and results..50

5.4.1 Multiplexing test...51
5.4.2 Policy enforcement test...52
5.4.3 Scalability tests..52

6. Conclusions and future work...56
6.1 Findings..56
6.2 Future work...56

References...58

iv

Appendices..60
Appendix A – Abbreviations...60
Appendix B – List of Figures..62
Appendix C – SIP Headers ...63
Appendix D – 3GPP related SIP headers..66

v

1. 1. IINTRODUCTIONNTRODUCTION

1.1 1.1 IP and mobile communicationsIP and mobile communications

After more than a decade of rapid growth, the Information Technology and Telecommunications
world is facing a major turning point. During these rather exciting years for both industry and
academic community, a great number of new technologies in the area emerged. Some of them
were quickly abandoned while others were met with global acceptance. The computer
networking world finally converged to the Internet Protocol (IP), specified by the Internet
Engineering Task Force (IETF), which became the main computer networking protocol and
formed the basis of the global computer network known as the Internet. Due to its simplicity,
flexibility, and perhaps the open standards strategy followed by the IETF, IP and its related
protocols swiftly conquered the globe.

In the wide area of Wireless and Mobile Communications, a limited set of technologies
prevailed, with the Global System for Mobile communications (GSM1), standardized by the
European Telecommunications Standards Institute (ETSI), as the most widely accepted standard
for wireless and mobile personal communication. Like the traditional Public Switched
Telephony Network (PSTN), GSM's main function was to provide mobile telephony service to
its users. However, the need for richer services such as data communication was soon realized.
In addition, the Internet's impressive expansion and usefulness made it attractive for mobile
users. In response to these new demands, new extensions to the original GSM were introduced
such as the Short Message Service (SMS) that allows for short message transmission, and the
Wireless Access Protocol (WAP), which allows for a type of Internet access. However, it was
quickly realized that these extensions were limited: SMS provides for very short, text-only
messages and WAP's Internet access did not prove very successful. To cope with these
limitations, a new extension to GSM was introduced, known as the General Packet Radio
Service (GPRS) that can handle GSM inter-networking with other packet switched networks,
such as IP networks. The connection between the two dominant technologies in contemporary
communications was made possible and IP officially entered the cellular communications
world.

Meanwhile, other shorter-range wireless technologies were introduced such as Bluetooth,
originally developed by Ericsson Mobile Communications, and the 802.11 Wireless Local Area
Network (WLAN) standards series by the Institute of Electrical and Electronics Engineers
(IEEE). These technologies provide higher bit rate links than cellular systems did at the time
they were developed and could accommodate IP as their networking protocol. Finally, 3rd

generation mobile communications systems, such as the Universal Mobile Telecommunications
System (UMTS) were assigned to support IP.

These various developments make IP's dominance apparent. It appears that global
communications is gradually becoming unified and IP is their common feature. Though the
actual unification of contemporary communications under IP is far from complete, it is expected

1. The acronym GSM originally stood for Groupe Speciale Mobile, a name established by the Conference for
European Posts and Telecommunications (CEPT) committee that started the GSM standardization.

1

to happen in the near future, resulting to a vast, largely heterogeneous communications network
that is interconnected using IP.

IP's capabilities, however, are not infinite. In fact, IP was originally designed for fixed data
networks and when used in mobile networks it quickly shows a number of weaknesses, most of
which have to do with IP's location dependence. To cope with these weaknesses, certain
extensions have been proposed for IP such as Mobile IP [1] and Session Initiation Protocol
(SIP) [2]1. The latter technology is the main subject of this thesis and will be discussed further
in the following chapters.

1.2 1.2 Modern services in a heterogeneousModern services in a heterogeneous
environmentenvironment

As technology grows, so does the richness and complexity of new services. For the Internet,
increased connection speeds offered to home users have turned the global network from a means
for simple information exchange (e.g. web browsing and e-mail) into a major source for
multimedia services and entertainment (messaging, telephony, radio, television, online gaming,
etc.). On the mobile communications side, devices constantly grow in complexity and
capabilities. The introduction of appropriate, small footprint operating systems as well as
various peripherals (cameras, sensors, etc.) aim to turn mobile devices from simple phones into
mobile computers, dramatically increasing their usage and therefore increasing the service
options for their users.

In this thesis we claim that SIP, due to its simplicity and extensibility, can be at the heart of this
extremely diverse service network. Its quick adoption by certain parts of industry reinforces, if
not verifies, this claim. A future user will need to maintain a number of services
simultaneously, such as: a personal Internet radio (or playlist), an online game, an instant
messenger, and so on, in addition to one or more phones, a fax, etc. Today SIP client
applications (also called SIP User Agents) often have one or two services attached (e.g. a client
with a SIP phone and a videophone). This means that in order to cover all these new service
demands (described above), a user will have to operate various SIP clients at the same time.
This thesis studies possible means for efficient management of the services that these clients
provide.

In the next chapter, we provide an introduction to the research area and present SIP, as well as
the IP Multimedia Subsystem (IMS), which is a SIP facility designed for the ETSI-specified
GSM/EDGE Radio Access Networks (GERANs) and UMTS Terrestrial Radio Access
Networks (UTRANs). In chapter 3 we discuss management schemes for generic SIP networks
and IMS. In chapter 4, we propose a new service management scheme based on a new SIP
entity that we call the SIP Service Manager. Finally, in chapter 5, we present our
implementation of the SIP Service Manager, then evaluate it and draw conclusions about its
operation.

1. Note that Mobile IP and SIP solve entirely different problems. To summarize, Mobile IP is a routing scheme
which operates at the Network Layer, whereas SIP is an Application Layer protocol.

2

2. 2. BBACKGROUNDACKGROUND

The Session Initiation Protocol (SIP) is the focus of this thesis. In section 2.1 we present the
basics of the protocol, its messages, functions, and a few notes that clarify some of its
operations. Following this, we give a brief description of the IP Multimedia Subsystem (IMS),
an architecture proposed by the 3rd Generation Partnership Project (3GPP) in order to provide
SIP facilities in 3rd Generation mobile networks.

2.1 2.1 Session Initiation Protocol (SIP)Session Initiation Protocol (SIP)

Before going into the details of the protocol, we will explain the basic function of SIP with a
short example. Suppose that Alice wishes to make a call to Bob over an IP network. Before
Alice can speak to Bob she must first learn the location of Bob's phone or, in IP terms, know its
IP address. This can be easy if Bob's phone has a static IP address that is known to Alice.
However, in mobile networks this is rarely the case. One way to solve this problem would be
by using the Domain Name System (DNS). In this case, Alice would know a Fully Qualified
Domain Name (FQDN) that would point to the IP address of Bob's device. If Bob's device
changes its IP address, he could inform his Domain Name Server by issuing DNS updates (for
example via DNSsec). SIP offers its own way of locating users. When SIP is used, Alice would
know Bob's SIP Uniform Resource Identifier (URI) rather than a FQDN. A simple SIP URI is a
string of the form: <name>@<domain name>, similar to an e-mail address (see paragraph
2.1.1). An example URI might be: bob@sip.kth.se. URIs in SIP are used in a way similar to the
way e-mail uses e-mail addresses. As we will see later, SIP may in turn use the DNS in order to
locate users.

As soon as Alice knows the IP address of Bob's device, there must be some signaling (call
notifications, ringing tones, busy tones, etc.) that will allow the two endpoints to establish a
call. SIP's main function is to provide this signaling. Moreover, the two devices need to
negotiate certain aspects of their communication (such as the codec used, bit rates, and so on),
before starting a call. While SIP does not handle this negotiation by itself, it provides transport
for other protocols, mainly the Session Description Protocol (SDP), that do perform this task.

The core of the Session Initiation Protocol is specified in the IETF Request For Comments
(RFC) 3261 [2], which currently has the status of a Proposed Standard. SIP is an application
layer protocol. Its function is to provide session signaling for IP (versions 4 and 6) networks. As
explained previously, SIP does not provide any particular service. Instead, its purpose is to
provide for service location, session establishment, and session termination between end
nodes. A typical example of a service that utilizes SIP for its session establishment is IP
telephony. In the following paragraphs, we will go through the entities of a SIP architecture and
the protocol's basic operations. Further information about the protocol can be found in RFC
3261 [2] and relevant RFCs.

3

2.1.1 Uniform Resource Identifier (URI)

An important component of SIP is the SIP Uniform Resource Identifier1 (URI). A SIP URI is a
string that identifies a communications resource in a network. It contains sufficient information
to initiate and maintain a communication session with the resource. The full format of a SIP
URI as specified in [2] is:

����������	��
�������
�
�������������
����	
����
�����
���������
��

Where the contents in brackets (<>) have an arbitrary string value. For SIP URIs the scheme
component can have two values which are 'sip' and 'sips'. A 'sips' scheme indicates that the URI
is a SIPS URI. A SIPS URI indicates that the resource the URI maps to must be accessed in a
secure manner, using Transport Layer Security (TLS). This essentially means that a User Agent
Client (see paragraph 2.1.1) accessing a resource using the SIPS URI must establish a TLS
connection with the domain that owns the SIPS URI.

The names of the various parts of the URI can be misleading. The user component does not
necessarily identify a person, but rather a certain resource on the specified host. Furthermore,
the host component does not always refer to an actual host since it often refers to an entire
domain. The port component indicates the UDP and TCP port on which the resource can be
accessed. In addition, a SIP URI may contain a number of extra parameters and headers that
provide more information.

A URI is interpreted according to its context (i. e. the place where it appears). Its context also
determines whether a component is optional, mandatory or if it is meaningful or not (and
therefore if it is allowed or not). In other words, a URI does not mean anything by itself. Its
interpretation (according to its context) is what makes it valuable.

An important type of SIP URI is the Address-of-Record (AOR). The host part of the AOR
points to a domain with a location service that can map the AOR to another URI that indicates
the location where a user might be available. An AOR is frequently thought of as a user's
“public” address and it is often part of the contract made between a customer and a SIP service
provider. Callers will typically use a user's AOR to contact him. An example AOR is
bob@company.com (user bob at domain company.com).

Note that SIP is not the only protocol that defines URIs. Other types of URIs are defined and
used by other protocols. A generic syntax for URIs is defined in [3].

2.1.2 SIP entities

A SIP entity is a node in a network that is able to understand SIP. It can act as a SIP server, as a
SIP client, or both. A SIP server is a SIP entity that receives and processes requests and sends

1. The acronym URI has three explanations: Uniform Resource Identifier, Uniform Resource Indicator, and
Universal Resource Identifier. In the context of SIP the first two are mainly used. In this document we will use
only the first one to avoid confusion.

4

back replies. A SIP client sends requests and receives and processes replies1. There are four
basic types of SIP entities.

User Agent: A SIP User Agent (UA) typically resides on the user's device. It acts both as a SIP
server and a SIP client. Its server component is called a User Agent Server (UAS) and its client
component is called a User Agent Client (UAC). A SIP UA handles all SIP transactions on
behalf of the user. It is able to initiate calls, accept incoming SIP messages, process signaling
messages, and so on. SIP phones and softphones include User Agents.

Proxy: A SIP proxy is a SIP entity that acts both as a server and a client. As a server, it accepts
SIP messages and sends appropriate replies. As a client, it makes requests on behalf of other
clients rather than generating its own requests like a normal UAC. The SIP proxy's main
function is similar to routing. Its purpose is to receive a message and send it to another SIP
entity that is presumed to be “closer” to the message's destination. A SIP proxy can be stateful,
which means that it may keep track of SIP transactions (see also paragraph 2.1.8) or stateless. A
SIP proxy is also where policies are enforced such as if the calling user is allowed to make this
specific call. Finally a SIP proxy may modify messages before forwarding them.

Redirect Server: A SIP Redirect Server is a server that accepts requests and sends redirection
responses that contain information on an alternative set of URIs where the destination can be
reached. After receiving a redirection response, a client typically resends the request to the
destination indicated by the Redirect Server.

Registrar: A SIP Registrar is a special server that helps locate users or resources. It accepts
registration requests from clients and stores the information it receives in a location service.
The location service is an abstract service and not a SIP entity. In practice, the location service
can be a database that stores information which can then be queried by SIP Proxies and Redirect
Servers in order to locate users. Entries in this database map a URI to a set of other URIs that
indicate how the user or resource can be accessed (location, methods, etc.).

2.1.3 SIP requests

A request is a message sent by a SIP client to a SIP server that typically invokes a function on
the server that will eventually produce a response. The content of a SIP request header is
written in human readable form, similar to HyperText Transfer Protocol (HTTP) headers. The
first line of such a header is called the Request Line. The Request-Line has the following
format:

����������������	�������������������
���������� �!"�

Where SP stands for a single space and CRLF for carriage return line feed. Below are two
examples:

1. SIP is not a traditional client-server protocol, such as HTTP, meaning that SIP entities often act as both servers
and clients. Understanding the notions of server and client in SIP is fundamental to understanding the protocol
itself.

5

�#$��%#���������&
�
�'���&(��&������)*&+

�,-�%#�����������������&
�
�'���&(��&������)*&+

The values of the Method component are explained below. The Request URI can be a SIP or
SIPS URI discussed in paragraph 2.1.1 or a generic URI as specified in [3], depending on the
method. Following the Request-Line is a list of headers that contain further information. These
headers are discussed in paragraph 2.1.5.

As the Request-Line format above indicates, each request must contain a request method. A
request method is the primary function that a request is meant to invoke on a SIP server. The
method appears as a simple string in the SIP request message itself. At the time of this writing
there have been 13 methods specified by the IETF. These are listed in table along with
references to their specifications. Here we will give a short description of these methods.

INVITE: INVITE requests are sent by a UAC in order to begin session establishment. They are
the first messages to be sent in a typical SIP transaction. The UAC sending the request is called
the inviter whereas the final destination of the request is called the invitee. An INVITE request
typically contains information about the type of the session the UAC intends to initiate as
payload. The actual session description is performed by other protocols, mainly the Session
Description Protocol (SDP) (see also subsection 2.1.6). INVITE requests can also be sent during
an established session to change session parameters without tearing it down. These messages
are known as re-INVITE messages.

ACK: ACK requests are send from the inviter to the invitee in order to acknowledge the
reception of a response to a previous INVITE request. This means that an ACK message may
only be sent after an INVITE request.

CANCEL: CANCEL requests are sent by a client to cancel the processing of a previously
made request. A CANCEL request has no effect if the client has already received a response to
its previously made request. This means that a CANCEL is meaningful only if the previously
made request requires a “long” time to produce a response, such as an INVITE request.

BYE: A BYE request is sent whenever a UAC wishes to terminate an established session.

OPTIONS: An OPTIONS request is made whenever a UAC wishes to discover the capabilities
of a SIP entity, without initiating a session (using an INVITE request). This method is
especially useful whenever a caller wishes to use a specific type of communication that might
not be supported by the callee. The caller can query for capabilities without “ringing” the
callee. A final (i.e. non-provisional) response to an OPTIONS request must be the same as if the
request was an INVITE (see [2] section 11.2.)

6

Method Description Specified in
�,-�%# Session establishment RFC 3261 [2]

. /� Acknowledgment of final response to INVITE RFC 3261 [2]

 ., #! Cancel a previously sent request that initiated a SIP transaction RFC 3261 [2]

01# Terminate a session RFC 3261 [2]

2�%�2,� Query a User Agent Server about its capabilities RFC 3261 [2]

�#$��%#� Register Contact information RFC 3261 [2]

�#"#�� Provide the recipient with third party contact information RFC 3515 [4]

�#��.$#� Send an instant message attached to the request RFC 3428 [5]

��3.%# Update session parameters RFC 3311 [6]

�,"2 Transport session related control information during a session RFC 2976 [7]

��. / Provisional response acknowledgment RFC 3262 [8]

��0� ��0# Request notification upon a certain event RFC 3265 [9]

,2%�"1 Transport of an event notification towards a subscriber RFC 3265 [9]

Table 2.1 - SIP request methods

REGISTER: A REGISTER request is sent by a client to a Registrar Server to update
information in the location service. The request contains contact information that is bound to the
sender's URI in the location service. The contact information is contained as a set of URIs in the
Contact header of the message.

REFER: A REFER request is sent whenever one of the two parties involved in a session
wishes to provide its peer with third party contact information. This information is a set of URIs
included in the Refer-To header of the REFER message.

MESSAGE: MESSAGE requests are used for Instant Messaging purposes. A MESSAGE
request is sent whenever a User Agent wishes to send a near real-time message to other User
Agents.

UPDATE: An UPDATE request is sent whenever a client wishes to change a session's
parameters. Its differs from a re-INVITE request in that an UPDATE does not require that the
session has already been established. Thus, an UPDATE message can be used to change a
session's parameters before a call is answered.

INFO: An INFO request is used to send session control information during an established
session. The information carried in this request is often related to other signaling protocols such
as the Integrated Services Digital Network (ISDN) User Part (ISUP) of Signaling System No. 7
(SS7). INFO requests do not necessarily affect the state of the SIP session. They just provide
additional control information.

PRACK: A PRACK request is sent to acknowledge the reception of a provisional response. A
provisional response provides information on the processing of a previously made request.

7

SUBSCRIBE: This request is sent when a client wishes to be notified upon a certain event.
Events are defined by event packages, which are specifications that describe a certain set of
events. The sender of a SUBSCRIBE request is called the subscriber.

NOTIFY: A NOTIFY request is an event notification typically sent to a subscriber. The sender
of the NOTIFY message is called the notifier. It is presumed that the event notification follows
a subscription previously made for that event.

All requests in SIP must be followed by at least one response. An exception to this rule is the
ACK request, which does not require a response. If a response is not sent to a request, a SIP
entity usually retries a certain number of times until it stops sending (which triggers a timeout).
A UAS may not support processing of all requests. If a UAC makes a request that is not
supported or allowed the UAS may reply with a list of allowed methods, included in the Allow
header. In addition, a UAC can find out the methods supported by a UAS by making an
OPTIONS request.

2.1.4 SIP responses

A response is a message sent by a server to a client in response to a request. As in SIP requests,
SIP response headers are written in human readable form. The first line of a SIP response
header is called a Status-Line and has the following format:

�������
��������������	�� ������������������
����� �!"�

Where <SP> stands for a single space and <CRLF> for carriage return and/or line feed. Below
are three examples:

���)*&+�45+����6��6

���)*&+�*++�2/

���)*&+�7+7�,���"�	��

The Status Code is a three digit decimal integer result code that indicates the outcome of a
request processing. The Reason Phrase is a textual description of the Status Code. SIP defines
six categories of responses identified by the first digit of the Status Code. The two last digits
indicate the actual response. The response categories are listed in table 2.2.

Status-Code Response category Description

1xx Provisional Request received, continuing to process the request

2xx Success The action was successfully received, understood and
accepted

3xx Redirection Further action needs to be taken by the requester to
complete the request

8

Status-Code Response category Description

4xx Client Error The request contains bad syntax and cannot be fulfilled at
this server

5xx Server Error The server failed to fulfill an apparently valid request

6xx Global Failure The request cannot be fulfilled at any server

Table 2.2 - SIP response Status Codes

2.1.5 SIP message headers

SIP message headers are a component of both SIP requests and responses. They follow the
Request Line in SIP requests and the Status Line in SIP responses. A header consists of a set of
Header Fields. A Header Field is a line in the SIP message header that specifies a value or a
number of values of a specific attribute. A Header Field has the following format:

�8��'�����������9�����9�8��'����'	��:����9;����9�8��'����'	��<9

Where (format)* stands for zero or more repetitions of the format. Below are two examples:

 �''��3��44*+*=4>?+�4*>&4+&7>&4*+

��	�����������
������'��
�&���;������6��
6��(��&���;
�����������'���&(��&����

Note that header field values can occupy more than one row in the message. Some header fields
that require parameters add the parameter name and value after a semicolon. Their format is
shown below:

�8��'�����������9�����9�8��'����'	������9:����
������@���
���'	��<

For example:

"
����A0�B���B�'�C������+D+4*?7>ED���B�
�����
&�������6@4*?0*?7

Appendix B lists the currently specified header fields. As is shown by the descriptions, not all
fields need be present in all messages. Some of them are meaningful only in certain cases.

2.1.6 SIP and SDP

As mentioned above, SIP does not handle session specific negotiation between SIP endpoints.
Instead, this is done by the Session Description Protocol (SDP). The core of SDP is specified in
IETF RFC 2327 [10], which currently has the status of Proposed Standard.

9

Currently, SDP is more a format rather than a communication protocol in the sense that it uses
other protocols for its transport. SDP messages must include sufficient information about a
media session and how it can be accessed. Like SIP, its messages are written in human readable
text. An SDP message consists of a number of lines of the following form:

��F���@���'	��

Where type is a single, case sensitive character and value is a string whose format depends on
type. A message consists of three parts: the Session description, the Time description, and the
Media description. Below we show the structure of an SDP message. Types marked with '*'
are optional. Text after '//' is just comments and is not part of the SDP format.

//Session description

�@��:�
�����'���
����<

�@��:�
��
)�
����
�������������������8��
<

�@��:������������<

�@9�:����������8�
������<

	@9�:�����8�����
������<

�@9�:����'����
���<

�@9�:�������	�B�
<

�@9�:�������������8�
�������������
��	�
����8����'	��������''������<

B@9�:B���
�������8�
������<

//One or more time descriptions (see below)

G@9�:�����G������H	�������<

(@9�:���
F������(�F<

�@9�:G�
���
���
�������������
�B	���'����<

//Zero or more media descriptions (see below)

//Time description

�@��:��������������������������<

@9�:G�
���
���
��
�����������<

//Media description

�@��:����������������
�����
�����
���<

�@9�:���������'�<

�@9�:�������������8�
����������������'��8����'	���������������'���'<

B@9�:B���
�������8�
������<

(@9�:���
F������(�F<

�@9�:G�
���
���
�����������
�B	���'����<

10

SDP was initially meant to be used with protocols other than SIP, such as the Session
Announcement Protocol (SAP), related more to conference sessions and IP multicast. Therefore,
some of the types shown above are meaningless for SIP and are not used.

Session negotiation using SDP is made using an offer/response model. The initiator of the
session offers a number of media types which they support for the session and receives a
response with the subset of this list representing the supported media of the other endpoint(s).
We will show this procedure in the next paragraph with an example.

Although it is perhaps the only means for session description/negotiation widely used by SIP,
SDP has shown a few weaknesses related to its 'clumsy' extensibility and lack of
expressiveness. For these reasons, work is in progress within the IETF for a new version of the
protocol.

2.1.7 SIP example

To summarize the above, we will give a simple example of SIP's operation. In the following
example, Alice is a subscriber to a SIP provider and she is using a SIP phone to call Bob, who
is using SIP facilities provided by his company and is running a SIP softphone on a workstation.

2.1.7.1 Registration

Before being able to receive any calls, Bob must register with the SIP registrar of his domain.
The registration begins with a REGISTER request sent by Bob's UAC (included in the
softphone) to the registrar. The REGISTER request can be sent to the registrar either directly or
via a SIP proxy. The location (i. e. IP address or domain name) of the registrar or the SIP proxy
is made known to Bob in several ways. Below we list four of them.

a) The host part of the Address-of-Record (AOR)

In this case the host part of Bob's AOR is the DNS host name of his SIP registrar or proxy.
Therefore Bob's UAC will resolve the host part of the AOR normally via DNS and in this way
learn the IP address of his SIP registrar or proxy.

b) Manual configuration

Bob might have been informed of the registrar's IP address or domain name through other
means. In that case he can configure his UAC's “Outbound SIP proxy” with the location of the
registrar or the SIP proxy. This applies in cases where the host part of the AOR is not the same
as the DNS host name of the registrar or proxy. For example an AOR can be:
bob@comany.com, whereas the host name of the proxy could be sip32.company.com.

11

c) Dynamic Host Configuration Protocol (DHCP)

The location of the registrar is made known to Bob's computer via a special option of DHCP
(see [11] and [12]), in the same way as the Domain Name Servers or the default IP gateway.

d) Domain Name System SRV Resource Record

Bob could make a DNS query using the SRV Resource Record [13] to find available registrars
or SIP proxies for his domain.

In this example we assume that Bob's softphone is manually configured and that its UAC
accesses the registrar directly (without using a proxy). The registration process is shown in
Figure 2.1. The number in front of each message is a sequence number for easy reference and
not part of the message itself. Note that the location server (location.company.com) is not a SIP
entity and therefore messages to and from the location server are not SIP messages. The
sequence numbers of these messages are marked with '*'.

1. REGISTER

This message contains the following information:

�#$��%#������������F&�������)*&+

-�������)*&+)�3��4=*&*&+&4++�
��
�

 �����D5+5��#$��%#�

%���A0�BC������B�B�������F&����

#I��
����=++

"
����A0�BC������B�B�������F&����

 �''��3��DE*?>D+=5�4=*&*&+&4++

 �������!��6����+

#������
�6���
�����

 ��������A0�BC������B�B�4=*&*&+&4++��
�����
�@	����������@C�,-�%#;
�#��.$#;��,"2;���0� ��0#;�2�%�2,�;�01#;� ., #!;,2%�"1;�. /C�

For the specifics of each header field of this message refer to Appendix B and the relevant
RFCs.

With this REGISTER request Bob informs the registrar (see the Contact field) of his device's IP
address, the transport protocol his UA uses for SIP (in this example it is UDP), the duration for
which this information is valid (in this example it is 900 s), and the request methods his UAS
can process. In other words, the REGISTER message contains adequate information such that
Bob's UA can be contacted via SIP.

2. 100 Trying

After the registrar sends the request to the location service, it sends a 100 Trying response to
Bob's UAC to inform it that its request was received and processed properly, but that the
invoked function has not finished yet. This message looks like the following:

12

���)*&+�4++�%
F��6

-�������)*&+)�3��4=*&*&+&4++�>+E+�
��
�

%���A0�BC������B�B�������F&����

"
����A0�BC������B�B�������F&����

 �''��3��DE*?>D+=5�4=*&*&+&4++

 �����D5+5��#$��%#�

 �������!��6����+

3. Storing registration information in the location server

As mentioned, messages to the location server are not SIP messages. The location server can in
practice be a database server that stores contact information about SIP users. An example entry
for Bob could be the following:

���
��0�B

.2���B�B�������F&���

������
�����4=*&*&+&4++

������
���	�B�
��>+E+

%
�����
����3�

13

Figure 2.1 - SIP Example Registration

1. REGISTER

2. 100 Trying
3*. Store info

5. 200 OK

4*. Success

sipproxy.provider.com sipproxy.company.com

location.company.com

registrar.company.com

alice@provider.com
192.1.0.200

bob@company.com
192.2.0.100

����������,-�%#;��#��.$#;��,"2;���0� ��0#;�2�%�2,�;�01#;
 ., #!;,2%�"1;�. /�

#I��
����=++

Where the AOR here equals the AOR passed in the REGISTER request using the To header
field.

4. Registration information successfully stored notification

The location service informs the registrar that the information sent in message 3 was
successfully stored.

5. 200 OK

Via this message the registrar informs Bob's UAC that its request was successfully fulfilled.
The message looks like the following:

���)*&+�*++�2/

-�������)*&+)�3��4=*&*&+&4++�>+E+�
��
�

%���A0�BC������B�B�������F&����

"
����A0�BC������B�B�������F&����

 �''��3��DE*?>D+=5�4=*&*&+&4++

 �����D5+5��#$��%#�

#I��
����=++

 �������������B�B�4=*&*&+&4++��
�����
�@	���

 �������!��6����+

After a successful registration, Bob is accessible via SIP (more precisely via his UAS). In order
to prevent the registration from growing stale (note the Expires field), Bob's UAC will repeat
the registration process at regular intervals. Note that registration is required by SIP only when
a user wishes to accept incoming calls. For outgoing calls registration is not required by SIP
(although administrators and operators might require it).

2.1.7.2 Session initiation and termination

A call setup begins with the caller's (Alice's) UAC sending an INVITE request towards the
caller (Bob) via a SIP proxy (sipproxy.provider.com). The location of this SIP proxy is known
to Alice by one of the ways described in paragraph 2.1.7.1. The call setup procedure is shown
in Figure 2.2.

1. INVITE

The INVITE message begins the session initiation process. In addition this message is often
used to carry an SDP payload for the session negotiation. The message looks like the following:

�,-�%#�����B�B�������F&�������)*&+

14

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

%��������B�B������F&����

 �������%F�������'�������)���

"
����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���C�������'����4=*&4&+&*++��
�����
�@	���

As indicated in the SIP message (Content-Type and Content-Length) the packet also contains an
SDP payload. This looks like the following:

�@�:.�F����6���,���	����������<

�@�:.�F����6���,���	����������<

�@�:.�F����6���,���	����������<

�@��,���7�4=*&4&+&*++

�@�:.�F����6�J�,���	����������<

�@��	����?*DD*��%�).-��+�=D�?

�@�
������+�� ��)5+++

As shown, the SDP payload contains adequate information for the session such as IP address,
port number (32772), protocol (RTP/AVP), codec (PCM -law at 8000 samples/s), etc. Withµ
this information, Alice's device makes an 'offer' to Bob to use certain media. As we will see,
Bob will reply to this offer, accepting it, with the 200 OK response.

2. 100 Trying

This is similar to the 100 Trying message of the previous paragraph, informing Alice that her
INVITE request was received successfully and 'understood'; meaning that there were no errors
in the message.

3. INVITE

At this point, Alice's SIP proxy must forward her request to the right SIP entity. Locating Bob's
proxy server can be done by any of the ways mentioned in the previous paragraph other than the
DHCP solution of course. In this example, we assume that the proxy is located via a DNS
lookup using the SRV Resource Record (RR) (the DNS messages are not shown in figure
Figure 2.2).

This INVITE request will be similar to the 1. INVITE message shown previously, although
some header fields will be modified at the proxy's option. Below we give an example message.

�,-�%#�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&4�>+E+�B
����@5=7?4D+8��B?*+=8��5?D7&*

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

15

��I�8�

�
����E=

%��������B�B������F&����

 �������%F�������'�������)���

16

Figure 2.2 - SIP example call initiation

alice@provider.com
192.1.0.200

sipproxy.provider.com sipproxy.company.com

location.company.com

registrar.company.com

bob@company.com
192.2.0.100

1. INVITE (+ SDP)

2. 100 Trying
3. INVITE (+ SDP)

5*. Query
4. 100 Trying

6*. Location info

7. INVITE (+SDP)

8. 100 Trying

9. 180 Ringing

10. 180 Ringing

11. 180 Ringing 12. 200 OK (+ SDP)

13. 200 OK (+ SDP)

15. ACK

Media session

14. 200 OK (+ SDP)

"
����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���C�������'�����
�����
&�����
�����
�@	���

As we see, the proxy added two lines to the request: one Via line with its own information and
one Max-Forwards line to avoid routing loops of the call. The SDP payload is left intact.

4. 100 Trying

Again this is similar to the 100 Trying message of the previous paragraph, with some
information added to the message (such as a Via header field line). It informs Alice's proxy that
its request (3. INVITE) was received successfully.

5. Query location information from the location service.

Bob's proxy queries for Bob's location from the location service. This is not a SIP message.

6. Service location service reply

The location server replies to the proxy's query. Again, note that this is not a SIP message.

7. INVITE

Since Bob had successfully registered earlier, his contact information will be found by the
location service. Otherwise, the location server would reply that Bob is not currently connected
(even though he has an account) and Bob's proxy would respond to Alice's proxy with a 480
Temporarily Unavailable response. If Bob had no account at all, the location service would not
recognize his name and the proxy would reply with a 404 Not Found response. Here we assume
that everything was successful, thus Bob's proxy will send the INVITE message to his UAS.
Again, the message is similar to the previous INVITE requests, with some parts of the header
modified.

8. 100 Trying

Bob's UAS informs his proxy that the INVITE request was received successfully and
'understood'.

9. 180 Ringing

Via this message, Bob's UAS informs the proxy that the softphone was able to produce an alarm
to notify Bob that he has an incoming call. The message looks like the following:

���)*&+�45+����6��6

-�������)*&+)�3��4=*&4&+&4�>+E+�B
����@5=7?4D+8��B?*+=8��5?D7&*

-�������)*&+)�3��4=*&4&+&*++�
��
�

%��������B�B�������F&����

"
�����A.'���C�������'�����
�����
&����

17

 �''��3��7**7???4�4=*&4&+&*++

 �����*?=+��,-�%#

 �������!��6����+

Note that the To and From headers in a response are always identical to the headers of the
corresponding request. This means that the headers in the response do not indicate the direction
of the response but the direction of the corresponding request.

10. 180 Ringing

The message is forwarded to Alice's proxy.

11. 180 Ringing

The message is forwarded to Alice's UAC. This informs Alice that Bob was located and
notified of her call.

12. 200 OK

Bob picks up the phone (since it is a softphone he probably clicks on a button on the softphone's
Graphical User Interface (GUI)). His UAS sends a 200 OK message with a SDP payload
attached to it. This message looks like the following:

���)*&+�*++�2/

-�������)*&+)�3��4=*&4&+&4�>+E+�B
����@5=7?4D+8��B?*+=8��5?D7&*

-�������)*&+)�3��4=*&4&+&*++�
��
�

%��������B�B�������F&����

"
�����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �����*?=+��,-�%#

 �������%F�������'�������)���

 �������!��6����4>?

The SDP payload is similar to the one attached to the INVITE request:

�@�:.�F����6���,���	����������<

�@�:.�F����6���,���	����������<

�@�:.�F����6���,���	����������<

�@��,���7�4=*&*&+&4++

�@�:.�F����6�J�,���	����������<

�@��	����4=>E7��%�).-��+�4+4

�@�
������+�� ��)5+++

With this message Bob's softphone (his UAS) informs Alice's SIP phone (her UAC) of the
compatible media sessions which his softphone supports and how it can be accessed (IP
address, port number, etc).

18

13. 200 OK

The 200 OK is forwarded to Alice's proxy.

14. 200 OK

The 200 OK is forwarded to Alice's UAC. In this example, this message informs Alice that Bob
picked up the phone. It also finishes the session negotiation with the SDP payload.

15. ACK

This request is sent to inform Bob's UAS that the 200 OK response was received correctly and
that the session is ready to start. The ACK request can be sent again via the proxies, or directly
since the two endpoints know each other's location. The ACK request is shown below:

. /�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����D4*?�. /

%��������B�B�������F&����

"
����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����+

 ��������A.'���C�������'�����
�����
&�����
�����
�@	���

After the ACK request is sent, Alice and Bob begin the media session. The media session is
started as a separate session using protocols other than SIP, such as the Real Time Protocol
(RTP). Of course, the SIP proxies do not take part in this session. Note that unlike other
requests, there is no response to the ACK request.

16. BYE

After the session finishes, one of the endpoints (in this example Alice) sends a BYE request,
informing Bob's UAS that she wants to terminate the session (see Figure 2.3). Again, the BYE
message can either be routed through the proxies or go directly. This request looks like the
following:

01#�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����4++?�01#

%��������B�B�������F&����

"
����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����+

17. 200 OK

With this 200 OK message, Bob's UAS informs Alice's UAC that the BYE request was
successfully received and terminates the session. Note that Bob's UAS could reply first with a

19

180 Trying response and then with the 200 OK. That could be useful if Bob's UAS required
some time to stop the media session for some reason.

In the example described above, SIP messages are routed by the two SIP proxies. In an
alternative scenario, one or both of the SIP proxies could act as a redirect server. For example
Alice's redirect server would reply with a 3xx response pointing to Bob's proxy and Alice
would repeat the request directly to it.

2.1.8 SIP Transactions and Dialogs

In order to successfully issue messages and route them correctly, SIP entities need to maintain
state concerned their various operations. For this purpose, SIP defines two state machines:
transactions and dialogs. These two state machines are very important for the operation of the
various SIP entities. In this paragraph we provide a brief description.

As stated in [2], a SIP transaction consists of a request along with all responses caused by that
request (zero or more provisional responses and one final response). Retransmissions of the
same request belong to the initial transaction. In the case of an INVITE transaction the ACK
request is considered part of the transaction and not a new one. Transactions involve one client
(UAC) and one or more servers1 (UASs). Therefore, there are two types of SIP transactions: a
client transaction, which is a state machine maintained at the client's side and a server

1. Forking can cause a certain request to have many receivers, and therefore many servers.

20

Figure 2.3 - SIP example call termination

alice@provider.com
192.1.0.200

sipproxy.provider.com sipproxy.company.com

location.company.com

registrar.company.com

bob@company.com
192.2.0.100

Media session

16. BYE

17. 200 OK

transaction, maintained at the server's side. For more details about the state machine of SIP
transactions refer to [2].

All SIP entities, except for the stateless proxy, maintain a transaction state machine while
sending and receiving messages. This means that messages in SIP are not processed
independently, but rather according to the transaction they belong to. A transaction is a relation
between two SIP entities that communicate with SIP directly. In the example described above,
when initiating the session Alice has a transaction with her SIP proxy, which in turn has a
transaction with Bob's proxy, and so on.

A dialog is another, higher level, state machine that unlike a transaction, is a relation between
two endpoints of a SIP session (Alice and Bob) and may last for several transactions (request –
response pairs). Not all SIP message exchanges require the maintenance of a dialog. According
to the current SIP specification only INVITE requests generate a dialog. Like a transaction, a
dialog helps the session endpoints in sending, receiving, and processing SIP messages. Figure
2.4 illustrates the relation between a dialog and a transaction.

21

Figure 2.4 - SIP Transactions and Dialogs

alice@provider.com

INVITE

100 Trying

180 Ringing

200 OK

ACK

BYE

200 OK

Transaction

Transaction

Dialog

2.2 2.2 IP Multimedia Subsystem (IMS)IP Multimedia Subsystem (IMS)

The IP Multimedia Subsystem is an architecture proposed by the 3rd Generation Partnership
Project (3GPP) [14] and its main purpose is to offer SIP support for 3GPP specified wireless
networks, namely GSM/EDGE Radio Access Networks (GERANs) and UMTS Terrestrial
Radio Access Networks (UTRANs). IMS has been designed as an extension to existing mobile
operator networks in order to support multimedia services for mobile users. The architecture is
described in [15], [16], and [17]. Note that since the architecture is still under intense
development, these specifications may change at any time. In this section we will give a brief
overview of the subsystem.

Figure 2.5 illustrates a general IMS architecture. The entire system consists of three main parts:
the access network, the IMS Core Network (IMS CN), and the Application Server network.
According to the 3GPP specifications, the three parts of the architecture need not be under the
same administration and therefore they can be owned by different operators.

The IMS Core Network is an IP/SIP-enabled network that consists of four main entities: the
Proxy Call Session Control Function (P-CSCF), the Serving Call Session Control Function (S-
CSCF), the Interrogating Call Session Control Function (I-CSCF), and the Home Subscriber
Server (HSS). The CSCFs are all SIP-enabled entities, but they can also understand and use
other protocols such as the Common Open Policy Service (COPS) [18] protocol in order to
satisfy QoS requirements. Below we give a short description of these four entities.

a) Proxy Call Session Control Function (P-CSCF)

The P-CSCF is the initial interface of the IMS towards its users. It is discovered as soon as a
mobile user attaches to the GGSN. The discovery mechanism can be via the DHCP and DNS
procedures described in paragraph 2.1.7.1. In addition, (as described in [17]) the P-CSCF can be
discovered during a GPRS-Attach, when the mobile terminal establishes a Packet Data Protocol
(PDP) context with the GGSN. Regardless of the method used, the terminal finally receives a
list of IP addresses of several P-CSCFs, of which one is selected.

The P-CSCF mainly performs the following two functions:

SIP proxy function: The P-CSCF is responsible for routing SIP messages appropriately for
home and roaming users. Received SIP requests are routed either towards the S-CSCF or
towards other IMSs or generic SIP networks.

Policy Decision Function (PDF): This function involves taking the appropriate actions in order
to deliver the required QoS to the user. In this role the P-CSCF does not act as a SIP entity but
uses other protocols, such as the Common Open Policy Service (COPS) [18] protocol, in order
to transfer QoS policies to the network's GGSN. To perform this function, the P-CSCF must
have policy decision privileges on the user's GGSN.

22

b) Serving Call Session Control Function (S-CSCF)

As soon as a mobile terminal attaches to the GPRS network and discovers the P-CSCF, a
S-CSCF must be assigned to it. This assignment is performed according to several criteria
including user preferences, user service requirements, location of the user's P-CSCF, and
location and capabilities of available S-CSCFs. This means that the assigned S-CSCF does not
need to belong to the same IMS as the P-CSCF.

The S-CSCF performs the following functions:

23

Figure 2.5 - IMS overview

P-CSCF

I-CSCFHSS

S-CSCF

Application
Server

network

GERAN/UTRAN
(Access Network)

IMS Core Network (CN)

IMS Service Control interface (ISC)

Routing
outgoing
messages
through
I-CSCF
(THIG)

Routing
outgoing
messages
directly

OR
IP NetworkGGSN

IP Network

Remote
IMS

SIP proxy function: The S-CSCF's main function is to locate the user and route messages to
and from him/her. This means that the S-CSCF must be able to identify the type of service
requested by the entity producing the request and handle it accordingly. It is important to note
that the assigned S-CSCF lies always in the path of all calls to and from the user.

Accessing the Application Server Network: The S-CSCF is the interface of the IMS towards
the service networks. It accepts SIP requests from users and accesses the services on their
behalf, through the IMS Service Control Interface (ISC interface). Since the service network
can include a large variety of services, the ISC usually consists of one or more specialized
interfaces such as the Open Service Access (OSA) [19], the Customized Application Mobile
Enhanced Logic (CAMEL) [20], etc.

Providing interworking with other network types: The S-CSCF is responsible (possibly in
conjunction with a specialized gateway) for handling inter-working with other non-IP networks
such as the Public Switched Telephony Network (PSTN).

Providing SIP-related services: The S-CSCF is used to provide SIP-related services to the
user. Therefore it can act as a SIP registrar, a SIP presence server, and so on.

c) Interrogating Call Session Control Function (I-CSCF)

The I-CSCF is used to handle SIP messages between IMSs. For incoming requests (i. e.
heading towards the IMS), the I-CSCF is the entity receiving the request and is responsible for
locating the appropriate S-CSCF that can satisfy the request. In many cases, the I-CSCF also
handles outgoing requests towards other IMSs. When a P-CSCF decides that a particular
request from a user must be handled by another IMS, it can either forward the request directly
to the I-CSCF of the remote IMS (as shown in Figure 2.5) or forward it to its local I-CSCF that
handles the inter-IMS communication. The latter method is used when an operator wishes to
hide the internal IMS architecture from the outside world. In this case the I-CSCF acts as a
Topology Hiding Inter-network Gateway (THIG).

d) Home Subscriber Server (HSS)

The HSS is a database server that performs a variety of functions including Authorization,
Authentication, and Accounting (AAA). It contains information about users, profiles,
passwords, preferences, and so on. It is accessed by all other entities of the IMS when they need
user specific information. In addition, the HSS may also be queried by Application Servers.

Figure 2.6 gives an example of how SIP calls made by a user are routed. Note that the S-CSCF
is responsible for routing Bob's call towards Alice, towards an Applications Server, or towards
another non-IP network, depending on the request it receives. We also assume that IMS
operators use I-CSCFs as Topology Hiding Inter-network Gateways (THIGs) in all cases.

24

25

Figure 2.6 - SIP call routing in the IMS.

Bob's assigned S-CSCF routes the call towards (A) an AS, (B) a non-IP network, or
(C) Alice (her assigned S-CSCF)

IMS that contains
Bob's selected P-CSCF

IMS that contains
Bob's assigned S-CSCF

I-CSCF
(THIG)

P-CSCF

I-CSCF

S-CSCF

I-CSCF
(THIG)

IMS that contains
Alice's assigned S-CSCF

S-CSCF

I-CSCF

I-CSCF
(THIG)

IMS that contains
Alice's selected P-CSCF

P-CSCF

I-CSCF

Application
Server

Gateway
to non-IP
network

A

C

B

IP Network

GGSN

Alice

IP Network

GGSN

Bob

3. 3. SSERVICEERVICE POLICYPOLICY MANAGEMENTMANAGEMENT FORFOR

SIPSIP--BASEDBASED SERVICESSERVICES

This chapter studies the methods and mechanisms that have been proposed for service policy
management for SIP-based services. In section 3.1, we introduce a number of terms that will
be used in the discussion in the sections that follow. In section 3.2 we describe mechanisms that
can be used in all SIP networks and in section 3.3 we survey methods proposed for 3GPP's IP
Multimedia Subsystem.

3.1 3.1 Policy management conceptsPolicy management concepts

3.1.1 Policy-based and non-policy-based
management

System management in general is an important issue especially when dealing with large scale
or highly complicated systems. Management can be policy based or non-policy based.

To give an example, suppose that we have an access control server and ten Network Access
Servers (NASs) such as WLAN Access Points, Switches, etc. The system administrator wants to
control the access to the NASs so as to optimize the network's performance according to a
number of criteria. One way to solve this problem would be to have the NASs 'ask' the control
server each time they get a request for a new connection. The reply of the control server
depends on the request's contents and the overall state of the system. This scheme is fairly
simple. Most of the processing is performed by the control server and the NASs are simple
machines that accept or deny access according to the replies they receive from the control
server. However, this solution has two major drawbacks. First, the channels to and from the
control server will be heavily loaded and second, the request/reply process might take
considerable amount of time even if the traffic to the control server is low and this server has
adequate processing power.

Another solution to the problem would be the following. Instead of having the NASs make
requests to the control server, they could receive directions on what to do when they receive
requests. These directions would be distributed by another node that is able to keep track of the
overall state of the system. This requires that the NASs are smart enough to accept and interpret
the directions they receive. If the system's design and operation does not require that directions
be distributed too frequently, this solution has several benefits compared to the first one. The
traffic towards the control node is lower, the processing load is distributed more evenly, and the
system scales better.

The first solution is an example of non-policy based management and the second is an example
of policy based management. The directions mentioned in the second solution are the policies.

26

3.1.2 Generic policy-based management model

Here we introduce the basics of policy management in order to clarify a few important terms.
Figure 3.1 shows the basic entities involved in such a system. Note that what is shown is a
simplified model. An actual policy management system can be more complicated. The system
includes the following entities:

a) Policy repository

The policy repository contains all the policies that are being used by the system. For example,
there might be policies that guarantee congestion avoidance (by denying new users), QoS, and
so on. A policy is a set of rules or instructions on the course of action taken when a specific
event occurs.

b) State data

This entity contains all the necessary data to describe the state of the managed system,
including previously installed policies. An example of state data for a layer-2 switch for
example can be the number of Virtual Local Area Networks (VLANs) present or the forwarding
policy on its interfaces. To remain up to date, state data must be updated as frequently as
possible. Since the actual system state can change rather frequently, a critical issue for a system
is state data maintenance.

27

Figure 3.1 - Generic policy management model

Policy
repository

Policy Decision Point
(PDP)

State
State transfer

Policy transfer

Policy decision
transfer

Trigger
event

Policy Enforcement
Point(s) (PEP(s))

c) Trigger event

A trigger event is any event that causes a new policy decision to be made. It can be a request
from any of the other entities of the system, a new command from the system administrator or a
simple timer that causes new decisions to be made at regular time intervals.

d) Policy Decision Point (PDP)

A policy decision point is where the policy rules, state data and the trigger event are processed
in order to produce a policy decision. As shown, a PDP with full functionality must have two
types of operation: monitoring and making policy decisions. Monitoring involves keeping
track of the state of the managed entity. Monitoring is of high importance since the PDP must
avoid using stale information which can lead to an erroneous decision. On the other hand, in
many cases issuing frequent state updates might be impossible or very expensive. Thus, the
trade-off while monitoring is keeping state information fresh versus making effective usage of
the bandwidth given. Policy decision making is the act of configuring the PEP with a new
policy.

In simple cases a policy-based management system will include a single Policy Decision Point.
Deploying more PDPs is of course possible but will require an efficient means of
synchronization of the PDPs so that stability is guaranteed and we do not have strange
phenomena taking place such as when the policy decision of one PDP is canceled by another
and vice versa.

e) Policy Enforcement Point(s) (PEP(s))

These entities are responsible for processing policy decisions they receive by taking the
appropriate actions.

As stated, the a bove model is generic. Designing a policy manager to perform a specific
task involves applying this model and making the appropriate decisions, such as defining the
protocols used by the entities in order to communicate and deciding where should each function
(PEP, PDP etc) be positioned.

3.1.3 Service policy management

Service policy management regards the provision or usage of a service. Depending on who is
acting as the Policy Decision Point we can identify two basic types (see Figure 3.2):

Provider-side service policy management regards the management of service provision to the
users. In this case the provider acts as the PDP. Examples are the AAA function performed by a
network operator (access control), bandwidth allocation for QoS provision to certain users, and
so on.

User-side service policy management regards the management of service reception from a
user. This type of management enables a user to control the way that he/she uses a service.
Therefore, the user, or a group of users, acts as a PDP. Examples of this type of management

28

are accept/block caller list, caller hiding, bandwidth control to minimize costs, link or interface
selection according to type of communication needed, user preferences, and so on. According to
where these policies are applied, we can identify two subtypes for user-side service policy
management, one for outgoing and one for incoming traffic.

In the following chapters we focus solely on user-side of service policy management. Thus, we
will not investigate service policy management from the provider's side (QoS management,
provider resource management, etc). Moreover, the services in question are all SIP-based,
meaning that they can be accessed via SIP. Thus, from this point on, the term service policy
management implies user-side service policy management of SIP-based services unless
otherwise specified.

3.2 3.2 User-side service policy management inUser-side service policy management in
generic SIP networksgeneric SIP networks

In this section we present a number of methods that have been proposed for user-side policy
management for SIP-based services. We mainly focus on proposals made within the IETF, as
RFCs and Internet Drafts.

3.2.1 Call Processing Language (CPL)

IETF has specified a framework for a Call Processing Language in [21]. In addition, there is
currently an (expired) Internet Draft ([22]) with a detailed CPL description.

29

Figure 3.2 - Service policy management categorization

Service policy
management

Provider-side User-side

Management
of outgoing

calls

Management
of incoming

calls

CPL is a language based on the Extensible Markup Language (XML) that allows users of
Internet Telephony Services to control the way incoming and outgoing calls are routed. The
language is actually used to write scripts with directions on how certain messages (such as SIP
INVITE messages) are to be handled. Both SIP User Agents (UAs) and SIP servers can execute
CPL scripts. Therefore, a user can upload his/her Cpl script to any SIP entity that will accept it.
This user is called the script owner and the entity where the CPL script is about to be executed
is called the CPL server.

When a SIP entity receives or is about to send a message, it checks its store of (previously
uploaded) CPL scripts to see if any script owner matches the sender or the receiver of the
message. If it finds such a script, it executes it using the SIP message as input. The final
outcome of a message process is called an operation. The current CPL Internet Draft [22]
specifies three signaling operations and two non-signaling operations. The signaling operations
are proxy, reject, and redirect and the non-signaling operations are mail and log. What a CPL
script basically does is match a message against a set of conditions to decide upon one or more
of the aforementioned operations.

Unfortunately, there has been no specified way to upload CPL scripts. Proposals include a web
file upload, SIP REGISTER message payloads, using the Simple Network Management
Protocol (SNMP)([23] and related RFCs) functions, using the Application Configuration Access
Protocol (ACAP) ([24]), using the Lightweight Directory Access Protocol (LDAP) ([25]), and
remote file systems such as the Network File System (NFS) ([26]).

As an example, a policy that can be implemented with CPL is call forwarding. A user can
upload a script to forward incoming calls to his/her office phone during working hours, and to
his home phone during non-working hours. CPL can also handle cases when a call goes
unanswered. Therefore, the user in our example can forward the call to his mobile phone if a
call to his home phone goes unanswered.

Figure 3.3 illustrates a typical scenario where CPL is used for service policy management. The
SIP User Agent application includes the SIP UA component for handling SIP communication,
the media interfaces, and the service manager. The service manager collects information from
the device (e.g. time, battery charge, etc.), the interfaces, and the application user profile and
preferences. Using this information it is able to construct CPL scripts and upload them to the
server. In management terms, the service manager acts as the PDP, the device information base
(s) and the media interfaces act as the system state, the user profile and preferences constitute
the policy repository, and the CPL/SIP server acts as the PEP.

As we can see, CPL only provides the decision making function of the PDP, offering a way to
express the policy rules. CPL is able to enforce policies both for incoming and outgoing calls as
discussed in paragraph 3.1.3. The monitoring function of the PDP must be performed by other
means. In most cases (as in Figure 3.3) the PDP is part of the UA application and therefore
monitoring is performed within the application itself. If a user uses only one UA application at a
time, this poses no issue. However, if more than one UA applications are used by one user, then
there might be problems that have to do with PDP synchronization. For example, consider a
user that has a mobile phone with a service manager that at some point issues a policy to
forward all incoming calls to the home telephone. The home telephone on the other hand has
issued a policy that forwards all calls to the mobile phone. While this error can be detected at
the CPL server, the UA applications are (still) not “aware” of each other. Another example is

30

when one UA application issues a policy that another UA application must be used while the
latter is down for some reason. The lack of a central service monitor can be a crucial problem in
highly volatile environments when links are lost and recovered frequently, where services are
only available for a short period of time, etc.

Another disadvantage of CPL is that it does not support making decisions based on the media
type of the requested service. A user, for example, might wish to forward a phone call to his/her
phone and a fax to his fax machine. The proxy should therefore make the decision according to
the SDP payload contained in the initial INVITE. Unfortunately, this is not supported by CPL at
the moment.

3.2.2 Other methods

Apart from CPL, there have been a few other alternatives for user-side service policy
management, focused on how a user can affect processing of his/her outgoing calls. Rosenberg,
Schulzrinne, and Kyzivat [27] propose a means for the caller to specify preferences on how
his/her call should be routed or otherwise handled by intermediate entities. These preferences
are expressed with three SIP headers (specified in [27]): Accept-Contact, Reject-Contact, and
Request-Disposition. Schulzrinne and Polk propose a way so that the caller can indicate the
priority by which his/her call must be handled by intermediate entities [28]. The caller
expresses this preference with the Resource-Priority header whereas an intermediate entity can
express the priority preferences it accepts with the Accept-Resource-Priority header. This
method is intended to be used in emergency circumstances.

As we can see, these proposed alternative methods mostly address service policy management
for outgoing calls, unlike CPL, which supports incoming and outgoing call handling.

31

Figure 3.3 - Service policy management using CPL

SIP UA application

SIP UA

Audio
interface

Video
interface

SIP Server
+

CPL Server
(PEP)

SIP transactions

Device
Information Base(s)

Service
manager
(PDP)

User profile and
preferences

(policy repository)

CPL script upload

3.3 3.3 UserUser--side service policy management in theside service policy management in the
IMSIMS

The mechanisms for user-side service policy management in generic SIP networks described
above are also applicable to the IMS, since it is, to a large extent, a SIP-based architecture.
Unfortunately, 3GPP has not specified standard ways to facilitate these mechanisms. However,
CPL support may be offered by an IMS operator just like any other service. The most
appropriate PEP in this case is the S-CSCF (possibly in conjunction with a specialized CPL
Application Server, as proposed in [29]), since it is responsible for providing SIP related
services to the user and always lies in the path of every SIP call to and from the user, as we
mentioned in the previous chapter.

In Figure 3.4 we show how a CPL script can be uploaded to the S-CSCF so that policies issued
by the user can be enforced by the S-CSCF for calls to and from the user. In this example the
S-CSCF uses a CPL AS that handles the CPL execution. Note that the messages between the
S-CSCF and the CPL AS are not SIP messages.

A common characteristic that all these management mechanisms have is that the policy is
always enforced by an intermediate entity meaning that the PEP always resides within a
provider's network. Placing the PEP at the provider's side is at first glance reasonable and
providers intend to offer this PEP functionality as a separate service (in many cases as a value-
added service). However, this architecture has a number of problems. First, many providers are
often reluctant to give their users what they consider increased freedom to manipulate the
service they receive. CPL is designed in such a way so that advanced and complicated policies
cannot be expressed (e.g. loops are not allowed) so that the processing a CPL script would
require is within acceptable limits. Second, there might be certain interoperability problems
when different providers offer their users different service policy management facilities. In the
next chapters we will investigate both options, i. e. placing the PEP inside and outside the
provider's network, in order to analyze the benefits of each solution.

32

Figure 3.4 - CPL script upload to the S-CSCF

IMS that contains
Bob's selected P-CSCF

IMS that contains
Bob's assigned S-CSCF

Bob
(PDP)

P-CSCF

I-CSCF
(THIG) I-CSCF

S-CSCF
(PEP)

CPL
upload

CPL
upload

CPL
upload

CPL
Application

Server

4. 4. PPROPOSEDROPOSED ARCHITECTURESARCHITECTURES FORFOR USERUSER--SIDESIDE

SERVICESERVICE POLICYPOLICY MANAGEMENTMANAGEMENT ININ SIPSIP

NETWORKSNETWORKS

In the previous chapter we investigated possibilities for user-side service policy management.
In this chapter we propose new architectures that aim to offer the user as much control as
possible over the services he/she uses. To achieve this, we propose a new SIP entity, called the
SIP Service Manager (SSM) with the task of monitoring the service network and issuing
policies.

4.1 4.1 Motivation and goalsMotivation and goals

In the previous chapter we investigated the possibilities for user-side service policy
management. From this discussion, one can identify a number of problems that these
mechanisms show. We summarize these problems as:

� Although CPL is a very useful tool for policy enforcement, it remains quite limited. No
policy enforcement according to media type or other service attributes is supported.
CPL takes into consideration only the information contained in the SIP header of a
packet. This problem could be overcome by extending the functionality of CPL. Such
extensions, however, do not yet exist.

� Even when CPL is used, the question of which entity (one of the user's UAs or another
node in the network) will upload the script to the provider (i.e. the entity acting as the
PDP) remains unanswered. Since a CPL script involves policies not only about one, but
possibly all services controlled by the user, this PDP must, in some way be able to
check the status of all the services that the user controls (monitoring). Such an entity
does not yet exist.

� Monitoring of the set of services controlled by the user can have other benefits in the
case of a wireless mobile user. Many of these mobile devices include a number of
sensors and interfaces that can provide useful information to the system's PDP, thus
providing context information. A smart PDP can aggregate and combine this
information in order to present it to the user in some way in order to implement smart
policies.

� There are cases when a user needs to have a central contact representative to a SIP
network that can optionally hide the actual services that he/she controls, making them
appear in a uniform, simple way to the outside world and possibly as a single service.
Thus, all SIP traffic will be routed through this central representative. This may also be
desired in cases where additional security is needed. For example, suppose that Alice
wishes to use an online radio client, configured with the URI

33

sipradio32@alicescompany.com to access Bob's online radio. What if Bob's radio, for
security reasons, rejects all requests from UAs that have unknown URIs? Instead, Alice
could route her request through another entity that would make her appear as
alice@provider.com so that her request can be accepted. This entity may also contain
Alice's authentication data (passwords and certificates) that she might be unwilling to
use from devices that are not entirely controlled by her (e.g. public and company
telephones).

In this thesis we propose an alternative way for user-side service policy management that
addresses the problems described above. Our proposal focuses on giving the user more control,
especially in handling incoming calls. More specifically, the desired solution must include the
following features:

a) Extended control and full management functionality

Unlike existing mechanisms, the architecture should have full management system
functionality. This includes a PDP with monitoring and policy enforcement functions. The PEP
must be included and, as we will see, this might reside within the provider's network depending
on how the system is used. The architecture must facilitate the enforcing of policies according
to combined data that is gathered from the service network.

b) Ability to operate in mobile, highly volatile environments

As discussed in our introduction, users may be using several services (i.e. several User Agent
applications) at the same time. Moreover, we presume that some of these services are not being
used continuously, but might only be used for short periods of time. Such examples are a short
game session, a telephone in a public telephone booth that a user uses for a short period of time,
a fax machine in the company's office that is available for only ten minutes, etc.

c) Switching SIP providers (roaming)

In a fully mobile environment, a user can move across networks and across network operators as
well. However, this may introduce complications, as different providers can have different
service agreements with their customers and therefore offer different service policy
management facilities. A service policy manager must be able to address these difficulties by
making few assumptions of what the providers offer to the user.

d) Performance

Obviously, the system must make efficient use of the available communications resources
(bandwidth), processing power and memory.

e) Security

Security is a major factor in the design of all contemporary communications systems. Therefore
the architecture must support various kinds of security, such as information integrity, end-point
authentication, and so on.

It should be noted that our proposed solution does not replace the existing mechanisms. On the

34

contrary, our aim is to extend existing mechanisms. Therefore, as we will see in the following
sections, the proposed system is able to use these mechanisms as required.

4.2 4.2 Proposed designProposed design

4.2.1 Overview

The core of our proposed management system is a new SIP entity that we call the SIP Service
Manager (SSM). The SSM is an intermediate entity that resides between the service network
and the SIP backbone (see Figure 4.1) and combines proxy, UA, registrar, and redirect
functionality, depending on the way it is used. Since this is a user-side management system, it
is the user that controls and configures the SSM either directly or remotely.

Before monitoring and managing a service, the SIP Service Manager must, obviously, be aware
of it. This can be done by manual configuration by the user or by automatic service discovery.
This thesis does not study service discovery mechanisms. Readers interested in the subject may
refer to [30]. After the SSM is informed of the service's existence, it must associate with it. In
this document we define two types of association: soft and hard.

A soft association simply involves discovering and monitoring the service. No configuration is
made and no special action is expected from the service other than responding properly to the
SSM's monitoring probes. A soft association may fail if the service refuses or fails to respond to
the SSM's probes.

35

Figure 4.1 - SIP Service Manager overview

Service
Network

(User Agents)

SIP Service
Manager
(SSM)

SIP backbone
network

provider's
proxy

A hard association involves forcing SIP configuration (outbound proxy, URI, possible headers
to add in messages, etc.) on the service in order to make it behave in a desired manner. The
service may be expected to take special actions on its own, depending on the type of
configuration. A hard association also includes monitoring the service. In this thesis we will not
study means of performing a hard association. Possible ways to achieve this are by using the
Trivial File Transfer Protocol (TFTP) [31] and manual configuration. In addition, a hard
association can be performed as part of the discovery process.

The purpose of the SSM is to monitor the service network, present the status of the network to
the user, and issue policies to the system's Policy Enforcement Point (PEP). Depending on
where the PEP resides we can identify two types of operations for the SSM: one in which the
PEP resides within the provider's network and one in which the SSM performs the PEP function
itself. These two types of operation are presented in the next two paragraphs.

4.2.2 SIP Service Manager without PEP
functionality

This type of SIP Service Manager (SSM) operation is the simplest of the two. A block diagram
is given in Figure 4.2. As shown, the SIP Service Manager in this case consists of the following
components:

Registration Client: The Registration Client is a UAC, which is responsible for registering
with the SIP provider providing location information so that the user can be reached from the

36

Figure 4.2 - SIP Service Manager without PEP functionality

Service
controller 1

Service
controller 2

Service
controller 3

Se
rv

ic
e

ne
tw

or
k

Registration
Client

SIP Service Manager

provider's
proxy
(PEP)

O
PT

IO
N

S
re

qu
es

t

O
PT

IO
N

S
re

qu
es

t

O
PT

IO
N

S
re

qu
es

t

PDP

Policy
upload (CPL)

Service
status

SIP backbone. The UAC is configured with the user's Address-Of-Record (AOR).

Service Controllers: The Service Controllers in this case are responsible for monitoring the
service network. Each Service Controller is responsible for monitoring a single service and
report the service's state to the PDP. Monitoring is performed by sending OPTIONS requests to
the service (see also paragraph 4.2.4).

Policy Decision Point: The PDP component collects all information from the Service
Controllers in order to determine the service network state. Following that, it issues appropriate
policies to the provider's proxy, which in this case acts as the PEP of the management system.
Policies in this case are expressed using the Call Processing Language. This assumes of course
that the provider supports CPL script uploading. A straightforward way to upload the CPL
script is attaching it to a REGISTER request made by the Registration Client. Alternatively, any
of the methods mentioned in paragraph 3.2.1 can be used.

The major benefit of this type of SSM operation is that it is very simple and lightweight.
Indeed, the SSM without PEP functionality includes only a number of simple SIP UACs plus
the PDP component, whose complexity depends on the complexity of the policies that are
applied. A UAS may optionally be added so that the SSM can process a number of SIP methods
and respond to them appropriately. Below we summarize the advantages of this architecture.

� As we mentioned above, this type of SSM is simple and has low demands on memory
and processing power. To justify this claim we can consider that this architecture
includes only simple UACs (and optionally a UAS), whereas contemporary SIP
softphones that run on PDAs and laptops include UACs, UASs, voice codecs and
possibly other components that make these UA applications much more demanding than
the SSM proposed in this section.

� The association between the SSM and the managed services can be soft. This means
that the SSM can avoid forcing configurations on the UA application which might be
desirable in cases where there are security or ownership issues.

� The SSM is the only entity in the management system that acts as the PDP. Therefore,
the risk of issuing conflicting policies (as we described in paragraph 3.2.1) by different
PDPs is eliminated.

� Unlike other service policy management architectures, the PDP in our proposal is aware
of the status of the service network. Furthermore, it is able to collect other useful
information (see paragraph 4.2.4) from the services and combine them to issue smarter
and more effective policies.

Although the architecture described in this paragraph allows for advanced service policy
management compared to existing solutions it does have two limitations. First, the architecture
relies on CPL with its known limitations. There might also be cases where providers will be
reluctant to allow the use of future CPL extensions. Second, the service network is open to the
outside world. Services can be accessed by the SIP backbone without the participation of the
provider's proxy. While the security effect of this can be limited to a certain extent, having an
open topology might be unacceptable. This also means that the architecture does not solve the

37

authentication problem discussed in section 4.1.

4.2.3 SIP Service Manager with PEP functionality

To address the problems that we mentioned in the previous paragraph we proceed with our
investigation by adding PEP functionality to the SSM. This means that the SSM in this case is
not only capable of monitoring the network and issuing policies (PDP function), but also
enforcing these policies by actively routing and manipulating the content of SIP messages. As
we will see, this grants the user full control over the services he/she controls, at the cost of
increased complexity of the system.

Before describing this alternative architecture, we need to specify two new terms that we use
for convenience purposes: the public service and the private service.

A public service is a UA application that is configured with a Globally Routable UA URI
(GRUU) either statically or dynamically within an already existing session, as described in
[32]. Since a public service can access (and can be accessed by) the SIP backbone directly, it
does not rely on the SSM for registration or for forwarding messages. SSM's association with a
public service can be soft or hard.

There are various cases where a service may not have a GRUU, either deliberately or because
there are no GRUUs available for some reason. These UAs are configured with a non-globally
routable (private) URI, which is known only to the SSM. We will refer to these services as
private services. A private service uses the SSM for registration and for proxying messages.
The association between the SSM and the private service is always a hard association.

Figure 4.3 shows a block diagram of the SSM with PEP functionality. We observe a number of
components that have been added, which we describe below:

Registrar: The registrar component acts the same way as described in section 2.1. It is
responsible for processing REGISTER requests from the service network and storing the
location information received in the Location Service.

Location Service: The Location Service is a database that stores location information. Its
entries are added or deleted only by the Registrar (write access). The stored information is used
by the Service Controllers in order to locate the services (i.e. get the IP address) they control
(read access). The Location Service may reside on the same network node as the SSM or it
might by a remote database depending on the implementation.

Service Controllers: The Service Controllers in this case have proxy and redirect functionality.
They are responsible for forwarding requests to and from their associated service or redirecting
calls to their associated service when needed. A Service Controller is also able to modify SIP
messages (adding, removing, and modifying headers) when needed. These functions are in
addition to the monitoring function described in the previous paragraph.

Service Controllers must be able to perform stateful proxying and therefore they need to

38

maintain transaction states for all the requests they handle. As messages are routed through the
Service Controller back and forth, pairs of server and client transactions are created. These pairs
together form a map, which is called the transaction map. The Service Controller consults this
transaction map to determine the peer SIP transaction a certain message needs to be routed to
(see Figure 4.4).

Policy Enforcement Point: The Policy Enforcement Point (now residing within the SSM) is
responsible for applying the policy issued by the PDP. Practically, the PEP chooses which of
the Service Controllers will handle an incoming request.

As mentioned, the SSM with PEP functionality is capable of routing messages to and from a
service. We will now describe how routing of outgoing (from the service network to the SIP
backbone) and incoming (from the SIP backbone to the service network) calls is performed.

An outgoing call occurs whenever the user initiates a session from one of the services
associated with the SSM. We can identify two cases: (a) the user initiates a session from a
public service and (b) the user initiates a session using a private service.

As shown in Figure 4.5, when a public service makes an outgoing request, the request is routed
directly to the SIP backbone (via the same or some other SIP provider). The SIP Service

39

Figure 4.3 - SIP Service Manager with PEP functionality

Service
controller 1

Service
controller 2

Service
controller 3

Se
rv

ic
e

ne
tw

or
k

Registration
Client

Registrar

SIP Service Manager

provider's
proxy

Location
Service

O
PT

IO
N

S
re

qu
es

t

O
PT

IO
N

S
re

qu
es

t

O
PT

IO
N

S
re

qu
es

t

PDP

PEP

REGISTER
request from

private service

Service
status

Manager is not involved in this case, unless the user forces the request to be routed via the SSM
using the Route header field. This may be desirable if the user wishes to use some of the SSM's
functionality.

When the request is made from a private service, it is routed through the SSM and more
specifically, through the associated Service Controller, which is responsible for modifying and
forwarding the request appropriately according to the outgoing call policy. In practice, the
outgoing policy determines the SIP proxy that will be the request's next hop and the set of
headers that need to be added to or removed from the request. Note that since the private service

40

Figure 4.4 - Service Controller components

CT 1CT 2

ST 1 ST 2

Transaction
mapOutgoing

request

Service Controller

Response

Outgoing
request

Response

Incoming
request

ResponseResponse

Incoming
request

Redirect
Server

Response

Incoming
Request

CT: Client Transaction
ST: Server Transaction

Figure 4.5 - Outgoing message routing

SIP Service
Manager
(SSM)

SIP backbone
network

provider's
proxy

Private
service

Public
service

Outgoing
request

Outgoing
request

does not use a Globally Routable UA URI (GRUU), modifying the request involves changing
all headers that include the non-GRUU so that they contain the user's well known URI, which is
the Address-Of-Record. This modification makes the request appear as if it was made from the
SSM itself. In this case, the SSM performs a type of multiplexing that resembles the function of
a Network Address Translator (NAT).

For example, suppose that Alice uses a private service configured with the non-GRUU:
sipphone@alicesnetwork with her SSM and sends an INVITE request to initiate a session. The
INVITE message received by the SSM would look like the following:

�,-�%#�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

%��������B�B�������F&����

 �������%F�������'�������)���

"
����A.'���K�����������C����������������'�������
�
(�

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���K�����������C���������������4=*&4&+&*++��
�����
�@	���

��3����F'�����������
��

The SSM would have to change the From header so that the request becomes like the
following:

�,-�%#�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

%��������B�B�������F&����

 �������%F�������'�������)���

"
����A.'���C�������'�����
�����
&����

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���K�����������C���������������4=*&4&+&*++��
�����
�@	���

��3����F'�����������
��

The display names might, of course, differ. The Service Controller, since it acts as a proxy in
this case will also manipulate the Via header to include the SSM's location so that requests will
be routed the same way backwards in order to perform the appropriate de-multiplexing. Note
that the Contact header is not modified since it contains location information that is needed to
establish a session.

Responses to outgoing requests are routed in a similar manner. Responses to outgoing requests
made by public services pass through the SSM only if the Route header field was included in
the request and routing them towards the public service is simple, since no de-multiplexing is
needed. For private services the Service Controller de-multiplexes the request by changing
URIs the same way as in requests when needed. In both cases the Service Controller uses the
transaction map to route messages to each direction.

41

Routing of incoming requests is shown in Figure 4.6. Since the SSM is configured with the
user's Address-Of-Record, all requests targeted to that user end up at the SSM. This is one of
the benefits of the system, because the user may control as many services as he/she needs
without having to inform the caller of their existence. This means that a caller will use the same
AOR when he/she tries to access the callee's phone or fax, without having to know the specific
URIs of these services. The decision on where to route the request is left up to the user
controlling the SSM. However, there might be cases where this type of routing is not required
and the caller wishes to contact the callee explicitly at a specific service. This poses no
difficulty since, for public services, the callee can be contacted directly from the SIP backbone
provided that the caller knows the URI of the public service (dashed arrow in Figure 4.6).

At this point, the SSM, having received the incoming request, must decide upon the appropriate
service (or services in the case of forking) that will handle the request, in this way applying the
policy for incoming calls. Policy application is discussed in more detail later in this chapter.

After deciding the set of services that will handle the request, the PEP passes it to the
corresponding Service Controllers. When a Service Controller receives an incoming request it
has two options. If the associated service is public, the Service Controller can choose to either
proxy or respond with a 302 Moved Temporarily response, which will redirect the call to the
public service (redirect server function), or forward the request itself (proxy function). In the
case of a private service, the Service Controller can only forward the request consulting the
Location Service of the SSM.

As in the outgoing call case, the Service Controller needs to modify a request appropriately
when forwarding it. However, there is no need for multiplexing of incoming calls. All a Service
controller has to do is just change the Request-URI of the request in order to match the URI of
its associated service. The To header does not need to be changed as it represents the “logical”
recipient of the request, who may not match the actual recipient. For more details on this the
reader should refer to [2].

42

Figure 4.6 - Incoming call routing

SIP Service
Manager
(SSM)

SIP backbone
network

provider's
proxy

Private
service

Public
service

Incoming
request

Incoming
request

Incoming
request

For example, suppose that Alice calls Bob, who uses his SSM to manage incoming calls. Alice
only knows Bob's AOR, i. e. bob@company.com. The incoming INVITE request received by
the SSM looks like the following:

�,-�%#�����B�B�������F&�������)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

%��������B�B�������F&����

 �������%F�������'�������)���

"
����A.'���K�����������C����������������'�������
�
(�

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���K�����������C���������������4=*&4&+&*++��
�����
�@	���

��3����F'�����������
��

After the PEP decides on where to forward the request, the associated Service Controller
queries the Location Service about the IP address of the service. Provided that it gets a positive
reply it forwards the request to the service changing the Request-URI as shown below:

�,-�%#�����B�B�4=*&4+&+&4>+����)*&+

-�������)*&+)�3��4=*&4&+&*++�
��
�

 �����*?=+��,-�%#

%��������B�B�������F&����

 �������%F�������'�������)���

"
����A.'���K�����������C����������������'�������
�
(�

 �''��3��7**7???4�4=*&4&+&*++

 �������!��6����4>?

 ��������A.'���K�����������C���������������4=*&4&+&*++��
�����
�@	���

��3����F'�����������
��

As we can see, positioning the system's PEP within the SIP Service Manager introduces
considerable complexity to its function. The gain of course is that the user is now in full control
of how his/her associated services can be accessed and used. This type of a SSM is essentially a
standalone SIP provider of its own with the difference that it relies on another provider to
connect to the SIP backbone. The architecture's benefits are listed below:

� This solution includes all the benefits that the SSM without the PEP functionality has,
though, as we mentioned, it is not as simple. If the user wishes to avoid routing of
certain calls he can still configure the SSM to issue policies via CPL.

� The system proposed makes minimal assumptions about the provider. No special
services are required from the provider other than simple SIP routing. This means that
the system is totally independent of the provider from a policy management perspective.
Of course, the user still relies on the SIP backbone to handle his/her outgoing calls as
desired.

43

� Each user is represented in the SIP backbone by a single, well-known URI (the AOR),
independent of the UA application he uses, provided that the UA application is used as
a private service of course. Thus, we can say that everything within the private service
network is seen as a single UA from the outside world.

This type of SIP Service Manager operation, although powerful, has a number of drawbacks.
Apart from its relative complexity, the SSM in this case is a single point of failure. If the SSM
is down for some reason, the private services lose SIP connectivity to the backbone. In the first
architecture we described, this is not the case as all services remain accessible (although the
user will need a quick solution to cancel an annoying policy from his/her provider's proxy). For
this reason, unless there is some type of system redundancy scheme (e.g. another SSM takes
over when the other is down), positioning the SSM with PEP functionality on unreliable nodes
(i.e. nodes that are likely to go down or lose connectivity) should be avoided.

4.2.4 Monitoring services

Monitoring in both SIP Service Manager types is performed via SIP using the OPTIONS
request sent by each of the Service Controllers to the associated service (see Figures and). As
mentioned, an OPTIONS request must produce the same response as an INVITE request.
Therefore, the response to the OPTIONS request should give information about:

� The operational status of the service (up, down, busy, authentication requirements, and so
on).

� The methods that can be processed by the UA through the Allow header.

� The media type of service. This information is contained in the SDP payload that is attached
to the response.

In addition, in [33] there is a proposal that a UA can convey information about its capabilities
through the Contact header field. It is also noted that the UA should include this information
when responding to an OPTIONS request. However, [33] is still an Internet Draft and this
function is not supported (as far as we know) from User Agents yet. Furthermore, similar
extensions maybe proposed so that the UA can convey even more information such as context
information which might be very useful for implementing advanced, context-aware services. In
the latter case the UA might include a Context Data eXchange Protocol (CDXP) ([34]) payload
in a response to the OPTIONS request.

Using the information mentioned above, the Service Controller can determine the status of the
associated service. A Service Controller may probe the service at regular intervals or after a
request made by the SSM, when a new message is received from the SIP backbone. The latter
mechanism, although it makes better utilization of the available bandwidth, might considerably
decrease the speed by which a routing decision is made by the SSM. Especially in the case
when the service is not operating, the Service Controller will have to wait for the OPTIONS
request to time out before it determines that the service is down, a procedure which in normal
cases takes about 15 – 20 seconds. On the other hand, monitoring a service at regular intervals

44

obviously causes extra traffic to and from the SSM. A typical uncompressed OPTIONS request
is 535 bytes whereas a 200 OK response is around 700 bytes (depending on the headers used
and the additional payloads). Therefore, if an SSM monitors one service with OPTIONS
requests every 10 seconds, the total traffic generated on a daily basis is around 10 MB, which is
unacceptable if the cost of the link is based on the traffic generated (i. e. the user is charged per
byte). For this reason, care must be taken when the SSM monitors services using such links.
Monitoring in these cases must be performed at larger polling intervals or it must be disabled
completely, and the user may provide status information to the Service Controller manually (i.e.
by configuration).

4.3 4.3 Usage scenariosUsage scenarios

In this section, we investigate ways in which the two SSM types described previously in this
chapter can be used, so that we give a more practical approach to our design.

4.3.1 SSM without PEP on a portable device

As we saw, the SSM without PEP is a very simple and lightweight SIP UA. Therefore, it is
suitable to use it on a portable device. Furthermore, the SSM in this case is not a single point of
failure: if the portable device is down, it does not cause harm to the service network and
services can still be accessed and used.

For example, suppose that Bob, running a SSM on his PDA arrives at his company. Using a
discovery mechanism, he discovers two fax machines that are SIP enabled and receives this
information on his PDA. However, by the time they are discovered he observes (using the
monitoring functionality of the SSM) that they are both busy and therefore not currently usable.
Later his SSM reports that they are available and uploads a CPL script to Bob's proxy directing
fax calls to the company's fax machines. In general, our user can upload policies according to
the status of the network reported to him by the SSM.

4.3.2 SSM with PEP on a non-portable device

As we mentioned previously, the SSM with PEP functionality can be viewed as a standalone
SIP provider. Its increased policy management capability can be desirable by users that have
high demands on policy management such as routing per media type, which is not currently
supported by CPL. In these cases a user can use this type of SSM in the same way that simple
answering machines are used today. The SSM can be positioned at home and be connected to
the wired network, directing calls according to the user's commands. This scenario will also
require that the SSM can be managed remotely, for example via a Web-based interface.

Furthermore, this type of SSM can be even more interesting for groups of users, such as
companies. A company may have numerous SIP User Agents such as phones, videophones, fax
machines, User Agents that run on cameras, instant messengers, etc. Delegating routing or

45

management of all these devices to the SIP provider might not be desirable or efficient.
Therefore, a locally located system such as the SSM is more suitable. In this case the SSM's
operation resembles that of a Private Branch Exchange (PBX).

46

5. 5. IIMPLEMENTATIONMPLEMENTATION ANDAND RESULTSRESULTS

In this chapter we present our implementation of the SIP Service Manager (SSM) with Policy
Enforcement Point (PEP) functionality. The main goal of our implementation is to prove that
such architectures can be realized and to identify the practical problems that arise when
implementing these architectures.

5.1 5.1 Goals of the implementationGoals of the implementation

So far we have taken a theoretical approach to user-side service policy management. However,
in practice there can be numerous interesting issues that might arise such as timer manipulation,
calculation of SIP transaction IDs, header modification, and so on. For this reason, we
proceeded with our research by implementing parts of the architectures that we discussed in the
previous chapter. In our implementation we focused on the second of the proposed
architectures, the SIP Service Manager with Policy Enforcement Point functionality. The reason
for our focus on is this architecture is that it includes features that require practical study,
especially the SIP URI multiplexing and de-multiplexing function described in paragraph 4.2.3.

The main goal of the implementation is to prove that the architecture described above can exist
and operate in practice (i.e., a proof of concept). Moreover, the implementation aims to identify
practical issues and problems that need to be taken into consideration when implementing such
architectures.

On the other hand, parts that were not of major importance for our study were excluded from
our implementation. These parts include system security and service discovery. Although
performance is also not a part of our main focus, we attempt to estimate the resource
requirements, especially in memory and processing power, of such a system.

5.2 5.2 Methods and toolsMethods and tools

We chose to implement the SIP Service Manager with PEP functionality using the Java
programming language and more specifically the Java 2 Standard Edition (J2SE). The reason
for this choice is that Java provides a means to quickly develop programs that work and it suits
situations where performance is not the highest priority. Furthermore, the platform portability
feature of the language makes porting the code to various platforms easy. Finally, there is an
open source Application Programming Interface (API) for SIP, developed by the National
Institute of Standards and Technology (NIST) [35], that was available for free and written in
Java. This API is well documented and easy to use, while it provides ways for low level SIP
message manipulation and forwarding.

To perform our tests, we used various tools such as SIP soft phones, hardware phones, and also
provider-side entities such as registrars and proxies. Our tests were performed using KPhone
(versions 3.14 and 4.01), X-lite (version 2.0) and linphone (version0.12.0) User Agents as well

47

as the a Cisco SIP phone 7960 with SIP software installed (firmware version P0S30200).
KPhone is an open-source SIP User Agent for the K Desktop Environment (KDE) of the Linux
operating system developed by Wirlab [36] and acts as a telephone and videophone. X-lite is a
free SIP soft phone for Windows, Windows CE, and MacOS operating systems and it is
developed by Xten [37]. Finally, linphone is another open source SIP soft phone for the
GNOME desktop environment developed by Simon Morlat, Aymeric Moizard, and Sharath K.
Udupa and is available at [38].

For the provider side functions (registrars, proxies, etc.) we used VOCAL, which is an open
source SIP server system that includes proxies and a registrar developed by Vovida [39] and a
very simple registrar-proxy-presence server, developed as open source software by NIST [35].

5.3 5.3 Software designSoftware design

Figure 5.1 illustrates the structure of the Java code. As we can see, many of the SIP Service
Manager components that we described in the previous chapter, such as the SIP Registrar and
the Service Controller are also Java objects. Note that .java files listed in italics are interfaces
and not objects. Some of these parts belonged to NIST's registrar-proxy-presence server and
were added to our implementation with a few modifications. One of the features that we
focused our attention on was code reusability: each of the important components can be used
independently or in other applications without modifying the code they contain. In this section
we will provide an overview of the code for details the reader can refer to the HTML-based
documentation or the code itself.

sip package: This is the main package of our implementation. The only object contained here is
the RegistrationClient, a simple User Agent Client (UAC) that is responsible for registering
with a registrar.

applications package: This package contains Java main objects that are used to start and test
the corresponding component. Each of these objects is used to start and initialize the SIP stack
and the corresponding component. The most complex of these is of course the SSMTestApp
which is used to start the SIP Service Manager, which in turn initializes the needed components.

location package: This package contains all objects related to the location functions of SIP
applications. The LocationServiceClient is an interface that is used by applications to access the
location service. In our implementation, the location service is a simple object, the
LocalLocationService, that runs locally, within the SSM. A Binding is one of the entries of the
LocalLocationService and maps URIs to a number of contact addresses, that contain the IP
address of the resource. Finally, the LocalLocationService is able to maintain a number of
LocalLocationServiceListener objects in order to notify them for special events.

registrar package: The registrar package contains a single object, the Registrar. This object is
capable of processing REGISTER requests and uses a LocationServiceClient to store location
information to a location service.

ssm package: The ssm package contains strictly SSM related objects. A SIPService contains

48

information about a service associated with the SSM. The ServiceController is responsible for
monitoring and forwarding messages to its associated service as described in the previous
chapter. Finally, the SSM object is the core object of a SIP Service Manager. It is responsible
for receiving messages from the stack and passing them to the appropriate component.

49

&
L�����
����L���(��
��������L���H���I
������������L������
����������������M�����6���
����� '����&H���
����������������M������'��������
����������������M���M�����6����
 '����%���.��&H���
����������������M���M�����6���
�
%���.��&H���
����������������M���M���������'�B�'��F%���.��&H���
����������������M���M������%���.��&H���
����������������M���L�����
���� ���
�''�
%���.��&H���
����������������M���'�������
����������������M���M���0�����6&H���
����������������M���M���0�����6#���F#I�������&H���
����������������M���M���#I��
��%���
%�����''#I�������&H���
����������������M���M���!���'!���������
����&H���
����������������M���M���!���'!���������
���� '����&H���
����������������M���M���!���'!���������
����!������
&H���
����������������M���M������������	
���	�
�	�������
����������������M���L���,��	�����#I�������&H���
����������������M���
�6���
�

����������������M���L�����6���
�
&H���
����������������M������
����������������M���M��� �	'�,��3���
������������3�
������#I�������&H���
����������������M���M��� �	'�,��!�������
����#I�������&H���
����������������M���M��������
����&H���
����������������M���M������&H���
����������������M���M������ ��8�6	
�����&H���
����������������M���M�����
���� ���
�''�
&H���
����������������M���L�����'��F
����������������M�������M�����
��������
����������������M�������L�����'���!�����'��F&H���
����������������M�������
����������������M���M���3	��F���
�.��&H���
����������������M���L���3	��F�.�&H���
����������������L���	��'
��������������������M���N�����'&H���
��������������������M����
�IF���'�����&H���
��������������������M������	���"�

�
��
&H���
��������������������M������	���-�'�����
&H���
��������������������M�����������"�

�
��
&H���
��������������������M�������'���	��
&H���
��������������������L���%
������������&H���

Figure 5.1 - Java code structure

test package: The test package is used only for testing. It consists of the DummyUAS object
which is a simple UAS that replies with a 200 OK response to every request it receives. The
DummyStartApp is a main object that starts up a DummyUAS. The use of these objects is
explained in paragraph 5.4.3.

policy package: This package contains incoming call policy related objects. When a new
incoming request is received, the SSM activates an object that implements the Policy interface
in order to decide which of the ServiceController objects (and eventually which of the
associated services) will handle the request. For our implementation, we also implemented the
SelectLastPolicy object, which is a very simple policy that selects the most recently added
ServiceController to handle the new incoming request. More policies can be implemented in a
similar manner, in this way forming a policy repository, as described in section 3.1.

util package: The package contains various utility objects that are used by other objects for
specific tasks, such as message forwarding and validation. Large parts of the code contained in
these objects follows the coding of similar objects of the proxy developed by NIST. However,
the objects we provide here were designed so that they can be as reusable as possible, without
making assumptions about the object that uses them.

5.4 5.4 Testing and resultsTesting and results

It should be noted that performing tests on such SIP architectures is not always as easy or
straightforward as it may seem. There are various problems that frequently occur, having to do
with how each developer and implementor interprets the SIP specification ([2] and related
RFCs). For example, we mentioned that the Service Controllers perform monitoring using the
OPTIONS method, which allows them to retrieve information about the media supported by the
UA application. However, not all UAs respond the same way. For example, X-lite version 2.0
does not include a SDP payload with the 200 OK message while KPhone does and therefore the
media type can be detected. Other UAs do not even support the OPTIONS method (though the
SIP specification states that the OPTIONS method is mandatory). Another example is the Cisco
phone we used, when configuring the SIP proxy with a Fully Qualified Domain Name (for
example sip.ourlab.edu), instead of registering with the proxy as phone@sip.ourlab.edu it first
resolves the FQDN using DNS and then it tries to register as phone@192.0.0.10, which may
cause some problems to the proxy when routing messages.

On the other hand, since the protocol is still under development from the IETF, there are
various extensions being released frequently as new Internet Drafts (such as [33]). Some UAs
and servers are quick to support them, but others are not. Finally, free SIP tools such as the ones
we mentioned above have not been heavily tested or widely used and therefore software
malfunctions (internal errors, crushes) are frequent. It would have been possible to try to detect
and correct these errors, since many of them are open source. However, this is a
time-consuming process, and outside the scope of our study. However, we believe that as the
Session Initiation Protocol becomes more mature and widely used, these problems, both
interoperability and software errors, will be resolved.

50

5.4.1 Multiplexing test

One of the major features of the SIP Service Manager is its multiplexing functionality, i.e. the
ability to receive messages from the service network and changing appropriate headers to make
them appear that they are generated from the SSM itself and, most importantly, identifying the
responses and forwarding them back to the appropriate service. To perform this test, we use the
simple setup shown in Figure 5.2. Note that the connections shown imply SIP connectivity. All
the nodes are of course connected to each other at the IP level.

This setup shows how two User Agent applications can run on the same machine (listening on
different ports of course) and use a SIP Service Manager to connect to the SIP backbone with a
single Address-Of-Record.

In this setup the UAs running on Node A are private services associated with the SIP Service
Manager that runs on the same node. Therefore they register with the SSM on startup, and rely
on it to forward the SIP messages. We perform the test by calling the Cisco IP phone and the
KPhone on node C simultaneously. We observe that the SSM is capable of multiplexing their
requests and de-multiplexing the responses.

Problems arise when forwarding BYE and ACK requests. In the SIP example we gave in
section 2.1, the end-nodes sent these requests directly. Many UAs (including the ones we use in
our setup) often use their proxy to forward these requests, something which is indeed allowed
by the SIP specification. However, since it is not certain if the proxies will receive these
requests or not (as they are not part of the corresponding INVITE transaction), the SSM has to
create a new transaction when it receives them. The SSM must make sure that these requests are
routed towards the right destination, which is the same as the destination as that of the INVITE
message that created the call. We found that there are two ways to solve the problem: either the
SSM must maintain a dialog state for the peer to peer communication, or forward the BYE or
ACK request using the Route header that must be included in these requests. In our
implementation we chose the second way, because it was simpler.

51

Figure 5.2 - Multiplexing test

SIP Service Manager: port 5070
KPhone: port 5060
linphone: port 5065

NIST proxy/registrar: port 5060

KPhone: port 5060Cisco SIP phone
Model 7960 (port 5060)

Outgoing
call

Outgoing
call

Node A

Node B
Node C

5.4.2 Policy enforcement test

The other main function of the SIP Service Manager is to apply policies to incoming calls and
route them accordingly. In order to test the policy enforcement functionality we have
implemented a very simple policy that always selects the more recently added associated
service; provided that it is up (we can determine that using the monitoring function). The idea
behind this policy is that the SSM assumes that the user will be closer to the more recently
added service and will be able to answer the call. The setup for this test is shown in Figure 5.3.

As we initiate the call from Node C we observe that the SSM always chooses the more recently
added service. Of course more complex policies can be implemented simply by programming
new objects that implement the Policy interface as we mentioned in the previous section.

5.4.3 Scalability tests

In paragraph 4.2.3 we mentioned that the SIP Service Manager with PEP functionality can be
used by groups of people in companies or homes. In this case the number of managed User
Agents can grow considerably. Although the performance of the application, since it is
implementation dependent, is not our main focus, we will try to estimate the system's scalability
in terms of memory by adding Service Controllers and observing their memory usage.

To do this, we use several DummyUAS objects running on one machine and listening on
different ports. Then, we use our SSM to monitor these services sending OPTIONS requests at
an interval of 10 seconds. Our results on memory usage are shown in Figure 5.4. The small
squares represent our measurements while the line is a spline interpolation of those
measurements. We observe that memory usage increases proportional to the number of
services, something that we expected. We can also see that this increase is not a straight line,
but fluctuates. This is because the Service Controllers contain timer threads that send the

52

Figure 5.3 - Policy enforcement test

SIP Service Manager: port 5070
KPhone: port 5060
linphone: port 5065

NIST proxy/registrar: port 5060

KPhone: port 5060

Incoming
call

Incoming
call

Node A

Node B
Node C

OPTIONS requests. If it happens that there are many Service Controllers transmitting or
processing responses at the time of the measurement, then the memory usage is higher.
However, we can observe that usage increases at a rate of 10.5 to 11 Kbytes per service. If the
SSM is being used by a single user with 20 services, then it would require 470 Kbytes. If the
SSM is used in a company of 500 employees with an average of 20 User Agents per user it
would require 23500 Kbytes (22 MB). We can see that the memory demands are relatively low.

However, the proposed system can have scalability problems that are related to the processing
power of the machine that the SSM is running on. To estimate this limit we will perform
another test, measuring the number of OPTIONS requests and OK responses are sent and
received by the SSM, as the number of monitored services increases. Note that the results of
this test highly depend on the processing power of the machine the SSM is running on. For this
reason we performed two tests using two different machines.

For the first test, we used a PC with Intel Pentium 4 at 1.7 GHz, and RAM memory of 256 MB.
The operating system we used is Linux (kernel version 2.4) with Java Runtime Environment
version 1.4.2_3, from Sun Microsystems. The monitoring interval in this test was again 10
seconds. Our measurements are shown in Figure 5.5. We observe that after the limit of 600
services the performance degrades dramatically. Due to thread starvation, the Service
Controllers were not able to send the appropriate number of requests and the number of
responses that are being processed by them is even less. Note that the CPU usage after that
point was constantly 100 %.

For our second test we used another PC with Intel Pentium 4 at 2.8 GHz, and RAM memory of
3530 MB. As we see, the performance of the second machine is about 60% better than that of

53

Figure 5.4 - Memory usage against the number of managed services

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

400000

425000

450000

475000

Managed services

M
em

or
y

us
ag

e
(b

yt
es

)

54

Figure 5.5 - Messages sent and received against the number of
managed services

100 200 300 400 500 600 700 800

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

SSM on P4 1.7 GHz, 256 MB RAM

Sent requests
Processed responses
Theoretical behavior

Managed services

N
um

be
r o

f m
es

sa
ge

s
se

nd
/re

ce
iv

ed
 in

 6
 m

in

200 400 600 800 1000 1200 1400

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000
42500
45000
47500
50000
52500
55000

SSM on P4 2.8 GHz, 3530 MB RAM

Sent requests
Processed responses
Theoretical behavior

Managed services

N
um

be
r o

f m
es

sa
ge

s
se

nt
/re

ce
iv

ed
 in

 6
 m

in

the first one, which is an expected result: The ratio of the managed services is approximately
equal to the the ratio of the processor speed:

1000
600

�
2.8
1.7

From the scalability tests we conclude that the memory demands of the SSM we implemented
are low, hence the system scales approximately linearly with processing power. This means that
as the service network grows, the demands on processing will grow as well, and the machine
where the SSM is running on will be short of resources. This is a typical behavior in
management systems that consist of a single central management node that is polling the
managed entities. For this reason, in the case where the SSM is used by groups of people (i. e.
in companies) a hierarchical architecture will be required, where an SSM monitors other SSMs,
which in turn monitor the services.

55

6. 6. CCONCLUSIONSONCLUSIONS ANDAND FUTUREFUTURE WORKWORK

In this thesis we investigated means for user-side service policy management in SIP networks.
We observed that advanced architectures are possible at the cost of complexity. In this last
chapter we summarize our findings and suggest directions for future work.

6.1 6.1 FindingsFindings

Our initial assumption in this document was that the future user will need to use various types
of services simultaneously, therefore, various User Agents will constitute the user's personal
service network. The motivation for this thesis was to find ways so that this personal service
network can be managed efficiently in order to improve the user's communication options and
overall control of the system.

We proposed two architectures. Both of these architectures rely on a central entity, which we
named SIP Service Manager (SSM). The main task of the SSM in both cases was to monitor the
service network and issuing policies according to its status. In the first architecture, the system
partially relies on the provider, using one of its proxies as a Policy Enforcement Point (PEP)
and uploading policies to it, which are expressed using the Call Processing Language ([21] and
[22]). In the second one the management system is standalone, as the SSM acts also as a PEP.
The advantage of the first proposal is that it is simple and lightweight. However, the system in
this case is bound to the limits of CPL for its policies and assumes that the provider supports
CPL script uploads. The second architecture does not have these limitations. It also allows User
Agents that do not have a Globally Routable UA URI (GRUU) (we referred to these as private
services) to connect to the SIP backbone. However, the system in this case is more complex and
the SSM in this case is a single point of failure since, if it malfunctions, private services cannot
access the SIP backbone.

To prove our concept, we implemented our second and more complicated proposal. Based on
this implementation, we found that architectures such as this can exist and operate in practice.
In addition, the implementation substantially helped evaluate our proposed design. It also
helped detect possible problems that arose, especially when the SSM acts as a proxy. Finally,
our scalability tests showed that although the memory demands of the SSM are low the
demands on the processing power can be quite high when service networks are large.

6.2 6.2 Future workFuture work

In paragraph 4.2.4 we mentioned that the monitors, using the OPTIONS request are able to
detect the status of the managed service (i.e. if it is operating or not) along with a number of
other attributes such as methods allowed, media types and CODECS supported (the latter
information is contained in the SDP payload), and so on. We also mentioned that the SSM could
take advantage of protocols that are able to express more complicated data, such as context data,
and enforce policies that are context-aware rather than media-aware. In this case the SSM will

56

collect all context data and issue policies accordingly. To transport the data, managed User
Agents can use the Context Data Exchange Protocol (CDXP) proposed in , either separately or
as SIP payload like SDP. Therefore, future work can involve context-aware service policy
management, where the PDP of the management system will be able to issue policies according
to context data. Moreover, in the case where more advanced management is desired, the system
could use specialized management protocols such as the Simple Network Management Protocol
(SNMP) ([23] and related RFCs). In that case, management information will be structured as
Management Information Bases (MIBs). However, It should be noted that the introduction of
more protocols will increase the complexity of the system, as in that case both the SSM and all
managed UAs must support them.

In addition, a natural continuation of the proposals we made in this thesis will be to combine the
operation of the SSM with that of a service discovery method. The service discoverer will
discover the available services and the SSM can handle their management.

In paragraph 4.2.4, we discussed the additional traffic generated by the monitoring function of
the SSM. Further research can investigate possible adaptive monitoring schemes so that the
generated traffic is reduced, while keeping the status information of the service network from
growing stale.

In the beginning of chapter 3.3, we mentioned that security was an important issue when
designing service policy management systems. However, in both our design and
implementation we did not discuss security implications of such systems. Research in this
regard should involve AAA, SDP message protection, protection from Denial-of-Service
attacks, and so on.

The SSM can be viewed as a User Agent (and therefore as a service) of its own. Thus, it might
be convenient if this special type of UA can be managed by other SSMs. The monitored SSM
can in this case aggregate the information of its own service network and report it to the SSM
that monitors it.

Moreover, in our first proposal for a SIP Service Manager, we claimed that CPL was too
limited. Indeed, CPL currently is only able to process SIP and H.323 headers. In order to
expand its functionality, there must be proposals that take other protocols into consideration so
that more complicated policies can be expressed and enforced. Using an extended CPL, one
could implement our first proposal of the SSM that uses CPL, and compare it with the second.

Finally, since processing demands can grow fast in large service networks, future research may
include a study on hierarchical architectures of SSMs, so that processing is distributed more
evenly.

57

RREFERENCESEFERENCES

[1] C. Perkins, "IP Mobility Support for IPv4", IETF, RFC 3220, August 2002.
[2] J.Rosenborg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.Handley

and E. Schooler, "SIP: Session Initiation Protocol", IETF, RFC 3261, June 2002.
[3] T. Berners-Lee, R. Fielding and L. Masinter, "Uniform Resource Identifiers (URI): Generic

Syntax", IETF, RFC 2396, August 1998.
[4] R. Sparks, "The Session Initiation Protocol (SIP) Refer Method", IETF, RFC 3515, April

2003.
[5] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema and D. Gurle, "Session Initiation

Protocol (SIP) Extension for Instant Messaging", IETF, RFC 3428, December 2002.
[6] J. Rosenberg, "The Session Initiation Protocol (SIP) UPDATE Method", IETF, RFC 3311,

September 2002.
[7] S. Donovan, "The SIP INFO Method", IETF, RFC 2976, October 2000.
[8] J.Rosenberg and H. Schulzrinne, "Reliability of Provisional Responses in the Session

Initiation Protocol (SIP)", IETF, RFC 3262, June 2002.
[9] A. B. Roach, "Session Initiation Protocol (SIP)-Specific Event Notification", IETF, RFC

3265, June 2002.
[10] M. Handley and V. Jacobson, "SDP: Session Description Protocol", IETF, RFC 2327,

April 1998.
[11] H. Schulzrinne, "Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for

Session Initiation Protocol (SIP) Servers", IETF, RFC 3361, August 2002.
[12] H. Schulzrinne, "Dynamic Host Configuration Protocol (DHCPv6) Options for Session

Initiation Protocol (SIP) Servers", IETF, RFC 3319, July 2003.
[13] A. Gulbrandsen, P. Vixie and L. Esibov, "A DNS RR for specifying the location of

services (DNS SRV)", IETF, RFC 2782, February 2000.
[14] 3GPP home page, URL: http://www.3gpp.org accessed February 2004.
[15] 3GPP, "Service requirements for the Internet Protocol (IP) multimedia core network

subsystem; Stage 1", TS 22.228 v6.5.0, January 2004.
[16] 3GPP, "IP Multimedia Subsystem (IMS); Stage 2", TS 23.228 v5.11.0, December 2003.
[17] 3GPP, "Internet Protocol (IP) multimedia call control protocol based on Session Initiation

Protocol (SIP) and Session Description Protocol (SDP); Stage 3", TS 24.229 v5.7.0,
December 2003.

[18] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan and A. Sastry, "The COPS (Common
Open Policy Service) Protocol", IETF, RFC 2748, January 2000.

[19] 3GPP, "Virtual Home Environment/Open Service Access", TS 23.127 v6.0.0, December
2002.

[20] 3GPP, "Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 4",
TS 23.078 v6.0.0, January 2004.

[21] J. Lennox and H. Schulzrinne, "Call Processing Language Framework and Requirements",
IETF, RFC 2824, May 2000, expires February 2004.

[22] J. Lennox, X. Wu and H. Schulzrinne, "CPL: A Language for User Control of Internet
Telephony Services", IETF, Internet Draft , August 2003, expired.

[23] D. Harrington, R. Presuhn and B. Wijnen, "An Architecture for Describing Simple
Network Management Protocol (SNMP) Ma", IETF, RFC 3411, December 2002.

[24] C. Newman and J. G. Myers, "ACAP -- Application Configuration Access Protocol",
IETF, RFC 2244, November 1997.

[25] M. Wahl, T. Howes and S. Kille, "Lightweight Directory Access Protocol (v3)", IETF,

58

RFC 2251, December 1997.
[26] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler and D. Noveck,

"Network File System (NFS) version 4 Protocol", IETF, RFC 3530, April 2003.
[27] J. Rosenberg, H. Schulzrinne and P. Kyzivat, "Caller Preferences for the Session Initiation

Protocol (SIP)", IETF, Internet Draft , October 22 2003, expires April 21 2004.
[28] H. Schulzrinne and J. Polk, "Communications Resource Priority for the Session Initiation

Protocol (SIP)", IETF, Internet Draft , February 15 2004, expires August 15 2004.
[29] P. Asprino, A. Fresa, N. Gaito and M. Longo, "A layered architecture to manage complex

multimedia services", Proceedings of the 15th International Conference on Software
Engineering and Knowledge Engineering San Francisco Bay, USA, June 2003.

[30] R. Cascella, "Reconfigurable Application Networks through Peer Discovery and
Handovers", Royal Institute of Technology (KTH), Master of Science Thesis , June 2003.

[31] K. Sollins, "The TFTP Protocol (Revision 2)", IETF, RFC 1350, July 1992.
[32] J. Rosenberg, "Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in

the Session Initiation Protocol (SIP)", IETF, Internet Draft , February 15 2004, expires
August 15 2004.

[33] J. Rosenberg, H. Schulzrinne and P. Kyzivat, "Indicating User Agent Capabilities in the
Session Initiation Protocol (SIP)", IETF, Internet Draft , December 24 2003, expires June 23
2004.

[34] A. Wennlund, "Context-aware Wearable Device for Reconfigurable Application
Networks", Royal Institute of Technology (KTH), Master of Science Thesis , April 29 2003.

[35] Projet IP telephony / VOIP, URL: http://snad.ncsl.nist.gov/proj/iptel/ accessed March 4
2004.

[36] WIRLAB - Network Research Center, URL: http://www.wirlab.net/ accessed March 4
2004.

[37] Xten.com, URL: http://www.xten.com/ accessed March 4 2004.
[38] linphone.org, URL: http://www.linphone.org/ accessed March 7 2004.
[39] Vovida.org, URL: http://www.vovida.org/ accessed March 4 2004.

59

AAPPENDICESPPENDICES

Appendix A – AbbreviationsAppendix A – Abbreviations

AOR Address-Of-Record
API Application Programming Interface
AVP Attribute Value Pair
CDXP Context Data eXchange Protocol
CEPT Conference for European Posts and Telecommunications
CODEC Coder Decoder
COPS Common Open Policy Service
CSCF Call Session Control Function
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
EDGE Enhanced Data Rates for GSM Evolution
FQDN Fully Qualified Domain Name
GERAN GSM/EDGE Radio Access Network
GGSN Gateway GPRS Support Node
GPRS General Packet Radio Service
GRUU Globally Routable UA URI
GSM Global System for Mobile communications
GUI Graphical User Interface
HSS Home Subscriber Server
HTTP Hyper Text Transfer Protocol
I-CSCF Interrogating CSCF
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IP Internet Protocol
ISC IMS Service Control
ISDN Integrated Services Digital Network
ISUP ISDN User Part
J2SE Java 2 Standard Edition
KDE K Desktop Environment
LAN Local Area Network
MIB Management Information Base
MIME Multipurpose Internet Mail Extensions
NAT Network Address Translator
NIST National Institute of Standards and Technology
P-CSCF Proxy CSCF
PBX Private Branch Exchange
PC Personal Computer

60

PCM Pulse Code Modulation
PDA Personal Digital Assistant
PDF Policy Decision Function
PDP Policy Decision Point, Packet Data Protocol
PSTN Public Switched Telephony Network
QoS Quality of Service
RAM Random Access Memory
RFC Request For Comments
RMI Remote Method Invocation
RR Resource Record
RTP Real-Time Protocol
S-CSCF Serving CSCF
SDP Session Description Protocol
SDPng SDP next generation
SIP Session Invitation Protocol
SRV DNS Resource Record used to locate services
SS7 Signaling System No. 7
SSM SIP Service Manager
TFTP Trivial File Transfer Protocol
THIG Topology Hiding Inter-network Gateway
TLS Transport Layer Security
UA User Agent
UAC User Agent Client
UAS User Agent Server
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier, Uniform Resource Indicator
UTRAN UMTS Terrestrial Radio Access Network
WAP Wireless Access Protocol
WLAN Wireless LAN
XML eXtensible Markup Language

61

Appendix B – List of FiguresAppendix B – List of Figures

Figure 2.1 - SIP Example Registration..14
Figure 2.2 - SIP example call initiation...17
Figure 2.3 - SIP example call termination..21
Figure 2.4 - IMS overview...23
Figure 2.5 - SIP call routing in the IMS...25
Figure 3.1 - Generic policy management model..27
Figure 3.2 - Service policy management categorization...29
Figure 3.3 - Service policy management using CPL..31
Figure 3.4 - CPL script upload to the S-CSCF...32
Figure 4.1 - SIP Service Manager overview..35
Figure 4.2 - SIP Service Manager without PEP functionality..36
Figure 4.3 - SIP Service Manager with PEP functionality...39
Figure 4.4 - Service Controller components...40
Figure 4.5 - Outgoing message routing..40
Figure 4.6 - Incoming call routing...42
Figure 5.1 - Java code structure...49
Figure 5.2 - Multiplexing test..51
Figure 5.3 - Policy enforcement test..52
Figure 5.4 - Memory usage against the number of managed services..53
Figure 5.5 - Messages sent and received against the number of managed services....................54

62

Appendix C – SIP Headers Appendix C – SIP Headers

Header Field Name Description

Accept Specifies acceptable media types.

Accept-Encoding Specifies acceptable content codings.

Accept-Language Specifies preferred language for reason phrases, session descriptions or
status responses.

Alert-Info In INVITE requests, it specifies ring tone. In 180 Ringing responses, it
specifies ringback tone.

Allow Specifies which methods are supported by the sender.

Allow-Events A list of event packages supported by the SIP entity.

Authentication-Info The field is included in a 2xx Success response to indicate that the
corresponding request was successfully authenticated using HTTP
Digest.

Authorization Specifies authentication credentials.

Call-ID A string in the form of <any_string>@<host> that uniquely identifies
an invitation or the registrations of a particular client.

Call-Info Provides additional information on the caller (in requests) or on the
callee (in responses).

Contact Provides a set of URIs that indicate where a specific resource can be
accessed.

Content-Disposition Specifies how the message body or a message body part is to be
interpreted by the receiver. This field extends the Content-Type header
field

Content-Encoding Indicates content codings applied to the message body.

Content-Language Specifies natural language of intended audience.

Content-Length Size of message body in decimal number of octets.

Content-Type Indicates the media-type of the message body.

CSeq A 32-bit unsigned integer sequence number along with a request
method name used to distinguish a new request from a retransmission
of an old request.

Date Date and time.

Error-Info Provides a pointer to additional information about the error status
response

Event Specifies an event package in SUBSCRIBE and NOTIFY requests and
responses to such requests.

Expires Indicates time after which a message or its content expires

63

Header Field Name Description

From A “display name” along with a URI indicating the initiator of the
message.

In-Reply-To A list of Call-IDs specifying the calls that the current call references or
returns.

Max-Forwards The maximum number of times a message can be forwarded by SIP
proxies.

MIME-version Specifies Multipurpose Internet Mail Extension (MIME) version

Min-Expires Minimum refresh interval supported for soft state elements maintained
by the server (such as a registration entry).

Organization Conveys the name of the organization the sender of the message
belongs to.

Path Used in REGISTER requests to indicate a set of intermediate entities
that need to be traversed in order to send requests to the registered UA.

Priority Indicates the urgency of the request as perceived by the client.

Privacy Specifies the type of privacy needed for a specific transaction.

Proxy-Authenticate Part of a “407 Proxy Authentication Required” response that poses the
authentication challenge to a client.

Proxy-Authorization Client credentials used to authenticate a client to a proxy.

Proxy-Require Specifies proxy related features that must be supported by a proxy.

Record-Route This field is inserted by proxies in a request to force future requests of
the same dialog to be routed through the proxy.

RAck Included in PRACK requests to specify the provisional response that is
being acknowledged.

Reason In requests it indicates the reason of the request. In responses it is used
to encapsulate the final status code to requests that required forking.

Record-Route The Record-Route header field is inserted by proxies in a request to
force future requests in the dialog to be routed through the proxy.

Reply-To Specifies a URI at which a user accepts replies.

Require This field is used by a UAC to inform a UAS about options that the
UAC expects the UAS to support in order to process a request.

Retry-After This field may be included in some 4xx, 5xx and 6xx responses. It
specifies a decimal integer specifying the number of seconds the called
party will be available again.

Route Forces routing of a request through the listed set of proxies.

RSeq Sequence number used in provisional responses (1xx) that need
reliable transport. It identifies different provisional responses.

Security-Client List of security mechanisms a SIP client is able to use.

64

Header Field Name Description

Security-Server List of security mechanisms a server can use.

Security-Verify Part of SIP requests after a security agreement has been made. It equals
the contents of the received Security-Server header field.

Server Information about the UAS used to handle a request.

Service-Route Added to responses by registrars to indicate the outbound proxy (and
possible next hops) that the registered UA should use to access the
registrar's domain.

Subject Summary indicating the nature of a call.

Subscription-State Used in NOTIFY requests to describe the state of a previously made
subscription. Its values are “active”, “pending” and “terminated” along
with other parameters.

Supported Enumerates all supported extensions by the SIP entity.

Timestamp Time at which a UAC sent a request to a UAS.

To Destination (recipient) of a request.

Unsupported Enumerates all unsupported extensions by the SIP entity

User-Agent Information about the UAC software used.

Via Contains the path that has been followed so far by a request. It
indicates the path that should be followed in responses.

Warning Used to provide additional information in a response.

WWW-Authenticate Contains an authentication challenge.

Refer-To Used in REFER requests. Contains a URL for reference.

65

Appendix D – 3GPP related SIP headersAppendix D – 3GPP related SIP headers

Header Field Name Description

P-Access-Network-Info Provides information about the layer 2/layer 3 access network that
connects the UA to the SIP backbone (e. g. an IMS).

P-Asserted-Identity Added by proxies to indicate that the sender of the request is either
trusted or that he/she has been successfully authenticated with this
(usually SIP) URI.

P-Associated-URI Used in 200 OK responses to a REGISTER request. Its value
contains a list of URIs associated with the registered AOR.

P-Called-Party-ID Added by a proxy to indicate the intended AOR that a certain
request (usually an INVITE request) is targeted to.

P-Charging-Function-
Addresses

Contains addresses of nodes that are able to accept charging
information.

P-Charging-Vector Used to convey charging related information, such as the globally
unique IMS charging identifier (ICID) value.

P-Media-Authorization Contains one or more media authorization tokens which are to be
included in subsequent resource reservations for the media flows
associated with the session.

P-Preferred-Identity Identity (URI) that a UA intends to be authenticated as. This
identity will be the the value of the P-Asserted-Identity header (see
above) after the US is successfully authenticated.

P-Visited-Network-ID Contains the identity of the UA's “visited” network, which is a
network that the UA connects to but has no direct business
relationship with it.

66

www.kth.se

IMIT/LCN 2004-04

