
Master Thesis Project

Task Distribution and Monitoring in
Distributed Computing

Leo Tingvall (tingvall@kth.se)

June 11th 2003

Academic advisor & examiner: Vladimir Vlassov
Department of Microelectronics
and Information Technology
Royal Institute of Technology
Sweden

Industrial advisor: Alexis Grandemange
Amadeus s.a.s.
France

i

Abstract

The need of computing resources is constantly increasing. This has been a
driving force behind the speed improvement of computer hardware that is
now closer than ever to the limits set by the laws of physics. Distributed
computing has been developed to improve the performance of computer
systems by distributing the computations, and lately this has attracted
interest since it promises high-performance computing at a lower cost than
traditional high-end computer systems. Grid computing attempts to provide
a software application framework to computing services.

This project investigates the use of distributed computing for task
distribution. We implement a prototype in Linux to provide a single point-
of-entry to a cluster of 4 computers that run a problem solving application.
Requests are distributed on the cluster using the Message Passing Interface.
We also implement a prototype using non-blocking sockets and multiple
communication buffers that uses resource availability measurements
provided by the Network Weather Service monitoring system. The
availability information is used to set weights in a weighted round robin
distribution algorithm.

We conclude that the technology is mature and usable for suitable
applications. We anticipate further developments in the area of grid services
that will provide a higher degree of transparency, functionality and usability
of grid resources.

ii

Acknowledgements

This project is my Master’s thesis at the Department of Microelectronics
and Information Technology, Royal Institute of Technology, Stockholm,
Sweden. The project was performed at Amadeus in Nice, France during six
months in 2002.

Alexis Grandemange was industrial advisor and provided excellent
guidance and information throughout the project. Guglielmo Guastalla gave
valuable advice and comments. Vladimir Vlassov was academic advisor. I
especially thank the three persons mentioned for their assistance, and I
express my gratitude to everyone at Amadeus and KTH who made the
project possible.

iii

Table of Contents

1 INTRODUCTION... 1-1

1.1 TOPICS COVERED ... 1-1
1.1.1 Task Distribution... 1-1
1.1.2 Monitoring .. 1-2

1.2 LITERATURE USED ... 1-2
1.3 PREREQUISITES .. 1-3
1.4 STRUCTURE OF THE REPORT... 1-3

2 BACKGROUND ... 2-4

2.1 DISTRIBUTED COMPUTING.. 2-4
2.1.1 Grid Computing... 2-5
2.1.2 Programming for Distribution.. 2-6
2.1.3 Programming Paradigm... 2-6
2.1.4 Issues and Potential ... 2-8
2.1.5 Feasible Problems.. 2-8

2.2 PROGRAMMING TOOLKITS.. 2-9
2.2.1 Parallel Virtual Machine.. 2-9
2.2.2 Message Passing Interface ... 2-10
2.2.3 The Globus Toolkit ... 2-13

2.3 TASK DISTRIBUTION .. 2-14
2.3.1 Mainframe Systems and Job Scheduling.................................. 2-14
2.3.2 Distribution Algorithms... 2-15

2.4 MONITORING ... 2-15
2.4.1 Monitoring Events... 2-16
2.4.2 Monitoring Architecture .. 2-16

2.5 DATA ACCESS.. 2-16
2.5.1 Distributed File System ... 2-17
2.5.2 Distributed Database ... 2-17

2.6 RELATED WORK .. 2-18
2.6.1 SETI@home.. 2-18
2.6.2 NetSolve.. 2-18
2.6.3 Network Weather Service.. 2-20
2.6.4 SUN GridEngine ... 2-21

2.7 PROBLEM TYPES .. 2-22
2.7.1 Loosely Coupled ... 2-22
2.7.2 Extremely Coupled.. 2-22
2.7.3 Somewhat Coupled.. 2-23
2.7.4 Business Transactions.. 2-23

2.8 DIFFERENCE IN APPROACH... 2-23

3 METHOD.. 3-25

3.1 TASKS ... 3-25

iv

3.1.1 Coordinator Responsibilities.. 3-26
3.1.2 Worker Responsibilities... 3-26
3.1.3 Injector Assumptions... 3-26

3.2 REQUIREMENTS AND EXPECTED RESULTS ... 3-26
3.3 THE PROTOTYPE .. 3-27

3.3.1 Problems ... 3-27
3.3.2 Algorithms .. 3-28
3.3.3 Implementation Approach ... 3-29
3.3.4 Hardware Used.. 3-29
3.3.5 Implementation Language ... 3-29

4 IMPLEMENTATION... 4-30

4.1 MPI PROTOTYPE.. 4-30
4.1.1 MPI Usage Motivation .. 4-31
4.1.2 Implementation ... 4-32
4.1.3 Fault-tolerance... 4-34

4.2 SOCKET PROTOTYPE .. 4-35
4.2.1 Motivation... 4-35
4.2.2 Implementation ... 4-35
4.2.3 Fault-tolerance... 4-37

5 ANALYSIS.. 5-38

5.1 OBJECT OF ANALYSIS... 5-38
5.1.1 Application Performance ... 5-38
5.1.2 Infrastructure Overhead ... 5-38
5.1.3 Programming Concept ... 5-39
5.1.4 Problem Feasibility.. 5-39

5.2 TOOL USAGE ... 5-39
5.2.1 Counters.. 5-39
5.2.2 Traffic Injector .. 5-40
5.2.3 Profiling .. 5-40
5.2.4 MPICH Logging.. 5-40
5.2.5 MPI Log Viewing with Jumpshot .. 5-41

5.3 METHOD OF MPI PROTOTYPE ANALYSIS .. 5-42
5.3.1 Throughput.. 5-42
5.3.2 Spell Checker Performance.. 5-42
5.3.3 Logging and Log Viewing... 5-42
5.3.4 Request Distribution Algorithm... 5-42
5.3.5 Data Service Algorithm... 5-43
5.3.6 Data Flow.. 5-43

5.4 METHOD OF SOCKET PROTOTYPE ANALYSIS 5-43
5.4.1 Throughput.. 5-43
5.4.2 Scalability with Find Route ... 5-43
5.4.3 Non-blocking Communication... 5-44
5.4.4 Request Distribution Algorithm... 5-44
5.4.5 Data Flow.. 5-44

6 RESULTS & DISCUSSION ... 6-45

6.1 PROBLEMS ... 6-45

v

6.1.1 Spell Checker .. 6-45
6.1.2 Find Route... 6-45
6.1.3 Null Problem... 6-46

6.2 MPI PROTOTYPE.. 6-46
6.2.1 Throughput.. 6-46
6.2.2 Spell Checker Performance.. 6-47
6.2.3 Logging and Log View.. 6-48
6.2.4 Request Distribution Algorithm... 6-49
6.2.5 Data Service Algorithm... 6-49
6.2.6 Data Flow.. 6-49
6.2.7 MPI Prototype Summary ... 6-50

6.3 SOCKET PROTOTYPE .. 6-50
6.3.1 Throughput.. 6-50
6.3.2 Scalability with Find Route ... 6-51
6.3.3 Non-blocking Communication... 6-51
6.3.4 Request Distribution Algorithm... 6-51
6.3.5 Data Flow.. 6-52
6.3.6 Socket Prototype Summary.. 6-52

6.4 GENERAL DISCUSSION ... 6-52
6.4.1 Profiling .. 6-52
6.4.2 MPI Usage .. 6-53
6.4.3 Socket Usage... 6-54
6.4.4 Scalability ... 6-54
6.4.5 Monitoring .. 6-54
6.4.6 Networking Technologies.. 6-54
6.4.7 Accuracy... 6-55

7 CONCLUSIONS ... 7-56

7.1 PROBLEM TYPES .. 7-56
7.2 CLUSTER HARDWARE .. 7-57
7.3 MESSAGE PASSING INTERFACE USAGE ... 7-57
7.4 SOCKET USAGE.. 7-57
7.5 RESOURCE AVAILABILITY WITH DISTRIBUTION................................. 7-58
7.6 NETWORK USAGE .. 7-58
7.7 THE NEXT STEP ... 7-59

8 REFERENCES.. I

vi

Table of Figures

FIGURE 1. A SHARED MEMORY MULTIPROCESSOR. .. 2-7
FIGURE 2. NETSOLVE IN ACTION. THE CLIENT REQUESTS A SERVER FROM THE

AGENT. THE SERVER RETURNED IS USED TO SOLVE THE PROBLEM. 2-19
FIGURE 3. THE NWS FORECASTER COLLECTS MEASUREMENTS FROM THE

SENSORS AND PROVIDES PREDICTIONS TO APPLICATIONS. 2-21
FIGURE 4. SKETCH OF THE PROTOTYPE APPLICATION. 3-25
FIGURE 5. THE MPI PROTOTYPE. MPI IS USED FOR COMMUNICATION INSIDE

THE MARKED AREA. ... 4-31
FIGURE 6. REQUEST AND RESPONSE FORMAT. ... 4-32
FIGURE 7. MPI COORDINATOR DESIGN... 4-32
FIGURE 8. MPI WORKER DESIGN. .. 4-34
FIGURE 9. SOCKET COORDINATOR DESIGN.. 4-36
FIGURE 10. SOCKET WORKER. NOTE THE NWS SENSOR PROCESS RUNNING ON

EACH WORKER. .. 4-37
FIGURE 11. SAMPLE JUMPSHOT VIEW. .. 5-41
FIGURE 12. MPI PROTOTYPE: MESSAGE SIZE VS. REQUESTS PER SECOND AND

BANDWIDTH USAGE. .. 6-47
FIGURE 13. JUMPSHOT SHOWING A SAMPLE RUN WITH FIND ROUTE AND

COOPERATION.. 6-48
FIGURE 14. SOCKET PROTOTYPE: MESSAGE SIZE VS. REQUESTS PER SECOND

AND BANDWIDTH USAGE.. 6-50
FIGURE 15. SCALABILITY FROM ONE TO THREE WORKERS RUNNING THE FIND

ROUTE PROBLEM. ... 6-51
FIGURE 16. PROFILING RESULTS FOR MPI PROTOTYPE AND SOCKET

PROTOTYPE. IN THE BOXES WE ORDER THE MOST TIME-CONSUMING
OPERATIONS WHEN RUNNING THE SPELL CHECKER. 6-53

1-1

1 Introduction

The development of new applications and increasing requirement of
information processing has lead to a constant lack of computing
resources. This has been one of the driving forces for the computer
and semi-conductors industries and so far the rate of growth of chip
and computer speed has kept a steady pace. The speed increase is
however accompanied with some problems. Even though circuits are
built with technology that is many times more efficient than to older
models, the increased performance has lead to higher power
consumption, increased heat and power loss and constant struggles
with the laws of physics.

Computers with the latest technology have very good performance
capabilities when it comes to processor, memory and I/O devices, but
another major development has been in the area of networking
technologies. Fast network communication has become affordable and
widespread.

Distributed computing is the area of computer science that deals with
development of applications that run in parallel on multiple processors
or computers taking advantage of the increased computational power
of each processor. The access to high performance computers and
networking hardware has opened up for the extensive use of
distributed computing in many areas. The roots of distributed
computing lie in the scientific community where high performance
was often required at any cost forcing development of new ideas, but
distributed computing technology is increasingly interesting and has
become accepted in other business areas where it promises cheap,
high-performance and fault-tolerant computer systems.

1.1 Topics covered

This project intends to investigate and study distributed computing
mainly in the areas of task distribution and monitoring.

1.1.1 Task Distribution
According to www.dictionary.com a “task” can be defined as “A
piece of work assigned or done as part of one's duties.” In a
distributed computer system a task can be just about anything such as
running a database query, analyzing some data or even starting an
application. The type of tasks the system should be able to handle
must be defined when the system is designed.

1-2

The object of the “task distribution” in a distributed system is to
assign each task to one (or more) of the nodes in the system that is to
execute the task. This should be done (if possible) following an
algorithm that enables each task to be executed properly according to
its requirements, while respecting the system constraints. A task
requirement can for example be to make sure that a task is performed
within a certain time limit. System constraints can for example be the
number of processors in the system and their speed, which limits how
fast tasks can be executed. The task distribution should try to optimize
some function, for example minimizing the total execution time or
maximizing the resource usage.

This project considers task distribution in the context of distributed
computing. We intend to investigate and construct a system that
performs task distribution. The task distribution algorithm used in
such a system is very important since it responsible for properly using
the resources available.

1.1.2 Monitoring
Monitoring a system is essential in order to understand how it
behaves. A distributed computer system involves a large number of
objects that constantly perform tasks related to networking,
processing, memory and running applications. A “monitoring system”
should allow the monitoring of some of these parameters, not
necessarily by performing measurements itself but rather by using the
available system services such as operating system information and
providing a framework for collection and distribution of the
measurements. The monitoring is vital for a distributed computer
system since it is the only way to observe the system and validate its
functionality.

The monitoring information of the system should be accessible from
more than one single point in the system, and the information should
be distributed efficiently with as little penalty as possible to the
system performance. The cost of monitoring that will be allowed and
the degree of correctness required will vary between systems.
Monitoring has previously been investigated in projects such as
PARMON [35], MIST [27], XPVM [39] and NWS [13].

1.2 Literature Used

The interest in distributed computing has increased both in the
academic and commercial communities, something that has lead to an
increased number of projects and products. Project information can
often be found on project websites and in research reports, and these
are often recent and good resources. As the interest has increased the
number of conferences in the subject has also increased. In 2002 many
conferences were held such as the SC2002 and ICS 2002, as well as

1-3

others listed at [14]. Conference papers are often both current and well
written, which makes for good descriptions of projects and recent
results.

In the study for this project we used mainly material found in reports
from research groups (e.g. conference papers), project publications,
articles and books.

1.3 Prerequisites

Major parts of this project concern networking and computing on a
software level. To read the report some knowledge in this area is
required. Some parts of the project tend to be a bit technical, others
are perhaps not that technical but rely on models and background
knowledge. The reader should be familiar with networking, software
development and computer hardware basics.

Distributed computing and networking causes some problems for the
application programmer for example concerning bandwidth
constraints, latency and fault tolerance. These issues make distributed
computing difficult in theory and practice and it is important to have
knowledge and an intuitive understanding of this.

1.4 Structure of the Report

The structure of the report is as follows. The chapter Background
describes the background of the project, introduces different topics
related to the project and describes a number of related previous
projects. In the chapter Method we describe the goals of the project
and the tasks we intend to perform. The following chapters
Implementation, Analysis and Results & Discussion describe the
prototype developed, the analysis performed and the results of the
analysis. Finally in the chapter Conclusions we discuss some general
results and reflections, and hint about topics that might be of interest
for further investigations.

2-4

2 Background

Although distributed computing has been used and researched during
a long time – projects started as soon as computers arrived – the
environment has changed during the past few years. One of the major
changes is that computers become a commodity where even cheaper
components provide good performance, as compared to the rare and
expensive computer systems previously available.

There are still some obstacles to be crossed before the vision of
distributed computing can be realized. Increased bandwidth in
combination with programming languages and components that allow
for efficient application development will improve the situation. Some
of the obstacles will however remain for example because of physical
limits and algorithmic complexity.

In this section we describe some basics of distributed computing to
make the reader acquainted with the technology. After some basics we
describe some projects, tools and concepts that are related to our
project. We also give background information regarding the problems
we intend to investigate and describe related problems.

2.1 Distributed Computing

Distributed computing is a term often used to describe programs or
computations that run on several processors or computers
simultaneously. Often the idea is that some sort of cooperation should
take place between the processors or computers. To make this possible
there have to be some kind of communication system, often something
like a memory if we consider a system of processors or a computer
network if we consider a system of computers. Lately the term “Grid
computing” has been spread and it has gained wide acceptance as a
term representing a concept. Although the “distributed computing”
and “grid computing” have a very similar meaning we consider grid
computing to be a somewhat more narrow definition than distributed
computing.

Throughout this report we may alternate between the terms “cluster”,
“grid” and “grid farm”. At a quick glance the terms have about the
same meaning: a set of interconnected computers that are used to
solve problems cooperatively. A “cluster” is often referred to as a set
of computers specifically installed for the purpose of performing
computations, often with a dedicated network connecting them. The
term “grid” is associated to grid computing and can be seen as a bit
more focused on the application framework that the system is installed
with. A “grid farm” is thus also often used in the context of grid

2-5

computing, but in this report we consider a grid farm to be the
hardware part of the system, the same as with the cluster term.

2.1.1 Grid Computing
One result of the popularization of distributed computing is the
introduction of the concept “Grid computing” (see for example [8]).
While distributed computing is more or less a term used to describe
applications that work together to solve a specific problem or set of
problems, grid computing is a bit more aggressive and revolutionary.

One definition of grid computing can be found at [18]:

“Grid is a type of parallel and distributed system that enables the
sharing, selection, and aggregation of resources distributed across
"multiple" administrative domains based on their (resources)
availability, capability, performance, cost, and users' quality-of-
service requirements.“

Further, at [10]:

“The term ‘grid’ is an analogy to the electric power grid, where one
can plug in to any wall plug and get electricity from the collective
generators in the power grid, …”

The idea of grid computing is that as computers become widespread
and network capacity increases, “the Grid” can be considered an asset
of resources or a service that can be used as a commodity. The term
does not just include a specific type of application; it is the definition
of a system that provides a service. The service is usage of computing
resources and applications. Consider the analogy of connecting a non-
intelligent device (such as a dumb terminal), and with it gaining
access to a much more potent computer system. With grid computing
the applications that require should also be able to take advantage of
being able to run using the resources that the grid provides.

A long way is still to go before we can see this kind of service widely
spread. Traditional distributed applications were usually written to be
runnable on a specific platform or a specific set up of hardware. By
providing an application framework that is portable, different
platforms can cooperate in a computation. A system that consists of
computers of different architecture is often called a heterogeneous
system. By providing a portable framework, an application written for
“the grid” can take advantage of the hardware resources available. A
heterogeneous network will however cause problems, as different
architectures might not produce the exact same result to a given code.

The aim is that the usage of the grid resources should be transparent.
The system should be able to configure the application and find
resources required before starting the computation on the selected
resources. This should be done by a system of application often
referred to as the Grid Infrastructure. The only thing the developer
should have to worry about is making sure the application uses the

2-6

Grid Infrastructure and the user should only require access to a
suitable grid environment.

One of the reasons grid computing is gaining popularity is that
computers and networks are powerful enough to support a grid
infrastructure, and that the grid can be a reality within a foreseeable
future.

2.1.2 Programming for Distribution
Setting up and using a set of networked computers for running
distributed applications is attractive especially for some applications.
One reason is that it might be possible to use existing systems, which
would provide a system with good performance at a low cost.
Applications that use features such as threads or communicating
processes might not at all be suitable for distribution. This is because
they are often written with smaller granularity and the increased
latency and decreased bandwidth will cause performance problems.
When designing and implementing a distributed application these
factors must be considered.

2.1.3 Programming Paradigm
A computer program consists of a set of instructions that perform
different actions depending on the data set it is executed with. The
main problem in a distributed system is that access to data, both static
data such as a file but also dynamic data such as interaction with other
processes or computers, is sometimes very time-consuming. Reading
and writing data of this kind must be minimized in order to get decent
application performance.

A programming paradigm suitable for programming a distributed
application should provide a programming interface that enables the
developer to write correct and efficient code. By forcing the
programmer to access “expensive” resources as little as possible the
application performance can be maintained. Below we describe two
widely used paradigms for distributed programming.

Shared Memory
A multiprocessor computer is a computer that has a number of
processors (or computation elements) that all share the same memory
usually through (at least logically) the same memory bus. In this
system a memory read or write is usually fast since it is done over the
fast memory bus. If two processors, or processes running on separate
processors, wish to communicate with each other they can do this by
simply writing to and reading from some defined memory regions.
Figure 1 shows an image of a simple shared memory multiprocessor
with three processors.

2-7

Figure 1. A shared memory multiprocessor.

There are some issues that need to be addressed in a shared memory
system. For example some logic has to make sure that two processors
do not write to the same memory at the same time since this would
produce data inconsistency errors. Modern systems also include a
local cache inside each processor. This force the use of cache
consistency logic to make sure the local caches are consistent at all
times. A multiprocessor system can however handle this locking of
memory efficiently because the system is capable of high-speed and
low-latency communication through the memory bus.

A shared memory programming paradigm can also be implemented in
a distributed memory architecture (see for example [25]) but since it is
normally used in an environment where latency and bandwidth is
hidden, its use might cause performance problems in a system with
higher latency and lower bandwidth.

Message Passing
Message passing is a paradigm that is often used in machines with
distributed memory architecture. The inter-process communication is
based on passing messages between the processes, and the messages
can are transferred either locally trough a memory bus in a
multiprocessor system or across a network in a distributed system.
Because each message comes with a time-penalty, limiting the
number and size of the messages is likely to improve application
performance. This will allow the developer to intuitively understand
application bottlenecks and circumvent them.

In its basic form message passing requires each message to have a
sender, a receiver and some data. There is a small delay between the
sender sending a message and a receiver receiving it that depend on
the latency of the communication system and the message size in
combination with the bandwidth. Special messages such as broadcast
may also be possible to perform effectively, or it can be deduced to
many messages from one sender.

Since every message is sent explicitly it might be easier to find and
minimize the time-penalty of these. Message passing can also be

2-8

efficiently translated and used in a shared memory system, which
makes it a good paradigm for general use.

2.1.4 Issues and Potential
The major issue when designing and implementing a distributed
application is that in order to reach an efficient result the design has to
solve issues related to large latency, limited bandwidth, asynchronous
execution between the nodes and possibility of node failure. Some
algorithms and applications are simply impossible to produce efficient
distributed versions of, often because of the nature of the algorithm or
application. In other cases distributed versions that have good
performance can be produced very easily.

There is always some overhead associated with the distribution of an
algorithm. The aim of producing good distribution is to minimize this
overhead. The ideal case would be that each node addition to the
system would increase the performance by the individual performance
of one node. This is rarely possible, but still a smaller performance
increase will produce a system with better performance, and in some
cases it might be the only or at least the simplest way of increasing
application performance.

2.1.5 Feasible Problems
A large number of scientific problems can and have been proven to
benefit from the use of distributed computer systems. Normally these
problems have some special characteristics that make them suitable
for running in a multiprocessor system.

A lot of mathematical operations, for example matrix operations, have
been proven possible to develop distributed versions of. For some it is
even possible to break up the matrices in strips and distribute them to
the nodes that perform the calculations required on each strip. The
overhead comes from the breakup of the matrices and the merging of
the results for the final answer. Often there is a critical size based on
problem size and the number of nodes involved that will affect the
performance, sometimes decreasing the number of nodes used for the
computation can improve total performance.

Various particle simulations are often difficult to execute with good
results on a distributed system. Many algorithms in this area rely on
pair-wise calculations between any two particles in every step of the
simulation, and this requires a lot of synchronization that is expensive
in a distributed system. By using approximations, for example
dividing up the space into areas, efficient algorithms can be
constructed for these problems as well.

Business applications often differ from scientific problems in
characteristics. Tasks are often more transaction oriented and each
task often has constraints that have to be satisfied and a deadline that

2-9

has to be kept. Some constraints might be very difficult to keep in a
distributed environment.

2.2 Programming Toolkits

Development of a distributed application is often difficult. Not only
must the algorithm be constructed in a way that enables it to be
distributed, but other practical issues such as how to start the
execution, distribute processes, keeping track of the execution, handle
data transfers and share resources must also be solved. A
programming toolkit is a major aid in this area.

A programming toolkit provides a set of tools that offer ready-made
implementations of certain function. A distributed toolkit should
provide tools for functions that simplify development of a distributed
application, and it should also take advantage of the underlying
hardware. The exact functionality that is necessary is based on what
the toolkit is to be used for. Various toolkits with different
functionality have been developed such as a number of different
projects at IBM T. J. Watson Research Center, Intel's NX/2, Express,
nCUBE's Vertex, p4 and PARMACS, Zipcode, Chimp, PVM [9],
Chameleon, PICL and MOSIX [28].

A toolkit was usually developed to satisfy a specific requirement
either on from applications or from system hardware. Each toolkit will
thus usually have some stronger and weaker points, and which toolkit
to use will likely depend on these properties. For a long time there
was no standardized toolkit but the interest in distributed computing
with cheap computer hardware spurred the development of the free
PVM toolkit described in section 2.2.1. PVM became a de-facto
standard for distributed computing but the different manufacturers of
computer systems had not agreed on a standard, which meant that
each system manufacturer often had their own toolkit. Having a
standardized toolkit would help both hardware and software
developers, and eventually MPI described in section 2.2.2 was
accepted as a standard after a joint standardization process between
many parties.

Toolkits such as PVM and MPI has made life easier for developers
that want to write distributed applications. However the toolkits still
operate on a rather low level. The vision of Grid computing spans
further when it comes to functionality by adding features for security,
data access, resource allocation, monitoring and service discovery.
Standardization attempts in these areas have started as well.

2.2.1 Parallel Virtual Machine
The Parallel Virtual Machine (PVM) [9] project began in 1989 at Oak
Ridge National Laboratory. The toolkit was based on message passing
and was usable both in multiprocessor machines as well as in

2-10

distributed environments or a mixture of both. The key concept in
PVM was that it made a collection of computers appear as one large
virtual machine, hence the name.

Application development in PVM was done using the concept of
communicating processes. Logically the developer started a number of
processes that could communicate with each other through an
interface. Whether the processes were executed locally or on a remote
host was decided at run-time.

PVM was designed to be versatile and it supported both data parallel
programming and function parallel programming. Data parallel
programming is when the data set of the problem is split up between
the different nodes but they each execute the same basic logic. In
function parallel programming different nodes are responsible for
different functions. The possibility of using data parallel or function
parallel programming, or even a mixture of both, made PVM useful in
a different environments and was one key to its success.

PVM was completely free and quickly became the de-facto standard
for developing parallel applications. The main competitors of the time
were toolkits developed by hardware manufacturers, but unlike PVM
applications made with these were hardly portable. PVM provided the
basic functionality needed by parallel applications such as a message
passing interface, synchronization and the possibility to start and stop
applications across the network.

One feature PVM included that was really interesting was the
possibility to dynamically resize the virtual machine by allowing
nodes to join and leave the computation at run-time. This feature also
allowed for the construction of fault-tolerant applications. However, it
also adds complexity since an application must handle nodes that join
or leave.

PVM has been very successful and popular because developers liked
its features and interface. A lot of the functionality was borrowed
when designing MPI (which we describe in the next section). PVM
never became standardized and thus never became as wide spread as it
perhaps could have become, but many of its features were borrowed
when MPI (which we describe in the next section) was constructed.
We refer to [9] for more information about the functionality and how
to use PVM.

2.2.2 Message Passing Interface
The Message Passing Interface (MPI) project started when a number
of vendors of concurrent computers, researchers, government
laboratories and other parties of industry, joined together to create the
Message Passing Interface Forum [26]. The object of the forum was to
create a standard for an interface for message passing. The members
of the group intended to create a practical, portable, efficient and

2-11

flexible standard for message passing, and in 1992 the first draft was
presented.

During the standardization of MPI the MPI Forum attempted to take
advantage of previous experiences and adapt the most attractive
features of previous message passing systems. The design of MPI has
thus been influenced by many previous projects.

The MPI Forum had a number of goals when constructing MPI, some
of which were to:

• design an Application Programming Interface (API) that can
and will be used by developers of parallel applications.

• allow efficient communication by avoiding memory copying
as well as allowing offloading communication to a
communication co-processor if available.

• allow implementations that can be used in heterogeneous
environments.

• allow convenient bindings in C and Fortran 77.
• assume reliable communication so that the developer does not

have to worry about transmission errors.

The first version, MPI Standard version 1.0, was released in 1994 and
the standard became widely accepted. A number of free and
commercial toolkits were developed and this also lead to an increased
user base. Some of the features missing in the standard were added in
the MPI Standard 2 that was released in 1997. Among the important
additions were dynamic process management, one-sided
communication (message parameters such as message size decided at
sender), extended collective operations and new language bindings
(C++ and Fortran 90). As of today not many toolkits support all
features of version 2 of the standard.

MPI is recognized and supported by most vendors of concurrent
computers. These often provide implementations optimized for
specific hardware, which results in increased performance. One of the
major advantages of using an MPI toolkit is that it is portable. If the
hardware is changed a recompilation will often suffice to build the
application if it is written with MPI. MPI can also be used both in
distributed memory as well as shared memory systems, which makes
it highly versatile. Some commercial MPI implementations are
MPI/Pro [31], ScaMPI [36], Digital MPI, Sun MPI.

A number of open-source MPI implementations have also been
developed, MPICH [29] and LAM/MPI [22] are two of the most
ambitious. They both have large user bases and are actively being
developed. We describe MPICH, the toolkit used in the prototype of
this project, in more detail below. More information on MPI
programming can be found in [12] and in the MPI Standard
documents found on the website of the MPI Forum [26].

2-12

MPICH
MPICH [29] is one of the most used implementations of MPI. It is an
open source project that aims at producing a highly portable
implementation of the MPI Standard. Major parts of it are developed
at the Argonne National Laboratory.

MPICH attempts to follow the MPI Standard very closely and stay
portable rather than optimizing performance. Because it has a large
user base there are a lot of support available mostly in newsgroups
and mailing lists. Some of the features (as of November 2002)
include:

• MPI Standard 1.2 compliance.
• Bindings for languages C, Fortran and C++.
• Support for a wide variety of environments such as clusters of

single-processor computers, clusters of multi-processor
computers or massively parallel computers.

• Parts of the MPI 2 Standard implemented.
• Parallel programming tools such as trace and log file creation

as well as performance analyzer.

A communication layer called Abstract Device Interface (ADI) was
written as a communication framework. ADI allows MPICH to be
ported to different communication systems, and this enables MPICH
to be optimized for different hardware such as high-speed network
interfaces. Manufacturers of computer hardware can thus use ADI to
write communication drivers that optimize performance for specific
hardware.

The MPICH version used for a normal cluster of workstations uses
TCP and BSD sockets for communication, but communication drivers
have also been written for Virtual Interface Architecture (VIA
information see [38] and [32]), InfiniBand (see [21]), Myrinet (see
[33] and MPICH-GM that is Myrinets port of MPICH for Myrinet)
and other high-performance architectures.

In the standard distribution, MPICH comes in four different versions:

• ch_p4 for use with cluster of networked workstations. Can be
used in heterogeneous environments and supports multi-
processor nodes.

• ch_p4mpd for use with homogeneous clusters of single-
processor computers. Because of the fewer features compared
to ch_p4 this version provides improved startup time and
startup scalability.

• Globus2 which supports the Globus Toolkit (see section 2.2.3)
and uses routines found in the Globus Toolkit for startup, such
as authentication.

• ch_shmem for use on a single shared memory system such as
SGI Origin or Sun E10000. This version uses shared memory
systems such as System V shared memory, anonymous nmap

2-13

regions for data, System V semaphores or other OS specific
routines for mutual exclusion and synchronization.

MPI has a large user base and is being actively developed, which has
made it a stable foundation for MPI application development.
Currently efforts are being made to include more features from the
MPI 2 Standard in the toolkit.

2.2.3 The Globus Toolkit
One problem with developing and running distributed applications in
a grid or cluster environment was that some basic tools and functions
had to be written for each application. Some of these issues, for
example application startup, have often been taken care of by
programming toolkits. Modern applications and environments often
require a larger set of tools and functions.

The Globus Toolkit (see [17]) is an attempt to collect a set of tools
that can be used by developers to easily get access to some functions
often required when developing grid applications. Globus provides
tools for security, data access, resource allocation and more. These are
important parts for distributed applications, and by providing a
framework development will be easier because an existing set of tools
can be used.

The aim of the Globus project is to provide developers and users
functionality that enable them to easily take advantage of a
heterogeneous environment. The Globus toolkit provides a number of
important services that can be used by any application. These services
are made of components in a few key areas:

• Grid Resource Allocation Manager (GRAM) provides
resource allocation, process creation, monitoring and
management services

• Grid Security Infrastructure (GSI) provides secure
authentication and communication over an open network.

• Monitoring and Discovery Service (MDS) is a Grid
Information Service that uses the Lightweight Directory
Access Protocol (LDAP) for providing and accessing system
configuration, network status or the locations of replicated data
sets.

• Global Access to Secondary Storage (GASS) implements a
number of data movement and data access strategies, enabling
programs running at a remote location to get access to local
data.

• Nexus and globus_io provide communication services for
heterogeneous environments.

• Heartbeat Monitor (HBM) allows detection of failing
components or application processes in the system.

The components can be used by an application in order to enable it to
run in various environments and across different organizations and

2-14

locations transparently. The Globus toolkit provides infrastructure that
can be used for running applications in a heterogeneous grid
environment and enables them to take advantage of the services
provided by the environment.

The Globus toolkit aims at becoming a widely-accepted standard for
grid computing that will allow applications to more easily become
“grid-enabled” and used in any environment. By providing an
infrastructure that is standardized and well spread hopefully
application developers will be able to take advantage of existing and
future infrastructure technology.

2.3 Task Distribution

Task distribution is an optimization problem much like maximum
flow, minimal distance, etc. The object is to optimize some function
such as the total execution time or the average completion time of a
number of tasks. What function to use depends on the characteristics
of the problem: the type of service required, how the problem is
solved, how to measure solution quality, etc. The distribution
algorithm used should optimize this function, but in reality it is likely
impossible to use the optimal distribution algorithm (it is too
expensive) and approximate methods are used.

The idea is that in some situations it would be beneficial to use a more
intelligent, possibly expensive in terms of resources, distribution
algorithm that can compensate its cost with improved solution quality.
The gain of the algorithm should be higher than the cost of using it. If
the tasks are homogeneous and the system has no predictable behavior
that can be taken advantage of, a simple task distribution function is
most likely good enough. If the tasks or the system have properties
that can be taken advantage of, it may be possible to find a more
intelligent distribution function.

Also note that if there is no contention for resources, the simplest
possible task distribution is the optimal one.

2.3.1 Mainframe Systems and Job Scheduling
Mainframe system commonly run batch-jobs, and the job-scheduling
algorithm based its calculations on each jobs parameters such as
memory required, CPU-time required, what devices and resources
were required and perhaps other data such as priority. The scheduling
algorithm decided the running order of the jobs given this input.

Job scheduling is NP-complete both in common single-processor and
multi-processor cases (see for example [3]) which means that
approximate methods have to be used. Evaluating how well an
algorithm performs can be done with simulation data.

2-15

2.3.2 Distribution Algorithms
Distribution systems implement different distribution algorithms.
Usually the assumption is that we have a set of tasks (may be ordered
in time) and a set of workers. Both the tasks and workers may have
specific parameters that determine their behavior. The distribution
algorithm should minimize some distribution function or be effective
in some common situation.

Some common algorithms are:

• Round-robin: The workers are logically ordered in a ring and
the task assignment is decided by a orderly ring traversal. This
algorithm will provide an even distribution.

• Weighted round-robin: This the round-robin slightly modified
so that workers may appear multiple times during one
complete ring traversal. This allows for uneven distribution of
the tasks to compensate for example workers with different
performance.

• Priority: An example of this algorithm would be to send tasks
to one specified worker if available, otherwise one of the
backup workers is selected.

• Least tasks: Keep track of how many tasks are being processed
at each worker and send the current task to the worker
processing the smallest number of tasks. Can also be used e.g.
with TCP connections.

• Fastest response: Send the current task to the worker that
provided the best response time on a recent task. The response
time must be specifically defined, perhaps the time it took to
respond to a recent request.

• Hash function: This algorithm uses some piece of information
(the hash key) from the task such as an identifier and applies a
hash function on this to determine the selected worker. The
object of the function is to create an even or “almost random”
distribution and the hash key as well as the hash function
should be selected with this in mind.

The algorithm to use depends on the tasks and the system. It is often
very difficult to calculate the best algorithm to use and empiric testing
is often required.

2.4 Monitoring

Monitoring is the process of observing a system and taking note of
some visible events that take place. It is impossible to monitor every
aspect of a system, which forces some restrictions. Which parameters,
spanning what time and how to actually perform the monitoring are
questions that must be considered. A monitoring system that deals
with something as complex as a computer system will have to make
many assumptions and simplifications.

2-16

In a distributed system there are additional issues as compared to
monitoring a single computer. Since every node in the system has its
own clock there is no universal time. Also each network transfers is
affected by latency so it is impossible to have exact synchronization.

2.4.1 Monitoring Events
An event in a system can be anything that happens that can be
observed. Because there is no universal time it is difficult to know at
which time an event happened. This is often handled by considering
event causality. Causality means that by knowing the order of events,
two events can be compared to see either in which order they occurred
or if they occurred “in parallel”. If two events occur in parallel it
means that it is impossible to know which of the events took place
first without a universal clock.

The use of event causality makes it possible to have a logical time, for
example with the use of Lamport timestamps (see for example [7]).
Vector timestamps and dependency vectors can also be used for
understanding the flow of events in a system.

2.4.2 Monitoring Architecture
A monitoring architecture is required to monitor a distributed system.
Each node should be able to monitor its own events, but the
monitoring architecture is responsible for processing and sharing the
monitoring data.

A central monitoring station would collect data from each of the
monitored nodes. The simple design and possibly good performance
of such a system would make it suitable for many applications. On the
other hand a centralized solution might be problematic both in terms
of fault-tolerance but also if the monitored nodes are many of
geographically spread which can cause communication problems. In
this case other strategies might be necessary.

A development might be to use many monitoring stations. Related to
this are a number of problems: how many stations, where should they
be located, should the monitoring be overlapped between stations,
performance problems, fault-tolerance, etc. Depending on what type
of resources will be monitored and what service requirements exist on
the system, possible solutions might be developed. However, a more
advanced solution than the centralized will require added complexity
in both the monitored node as well as the monitor stations.

2.5 Data Access

A program consists of logic and data. The logic is the code to be
executed and the data is the data that is used during the execution. The
data can be from input parameters, read from files, interactive
information caused by interaction, network communication, etc. A

2-17

distributed application might not have the data stored locally where it
can be accessed fast with high bandwidth, thus the data access service
must be supplied efficiently to make sure the application can get its
data quickly and safely.

2.5.1 Distributed File System
Distributed file systems are vital parts of many organizations and
extremely important in computer systems. The design of a distributed
file system is not trivial because of the large number of parameters
and events, as well as the demands of a fault-tolerant system.
Common problems that have to be solved are how to handle data
consistency, whether a state or stateless protocol should be used and
how to make the system secure.

Some examples of distributed file systems are Network File System
(NFS), Andrew File System (AFS) and Appletalk. The File Transfer
Protocol (FTP) and Hypertext Transfer Protocol (HTTP) are both
variations of distributed file systems in the sense that they provide
remote access to files, but they are less advanced when it comes to
features such as for example file locking. Their simplicity has
however also made them popular, especially for simple file-transfers
over the Internet.

Distributed applications and grid computing requires a distributed file
system with a set of properties such as being usable, allowing
localization of files (by using e.g. mirrors) to enable faster access,
allowing simple access from multiple places and offering security for
file access and transfer. The system must also provide functionality to
handle different versions of a file to make sure the data is not
corrupted and each instance of an application reads the same data.

2.5.2 Distributed Database
A database is often difficult to run in a distributed environment
because some operations require locking of entries and tables, which
is very expensive in a high-latency and low-bandwidth environment.
There are a number of commercial distributed databases available and
their design always tries to limit the effects of this problem. Usually a
local cache is used on the nodes, but to make sure the data is
consistent the caches must be invalidated after a write, thus many
writes will cause bad performance.

Although potentially bad performance for the general case a
distributed database can be quite efficient for certain applications,
especially if database reads are far more common than database
writes.

2-18

2.6 Related Work

Distributed computing is not a new subject and has been investigated
in different projects of various extents. In this section we describe a
few interesting projects related to the task distribution and monitoring,
the topic of our project.

2.6.1 SETI@home
The SETI@home project [37] is by far the most successful project
that takes advantage of distributed computing. Over 4 million users
have downloaded the client application and taken part in the project,
and some thousands have actively used it. These are large numbers
compared to any other distributed application.

The object of the SETI@home project is to analyze a very large
amount of data collected from radio telescopes and to find signs of
interesting signals in this data. The problem is well suited for
distribution because each work unit distributed to a host for analysis is
rather small (about 1 Megabyte) and takes a long time to analyze
(about 15 hours on average). The only communication required is
when downloading a work unit and when uploading the result. The
most important reason for the success of the project is that people
actually donate computer power to the project, likely because they are
interested in the project as well as the client application is easy to use
(can be used as a screensaver on some platforms).

There are multiple other projects that attempt similar strategies such
as Folding@home [16] that tries to find out how proteins fold and a
number of projects try to find prime numbers, crack encryption keys
or solve other mathematical problems. The projects in this category
are by many referred to as “Embarrassingly Parallel” because they are
by nature very easy to parallelize because of the small communication
requirements in relation to the processor time required for each work
unit.

2.6.2 NetSolve
NetSolve [2] is an attempt to create a system that lets an application
take advantage of remote resources. The aim is to provide a system
that allows an organization to keep a set of highly capable resources
that can easily be used by applications through a simple programming
interface. There are numerous issues that must be identified and
solved in order to do this such as knowing hosts are active, what
software they are equipped with, if they are available, etc. The
NetSolve project has developed a client/server system that enables
users to solve scientific problems across a network by making Remote
Procedure Calls (RPC). This allows an application to take advantage
of remotely located hardware and software.

The system consists of three parts: agent, client(s) and server(s). The
agent is updated with information regarding what hardware and

2-19

software each configures server is equipped with. When using
NetSolve the client (or user application) states what resources its
problem require and asks the agent for a suitable server (see Figure 2).
The agent responds with a server (if any suitable was found) and the
client sends the problem statement to the selected server. When the
server has solved the problem the answer is returned to the
application. All this is done with a single NetSolve function call.

The agent can also use features such as load-balancing to make sure
problems are evenly distributed and fault tolerance to restart a
problem if a server is found dead.

Being a scientific project NetSolve has language bindings for C,
Fortran, Matlab and Mathematica. It supports features such as task
farming (distributed one problem instance to each server), request
sequencing, non-blocking function calls and includes Kerberos based
security. The usage of NetSolve is a function call to a NetSolve
routine, upon which NetSolve will automatically find the resources
needed and solve the problem. The NetSolve agent can use features
such as load-balancing to make sure servers are evenly loaded and
fault-tolerance to restart problems if a server is found dead.

Figure 2. NetSolve in action. The client requests a server from the
agent. The server returned is used to solve the problem.

Using NetSolve
Before started NetSolve requires some configuration on the agent,
client and server. Starting the agent process on the designated machine
sets up the agent. The process will bind to a configured port and wait
for servers to connect and update their resource information that
comprises of the hardware and software accessible on the server.

The server setup is done by writing a Program Definition File (PDF)
that contains information about the software available. The file

2-20

contains information about each function made available through
NetSolve. This information includes a small chunk of code that will
actually execute the function when called. The file is translated into
source code that must be compiled before the server is started.

The client application setup comprises of including the NetSolve
libraries and using NetSolve function calls such as netsl() to use
the NetSolve software. Parameters to the function are the name of the
function to call and application parameters. When the NetSolve
functions are called the software will automatically contact the agent
and use the retrieved server for problem solving, assuming there is a
suitable server that has the required function defined in its PDF.

NetSolve has also been combined with other programs in order to try
to get efficient task distribution and making sure that tasks get good
service. One of the programs that it has been combined with is
Network Weather Service, which we discuss in next.

2.6.3 Network Weather Service
The object of the Network Weather Service (see [13] and [34]) project
was to create a system that provided accurate forecasts about
dynamically changing performance characteristics from a set of
computing resources. A sensor in NWS is a process that repeatedly
polls resources on a node to measure the current resource availability.
By storing earlier results the system can use the history to attempt to
forecast the future resource availability. The forecasts depend on the
usage patterns of the resources and of course the accuracy of a
forecast will vary.

The aims during the design and development of NWS was to create a
system that provided:

• Predictive accuracy: Accurate measurements and estimations
of future resource availability.

• Non-intrusiveness: Interfere and load the monitored resources
as little as possible.

• Execution longevity: The monitoring should logically be
running an indefinite time.

• Ubiquity: The service should be available from any of the
potential execution sites in a resource set and should be able to
monitor and forecast all available defined resources.

The main parameters that NWS measures are CPU, network and
memory resources. The forecasting is done by a generic function that
takes as input a series of time-stamped values and from these it
produces a short-term prediction. Resource measurement samples are
commonly taken with a period of about ten seconds but this will
depend on the type of resource monitored. It is also possible to plug in
any type of forecasting algorithm that bases its predictions on a
number series.

2-21

Each monitored host is equipped with a memory process and a sensor.
The memory stores reports made by the sensors and also passes them
on to the configured forecaster. Forecasts can be requested by an
application as depicted in Figure 3.

Figure 3. The NWS forecaster collects measurements from the
sensors and provides predictions to applications.

Since the system is constantly running and making forecasts, it is able
to learn by previous predictions. In normal setup, the system has two
prediction algorithms: Mean Absolute Error and Mean Square Error.
When calculating forecasts the NWS forecaster will use both methods.
Since the forecasts are also stored, during the execution the forecaster
can automatically use the forecast method that provided the best result
(smallest error). If more forecasting functions are supplied, the system
should be able to further increase its forecasting accuracy.

The system is also designed to be open and compatible with other
software. This allows it to be plugged in as a module into for example
Globus, which can then take advantage of its features.

2.6.4 SUN GridEngine
The SUN GridEngine [19] is a cluster management system developed
by SUN Microsystem that is now open-source. The GridEngine is
more similar to a mainframe system in its user interface, but is
designed to run on a cluster of Solaris or Linux computers. The
similarity to mainframe systems comes from the fact that the system is
job-based.

In job-based system the problems sent are defined with some job-
parameters. The parameters for a job can be requirements on memory,
disk space or CPU time. The scheduler of the system is responsible for
making sure that each job is matched to a node or set of nodes that
will be able to fulfill its requirements. The scheduler can also, with the

2-22

help of the job-requirements information, attempt to optimize the
running of the jobs.

This type of scheduling is quite common in mainframe computing and
using a similar system in a cluster is interesting. If for example we
have a cluster were the different computers are equipped with
different resources (hardware or software) we could use such a
scheduler to make sure that job requirements are met, and that the
resource usage is optimized.

GridEngine has some interesting features, for example that it is
possible to define the load measurement used by the scheduler.
Instead of just using the current load value of the system to decide
which system is less loaded, it would be possible to define other
parameters that might suit the problems better and provide better
service.

2.7 Problem Types

In this section we elaborate on some common problem types. We
loosely base our categorization of problem types on the
communication requirements of a problem in relation to its
computation requirements.

2.7.1 Loosely Coupled
The Loosely coupled category is in its most extreme form often
referred to as Embarrassingly Parallel Computing (EPC). Applications
in this category often perform intense computations on smaller data
sets, often of mathematical nature. Examples include the SETI@home
project described in section 2.6.1 and other projects mentioned there.

The applications of this category often have a fairly small problem
definition, whereas the actual problem solving requires very intense
computing resources. This is often because the problem solving is
algorithmically complex and requires a lot of processor time. What
makes this category loosely coupled is the fact that the
communication required between the problem solvers is very small.
The nodes involved in the computation often do not have to
communicate, and thus there is little synchronization required. A
network will thus not have a major influence on the total performance.

These type of problems are often ideal for distribution to a large
number of computers and the most successful distributed computing
problems are of this category. Unluckily the number of problems in
this category is limited.

2.7.2 Extremely Coupled
Extremely coupled problems have the property that the different
solvers require a high degree of communication or synchronization in

2-23

order to solve the problem. Consider for example a particle simulation
where every particle will have influence every other particle in every
step of the simulation. This causes a lot of synchronization, which will
be very costly in a distributed environment. This type of problem is
often much more suited for a shared memory system because it is
most efficient if a “global memory” that can be read and written by
any processor is available.

2.7.3 Somewhat Coupled
The Somewhat coupled problems are problems that required more
inter-worker communication that the Loosely coupled category, but
they might still, given the proper resources, be runnable with good
results on a cluster of computers. The performance of the network and
the algorithmic design will have a major impact on the performance of
the problem solver. Problems in this category often required some
synchronization but at the degree that using multiple solvers
connected with a network will still positively affect the performance.
Because of synchronization, problems might also arise if too many
hosts are involved.

This type of problem is quite common in a number of areas and
sometimes Extremely coupled problems described in section 2.7.2 can
be approximated to enable them to run in this category. One example
of this is when a particle simulation can be divided up in space and
approximate values can be used for the regions that are executed
remotely. This decreases the synchronization requirements and the
approximated problem solver can thus perhaps run with good
performance on a cluster system.

2.7.4 Business Transactions
Business transactions are often rather small in size, but each request
may involve computations on large amounts of data. Typically the
number of requests per time-unit is high, which is the major
performance problem for this type of system. Examples of this type of
system is a business database, where small queries are sent that
potentially require access to very large sets of data.

Since very large amounts of data will require a very large host,
attempting to distribute the data to smaller hosts while still allowing
the system to be used with equal or better performance is highly
interesting. Another interesting aspect is the possibility of fault-
tolerance in such a system.

2.8 Difference in Approach

Task distribution can take on different shapes. It might be scheduling
of jobs on a set of resources where each job has a specific resource
requirement that must be provided by the system. It might also be

2-24

distributing TCP connections between servers, a task that is also
performed by a network level router that can use information in the
protocol headers. The task distribution can work at different levels of
the OSI stack, and which solution to use depends highly on the type of
application that is involved.

In the scenario of this project we are located somewhere in between
the two solutions mentioned. The traffic we focus on is of the
transaction type, which means that we have a large throughput but a
small solve-time for each request. The traffic is injected over TCP
connections that send a stream of separable requests, and these
requests should be distributed among the workers. Additionally we
assume that the cluster we use runs other applications, which means
that we are not in complete control over its resources. Thus it is not
possible to reserve resources, but rather we have to monitor them to
make sure we can get the service we require.

3-25

3 Method

The goal of the project was to investigate distributed computing or
grid computing to see if it was applicable for some categories of
current and future applications. The first step was to get and idea of
what we wanted to do, and after this we decided to develop a
prototype application.

3.1 Tasks

Examining the tools that are available and learning how they function
was an important part of the project. The initial study helped us decide
what tools we should use and what type of prototype we should
develop.

Based on the study and the foreseeable applications we decided to
develop a prototype framework for distribution of tasks. Figure 4
shows the design principles of the prototype. The idea is to use the
grid for serving a set of request injectors with a single entry-point that
we call the coordinator. The remaining nodes in the grid act as
workers that perform the actual computations required to serve
requests. The motivation for the design was its appeal to infrastructure
requirements.

Figure 4. Sketch of the prototype application.

3-26

The prototype should leverage on existing working and accepted
technologies and should serve as a proof-of-concept that can be used
to test ideas, analyze and evaluate performance or other parameters.

3.1.1 Coordinator Responsibilities
The responsibility of the coordinator is to shuffle data between
injectors and workers. The value of the coordinator is that it provides
a single point-of-entry to the grid to the injectors and it can perform an
intelligent distribution based on information in the application layer of
the system.

The focus of the coordinator was on the distribution of requests and it
is not responsible for more advanced application issues such as
maintaining order on requests or handling lost requests.

3.1.2 Worker Responsibilities
The worker has the simple job of executing the requests served by the
coordinator and returning the results of those requests. The workers
execute a function that solves the given problem (more on this later)
for each request received, and they may use static or dynamic data to
do this. The type of request is defined at compile-time.

3.1.3 Injector Assumptions
The injector should connect to the coordinator with a TCP connection
and start feeding requests. We assume that the order of received
replies is not an issue, neither is the loss of requests as a result of
errors. The injector can send one request at a time and wait for the
answer or it can have multiple requests issued.

3.2 Requirements and Expected Results

Gaining hands-on experience of distributed computing and finding out
the problems and possibilities of it was one of the main reasons for
developing a prototype. We expect the prototype to provide us with
measurable results about design, implementation and usage of
applications in distributed computing. By performing the project we
will hopefully be able to draw some conclusions to whether
distributed computing is usable, what type of problems exist and how
to take advantage of the technology.

The prototype is not focused on a specific problem, which gives us a
lot of freedom in our investigation to look at the areas that seem most
interesting. However we need some restrictions, and those are the
project environment described earlier in section 3.1. We expect that
this will enable us to draw conclusions to whether distributed
computing is useful in this area, and what restrictions will apply to
such a system.

3-27

3.3 The Prototype

The prototype design required determining what algorithms were to be
used in the prototype. In this section we describe the algorithms used.

3.3.1 Problems
In order to test the prototype we required some payload that would
consume some resources. We describe the problems we used to load
the system with in this section.

Spell Checker
We selected to use a spell checker as one problem in the project. The
industrial advisor of the project, Alexis Grandemange, had previously
written a spell checker based on Ternary Search Trees (see [5]) in
C++ that was well suited for use. Some wrapper functions had to be
written to plug the code into the prototype.

The data set for this problem is a file containing the words to be
included in the dictionary. We used a dictionary with about 25,000
English words. In this problem there is no need for cooperation
between the workers.

Find Route
We implemented a route finder in a network of airports and flights.
The problem is as follows: Given a departure airport, a destination
airport and a graph consisting of airports (nodes) and flights (edges),
the object is to produce a number of possible routes (or set of flights
(edges)), that will take us from the departure airport to the destination
airport.

The solution is based on a Depth First Search algorithm (see [1]) with
some constraints. Algorithm efficiency was not of primary concern.
The find route application may require some cooperation between the
workers. This is further described in section 6.1.2.

The data set used in the find route was a file with about 300 airports
and a set of 30,000 randomly generated flights.

Null Problem
When we evaluate the prototype we use a “null” problem. When any
type of request is received, the solution is to return a result with a
specific length defined at compile-time. The content is not defined.
The motivation for this problem is that it takes little or no time to
“solve” the problem but it creates network traffic and we can decide
the length of results. This is used to test the performance of the
prototype.

3-28

3.3.2 Algorithms

Communication Logic Algorithms
Communication and data transfer is one of the most expensive
operations in a computer. It is therefore desirable to do this as
efficiently as possible, and to try to maximize the throughput by
taking advantage of the tools and tricks available. One of the most
important tools that can be used to optimize communication is to use
non-blocking communication.

The problem with using non-blocking communication is that it often
makes the program more complex and difficult to follow. However,
the advantage is big when it comes to resources and the possibility to
do computations in parallel with the communication.

In the prototype we try both a normal read-write communication, and
also a more complex non-blocking communication with multiple
buffers.

Request Distribution Algorithms
Two different request distribution algorithms are used. The first
algorithm lets the workers decide the pace of the requests by forcing
them to actively ask for each request. The second algorithm uses
monitoring to find resource availability on the workers and this
information is used to decide the distribution of the tasks. These
algorithms are described more in detail in section 4.

Data Service Update
The spell checker and find route problems use a set of data, either the
word dictionary or the network of flights. The data involved is of
limited size, a few hundred kilobytes or so, and we don’t have very
tight constraints on the data service required for either problem.

The data used by a general problem is potentially very large,
measuring many megabytes. In this case it is often not feasible to
reread the entire data set when it is updated. Also, an update of data is
for many problems considerably smaller than the entire data set. The
periodicity of the updates is also an important parameter.

Since our problems have relatively small data requirements, we allow
the application to just reread the entire data instead of adding features
for data updates. We also do not require the nodes that take part in the
computation to be synchronized when it comes to the data used; our
requirements are rather loose. We assume that we need to update
about 2 times per second, a figure that is based on existing application
requirements.

3-29

3.3.3 Implementation Approach
The prototype was developed with an iterative method with added
functionality and tests performed at each iteration. This way we were
able to test new ideas and decide about new functionality as the
project developed.

The problem solving was generalized from the problem solver view to
reading a request from a buffer, solving the request and writing the
response to a buffer. This made it possible to hook up any type of
problem solver, and we could interchange solvers and problems easily
during testing.

3.3.4 Hardware Used
A small “grid farm” was constructed and used as a platform for testing
the prototype. This small grid consisted of four PC computers each
equipped with a 1 GHz processor, 256 or 512 MB or RAM, 16 GB
hard drive and an Ethernet card capable of 100 Mbit/s of duplex
traffic. The computers were interconnected with a network-switch
capable of peak traffic.

The computers were installed with RedHat Linux 7.1 and a number of
grid tools were installed such as MPICH, NWS, PVM.

3.3.5 Implementation Language
The first decision regarding the prototype was which programming
language to use. First candidates were a solution using C/C++ or Java.
Fortran or High Performance Fortran (see [20]) was also considered
since it has a history of being used in high performance computing.

Java was appealing because it provides quick development and quick
production of applications with high quality. However the main
drawbacks were that Java is slower than a C/C++ solutions and it was
also not targeted towards high performance distributed computing
making toolkits fewer and less mature.

Fortran has been mature since the 1950s and lately has had success in
high performance parallel computing with High Performance Fortran
(HPF), making it a very interesting choice. The language has many
interesting features such as compiler-optimization and HPF provides a
portable syntax for data-parallel computations. The fact that we did
not have previous experiences with Fortran was one of the
showstoppers.

C/C++ was chosen because it is well known, used a lot in grid
computing, and we also have previous experience with it. It was also
well suited for the Linux/UNIX platform and it had great availability
of matured grid toolkits. C/C++ was also accepted in the current
infrastructure.

4-30

4 Implementation

Using the platform provided and after having selected the
programming language we concluded that we wanted to use a toolkit
to develop the prototype. This resulted in the first MPI-based
prototype.

After implementing the problem solving parts and the prototype using
the MPI toolkit, we evaluated it and planned for the next move. We
decided that we wanted to use another algorithm for task distribution,
which could not easily be added to the current prototype structure. To
further investigate this we developed a second prototype that was not
based on MPI.

This section describes the implementation of the two prototypes we
developed.

4.1 MPI Prototype

We had decided to use MPI to develop the prototype and after
comparing different implementations we decided to use MPICH.
MPICH was chosen because it had a big user base, wide support and a
lot of functionality. Since MPI is a standard interface we could also
switch implementation just by sending other flags to the compiler and
linker.

MPI communication was used within the grid and between the nodes
in the grid (see Figure 5). The communication of data from the
injectors was sent over TCP using BSD sockets.

4-31

Figure 5. The MPI prototype. MPI is used for communication
inside the marked area.

4.1.1 MPI Usage Motivation
MPI is well spread and widely used in grid computing and parallel
computing in cluster systems and in larger parallel systems. One of
the most important benefits of using MPI is that you will be able to
use concepts and features that simplify development. We selected
MPI over for example PVM and Globus Nexus because MPI is a
standard and widely distributed but also because MPI can be plugged
in to the Globus toolkit (see section 2.2.3) at a later stage should some
Globus functionality be required.

Some of the important features include guaranteed messaging, defined
groups at startup, different message passing protocols depending on
message size and non-blocking message passing. These features are
important since they provide a framework and foundation on which
the application can be developed, and they also provide features that
are helpful in creating good application behavior. Non-blocking
message passing allows for good CPU resource utilization.

MPI also implements for example broadcasting and more advanced
collective operations like Scatter and Gather (scattering/gathering an
array of numbers to/from each node in the computation). If the
application can benefit from these types of operations they are often
implemented efficiently to make sure they are effective and sparse on
resources.

MPI was used for communication between the coordinator and the
workers, which are the computers that are part of the grid farm. BSD
sockets were used for communication with the injectors. Note also
that the MPICH version used is based on socket communication, but

4-32

this is wrapped in the MPI function calls with a resulting small
overhead.

4.1.2 Implementation
As described in section 3.1 the prototype consists of two major parts:
one coordinator and a number of workers. The coordinator is
responsible for forwarding requests to the workers. The workers are
responsible for executing requests: they should solve the problem
related to each request.

When using MPI each node is given a name represented by an integer.
With p nodes the nodes are named between 0 and (p-1). In our
implementation we use this naming by letting the node named 0 be
coordinator and nodes 1 to (p-1) are workers.

Request and Response Format
The coordinator accepts one or more incoming TCP connections from
injectors. The injectors send requests over the TCP connections and to
separate requests each request is prepended by the request length
represented by a short (a 2-byte integer) in Network Byte Format
(see Figure 6). The same format is used for the response. A request or
response can thus be between 0 and 65535 bytes long.

Figure 6. Request and response format.

Coordinator Logic
The coordinator is responsible for receiving requests from injectors on
the incoming TCP connections, route them to an available worker and
eventually return the response sent by the worker to the injector.
Figure 7 shows a schematic image of the coordinator behavior.

Figure 7. MPI Coordinator design.

At startup the coordinator first initializes MPI. It then binds to and
listens to a port number specified as input parameter for incoming
injector connections. When a connection is made the coordinator can
begin forwarding requests.

4-33

A simplification of the order of the events in the coordinator can be
seen in Figure 7. It shows the order of the events in the coordinator,
the numbers represent the order in the loop of each event. The figure
also shows the three messages that the coordinator may receive:

WORKER_READY: This is sent at startup when the worker announces
explicitly that it is set up and is ready to receive a request.

RESPONSE: The worker sends a response that is to be returned to an
injector. This also implicitly states that the worker is ready
for a new request.

RESPONSE_FORWARDED: The sending worker has forwarded the
request to another worker (which worker is stated in the
message). The sender of this message is thus ready for a new
request. The coordinator must not send a request to a worker
that has been forwarded a request by another worker.

When a message from a worker is received the coordinator will read a
request from an injector (step 2), which one is selected by round robin
on the sockets. The request read is (step 3) sent to an available worker.
The coordinator keeps track of which injector sent which request by
adding a field with the injectors file descriptor number to the request.
This field must by copied to the response by the worker.

After sending the request to the worker the coordinator will wait for a
response from any worker (step 1). When a request is received it will
return the response to the injector stated in the response.

The coordinator may instead of a REQUEST message send a
DATABASE_UPDATED message with a request as message data. This
message informs the worker that some data has changed and is useful
if the workers should reread a database, file or other source of
information in order to update the application data set. The exact
definition of what data has changed is up to the specific problems to
decide. The implemented application reads a file over NFS and
reinitializes some data structures.

Worker Logic
The workers are very simple in terms of logic. They use MPI to
communicate with the coordinator and the other nodes in the grid. The
file transfer is made with NFS. Figure 8 shows the worker design.

4-34

Figure 8. MPI Worker design.

After the worker is started it sends out a WORKER_READY message to
the coordinator stating that it is ready to receive a request. It waits for
requests in a blocking receive. When a request is received (step 1) it is
solved by calling a function specified by a function pointer at
compile-time. The definition of a solving function should look like
this:

int solve_function(char *req, char *res);

The function takes as arguments a buffer where the request resides
and a buffer where the response should be written. The function must
return the length written to the result buffer or –1 if an error occurred.

When the response has been written to the buffer, along with the
response length and file descriptor number copied from the request, it
is sent back to the coordinator (step 2).

If a DATABASE_UPDATED message is received the worker runs a
function specified at compile-time. In the spell checker and find route
problem implemented the function rereads a file over NFS and
reinitializes (reconstructs the data structure) the problem-solving parts
of the worker. This function could also be null meaning nothing is
done, as is the case with the null-worker.

4.1.3 Fault-tolerance
The version of MPICH that we used implemented version 1.1 of the
MPI specification. The specification does not define what is to be
done if communication errors arise, so an attempt to communicate
with a node that does not respond results in the application exiting
with an error.

4-35

4.2 Socket Prototype

We wanted to create a prototype that used a task distribution
algorithm that took advantage of monitoring information. Since the
MPI-based prototype we had developed was not suited for this
approach we decided to develop a prototype that did not use MPI but
was instead based on pure BSD sockets.

4.2.1 Motivation
MPI is very general since was created to fulfill the requirements of a
large number of applications with very general communication
requirements. This also results in MPI being too advanced and rich in
features that cause unnecessary overhead. Using BSD sockets directly
would provide better control of the data flow in the application,
allowing us to streamline the buffer handling and use non-blocking
communication. Additionally MPI prevented us from using the task
distribution algorithm that we wanted.

4.2.2 Implementation
The socket prototype started from about the same code base as a
mature version of the MPI prototype.

Request and Response Format
The format of the requests and responses are the same as in the MPI
prototype. All data sent is prepended with a short integer stating the
length of the data in bytes. We have the same data size limit from 0
bytes to 65535 bytes.

Coordinator
In order to make effective use of non-blocking communication a new
buffer design was implemented, schematically depicted in Figure 9.

4-36

Figure 9. Socket coordinator design.

As can be seen in Figure 9 the coordinator uses two buffers per
socket, one input- and one output-buffer. The connected injectors and
workers are represented using the same data structure with buffers.
The buffers enable the coordinator to shuffle data quickly by using the
select() function on the socket file descriptors. The function is
used to efficiently monitor a number of socket file descriptors for read
and write availability, and with repeated calls to select()combined
with reads and writes very high data throughput can be obtained.

The new non-blocking data flow allowed us to shuffle data very
quickly between the injectors and the workers. The full control over
the sockets allowed us to let workers join and leave the system and we
were also able to take advantage of the network communication
buffering of the operating system without having MPICH add
overhead.

The new data flow also allowed us to implement the new distribution
algorithm that makes distribution decisions for every request taking
into consideration the number of requests sent to a worker, whether
the socket of a worker is writeable (buffer is not full) and the resource
availability of the workers. The resource availability of the workers is
measured by the Network Weather Service described in section 2.6.3,
and the current CPU resource availability on the workers are fed into a
weighted round robin function where the weights are based on the
resource availability. A NWS forecaster process that is asked for
resource availability is started on the coordinator.

4-37

This prototype did not implement different message types such as an
equivalence of the DATABASE_UPDATED message found in the MPI
prototype, but adding this feature is fully possible.

Worker
The worker of the socket prototype had basically the same
functionality as the worker in the MPI prototype. One difference is
that each worker is running a NWS sensor process (see Figure 10) that
reports CPU resource availability to the NWS forecaster process
running on the coordinator. Another difference is that a worker will
only communicate with the coordinator and not with other workers.
Since the DATABASE_UPDATE message is not implemented there is
no support for this feature.

Figure 10. Socket worker. Note the NWS sensor process running
on each worker.

4.2.3 Fault-tolerance
Since the socket prototype allowed complete control of the socket
communication we were able to check for errors and remove workers
that disconnected or died. We could also keep listening on the
incoming connection socket for workers, which allowed a worker to
join at any time.

The fault-tolerance worked to the extent that the system will not die
when a worker died, but any requests dispatched to that worker were
lost. A more advanced fault-tolerance mechanism was beyond the
scope of this project.

5-38

5 Analysis

The analysis of the prototype was important because we needed to get
information about how it behaved and if it could satisfy the
requirements of the applications. This section describes and motivates
the analysis.

5.1 Object of Analysis

The object of the analysis of the prototype was to investigate whether
the prototype was usable for the applications it was considered, and to
gain a better understanding of what could be expected from the
technology. It should also provide information regarding what type of
applications can be used and how they should be implemented. We
focused the analysis on a few items: application performance,
infrastructure overhead, programming concept and problem
feasibility.

5.1.1 Application Performance
The purpose of using distributed computing in the first place is to get
some benefits, primarily better application performance. The
performance is very important, but it is sometimes interesting to trade
some performance for other features such as fault-tolerance,
complexity or financial cost.

Since we only had access to a small grid farm consisting of 4 nodes, it
was of interest to understand how the prototype would scale to a
larger grid farm consisting of more nodes and understanding what
type of problems would arise from this. This part is especially
important since one aim of the project was to get some information
about this area before actually scaling up to a larger and more
expensive grid farm.

5.1.2 Infrastructure Overhead
The infrastructure overhead is a measurement of the extra cost
following the use of a distributed application compared to a non-
distributed application. The overhead comes from application startup,
communication and from the closedown. In our study we focus on the
communication since this is the part that will cost throughout a long-
term execution.

Of course the object is to have the smallest possible overhead. We
were interested in comparing the infrastructure cost with the added
performance. Due to the nature of the application we developed we

5-39

focused on the network traffic and the task distribution when
analyzing infrastructure overhead.

5.1.3 Programming Concept
The programming concept can be described as a general view of the
prototype development approach. Analysis of this should include an
analysis of the toolkit selection and the benefits related to this. It
should also include the analysis of other parts of the implementation
such as the general algorithm, the programming method and program
evaluation.

5.1.4 Problem Feasibility
Problem feasibility was a very important subject for the project, since
the project is not focused on a specific problem. The object was to
gain understanding on what type of problem can efficiently benefit
from a distributed environment, and what type of constraints and
limitations the problem is bounded by. This analysis required us to
investigate the different problems that are at hand and understand their
properties.

Studying this also opened us up for the investigation of other areas
such as data replication, distributed databases as well as data and
program consistency aspects.

5.2 Tool Usage

After defining the parameters we wanted to analyze we had to find a
way to do this efficiently and with some degree of accuracy.
Analyzing the performance of a computer and a computers system is
not trivial and we have to rely on the tools we have at hand. Such
tools include what we can make out of the operating system, what we
experience when monitoring the system as well as trying to use timing
data and statistical data in order to understand how the system works.
This section describes the tools we used for our analysis.

5.2.1 Counters
One of the simplest mechanisms we used was to embed counters in
the code and allow events to trigger these. Events that triggered the
counters were for example when a request was received or when a
response was returned to the injector. Timers were used to enable us
to periodically check or output the current status of the counters.

Counters are very useful because they allow us to see the status of the
system at any given moment. However they should be used with
moderation since they have a tendency to make the code ugly. It is
important to verify both that you are actually counting the correct
parameters, as well as that your counters function properly. For
example they should not count the same event twice by mistake.

5-40

5.2.2 Traffic Injector
Throughout the development and testing of the prototype we used a
traffic injector. The traffic injector was written in the Java language
and its design is very simple. It opens up a TCP connection to the
coordinator on a specified host and port, and then it starts two
different threads. The first thread writes requests to the socket and the
other thread reads responses. A few different versions were used for
different problems, performance tests or verification. We ran the
traffic injector on a workstation not part of the grid cluster.

The purpose of the traffic injector was to test the functionality and
performance of the prototype. By starting a number of different traffic
injectors, on one or many hosts, we also made sure that the prototype
could handle more than one injector and scale properly. The design of
the injector was motivated by the design of existing applications.

5.2.3 Profiling
The performance of an application can be studied with the aid of a
profiling tool. Since we used the GNU Compiler (also know as “gcc”)
we used gprof, which is a profiler available with GNU Compiler.

The gprof profiler is enabled with the GNU Compiler by passing the
flag –pg when compiling. This enables the profiler and it will add
some code to the binary increasing its size and causing some
overhead. When the application is run the profiler will keep track of
function calls and the time spent in each function, and from these
measurements it will produce an output file that is viewable with the
program gprof.

The output file contains information regarding the total running time,
the percentage of time spent in each function, the number of times a
function was called and a “call graph” showing how often functions
called each other. This information can be used to understand where
time is spent in the application and what functions should be targeted
for optimizations.

The profiling introduces some overhead in running time and
application size, and should only be used during the development
phase. Also there are very limited guarantees about the accuracy of
the information provided.

We used profiling throughout the development of the application. This
allowed us to focus optimizations and to verify were the application
spends time.

5.2.4 MPICH Logging
Some extra analysis features accompany MPICH. One of the most
useful features is the logging. As with the profiling, all that is needed
to enable logging is to pass a flag, in this case –lmpe, to the compiler
and linker.

5-41

The logging will give a unique name to each type of MPI event, such
as a MPI_Send() or MPI_Recv(). It will also log on a slightly
lower level such as when messages are received. The developer may
also add log identifications for any other functions, and they will then
be logged as well. Each event is logged with id and timestamp, and
the logging takes place on all the nodes in the MPI run. When the
program has terminated, the logs of the different nodes will be
collected and merged into one single log file.

The merged log file contains information about all the logged events
on all nodes, with timestamps. Because each message that is sent is
given a unique identification, it is also possible to match sent
messages from one node with received messages on another node.
This makes it possible to deduce relations between events in the
system, the event causality as described quickly in section 2.4.1.

5.2.5 MPI Log Viewing with Jumpshot
The log file is written on a format that is descriptive but not readable;
the format is either CLOG or SLOG, two standard log file formats.
With the MPICH distribution is included a Java program called
Jumpshot. Jumpshot can be used to visualize a log file, and it is
possible to zoom in on events (there are often a very large number of
events). Figure 11 is a sample view of Jumpshot. We refer to the MPE
manual [6] for more information on Jumpshot.

Figure 11. Sample Jumpshot view.

5-42

5.3 Method of MPI Prototype Analysis

The MPI prototype was analyzed with the aid of profiling information,
counters and also the MPICH logging features. Interactive debugging
was also used to some extent to verify the program flow.

5.3.1 Throughput
The primary aid when measuring the throughput of the prototype was
the use of the traffic injector described in section 5.2.2. In order to test
the performance of the prototype coordinator and not a problem-
specific performance we used the “null problem” described in section
3.3.1. The null problems enabled us to analyze the maximum possible
data throughput of the prototype on the available software and
hardware resources.

The throughput results were obtained by using one traffic injector and
all four nodes in the cluster (one coordinator and three workers) by
observing the prototype counters representing the number of requests
processed. The test was repeated with different result size settings
(defined at compile-time with the null problem) and the results of
these tests were noted. The counters show the number of requests and
replies processed each second, and since the sizes of these were
known the numbers could easily be translated into bandwidth usage.

5.3.2 Spell Checker Performance
The performance of the spell checker was tested by starting the traffic
injector set to send requests of the correct format. By reading the
counters on the prototype we were able to get figures of the request
throughput on the coordinator.

5.3.3 Logging and Log Viewing
By enabling logging when compiling the prototype the prototype
produced an output file containing the logging information. The
information in the file was opened using the Jumpshot log viewer and
by inspecting the image presented with Jumpshot we were able to
draw conclusions about the application performance and behavior.

5.3.4 Request Distribution Algorithm
By examining the performance figures, profiling information and log
view we were able to get information about how the request
distribution algorithm behaved. The aim was go get good performance
figures, but these tend to depend on many factors. The profiling
information allowed us to investigate where performance could be
improved, to the extent that we could make sure that the request
distribution algorithm worked good with regard to resource usage.
The log view allowed us to visually investigate how the algorithm
worked, and help us describe its behavior.

5-43

5.3.5 Data Service Algorithm

The MPI prototype implemented the DATABASE_UPDATED message
that was used to inform workers that the data (the file) should be
reread. The spell checker was the only prototype that took advantage
of this feature by deleting the old data structure from memory and
rebuilding it using the file.

The data service was monitored manually by making sure updates
were made on time and that they were not taking too long.

5.3.6 Data Flow
The prototype data flow was analyzed through code inspection and
with the help of profiling information such as call graphs.

5.4 Method of Socket Prototype Analysis

In the analysis of the socket prototype we relied mostly on counters
and profiling information. Since the socket prototype did not use
MPICH it was not possible to use any of its logging features. To
verify functionality and find bugs we also used some interactive
debugging.

5.4.1 Throughput
The throughput of the socket prototype was measured the same way
with the MPI prototype described in section 5.3.1. We used one
injector sending requests to the coordinator that distributed these to
three workers.

5.4.2 Scalability with Find Route
The scalability test was performed by increasing the number of
workers used (gradually from one to three), and by increasing the
number of injectors used. We tested scalability with the find route
problem since it was the only problem we had were the processing
power of the worker set the limit on throughput.

The test with increasing the number of workers was performed by
starting the prototype with one single worker and using one traffic
injector to inject requests. The throughput was recorded and after this
we added another worker. The cluster limited us to three workers.
With the throughput of requests and responses and their sizes, we are
able to compute the network bandwidth used.

By increasing the number of traffic injectors we tested the scaling of
this part of the prototype. We performed tests with between one to ten
traffic injectors running on one single host.

5-44

5.4.3 Non-blocking Communication
The analysis of the non-blocking communication system used in the
socket prototype was done by inspecting profiling information,
throughput figures and following program flow throughout the
development of the prototype.

5.4.4 Request Distribution Algorithm
The request distribution algorithm used in the socket prototype was
analyzed with the help of profiling tools and counters. To make sure
that the algorithm was efficient we checked the profiling information
to make sure the distribution did not take too much time.

Counters that were used to keep track of processed requests and
responses were inspected and compared to processor availability
statistics as reported by NWS. The idea was to make sure the statistics
were reported properly by NWS and to check that the distribution of
requests used the statistics properly. This was done by inspecting the
periodic output from the prototype.

5.4.5 Data Flow
The data flow in the prototype was analyzed through code inspection
and with the help of profiling information.

6-45

6 Results & Discussion

In this section we describe the results of the analysis of the prototypes,
the problems and the system in general.

6.1 Problems

We used three different problems for the analysis of the prototypes;
spell checker, find route and null problem. The problems were
introduced in section 3.3.1. This section discusses the results.

6.1.1 Spell Checker
The spell checker was based on Ternary Search Trees. The algorithms
searches for a word in the dictionary and suggests alternative words.
The suggestions are based on partial match or near-neighbor
searching. Matching a word in a Ternary Search Tree has a
complexity on the number of comparisons required of O(log n+k),
where n is the number of strings in the dictionary and k is the length of
the word to look up.

The time it takes to look up a word depends on the word and the
dictionary used. A larger dictionary affects the time, but also the word
that is sought. More time-consuming than the matching is however the
search for alternative words. We allowed for up to ten alternative
suggestions in our application. Some words that consist of many
letters or have no near neighbors will end up in a sparse branch of the
tree and result in few alternatives. These words are quick to lookup.
Other words, often short, have many neighbors and finding
alternatives for them takes more time.

We set the maximum possible word length to 20 bytes. Since we
allowed up to 10 alternatives the maximum reply length was about
200 bytes.

6.1.2 Find Route
The find route problem was described in section 3.3.1. We used a data
set of about 300 airports (vertices) and 30,000 flights (edges). In our
algorithm decided to limit the number of flights a trip was allowed to
consist of to 4 and a maximum of 100 possible trips were returned.
Every flight was represented by 30 bytes, so in total the length of a
result of a search could be 30*4*100=12,000 bytes.

The algorithm we implemented was not very time-efficient and it
could have been greatly improved in this respect. Since the algorithm
itself was not the interesting issue here, we did not do anything about

6-46

this. However, the internal string handling would benefit from a
rewrite, and a non-blocking send from the worker would also increase
performance.

In the MPI prototype we attempted to use a more cooperative model
for the find route problem. We divided up the airports into regions and
put each worker responsible for one region. We had three workers and
thus selected three regions. When a flight ended up in another region
than the current one, the unfinished solution was sent to the
responsible worker for completion. The coordinator was informed of
this with the RESPONSE_FORWARDED message as described in
section 4.1.2. Although this approach was interesting, the distribution
algorithm used in the MPI prototype made it inefficient since it did
not allow for the coordinator to distribute the request to the node
responsible for the region, which caused many redirections.

6.1.3 Null Problem
The null problem was useful for testing the performance of the
prototypes. We described it in section 3.3.1 but the basic idea is that
the computation required to “solve” the problem is close to zero since
it does nothing but writes some data to a response buffer. It allows us
to configure any length for the response it produces which is used to
test the maximum throughput that we can obtain.

We used the null problem with response sizes of between 1 byte and
18,000 bytes.

6.2 MPI Prototype

6.2.1 Throughput
One important performance measurement is the maximum throughput.
This was measured by using the “null problem” (as described in
section 3.3.1) and by varying the size of the responses. The result
from this test can be seen in Figure 12. Requests of size 3 bytes are
sent on the same link. One injector and 3 workers were used for the
test.

6-47

0

2000

4000

6000

8000

10000

12000

14000

1 50 20
0

40
0

80
0

12
00

18
00

25
00

50
00

10
00

0

Message size excl. headers (in bytes)

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

0
10
20
30
40
50
60
70
80
90
100

B
an

d
w

id
th

 u
sa

g
e

(M
b

it
/s

)

Figure 12. MPI Prototype: Message size vs. Requests per second
and Bandwidth usage.

The horizontal axis in Figure 12 shows the response length used in the
test. The decreasing graph represents the number of responses
returned per second, which equals the number of requests serviced per
second. We can read that the maximum is about 12,000 requests per
second with one-byte (very small) replies, and it approaches zero as
the size of the response increases.

The increasing graph represents the bandwidth usage of the actual
data carried in the responses. We see that the graph starts a bit over
zero and with very large messages it reaches over 90 Mbit per second.
Headers and some data (e.g. we only count the response length in the
figure, not the 3-byte requests or other packet data) are not accounted
for which is why we can not reach 100 Mbit per second. With 1,000-
byte responses the bandwidth usage is about 60 Mbit per second.

The reason for performing this test was to measure the efficiency of
the data transfers and to get an upper limit on the number of requests
that can be handled by the coordinator. This is important in order to
understand the performance of the coordinator but it can also be used
to predict scalability.

6.2.2 Spell Checker Performance
When running the spell-checking problem the number of requests per
second reached about 9,000. Request size was 3 bytes and response
size was about 50 bytes. Note that short words normally take longer to
solve because there are a larger number of suggestions possible.

For this test we also used the database update feature of the prototype,
which caused a reread of the wordlist about two times per second.
This was likely the main reason for the loss of about 3,000 requests
per second handled when we compare the results with the null
problem with 50-byte responses.

6-48

After performing tests with the spell checker we concluded that the
spell checking took very little processor time, something that made it
less suitable for the MPI prototype and distributed computing in
general. By collecting a batch of 10 requests and sending them in one
package to the worker we were able to increase the throughput with a
factor of 2 to 3. This verifies our intuition that the small requests
hinder performance.

6.2.3 Logging and Log View

The logging of MPICH was enabled with the compile flag –lmpe.
When logging was turned on the process used a lot of memory during
the run and the performance was also significantly worse. When the
processes had exited, the log files were merged and saved on one of
the coordinator nodes. It could be viewed with Jumpshot, and Figure
13 shows a view were the prototype is running the find route problem
with cooperation (described in section 6.1.2) enabled.

Figure 13. Jumpshot showing a sample run with find route and
cooperation.

Figure 13 displays a horizontal time axis and the coordinator is the
uppermost node. The colored boxes represent the MPI function that
the process is currently executing. For example green means that the
process is in receive, and blue means that the process is sending. The
black area represents time that is not spent in MPI functions, so this is
where the other things such as problem solving or other functions are
performed.

Although the logging might not be perfectly accurate, it does give a
good understanding of the behavior of the application and how it
works algorithmically and performance-wise.

6-49

6.2.4 Request Distribution Algorithm
The MPI prototype used a request-driven distribution. This means that
when a worker sends a RESPONSE or WORKER_AVAILABLE
message, the coordinator sends the next request to this worker. This
algorithm is simple and the worker will never be overloaded because
it sets the pace of the reception of requests itself.

The main concern with this algorithm was that especially for small
requests or problems that take little time to solve, this algorithm
would not provide very good performance. This turned out to be true.
This can also be seen in section 6.2.1 where small requests use very
little link bandwidth and are thus likely not performing well. On the
other hand with requests and responses that require larger transfers
and especially if the problems are more difficult and CPU consuming,
this self-regulating algorithm should, although it is very simple,
provide decent performance.

We also noticed an issue with MPICH over TCP: when more than one
worker has sent a response and we do a MPI_test() it seems that
MPICH will always return the worker with the smallest rank. This
seems to originate in a piece of MPICH code where a select() is
done on the socket file descriptors and the data is read from the first
file descriptor available, causing unfair behavior.

6.2.5 Data Service Algorithm
The data service was used with the spell checker. In this case the
algorithm worked without problems, mainly due to the fact that the
problem had few requirements. The update size was of acceptable (a
few kilobytes), no synchronization was required between the workers
and the update itself did not consume much processor time so we
could keep the simple update strategy.

The file was located on a drive mounted via NFS. This will result in
the file being transferred over the network when first read, but
subsequent reads will likely use a locally cached file. Also the
complete file is reread while a real application would likely only
update the parts that have changed, if possible.

It is easy to find situations when the algorithm might prove to be too
simple. If there are performance issues regarding the update size or
update periodicity the problems could perhaps be addressed and
solved within the scope of the current solution. Many interesting
applications would however require a more controlled or
synchronized data update that would likely require a more advanced
solution. A system based on Dynamic Quorums (see for example [7])
could be one possible solution that would provide this functionality.

6.2.6 Data Flow
The data flow of the MPI prototype with a single buffer as seen in
Figure 7 was not efficient. The design worked because we used

6-50

blocking communication but this also made use dependent on the
network communication buffering of the operating system, something
that is not good style in MPI programming.

6.2.7 MPI Prototype Summary
The MPI prototype is not really efficient for applications like our spell
checker. The main reason for this is that the small requests are less
suitable for the distribution algorithm used and would be better suited
for a system that makes uses more queuing.

Problems that require more processor time should behave decently
with the MPI prototype. The main bottleneck seems to be that it can
not handle large numbers of requests per second, but with fewer
requests per second with a problem that is bounded by processor time
and network bandwidth the system should behave quite well.
Problems that require more processing power should scale nicely to a
larger cluster.

6.3 Socket Prototype

6.3.1 Throughput
The network throughput test with the socket prototype was performed
the same way as with the MPI prototype. We used the “null problem”
to generate responses of specific lengths did this a number of times
resulting in Figure 14. The test was run using requests of 3 bytes with
a single injector and 3 workers.

0

10000

20000

30000

40000

50000

60000

1 50 20
0

40
0

80
0

12
00

18
00

25
00

50
00

10
00

0

18
00

0

Message size excl. headers (in bytes)

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

0
10
20
30
40
50
60
70
80
90
100

B
an

d
w

id
th

 u
sa

g
e

(M
b

it
/s

)

Figure 14. Socket Prototype: Message size vs. Requests per second
and Bandwidth usage.

As we see in Figure 14 along the decreasing graph the request or
response throughput reaches up to 50,000 requests per second with
small response lengths. With 1,000 byte responses the throughput is

6-51

about 10,000 response per second, a bandwidth usage of about 80
Mbit per second compared to 60 Mbit per second for the MPI
prototype. With very large responses we use about 90 Mbit per second
which should be about the peak bandwidth.

6.3.2 Scalability with Find Route
We performed some scalability tests with the find route problem. Find
route was selected because it is, opposite to the spell checker, very
time-consuming and it also potentially produces larger responses. We
selected to test with a request that produces a response of about
10,000 bytes to simplify transfer rate calculations. The request (not
included in transfer rate calculation) had a length of about 50 bytes.
Figure 15 shows the results of the scaling test.

Number of workers Requests handled
per second

Transfer rate (responses
of 10,000 bytes)

1 410 32 Mbit/s

2 820 65 Mbit/s

3 1000 80 Mbit/s

Figure 15. Scalability from one to three workers running the find
route problem.

According to Figure 15 one worker should be able to handle about
400 requests per second, and we see that this is true for two workers
as well. When we scale up to three workers the bandwidth seems to
hinder higher throughput.

We also tested varying the number of traffic injectors between one to
ten injectors running on the same hosts, but it showed no major
difference on the throughput.

6.3.3 Non-blocking Communication
The non-blocking communication appeared effective for increasing
the performance, considering the throughput figures of section 6.3.1.
One drawback with non-blocking communication was that it required
a lot of code to handle the buffers, and the increase in buffers will of
course increase the memory footprint of the process.

6.3.4 Request Distribution Algorithm
The socket prototype used NWS (described in section 2.6.3) to get
CPU resource availability information from the workers. Each worker
was thus equipped with a NWS sensor (see worker setup in section
4.2.2) that reported CPU availability to the forecaster located on the
coordinator.

The information provided by NWS was used as weights in the
weighted round robin distribution algorithm. Round robin uses very
little resources and the use of resource information to set weights

6-52

worked well. The idea behind this was that if we did not know what
applications were running on the nodes in the cluster, using an
independent application to monitor the resources would enable use to
make better decisions.

One issue we found was that NWS sometimes did not report new
resource availability values properly, which sometimes led to non-
optimal settings of the weights. It would be possible to check
timestamps to determine when this happened. Most other problems
concerning weights and measurements could be eliminated by using
constraints and making sure the weights are sane.

6.3.5 Data Flow
The data-flow design with multiple buffers probably had a lot to do
with the performance increase when compared to the MPI prototype.
The multiple buffers were what made the non-blocking
communication possible.

The drawback of using multiple buffers was that it resulted in lots of
more code and a more complex application.

6.3.6 Socket Prototype Summary
The socket prototype provided good performance with large number
of requests and one benefit is that it was able to process many data
streams simultaneously. The throughput when using small requests
and responses proved that the distribution mechanism was, as
expected, more efficient compared to that of the MPI prototype. The
big difference here was likely not the buffering system and the non-
blocking communication, but also the fact that requests were fed to
the workers rather than asked for. This increased buffering on both the
coordinator and the worker, as well as limited the impact of the
network latency.

Overall the socket prototype was better suited for our application
since it used a rather simple communication flow. However, it lacked
the access to MPI features, which greatly limits the type of
applications it could be used with.

6.4 General Discussion

6.4.1 Profiling
Profiling was used throughout the development of both prototypes to
make sure the functions worked properly and did not steal processor
time unnecessarily. The workers should ideally spend most of their
time solving problems while the coordinator should spend most of its
time shuffling data. Other functions should only account for small
amounts of processor time. Figure 16 display were the prototypes

6-53

spent most of their time. We only show the most time-consuming
functions.

MPI prototype Socket prototype

Worker 1. Send, receive and
wait
2. Problem solving

1. Problem solving
2. Send and receive

Coordinator 1. Send, receive and
wait

1. Loop and select
2. Send and receive

Figure 16. Profiling results for MPI prototype and Socket
prototype. In the boxes we order the most time-consuming
operations when running the spell checker.

The coordinators in the two prototypes have about the same profile.
The main difference is that the MPI coordinator spends a lot more
time waiting for new requests than the socket prototype.

For the workers the socket prototype spends more time solving
problems than communication, while with the MPI prototype it is the
other way around. This is because of the distribution: the socket
prototype will almost always have requests to read quickly from the
local network buffer, while the MPI prototype will have to send its
response and wait for a new request.

6.4.2 MPI Usage
MPI provides a lot of functionality and is very useful when
implementing a distributed application, mainly because it provides a
simple and consistent interface to message passing between the
different nodes. If applications have special requirements or can take
advantage of advanced group communication routines such as
barriers, broadcast, gather and scatter, MPI will be even more useful
since it efficiently implements these features. Although we did not use
it, the non-blocking communication system and buffering of MPI
would probably provide both good performance as well as a nice
programming environment.

Our prototypes did most of their communication between the
coordinator and a worker (except the cooperating find route), and we
used a very small set of the functionality of MPI. Our prototype also
did not need any advanced message types provided in MPI, so the
unused parts of MPI was mostly a cost of data overhead and more
logic to process.

The fact that the MPI version we used did not provide us with the
possibility to do fault-tolerance was also a problem since it would be a
very nice feature for the application. In the socket prototype when we
had control over the sockets, we were able to implement a simple
fault-tolerance system that would at least allow workers to join and
leave.

6-54

6.4.3 Socket Usage
Using sockets directly causes some extra work when writing the
communication system. The main benefit is the complete control over
the sockets and communication system, and we should thus be able to
take better advantage of the resources. This requires knowledge and
experience of programming sockets on a low level. If we required
communication between workers, the problem would immediately
grow in complexity, and in this case MPI is probably well worth the
overhead that it compensated with simpler programming.

The use of sockets directly removes the packaging of messages done
by MPI. This reduces the processor resources used for each message
sent and received, and also the size of the message. With very little
message data the packaging information might be the significant part
of the message.

6.4.4 Scalability
We performed some simple scalability tests but what it proved to us
was mostly that the bandwidth quickly became the bottleneck with our
problems. The positive thing is that the number of requests per second
should be sustainable for the coordinator when using more workers, in
which case a more difficult problem than what we used would scale
rather nicely up to more workers. In this context it would also be
interesting to test faster networking technologies.

6.4.5 Monitoring
The NWS monitoring architecture is built as a general tool that should
be usable in many different environments. Setting up and using NWS
was not painless but the design made sense. Our main concern was
whether the measurements from NWS that we used as weights in our
weighted round robin algorithm, were actually the best thing to use as
weights. The performance of the application is likely to depend not
only on the CPU reports but also on other parameters such as what
other applications are running on the monitored computer.

One alternative that came up was to do the monitoring in the
prototype itself instead and also send results with the same
communication system as the other application data. In this case we
motivated the use of NWS with the value of having an independent
system for monitoring that was not bound to a specific application.

6.4.6 Networking Technologies
There are other networking technologies that provide better
performance, but these are usually not as common or as cheap as
Ethernet. If the application uses heavy communication or has large
data requirements it might be necessary to investigate other
technologies further. Storage Area Networks (SAN) often use
technologies such as Firewire to increase performance, and it is also
possible to improve the latency of the network.

6-55

The IP protocol stack causes work for the processor which inhibits
computation performance and increases latency. Using a dual-
processor machine where one processor runs the application and the
other takes care of other jobs such as I/O and operating system calls
might be a solution.

6.4.7 Accuracy
The fact that the figures stated have been found on a set of computers
that have been set up the same while performing the test allows for
comparison. In a different environment the figures will change but we
believe that the conclusions we make from the figures are valid. Since
we did not have an existing implementation for comparison we have
not focused the analysis on individual figures.

7-56

7 Conclusions

The intention of the project was to investigate the use of distributed
computing for business applications. After the initial investigation we
realized that we needed to develop an application that we could
evaluate. The application we developed was the task distribution
engine that would allow us to distribute a single-host application to
multiple hosts with a single point of entry.

7.1 Problem Types

The aim of the project was not to solve a specific business problem
but to do a more general evaluation. The problems we selected, spell
checking and find route, are thus examples.

As we saw in the analysis the spell checker did not really perform
efficiently when distributed. The major problem was that the
algorithm used for spell checking was too fast, which caused the cost
of distribution to be higher than the gain.

The find route required a greater amount of computing resources, and
the results were also larger, a few kilobytes. As our scalability test
showed, the find route problem could actually take advantage of the
distribution. By increasing the number of computers available the
throughput increased. The test also showed that even for find route,
three nodes would saturate the link bandwidth.

The find route that took advantage of cooperation between the
workers was more a quick test than a thorough investigation. It
showed that the implementation of this feature that we did was a bit
too easy and did not perform that well neither in throughput or in
behavior. On the other had it did show us that it was a viable
technique and with the correct problem and in the correct environment
it could be successful.

The problem the distributed system is used to solve will set the limits
on how the system should be implemented and how much
infrastructure cost is tolerable. It is clear that adding one computer
processor is a big resource and its added performance must be used.
There surely exists a number of interesting problems that can greatly
benefit from distributed computing, and we are sure that as the
technology is being accepted on a wider base the usage for many
business problems will increase.

7-57

7.2 Cluster Hardware

The grid cluster we used in the project consisted of 4 PC computers.
This is a rather small setup and the intention was to consider about 30
computers, a significant resource. By using cheap hardware and open-
source software such as Linux and the other packages installed, the
cost of the grid is easy to calculate. If more performance is needed it is
perhaps also interesting to look at dual-processor machines.

With a larger grid there is also more problems with administration.
This requires both knowledge of how to administer such a set up, but
also perhaps some extra hardware such as console and screen
switches. With a larger cluster it might also be necessary to use some
type of cluster management tool, something this project did not look
into.

7.3 Message Passing Interface Usage

MPI was used because we wanted to use standard tools that had a
proven success record. The MPI toolkit provided quick, easy and
standard-compliant development of distributed applications. Although
we only used a few of them, MPI comes with a large number of
features that can be used to simplify programming, improve
performance and produce quality programs.

For the applications we looked at, one of the drawbacks was the lack
of support for a dynamic environment where nodes could join and
leave. This is a rather complex function but since we considered
business applications that require uptime and serviceability it is a
major problem. We are happy that this functionality is added to the
MPI-2 Standard and hope to see it implemented in toolkits soon. Since
fault-tolerance is one of the important benefits of a distributed system
we consider it very important for the acceptance of MPI and
distributed computing in business environments.

Having a standardized toolkit is very important if grid computing is to
be widely spread, and we believe that MPI is a good basis for this.
However we think that often the use of MPI in its current form is
rather low level and we would encourage toolkits on top of the MPI
Interface that provide an even more usable environment.

7.4 Socket Usage

Socket programming increases the control over the communication,
but it is also more difficult and causes complex code. Sockets do
provide high-performance and safe communication when used
properly but it is difficult to master the system to take full advantage
of it. Still many distributed applications are written using these low-

7-58

level communication tools because they provide full control over the
system and the developer can do exactly what he wants.

As mentioned before, programming sockets makes it very difficult to
provide group communication that is often required or practical in a
distributed computing environment. Applications that use group
communication require a great deal of logic, logic that is usually
provided by a toolkit such as MPI.

In our socket prototype we saw greatly improved performance
compared to our MPI prototype. However, we believe that with some
optimizations and a nice buffering architecture in the MPI version we
would be able to match the performance since MPI does provide
features both for buffering and non-blocking communication.

7.5 Resource Availability with Distribution

In a grid cluster of decent size we consider it likely that there might be
a number of different applications running at any time that use the
cluster. If we don’t know exactly what applications are running, where
they are running and how they behave, a system that monitors the
processor usage and other parameters might prove very useful. This
information could likely be used to provide better service to an
application by allowing it to use the least-used nodes in the cluster.

In this project we used the resource availability information to control
our task distribution. There are a number of parameters involved here
that make the problem quite difficult such as other applications, the
resource reports, how measurements are made, the service
requirements of the application and the setup of the nodes. To
successfully provide a distribution, based on the resource availability
numbers we get on problems with the small granularity of our
prototype requests, is very difficult.

Using a resource monitor is very important, but it might be better to
use it on a higher level, perhaps to select which set of nodes are to be
used (or reserved) for an application.

7.6 Network Usage

The performance of the processors on the nodes in the cluster was
very good. This resulted in problems being solved very quickly and
thus the network bandwidth became an issue. This verified our
intuition that it is valuable to be able to perform smart but
computationally expensive functions on the nodes, and to try to limit
the network resources required.

It will probably not take that long before there is a shift from current
100Mbit/s Ethernet to 1Gbit/s Ethernet or other technologies. Current

7-59

Storage Area Network solutions (quickly mentioned in section 6.4.6)
often use other technologies to provide better performance, but these
are still rather expensive and would increase the cost of the cluster.

7.7 The Next Step

Distributed computing is very interesting and a lot of developments in
the area will take place in the near future. There are many interesting
aspects that require research and development, and many
organizations and companies are involved in this.

One interesting area is the construction of a more complete grid
cluster setup that would allow for the running of multiple applications
and application types. This problem is somewhat being issued by for
example the Globus toolkit but many things remain to be done.

Extraction and use of monitoring information is also an area in need
of further investigation. Further investigations about what type of
monitoring information that should be used to predict the performance
of a specific application would be interesting to enable more accurate
measurements and predictions.

Perhaps the most ambitions but also interesting research area would
be the development of autonomous clusters that run applications, self-
heal and provide services to users safely and transparently. This are is
heavily researched and will be very important in future computing
systems.

I

8 References

8.1 Publications

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James
B. Orlin. Network Flows : Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cli_s, NJ,
1993.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M.
Miller, K. Seymour, K. Sagi, Z. Shi, and S. Vadhiyar.
Users' Guide to NetSolve V1.4.1. Innovative
Computing Dept. Technical Report ICL-UT-02-05,
University of Tennessee, Knoxville, TN, June 2002.

[3] G. Ausiello, P. Crescenzi, G.Gambosi, V. Kann, et al.
Complexity and Approximation. Springer, 1999.

[4] Roberto Baldoni, Michel Raynal. Fundamentals of
Distributed Computing...
http://dsonline.computer.org/0202/features/bal_6.htm

[5] Jon Bentley and Bob Sedgewick. Ternary Search
Trees. Dr. Dobb's Journal April 1998
http://www.ddj.com/documents/s=921/ddj9804a/9804
a.htm

[6] Anthony Chan, William Gropp, and Ewing Lusk.
User's guide for mpe extensions for mpi programs.
Technical Report ANL-98/xx, Argonne National
Laboratory, 1998.
ftp://ftp.mcs.anl.gov/pub/mpi/mpeman.ps.

[7] Randy Chow and Theodore Johnson. Distributed
Operating Systems &Algorithms. Addison-Wesley,
1997.

[8] Ian Foster, Carl Kesselman, and various authors. The
Grid: Blueprint for a New Computing Infrastructure.
1st edition. Morgan Kaufmann Publishers, November
1998.

[9] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM:
Parallel Virtual Machine A Users' Guide and Tutorial
for Networked Parallel Computing. MIT Press, 1994.
http://www.netlib.org/pvm3/book/pvm-book.html

II

[10] Kenneth W. Neves. Industrial "Power Grid"
Computing: The Next High Performance Challenge.
http://www.atip.or.jp/ts/neves.html

[11] Norbert Sensen. Algorithms for a Job-Scheduling
Problem within a Parallel Digital Library.
Department of Mathematics and Computer Science
University of Paderborn, Germany. http://www.uni-
paderborn.de/cs/sensen/Scheduling/icpp/icpp.html

[12] Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, Jack Dongarra. MPI: The Complete
Reference. http://www.netlib.org/utk/papers/mpi-
book/mpi-book.html

[13] Rich Wolski, Neal Spring, and Jim Hayes. The
network weather service: A distributed resource
performance forecasting service for metacomputing.
Journal of Future Generation Computing Systems,
15(5-6):757-768, October 1999.

8.2 Internet Websites

[14] Google conference directory.
http://directory.google.com/Top/Computers/Parallel_
Computing/Conferences/2002/

[15] distributed.net. http://www.distributed.net/.

[16] Folding@home. http://folding.stanford.edu/

[17] The Globus Project. http://www.globus.org/

[18] Grid Computing Info Centre (GRID Infoware).
http://www.gridcomputing.com/

[19] GridEngine. http://gridengine.sunsource.net/

[20] High Performance Fortran Forum.
http://www.crpc.rice.edu/HPFF/home.html

[21] An InfiniBand™ Technology Overview.
http://www.infinibandta.org/ibta

[22] LAM/MPI. http://www.lam-mpi.org/.

[23] The Linda Group.
http://www.cs.yale.edu/Linda/linda.html.

[24] Linux Cluster HOWTO.
http://www.tldp.org/HOWTO/Cluster-HOWTO.html

[25] mEDA-2: A Virtual Shared Memory for PVM.
http://vvv.it.kth.se/labs/cs/meda2/

III

[26] Message Passing Interface Forum. http://www.mpi-
forum.org/.

[27] Migration and Integrated Scheduling Tools for
Concurrent Processing Environments on Multiuser
Heterogeneous Networks (MIST).
http://www.cse.ogi.edu/DISC/projects/mist/

[28] MOSIX. http://www.mosix.org/.

[29] MPICH-A Portable Implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich/.

[30] MPICH-G2. http://www.hpclab.niu.edu/mpi/.

[31] MPI/PRO. http://www.mpi-
softtech.com/products/mpi_pro/

[32] MVICH – MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/

[33] Myricom. http://www.myri.com

[34] Network Weather Service. http://nws.cs.ucsb.edu/.

[35] PARMON.
http://www.csse.monash.edu.au/rajkumar/parmon/ind
ex.html

[36] SCALI. http://www.scali.com

[37] SETI@home. http://setiathome.ssl.berkeley.edu/.

[38] Virtual Interface Developer Forum.
http://www.vidf.org/

[39] XPVM.
http://www.netlib.org/utk/icl/xpvm/xpvm.html.

