
 

Performance and Power-Consumption Implication of
Fine-Grained Synchronization in Multiprocessors

A Master of Science Thesis in Computer Systems by Oscar Sierra Merino
Department of Microelectronics and Information Technology

Royal Institute of Technology
Stockholm � May 2.002

 Oscar Sierra Merino Vladimir Vlassov Mladen Nikitovic 
 o.sierra@ieee.org vlad@it.kth.se mladen@it.kth.se 
 MSc Thesis author Main advisor Secondary advisor 



 

 

Abstract 

It has been already verified that hardware-supported fine-grain synchronization provides a significant 

performance improvement over coarse-grained synchronization mechanisms, such as barriers. Support for 

fine-grain synchronization on individual data items becomes notably important in order to implement 

thread-level parallelism more efficiently. 

One of the major goals of this project is to propose a new efficient way to support fine-grain 

synchronization mechanisms in multiprocessors. This novel idea is based on the efficient combination of 

fine-grain synchronization with cache coherence and instruction level parallelism. Both snoopy and 

directory-based cache coherence protocols have been studied. 

The work includes the definition of the complete set of synchronizing memory instructions as well as 

the architecture of the full/empty tagged shared memory that provides support for these operations. 

A detailed model based on a shared memory multiprocessor is presented and systematically described. 

To achieve this, an existing execution-driven simulator, namely RSIM, has been appropriately adapted. 

The simulation environment is designed for verification and performance evaluation of the proposed 

solutions. 

Some guidelines for implementing a power estimation algorithm as an extended feature of the 

simulation platform have been presented. The integration of fine-grain synchronization at the cache 

coherence level is expected to increase the energy consumption of the system. 

 

 

Keywords: fine-grain synchronization, shared memory, instruction-level parallelism, cache coherence, 
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1. Overview and motivation 
Two types of synchronization operations guarantee correctness in shared-memory multiprocessors: 

mutual exclusion and conditional synchronization, such as producer-consumer data dependency. Barriers 

are an example of synchronization directives that ensure the correctness of a producer-consumer 

behavior. They are coarse-grain in the sense that all processes have to wait in a common point before they 

can proceed, even though the data they truly depend on was available in a previous execution step. 

The main advantage of fine-grain synchronization arises from the fact that synchronization is provided 

at data-level. As a consequence, false data dependencies and unnecessary process waiting are avoided. 

Communication overhead due to global barriers is also avoided, because each process communicates only 

with the processes it depends on. Thus, the serialization of program execution is notably reduced and 

more parallelism can be exploited. This effect is more noteworthy as the number of processors increases. 

While the overhead of a fine-grain synchronization operation remains constant, that of a coarse-grain 

operation typically increases with the number of processors. 

As explained in [78], fine-grain synchronization is most commonly provided by three different 

mechanisms: 

i) language-level support for expressing data-level synchronization operations, 

ii) full/empty bits storing the synchronization state of each memory word, 

iii) processor operations on full/empty bits. 

Traditional theory on data-level parallelism has led to the definition of specific structures supporting 

fine-grain synchronization in data arrays. As an example, J-structures provide consumer-producer style 

of synchronization, while L-structures guarantee mutual exclusion access to a data element [4]. Both data 

types associate a state bit with each element of an array. 

Several alternatives exist for handling a synchronization failure. The most immediate are either 

polling the memory location until the synchronization condition is met or blocking the thread and 

returning the control at a later stage, which requires more support as it is necessary to save and restore 

context information. A combination of both is another option, polling first for a given period and then 

blocking the thread. The waiting algorithm may depend on the type of synchronization being executed 

[52]. 

Most research regarding multiprocessors show that fine-grain synchronization is a valuable alternative 

for improving the performance of many applications. As exposed in [46], evidence is shown on the 

worthiness of having modest hardware support for fine-grain synchronization. Testing the benefits of 

aggressive hardware support in fine-grain synchronization is one of the goals of this project. 
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2. Semantics of synchronizing memory operations 
Synchronization operations require the use of a tagged memory, in which each location is associated to a 

state bit in addition to a 32-bit value. The state bit is known as full/empty bit and implements the 

semantics of synchronizing memory accesses. As a matter of fact, this bit controls the behavior of 

synchronized loads and stores. A set full/empty bit indicates that the corresponding memory reference has 

been written by a successful synchronized store. On the contrary, an unset full/empty bit means either 

that the memory location has never been written since it was initialized or that a synchronized load has 

read it. 

A complete categorization of the different synchronizing memory operations is depicted in Figure 1. 

These instructions are introduced as an extension of the instruction set of Sparcle [6], which is in turn 

based on SPARC. The simplest type of operations includes unconditional load, unconditional store, 

setting the full/empty bit or a combination of these. As they do not depend on the previous value of the 

full/empty bit, unconditional operations always succeed. 

Memory operations

Conditional Unconditional

WaitingNon-waiting

Non-faulting Faulting  

Figure 1: Classification of synchronizing operations (extracted from [72]) 

Conditional operations depend on the value of the full/empty state bit to successfully complete. A 

conditional read, for instance, is only performed if the state bit of the location being accessed it set. The 

complimentary applies for a conditional write. Conditional memory operations can be either waiting or 

non-waiting. In the former case, the operation remains pending in the memory until the state miss is 

resolved. This introduces non-deterministic latencies in the execution of synchronizing memory 

operations. Lastly, conditional non-waiting operations can be either faulting or non-faulting. While the 

latter do not treat the miss as an error, faulting operations fire a trap on a state miss and either retry the 

operation immediately or switch to another context. 
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Rd read request
Wr write request

WNWr

N non-altering
A altering

U unconditional
W waiting
N non-faulting
T trapping
S waiting, non-faulting or faulting

 

Figure 2: Notation of synchronizing memory operations 

All memory operations, regardless of the classification made in Figure 1, can be further catalogued 

into altering and non-altering operations. While the former modify the full/empty bit after a successful 

synchronizing event, the latter do not touch this bit in any case. According to this distinction, ordinary 

memory operations fall into the unconditional non-altering category. 

The following table shows the notation used for each variant of memory operation and its behavior in 

the case of a synchronization miss. The notation is further explained in Figure 2. 

Table 1: Notation of synchronized operations 

Notation Semantics Behavior on a 
synchronization miss 

UNRd Unconditional non-altering read 
UNWr Unconditional non-altering write 
UARd Unconditional altering read 
UAWr Unconditional altering write 

Never miss 

WNRd Waiting and non-altering read from full 
WNWr Waiting and non-altering write to empty 
WARd Waiting and altering read from full 
WAWr Waiting and altering write to empty 

Placed on the list of pending 
requests until resolved 

NNRd Non-faulting and non-altering read from full 
NNWr Non-faulting and non-altering write to empty 
NARd Non-faulting and altering read from full 
NAWr Non-faulting and altering write to empty 

Silently discarded 

TNRd Faulting and non-altering read from full 
TNWr Faulting and non-altering write to empty 
TARd Faulting and altering read from full 
TAWr Faulting and altering write from empty 

Signal trap 
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3. Architectural support for fine-grain synchronization 

3.1. Related work 

3.1.1. The Alewife machine 

The MIT Alewife machine is a cache-coherent shared memory multiprocessor (see [2] and [4]) 

with non-uniform memory access (NUMA). Although it is internally implemented with an efficient 

message-passing mechanism, it provides an abstraction of a global shared memory to 

programmers. The most relevant part of its nodes regarding coherency and synchronization 

protocols is the communication and memory management unit (CMMU), which deals with memory 

requests from the processor and determines whether a remote access is needed, managing also 

cache fills and replacements. Cache coherency is achieved through LimitLESS, a software 

extended directory-based protocol. The home node of a memory line is responsible for the 

coordination of all coherence operations for that line. 

Support for fine-grain synchronization in Alewife includes full/empty bits for each 32-bit 

data word and fast user-level messages. Colored load and store instructions are used to access 

synchronization bits. The alternate space indicator (ASI) distinguishes each of these 

instructions. Full/empty bits are stored in the bottom four bits of the coherency directory entry 

(at the memory) and as an extra field in the cache tags (at the cache), so they do not affect DRAM 

architecture nor network data widths. The Alewife architecture also defines language extensions 

to support both J- and L-structures. A specific programming language, namely Semi-C1, has 

been defined for this purpose [42]. 

The aim is that a successful synchronization operation does not incur much overhead with 

respect to a normal load or store. In the ideal case, the cost of both types of operations is 

expected to be the same. This is possible because full/empty bits can be accessed simultaneously 

with the data they refer to. The cost of a failed synchronization operation depends much on the 

specific hardware support for synchronization. The overhead of software-supported 

synchronization operations is expected to be much higher than their hardware counterparts. 

However, Alewife minimizes this by rapidly switching between threads on a failed 

synchronization attempt or a cache miss, requiring the use of lockup-free caches. 

Handling failed synchronization operations in software has the advantage of being less 

complex in terms of hardware and more flexible. The basis of Alewife support for fine-grain 

synchronization is that, as synchronization operations are most probably successful, overhead 

due to such failures is not expected to notably reduce overall system performance. 

                                                 
1 Semi-C is an extension of the C language that can handle parallel programming constructs. 
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3.1.2. The StarT-NG machine 

StarT-NG, an improved version of the StarT machine [9], is a high-performance message 

passing architecture in which each node consists of a commercial symmetric multiprocessor 

(SMP) that can be configured with up to 3 processors, which are connected to the main memory 

by a data crossbar. At least one network interface unit is present in each node, allowing 

communicating with a network router, which is implemented in a proprietary chip [17]. 

A low-latency high-bandwidth network interconnects every node in the system. StarT-NG 

also supports cache-coherent global shared memory. In this case, one processor on each site is 

used to implement the shared memory model. This functionality can be disabled when shared 

memory is not needed. 

Main memory

Cache coherent interconnect

Processor ProcessorProcessorProcessor

Network
Interface

Unit

Network
Interface

Unit

Network
Interface

Unit

Network
Interface

Unit

Input/Output modules

Switch connecting to other StarT-NG nodes

 

Figure 3: Architecture of a StarT-NG node [27] 

Coherence protocols in StarT-NG are fully implemented in software. As a consequence, the 

choice of protocols and configuration of the shared memory is notably flexible. The performance 

of several coherence models has been evaluated. Particularly relevant to this work is the study 

made in [75], which introduces a cache coherence protocol with support for fine-grained data 

structures. These data structures are known as I-structures [75]. 

According to the results of this study, performance improvements in an integrated coherence 

protocol are two-fold. First, the write-once behavior of I-structures allows writes to be 

performed without the exclusive ownership of the respective cache line. Once a write has been 

carried out, stale data in other caches is identified because its full/empty bit is unset. In a 

directory-based protocol, a synchronized load in a remote location will find the full/empty bit 
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unset and forward the request to the proper node. This behavior is illustrated in Figure 4, where 

two nodes (namely, A and B) share a copy of a block on which they perform different operations. 

Node A Home node Node B

sync-load-req

sync-load-neg

sync-store-rep
sync-load-rep

sync-store-req

Node A Home node Node B

sync-store-req

sync-store-neg

sync-store-rep

sync-store-req

Scenario 1 Initially, both nodes A and B have a copy of
the cache line in the shared state. A synchronized store
operation is performed by node A without the exclusive
ownership of the cache block, which is consequently
kept in the shared state during the whole process.
Pending synchronized loads from node B to the
affected slot are resumed after the store is performed.

Scenario 2 Initially, both nodes A and B have a copy of
the cache line in the shared state. A synchronized store
operation is successfuly performed by node A without
the exclusive ownership of the cache block. If node B
issues a synchronized store, the request will be
rejected by the home node after finding the full-empty
bit set.  

Figure 4: Two sample scenarios of synchronized loads and stores 

As stated in [74], another advantage of a coherence protocol integrated with fine-grain 

synchronization is the efficiency in the management of pending requests by reducing the number 

of transactions needed to perform some particular operations. As an example, a synchronized 
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load in traditional coherence protocols usually requires the requesting node to obtain the 

exclusive ownership of the affected block in order to set the full/empty bit to the empty state. 

3.2. Proposed architecture 

In a multiprocessor system providing fine-grain synchronization, each shared memory word is tagged 

with a full/empty bit that indicates the synchronization state of the referred memory location. 

Assuming that a memory word is 32-bit long, this implies an overhead of just 3%. Although many 

variations exist when implementing this in hardware, the structure of shared memory is conceptually 

as shown in Figure 5. 

SHARED MEMORY

state bits

PENDING
REQUESTS

 

Figure 5: Logical structure of shared memory 

Figure 5 shows that each shared memory location has three logical parts, namely: 

i) the shared data itself. 

ii) state bits. The full/empty bit is placed within the state bits. This bit is set to 1 if the 

corresponding memory location has already been written by a processor and thus 

contains valid data. If the architecture has cache support other state bits such as the 

dirty bit may exist. The dirty bit is set if the memory location is not up-to-date, 

indicating that it has been modified in a remote node. 

iii) the list of pending memory requests. Synchronization misses fired by conditional 

waiting memory operations are placed in this list. When an appropriate synchronizing 

operation is performed, the relevant pending requests stored in this list are resumed. 

If the architecture has cache support, the list of pending memory requests also stores 

ordinary cache misses. The difference between both types of misses is basically that 

synchronization misses store additional information, such as the accessed slot�s index 

in the corresponding cache block. These differences are further explained later in this 

section. 
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Note that fine-grain synchronization is described here only for shared memory locations. In the 

presented architecture, the local memory in each processing node does not make use of full/empty bits. 

With this consideration, the memory map of the system seen by each processor is similar to the one 

sketched in Figure 6. 

0x00000000

0xFFFFFFFF

local memory

directory coherence entries

system protected data

shared memory space

global shared memory

accessible only from
local processing node

 

Figure 6: Memory map for each processing node 

Fine-grain synchronization is implemented by atomic test-and-set operations. These 

operations modify the full/empty condition bit in the processor's condition bits register2. Note that the 

condition bit is changed regardless of the particular variant of synchronization operation; no matter it 

is altering and/or trapping. 

As stated before, many implementation alternatives are possible. State bits may be stored in the 

coherence directory entry in the case of a directory-based protocol, such as the one implemented in 

Alewife. A proposed structure for a cache supporting fine-grain synchronization is depicted in 

Figure 7. 

list of
pending
requests

cache tags full/empty
state cached data

address bus

data bus

to CPU to system bus

to system busto CPU

 

Figure 7: Organization of a cache supporting fine-grain synchronization 

When a memory word is cached, its full/empty bit must also be stored at the cache side. As a 

consequence, not only data has to be kept coherent, but also full/empty bits. In a system with cache 

support, an efficient option is to store the full/empty bit as an extra field in the cache tag, allowing 

checking the synchronization state in the same step as the cache lookup. The coherence protocol has 

then two logical parts, one for the data and another for the synchronization bit. 

                                                 
2 In Sparcle, for instance, the full/empty condition bit is stored in the condition bit #0 (see [73]). 
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Our design assumes that the smallest synchronizing element is a word. As a cache line is usually 

longer, it may contain multiple elements, including both synchronized and ordinary data (see Figure 

8). A tag for a cache line includes the full/empty bits for all the synchronized words that are stored in 

that line. As directory states are maintained at cache line level, this complicates the maintenance of 

pending memory requests. Effectively, while a dirty bit refers to a complete cache line, a full/empty bit 

refers to a single word in a cache line. 

state informationword0 word1 word2 word3

synchronized data
(empty)

ordinary data

0 1

synchronized data
(full)

 

Figure 8: Cache line containing both ordinary and synchronized data 

In the proposed architecture, lists of pending requests are maintained in hardware at the cache 

level, more concretely in the miss status holding registers (MSHR). With this assumption, waiting 

memory operations require the architecture to have cache support. However, if cache support is not 

available, the behavior of waiting operations can be implemented in software by using faulting 

conditional operations instead. The system kernel is then responsible for maintaining the list of 

pending requests [39]. In the case of a directory-based coherence protocol, an alternative is to store 

the pending requests as a separate field in the directory entries. 

Some modifications have to be made to the cache architecture in case synchronization misses are 

to be kept in MSHR. More concretely, MSHR in traditional lockup-free caches store the information 

listed in Table 2 (see [46] for a more detailed description). In order to store synchronization misses in 

these registers, two more fields have to be added containing the slot�s index accessed by the operation 

and the specific variant of synchronized operation that will be performed. 

Table 2: Relevant information stored in ordinary MSHR registers [46] 

Field Semantics 
Cache buffer address Location where data retrieved from memory is stored 
Input request address Address of the requested data in main memory 
Identification tags Each request is marked with a unique identification label 
Send-to-CPU flags If set, returning memory data is sent to CPU 
In-input stack Data can be directly read from input stack if indicated 
Number of blocks Number of received words for a block 
Valid flag When all words have been received the register is freed 
Obsolete flag Data is not valid for cache update, so it is disposed 

 

A complete description of a cache coherence mechanism includes the states, the transition rules, 

the protocol message specification and the description of cache line organization and memory 

management of pending requests. Other design issues are dealing with conflicting and/or merging 

synchronization misses, as well as ordering of misses from the same processor. 
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Our design is based on a multiprocessor system with the following assumptions: 

- the CPU implements out-of-order execution of instructions, 

- each processing node has a miss-under-miss lockup-free cache, supporting multiple 

outstanding memory requests, 

- the smallest synchronized data element is a word; this statement does not imply a loss of 

generality, as the extension of the presented design to other data sizes is straightforward. 

3.3. Cache coherence 

In a multiprocessor system, cache memory local to each processing node can be used to speed up 

memory operations. It is necessary to keep the caches in a state of coherence by ensuring that 

modifications to data that is resident in a cache are seen in the rest of the nodes that share a copy of 

the data. This can be achieved in several ways, which may depend on the particular system 

architecture. In bus-based systems, for instance, cache coherence is implemented by a snooping 

mechanism, where each cache is continuously monitoring the system bus and updating its state 

according to the relevant transactions seen on the bus. On the contrary, mesh network-based 

multiprocessors use a directory structure to ensure cache coherence. In these systems, each location in 

the shared memory is associated with a directory entry that keeps track of the caches that have a copy 

of the referred location. Both snoopy and directory-based mechanisms can be further classified into 

invalidation and update protocols. In the former case, when a cache modifies shared data, all other 

copies are set as invalid. Update protocols change copies in all caches to the new value instead of 

marking them as invalid. 

The performance of multiprocessor systems is partially limited by cache misses and node 

interconnection traffic. Consequently, cache coherence mechanisms play an important role in solving 

the problems associated with shared data. Another performance issue is the overhead imposed by 

synchronizing data operations. In the case of systems that provide fine-grain synchronization, this 

overhead is due to the fact that synchronization is implemented as a separate layer over the cache 

coherence protocol. Indeed, bandwidth demand can be reduced if no data is sent in a synchronization 

miss. This behavior requires the integration of cache coherence and fine-grain synchronization 

mechanisms. It is important to remark, however, that both mechanisms are conceptually independent. 

This means that synchronizing operations can be implemented in machines without cache support and 

vice-versa. 

One of the main objectives of this project is to define a coherence protocol that integrates fine-

grain synchronization. This will be done for both snoopy and directory-based protocols. An event-

driven simulator, namely RSIM, is used in order to verify and measure the performance of our design. 

As this simulation platform does not integrate synchronization at the cache coherence level, 

modifications in its source code are needed. 



Section 3 Architectural support for fine-grain synchronization 

 
  18 

In the proposed architecture, failing synchronizing events are resolved in hardware. The following 

architecture requirements must be considered in order to integrate synchronization and cache 

coherency. Note that most of the hardware needed is usually already available in modern 

multiprocessor systems. 

i) each memory word has to be associated with a full/empty bit; as in Alewife, this state 

information can be stored in the coherency directory entry, 

ii) at the cache side, state information is stored as an additional field in the cache tags; a 

lookup-free cache is needed in order to allow non-blocking loads and stores, 

iii) the cache controller not only has to deal with coherency misses, but also with full/empty 

state misses; synchronization is thus integrated with cache coherency operations, as 

opposed to Alewife, in which the synchronization protocol is implemented separately 

from the cache coherency system. 

This approach can be extended to the processor registers by adding a full/empty tag to them. This 

would allow an efficient execution of synchronization operations from simultaneous threads on the 

registers. However, additional modifications are needed in the processor architecture to implement 

this feature. 

In order to evaluate the performance improvement of this novel architecture with respect to 

existing approaches, appropriate workloads must be tested on the devised machine. A challenge task is 

to find suitable applications that show these results in a meaningful way, so that the effects of the 

synchronization overhead such as the cost of additional state storage, execution latency or extra 

network traffic can be studied in detail. 
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4. Integration with snoopy protocols 

system bus

shared memory

cache

processing node

cache

processing node

cache

processing node...

list of pending
requests

list of pending
requests

list of pending
requests

 

Figure 9: Bus-based system architecture 

We consider a bus-based system such that depicted in Figure 9. Note that even though each memory 

address has conceptually a list of pending operations for that address, at hardware level the lists are 

distributed between all the processing nodes. The management of deferred lists will be explained later in 

this section. The description made here is based on the MESI protocol, also known as Illinois protocol. 

It is a four-state write-back invalidation protocol with the following state semantics [30]: 

! modified - this cache has the only valid copy of the block; the location in main memory 

is invalid. 

! exclusive clean - this is the only cache that has a copy of the block; the copy in main 

memory is up-to-date. A signal S is available to the controller in order to determine on a 

BusRd if any other cache currently holds the data. 

! shared � the block is present in an unmodified state in this cache, main memory is up-to-

date and zero or more caches may also have a shared copy. 

! invalid � the block does not have valid data. 

 

The state diagram corresponding to the MESI protocol without fine-grain synchronization support is 

shown in Figure 10. 
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Figure 10: MESI coherence protocol 

In the figure above, we use the notation A/B, where A indicates an observed event and B is an event 

generated as a consequence of A. Dashed lines show state transitions due to observed bus transactions, 

while continuous lines indicate state transitions due to local processor actions. Finally, the notation 

Flush� means that data is supplied only by the corresponding cache. Note that this diagram does not 

consider transient states used for bus acquisition. 

The transitions needed to integrate fine-grain synchronization in MESI are sketched in Figure 11, in 

which the full/empty state of the accessed word is explicitly indicated by splitting the ordinary MESI sates 

into two groups. The transactions not shown in this figure are not relevant for the corresponding state and 

do not cause any transition in the receiving node. The notation is the same as in the previous figure, and 

as it can be appreciated below, no new states are preliminarily required so as to integrate fine-grain 

synchronization in the coherence protocol. 

The description made here considers only waiting non-altering reads and waiting altering writes. 

Altering reads can be achieved by issuing non-altering reads in combination with an operation that clears 

the full/empty bit without retrieving data. This operation is named unconditional altering clear, or 

PrUACl according to the nomenclature previously described. PrUACl operates on a full/empty bit without 

accessing or altering the data corresponding to that state bit. 

Clearing of full/empty bits is necessary in order to reuse synchronized memory locations (a more 

detailed description is made in [46]). While a PrUARd could be used for this end, the PrUACl instruction 

completes faster, as it alters the full/empty bit without actually reading data from the corresponding 

location. For this reason, PrUACl can be seen as an optimized memory instruction. 
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Figure 11: MESI protocol integrated with fine-grain synchronization (explicit full/empty states) 
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Waiting operations constitute the most complex sort of synchronizing operations, as they require 

additional hardware in order to manage deferred list and resume pending synchronization requests. The 

behaviour of other types of memory operations is a simplified version of waiting operations. Most of the 

transitions depicted in Figure 11 are identical in the rest of the cases, with the only different being the 

behaviour when a synchronization miss is detected. Instead of being added to the list of pending requests, 

other variants of missing operations either fire an exception or are silently discarded. 

Two additional bus transactions are needed in order to integrate fine-grain synchronization in the 

MESI protocol. A detailed description of these bus transactions is presented in Table 3. Coherence of 

full/empty bits is ensured precisely by these two bus transactions (BusSWr and BusSCl). 

Table 3: Additional bus transactions in the MESI protocol 

Bus 
transaction 

Description 

BusSWr A node has performed an altering waiting write. The effect of this 
operation in observing nodes is to set the full/empty bit of the 
referring memory location and resume the relevant pending 
requests. Resuming of pending requests is further explained in 
section 4.2. 

BusSCl A node has performed an altering read or an unconditional clear 
operation. The effect of this operation in observing nodes is to 
clear the full/empty bit of the referring memory location, thus 
making it reusable. 
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Figure 12: MESI protocol integrated with fine-grain synchronization (implicit full/empty states) 

A new signal (referred as C in Figure 12) is introduced in order to determine whether a synchronized 

operation misses. This bus signal will be called shared-word signal, as it indicates whether any other 

node is sharing the referring word. The shared-word signal can be implemented as a wired-OR 
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controller line, which is asserted by each cache that holds a copy of the relevant word with the full/empty 

bit set. According to this notation, a waiting read request written in the form PrWNRd(C) successfully 

performs, while an event of the form PrWNRd(C ) causes a synchronization miss. Note also that, as each 

cache line may contain several synchronized data words, it is necessary to specify the specific word to 

which the synchronized operation is to be performed. Consequently, a negated synchronization signal 

(C ) causes a requesting read to be appended to the list of pending operations whereas a requesting write 

to be performed successfully. If the synchronization signal is otherwise asserted (C), then a synchronized 

read is completed successfully whereas a requesting write is suspended. 

In addition to the shared-word signal already introduced, three more wired-OR signals are required 

for the protocol to operate correctly, as described in [30]. The first signal (named S) is asserted if any 

processor different than the requesting processor has a copy of the cache line. The second signal is 

asserted if any cache has the block in a dirty state. This signal modifies the meaning of the former in the 

sense that an existing copy of a cache line has been modified and then all the copies in other nodes are 

invalid. A third signal is necessary in order to indicate whether all the caches have completed their snoop, 

that means, if it is reliable to read the value of the first two signals. 

Figure 12 shows a more compact state transition specification in which information about the 

full/empty state of the accessed word is implicit. Instead, the value of the C line or the full/empty bit is 

specified as a required condition between parentheses. Figure 11 and Figure 12 do not consider neither 

transient states needed for bus acquisition nor the effects due to real signal delays. 

4.1. Mapping between processor instructions and bus transactions 

When a processing node issues a memory operation, the cache located at that node first interprets the 

request and, in case of a miss, it later translates the operation into one or more bus transactions. The 

correspondence between the different processor instructions and the memory requests seen on the bus 

is shown in Table 4. The same notation as in Figure 2 is used. 

Table 4: Correspondence between processor 
instructions and memory requests 

Request from 
processor 

Bus transaction 

PrUNRd BusRd (ordinary read) 
PrUNWr BusWr (ordinary write) 
PrUARd BusRd + BusSCl 
PrUAWr BusAWr3 
PrSNRd BusRd(C)4 
PrSNWr BusWr(C) 
PrSARd BusRd(C) + BusSCl 
PrSAWr BusSWr(C) 

 

                                                 
3 Neither unconditional altering writes nor conditional non-altering writes are considered in the protocol specification. 
4 The bus transaction BusRd is in this case used in combination with the shared-copy signal. 
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As seen on Table 4, unconditional non-altering read and write requests generate ordinary read and 

write transactions on the bus. On the contrary, an unconditional altering read requires a BusRd 

transaction followed by a BusSCl transaction. Effectively, apart from retrieving the data from the 

corresponding memory location, a PrUARd request also clears the full/empty state bit of the referring 

location. This is performed by BusSCl, which does not access nor modifies the data but only the 

full/empty bit. It is important to observe that an unconditional altering read cannot be performed by 

just a BusSCl transaction, as it just alters the full/empty bit without retrieving any data. The last 

unconditional operation, PrUAWr, generates a specific bus transaction, namely BusAWr, which 

unconditionally sets the full/empty bit after writing the corresponding data to the accessed memory 

location. 

It is inferred from Table 4 that the behavior of all conditional memory operations depends on the 

value of the shared-word bus signal5. A conditional non-altering read, for instance, generates an 

ordinary read bus transaction after checking whether the shared-bus signal is asserted. A 

conditional altering read generates a BusSCl transaction in addition to the ordinary read transaction. 

Finally, a conditional altering write causes a BusSWr transaction to be initiated on the bus. This 

transaction sets the full/empty bit after writing the corresponding data to the referred memory location. 

system bus

cache

processing node

list of pending
requests

BusSWr

1 The processor issues a waiting altering write
2 The cache does not have a valid copy of the accessed line
3 A BusSWr transaction is started on the bus
4 The C signal indicates whether there exists a copy of the
accessed word with the full-empty bit set

PrWAWr

 

Figure 13: Sample scenario of mapping between processor instructions and bus transactions 

Note that all synchronized operations generate the same bus transactions regardless of their 

particular type (waiting, non-faulting or faulting). The difference resides in the behavior when a 

synchronization miss is detected and not in the bus transactions issued as a consequence of the 

request. A sample scenario is shown in the figure below. 

                                                 
5 This behavior is systematically specified in section 4.3. 
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4.2. Management of pending requests 

Each processing node keeps a local deferred list. This list holds both ordinary presence misses and 

synchronization misses. It is possible also for both types of misses to happen for a single access. In 

this case, not only the accessed line is not present in the cache, but also the synchronization state is not 

met at the remote location where the copy of the word is held. After a relevant full/empty bit change is 

detected, any operation that matches a required synchronization state is resumed at the appropriate 

processing node. 

Table 5 shows how the management of the deferred list local to a node is done. Concretely, the 

table specifies the action taken when a given request is received with respect to a pending request 

already present in the list of deferred operations6. A C indicates that both requests are conflicting and 

thus need to be kept separated into two different entries, always ensuring that local order is 

maintained. On the contrary, an M means that both requests can be merged and thus treated as a sole 

request from the point of view of memory accesses. 

Table 5: Management of coalescing requests 

Pending request (already in MSHR)  

PrUNRd PrUARd PrWNRd PrWARd PrNNRd PrNARd PrTNRd PrTARd 

PrUNRd M M M M M M M M 

PrUARd M M M M M M M M 

PrWNRd M C M C M C M C 

PrWARd M C M C M C M C 

PrNNRd M C M C M C M C 

PrNARd M C M C M C M C 

PrTNRd M C M C M C M C 

In
co

m
in

g
 r

eq
u
es

t 

PrTARd M C M C M C M C 

 

As a rule of thumb, a pending write is conflicting with any incoming request, so it can never be 

merged and requires a separate entry in the list of pending requests7. As they are always conflicting, 

all write requests have been excluded from Table 5. Another important observation is that pending 

altering reads can only be merged with unconditional operations. Additionally, all non-altering 

pending read request can be coalesced with any other incoming read request. 

Apart from coalescing of requests, it is also crucial to specify how resuming of pending requests is 

done. As explained at the beginning of this section, coherence of full/empty state bits is ensured by 

                                                 
6 The simulation model only considers PrSNRd, PrSAWr and PrUACl instructions. 
7 It could be possible to make read requests be satisfied by pending writes to the same location. However, this 

introduces extra complexity in the memory unit in order to meet the consistency model. A write request cannot be 
satisfied by a pending read request in any case. 
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proper bus transactions, to be precise, BusSWr and BusSCl. This means that all caches that have 

pending requests for a given memory location will know when the synchronization condition is met 

by snooping into the bus and waiting for a BusSWr or a BusSCl transaction. When such transaction is 

noticed, a comparator checks if there is an entry in any MSHR matching the received bus transaction. In 

this case, action is taken so as to resume the pending request. 

Due to this feature, it is possible for a cache to have pending requests for a memory location that is 

not cached or is cached in an invalid state. The location will be brought again into the cache when the 

synchronization miss is solved. The ability of replacing cache lines that have pending requests allows 

efficient management and resuming of pending requests with minimum risk of saturating the cache 

hierarchy. 

system bus

cache
B

processing node
B

cache
C

processing node
C

cache
A

processing node
A

list of pending requests
PrWARd to X ...

list of pending requests
PrWARd to X ...

X is in invalid state

list of pending requests
PrWAWr to X...

X is in modified state
X has empty state bit

X is in invalid state

 

Figure 14: Resuming of pending requests 

A representative scenario is shown in Figure 14, in which three nodes have pending requests to a 

location (X) in their MSHR. While nodes A and B have invalid copies in their caches, node C has the 

exclusive ownership of the referred location, whose full/empty state bit is unset. After node C 

successfully performs a conditional altering write to location X, this event is notified on the bus by a 

BusSWr transaction. This transaction informs nodes A and B that they can resume the pending request 

to location X, which happens to be a conditional altering read. As a consequence, only one of these 

nodes will be able to successfully issue the operation at this point. This is imposed by bus order. For 

instance, if node B gets the bus ownership before node A, the pending request from the former will be 

resumed and the operation at node A will stay pending in the MSHR. 
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4.3. Transition rules 

A detailed explanation of the new transition rules from each coherence state is presented in the 

following sections. A description in the form of C-styled pseudo-code is also presented in each case. 

Observe that, as with the ordinary coherence misses, the ordering of synchronization misses from 

different processors is imposed by bus order. 

4.3.1. Invalid state 

SWITCH(incomingRequest) { 
   CASE PrUNRd: send(BusRd); 
                IF (S) { 
                   flushFromOtherCache(); 
                   nextState = shared; 
                } ELSE { 
                   readFromMemory(); 
                   nextState = exclusive; 
                } 
                BREAK; 
   CASE PrUNWr: send(BusRdX); 
                nextState = modified; 
                BREAK; 
   CASE PrWNRd: send(BusRd); 
                IF (S && C) { 
                   flushFromOtherCache(); 
                   nextState = shared; 
                } ELSE IF (!S && C) { 
                   readFromMemory(); 
                   nextState = exclusive; 
                } ELSE { 
                   addToDeferredList(); // Wait. 
                } 
                BREAK; 
   CASE PrWAWr: send(BusSWr); 
                IF (S && !C) { 
                   writeToBus(); 
                   nextState = shared;  // To be evaluated at simulation. 
                } ELSE IF (!S && !C) { 
                   writeToCache(); 
                   nextState = modified; 
                } ELSE { 
                   addToDeferredList(); // Wait. 
                } 
                BREAK; 
   CASE PrUACl: IF (C) { 
                   send(BusSCl); 
                   nextState = invalid; 
                } 
                BREAK; 
} 

 

A successful conditional waiting read request from the local processor (PrWNRd) leads either to 

the exclusive-clean state (if no other cache holds a copy of the block) or to the shared state (if 

more caches have a copy of the accessed block). In any case, a BusRd transaction is generated in 

order to fetch the data from the corresponding cache or shared memory location. However, if the 

synchronization condition is not met (C ), then the request is appended to the local deferred list 

and the state is not changed. This occurs when neither the caches nor the shared memory assert 

the C line. 

Cache-to-cache transfers are needed when data is modified in one ore more caches and the 

copy in the shared memory is stale. An alternative is to flush the modified data back to memory 

and then to the node that requested access, but this approach is obviously slower than the former. 
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A successful waiting write request from the local processor (PrWAWr) leads either to the 

modified state (if no other cache holds a copy of the block) or to the shared state (if more caches 

have a copy of the block). This implies a performance improvement since the next successful 

synchronized operation to the same cache slot will necessarily be a read and a state transaction 

will be saved8. If the synchronization condition is not met (the line C is asserted), then the 

operation is suspended. 

A PrUACl request generates a BusSCl transaction but does not load the block into cache. 

This is a design alternative and will be evaluated at the simulation stage of this study. 

4.3.2. Modified state 

If the full/empty bit is set, a conditional waiting read (PrWNRd) retrieves the data from the local 

cache and generates no bus transaction. Otherwise, the request is appended to the local deferred 

list. 

A conditional waiting write (PrWAWr) fails if the C line is asserted and sets the full/empty bit 

otherwise. In the latter, a BusSWr transaction is generated and the relevant pending requests in 

the local deferred list are resumed. The effect of a BusSWr in the other caches is precisely to set 

the full/empty bit and to analyze their deferred list so as to resume the relevant pending requests. 

A PrUACl request generates a BusSCl transaction and unsets the full/empty bit. This 

transaction does not flush the block from cache. This is a design alternative and will be evaluated 

at the simulation stage of this study. 

 
SWITCH(incomingRequest) { 
   // Processor requests 
   CASE PrUNRd: readFromCache(); 
                nextState = modified; 
                BREAK; 
   CASE PrUNWr: writeToCache(); 
                nextState = modified; 
                BREAK; 
   CASE PrWNRd: IF (full) { 
                   readFromCache(); 
                   nextState = modified; 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = modified; 
                } 
                BREAK; 
   CASE PrWAWr: send(BusSWr); 
                IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = modified; 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = modified; 
                } 
                BREAK; 
   CASE PrUACl: IF (full) { 
                   unsetFE(); 
                   nextState = modified; 
                } 
                BREAK; 
   // Bus signals 
   CASE BusRd:  flush(); 
                nextState = shared; 

                                                 
8 If a transition to the modified state is performed as in the ordinary MESI protocol, an additional BusRdX transaction is 

then required on the bus. 
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                BREAK; 
   CASE BusRdX: flush(); 
                nextState = invalid; 
                BREAK; 
   CASE BusSWr: IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = shared; 
                } 
                BREAK; 
   CASE BusSCl: IF (full) { 
                   unsetFE(); 
                   nextState = shared; 
                } 
                BREAK; 
} 

 

4.3.3. Exclusive-clean state 

SWITCH(incomingRequest) { 
   // Processor requests 
   CASE PrUNRd: readFromCache(); 
                nextState = exclusive; 
                BREAK; 
   CASE PrUNWr: writeToCache(); 
                nextState = modified; 
                BREAK; 
   CASE PrWNRd: IF (full) { 
                   readFromCache(); 
                   nextState = exclusive; 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = exclusive; 
                } 
                BREAK; 
   CASE PrWAWr: send(BusSWr); 
                IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = shared; // To be evaluated at simulation. 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = exclusive; 
                } 
                BREAK; 
   CASE PrUACl: IF (full) { 
                   unsetFE(); 
                   nextState = modified; 
                } 
                BREAK; 
   // Bus signals 
   CASE BusRd:  flush(); 
                nextState = shared; 
                BREAK; 
   CASE BusRdX: flush(); 
                nextState = invalid; 
                BREAK; 
   CASE BusSWr: IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = shared; 
                } 
                BREAK; 
   CASE BusSCl: IF (full) { 
                   unsetFE(); 
                   nextState = shared; 
                } 
                BREAK; 
} 

 

As no other caches hold a copy of this block, a synchronized read (PrWNRd) leads to the same 

coherence state. 
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4.3.4. Shared state 

SWITCH(incomingRequest) { 
   // Processor requests 
   CASE PrUNRd: readFromCache(); 
                nextState = shared; 
                BREAK; 
   CASE PrUNWr: send(BusRdX); 
                writeToCache(); 
                nextState = modified; 
                BREAK; 
   CASE PrWNRd: IF (full) { 
                   readFromCache(); 
                   nextState = shared; 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = shared; 
                } 
                BREAK; 
   CASE PrWAWr: send(BusSWr); 
                IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = shared; // To be evaluated at simulation. 
                } ELSE { 
                   addToDeferredList(); 
                   nextState = shared; 
                } 
                BREAK; 
   CASE PrUACl: IF (full) { 
                   unsetFE(); 
                   send(BusSCl); 
                   nextState = shared; 
                } 
                BREAK; 
   // Bus signals 
   CASE BusRd:  flush(); 
                nextState = shared; 
                BREAK; 
   CASE BusRdX: flush(); 
                nextState = invalid; 
                BREAK; 
   CASE BusSWr: IF (empty) { 
                   writeToCache(); 
                   resumePendingReqs(); 
                   nextState = shared; 
                } 
                BREAK; 
   CASE BusSCl: IF (full) { 
                   unsetFE(); 
                   nextState = shared; 
                } 
                BREAK; 
} 

 

The same rules apply as for the modified state, with the only exception of the BusSWr and 

BusSCl bus transactions, which do not cause a state transition in this case. 

4.4. Summary 

A bus based coherence protocol with fine-grain synchronization support has been introduced. A 

systematic protocol description is made in the form of state diagrams and pseudo-code. Although this 

implementation considers only waiting non-altering reads and waiting altering writes, the behavior of 

other memory operations is derived in a straightforward manner, as it is a simplified version of the 

former. 

One of the base ideas of the protocol is that full/empty state bit coherence is maintained by bus 

transactions defined for this purpose, namely BusSWr and BusSCl. An additional bus signal called 
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shared-word is also introduced in order to implement the conditional behavior of synchronizing 

operations. 

A drawback of integrating fine-grain synchronization support at the cache level is the complexity 

of managing pending synchronization requests. Rules for coalescing and resuming synchronizing 

requests have been explained in detail. It is expected that this supplementary complexity does not 

translate in excessive hardware overhead, as most of the required hardware is already present in 

modern multiprocessors. Consequently, application software making use of synchronizing memory 

operations will likely experience a noteworthy performance improvement without the need of 

extensive hardware deployment. 
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5. Integration with directory-based protocols 
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Figure 15: Mesh network-based architecture 

In a network-based system, such the one shown in Figure 15, each shared memory block has a directory 

entry that lists the nodes that have a cached copy of the data. Full/empty bits are stored as an extra field in 

the coherence directory entry. Point-to-point messages are used to keep the directory up-to-date and to 

request permission for a load or a store to a particular location. 
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Figure 16: Alewife�s coherence protocol state diagram 
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The description made here is based on Alewife�s coherence protocol [24]. Our model considers a 

limited directory protocol, thus restricting the amount of simultaneous copies of a memory block. The 

following states are defined in Alewife�s coherence protocol: 

! Read-Only: One or more caches have a read-only copy of the block. 

! Read-Write: Only one cache has a read-write copy of the block. 

! Read Transaction: Cache is holding a read request (update in progress). 

! Write Transaction: Cache is holding a write request (invalidation in progress). 

 

The state diagram corresponding to this protocol is shown in Figure 16. The semantics of the 

transitions depicted in this figure are resumed in Table 6 [50]. 

Table 6: Semantics of the transitions in the 
directory-based protocol 

Label Input message Output message 
i → RREQ RDATA → i 1 

i → FETCH RDATA → i 

i → WREQ WDATA → i 2 

i → MREQ MODG → i 

i → WREQ INVR → kj 3 

i → MREQ INVR → kj 

i → WREQ INVW → i 4 

i → MREQ INVW → i 

j → RREQ INVW → i 5 

j → FETCH INVW → i 
6 i → REPM � 

j → RREQ BUSY → j 

j → WREQ BUSY → j 

j → MREQ BUSY → j 

j → FETCH BUSY → j 

7 

j → ACKC � 

j → ACKC WDATA → i 

j → REPM WDATA → i 

8 

j → UPDATE WDATA → i 

j → RREQ BUSY → j 

j → WREQ BUSY → j 

j → MREQ BUSY → j 

9 

j → FETCH BUSY → j 

j → ACKC RDATA → i 

j → REPM RDATA → i 

10 

j → UPDATE RDATA → i 

 

Although Alewife provides support for fine-grain synchronization, these mechanisms are 

implemented over the cache coherence protocol, which works as if full/empty bits do not exist. The cache 

controller in Alewife has limited hardware support for full/empty bits storage. Concretely, these bits are 

saved as an extra field in the cache tags. This has two advantages. First, the memory used to store cache 
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data does not need to have odd word-length. Second, access to the cache data is slower than access to the 

cache tags. 

When the processor requests a memory access, the Communications and Memory Management Unit 

(CMMU) determines whether the access is local or remote. The CMMU also checks if the access implies a 

synchronizing operation by analyzing the ASI value in the memory operation. The address corresponding 

to the access is checked against the cache tags file, and both the appropriate tag and the full/empty bit are 

retrieved. At this point one of the following actions is executed9: 

- a context switch is executed if the access produces a cache miss, 

- a full/empty trap is fired in the case of a synchronization fault, 

- otherwise, the operation is completed successfully. 

 

According to the performance measures made in Alewife, the overhead of successful synchronizing 

operations is not significant [46]. When a synchronization miss is detected, a trap is fired and the 

corresponding thread either polls the location until the synchronization condition is met or blocks 

according to a given waiting algorithm. While no additional hardware is required for polling, blocking 

needs to save and restore context registers. The latter case is notably expensive, as loads take two cycles 

and stores take three cycles. 

By integrating synchronization mechanisms with the coherence protocol, the complexity introduced 

by thread scheduling is avoided. Instead, synchronization misses are handled similarly to ordinary cache 

misses. As the hardware needed to deal with the latter has already the capability to store part of the 

information associated with a synchronization miss, it is expected that the hardware overhead introduced 

by integrating synchronization mechanisms with cache coherence is not excessive. 

5.1. Mapping between processor instructions and network 
transactions 

The network transactions used in the proposed protocol are explained in Table 7, which shows both 

messages sent from a cache to memory and requests sent back from memory to a cache. 

Six new messages are introduced in order to implement fine-grain synchronization at the cache 

level. More concretely, these messages are SRREQ, SWREQ, SCREQ from cache to memory and 

SRDENY, SWDENY and ACKSC from memory to cache. 

                                                 
9 In all cases, the retrieved full/empty bit is placed into the external condition codes so that the processor has access to 

it. 
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Table 7: Network transactions in the directory-based protocol 

Type of message Symbol Semantics 
RREQ request to read a word that is not in the cache 
WREQ request to write a word 
SRREQ waiting and non-altering read request 
SWREQ waiting and altering write request 
SCREQ request to clear the full/empty bit 
UPDATE returns modified data to memory 

Cache to Memory 

ACKC acknowledges that a word has been invalidated 
RDATA contains a copy of data in memory (response to RREQ) 
WDATA contains a copy of data in memory (response to WREQ) 
SRDENY sent if a SRREQ misses; the requesting cache will retry at a later 

stage 
SWDENY sent if a SWREQ misses; the requesting cache will retry at a 

later stage 
INV invalidates cached words 

ACKSC acknowledges that the full/empty bit has been unset in all the 
copies of the block 

Memory to Cache 

BUSY response to any RREQ or WREQ while invalidations are in 
progress 

 

As proposed in [74], some fields are needed in the coherence protocol messages in order to 

integrate fine-grain synchronization. We will make use of some of these proposed additional fields. 

Specifically, the following fields are required: 

! slot's index in the cache line which is being accessed, 

! slots in the home directory copy whose list of pending requests is empty; this allows 

saving protocol messaged in some cases where a block is in the read-write state (see 

section 5.3.3 for more details), 

! deferred lists in remote caches are sent to the home node when they release the exclusive 

ownership; this scenario is further explained in section 5.2. 

 

When a processing node issues a memory operation, the cache located at that node interprets the 

request and translates it into one or more network transactions. The correspondence between the 

different processor instructions and memory requests sent over the network is shown below. 

Table 8: Correspondence between processor 
instructions and memory requests 

Instruction from 
processor 

Initiated network 
transactions 

PrUNRd RREQ 
PrUNWr WREQ 
PrUARd RREQ + SCREQ 
PrUAWr - 
PrSNRd SRREQ 
PrSNWr CWREQ 
PrSARd SRREQ + SCREQ 
PrSAWr SWREQ 
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5.2. Management of pending requests 

Extensive discussion about different alternatives for managing deferred lists is presented in [75]. We 

propose a hybrid procedure for managing deferred lists in which lists of pending operations are kept 

either at the home directory or in a distributed manner, depending on the state of the line to which 

pending operations refer. The rules for coalescing requests are the same as in Table 5. 

Lists of pending requests for memory locations that are in an absent10 or read-only state are 

maintained as an additional field in the corresponding home directory. Effectively, in these states it is 

not possible to adopt a distributed approach, since after a transition to the read-write state the home 

directory will need to have knowledge of the type of pending requests and the nodes that issued this 

requests. 

A sample case of this scenario is shown in Figure 17, in which two nodes, namely A and B, share a 

copy of a given memory block. If another node takes the exclusive ownership of this block, 

information about pending requests issued by nodes A and B will be lost unless the home directory has 

knowledge of those requests. A naive approach is to make the directory keep track of only the nodes 

with pending requests, because this would require informing all of these nodes each time a full/empty 

state change is detected, thus generating extra traffic. Figure 17 also shows a different memory block 

for which there is no copy at any other node in the system, thus being in the absent state. The same 

rules apply for this location. 

state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

shared by nodes A and B

home directory

word20

word41 word50 word71word60

word41 word50 word60 word71 shared

cache in node A

word41 word50 word60 word71 shared

cache in node B

 

Figure 17: Management of pending requests for an absent or read-only memory block 

For locations in a read-write state, we adopt a distributed solution in which both the home 

directory and the remote cache keep track of pending operations. When a remote cache releases its 

copy of the block, the deferred list kept locally to that cache is sent to the home node and merged with 

the deferred list at the home directory. The rules for coalescing requests are those in Table 5. An 

example in which a location is first owned by node A and then flushed from its cache is shown on 

Figure 18. 

                                                 
10 The absent state indicates that no cache is holding a copy of the referred memory location. Consequently this 

location does not fall into any of the four states described on page 33. 
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state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

exclusive ownership by A

home directory

word20

word41 word50 word71word60

word41 word50 word60 word71 exclusive

cache in node A

The memory location is flushed from the cache at
node A and the pending requests stored at the
MSHR of that cache are appended to the list at the
home directory.

state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

absent

home directory

word20

word41 word50 word71word60

 

Figure 18: Management of pending requests for a read-write memory block 

As in the bus-based scheme, it is also necessary to specify how resuming of pending requests is 

done. Contrary to the former, coherence of full/empty state bits is not always ensured at the home 

directory. In fact, the home directory does not have a valid copy of the full/empty bit of a memory 

location that is in the read-write state. In such case, the directory forwards requests from other 

nodes to the exclusive owner of the block, where they will be serviced. According to these features, 

resuming of pending requests is based on the following rules: 

- if a block is in the absent or read-only state, the home directory is responsible for 

resuming requests, by checking if there is any entry in the deferred list that matches an 

incoming transaction, 

- if a block is in the read-write state, the cache having the exclusive ownership knows 

whether there are pending requests for that block at the home directory. In that case, 

relevant operations performed at that node are forwarded to the home node in order to 

check if any pending request can be resumed. Otherwise, the deferred list can be locally 

managed at the exclusive owner. 
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Consequently, it is not possible for a cache to have pending requests for a memory location that is 

not cached. These pending requests are kept and managed at the home directory. This solution is a 

hybrid approach between a fully distributed and a centralized deferred list management. 

5.3. Directory transition rules 

A detailed explanation of the transition rules from each coherence state is presented in the following 

sections. A description in the form of C-styled pseudo-code is also presented in each case. In the state 

diagrams, the notation indicated below is used. A tilde symbol (~) is indicated when no side effect or 

output message is necessary. 

processor id: input message, preconditions / side effects / output message, local actions 

5.3.1. Absent state 

SWITCH (incomingRequest) { 
   CASE RREQ(i):  addNodeToDirectory(i); // "i" is the sending node id. 
                  send(RDATA, i);        // send requested data to node. 
                  nextState = readOnly; 
                  BREAK; 
   CASE WREQ(i):  IF (ackCounter == 0) { 
                     addNodeToDirectory(i); 
                     send(WDATA, i); 
                     nextState = readWrite; 
                  } ELSE { 
                     addNodeToDirectory(i); 
                     nextState = writeTransaction; 
                  } 
                  BREAK; 
   CASE SRREQ(i): IF (full) { 
                     addNodeToDirectory(i); 
                     send(RDATA, i); 
                     nextState = readOnly; 
                  } ELSE { 
                     send(RDENY, i); 
                     addToDeferredList(); 
                     nextState = absent; 
                  } 
                  BREAK; 
   CASE SWREQ(i): IF (empty && deferredListEmpty()) { 
                     addNodeToDirectory(i); 
                     send(WDATA, i); 
                     nextState = readOnly; 
                  } ELSE IF (empty && !deferredListEmpty()) { 
                     addNodeToDirectory(i); 
                     send(WDATA, i); 
                     resumePendingReqs(); 
                     nextState = readOnly; 
                  } ELSE { 
                     send(WDENY, i); 
                     addToDeferredList(); 
                     nextState = absent; 
                  } 
                  BREAK; 
   CASE SCREQ(i): unsetFE(); 
                  send(ACKSC, i); 
                  nextState = absent; 
                  BREAK; 
   CASE ACKC(i):  ackCounter--; 
                  nextState = absent; 
                  BREAK; 
} 

 

If a SRREQ is received and the synchronization state is met (the FE bit is set), the requesting 

cache is added to the directory and the requested data is sent in a RDATA message. The state is 

then changed to read-only. If the SRREQ fails (the FE bit is unset), a RDENY message is sent 
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back to the requesting cache and the operation is appended to the deferred list in the home node. 

The state is not changed and the requesting cache waits until the home node solves the 

synchronization miss and sends back the requested data. 

Read only Read/Write

Read
transaction

Write
transaction

ACKC/--AckCtr/~
i:SRREQ(E)/~/RDENY,appendDL
i:SWREQ(F)/~/WDENY, appendDL

i:SCREQ/~/ACKSC, unsetFE

Absent

i:RREQ/P={i}/RDATA
i:SRREQ(F)/P={i}/RDATA

i:SWREQ(E), DL=0/P={i}/WDATA
i:SWREQ(E), DL≠0/P=R∪{i}/WDATA, resumeDL

i:WREQ, AckCtr=0/P={i}/WDATA

i:WREQ, AckCtr≠0/P={i}/~

 

Figure 19: State transitions from the absent state 

If a SWREQ is received and the synchronization condition is met (FE is not set), the requesting 

cache is added to the directory and a WDATA message is sent to it. Any relevant pending request 

in the local deferred list is resumed and appropriate data is sent to its corresponding cache, which 

is also added to the directory. The state is then changed to read-only, and not to read-write 

as it could be expected. This optimization allows other processing nodes to read this data without 

any state transition. If the full/empty bit is set on a SWREQ, then a WDENY is replied and the 

operation is suspended. The state in the home directory is not changed. 

If a SCREQ is received, the full/empty bit is reset and an ACKSC sent back to the requesting 

cache. The state in the home directory is not changed. 

5.3.2. Read-only state 

SWITCH (incomingRequest) { 
   CASE RREQ(i):  IF (hasPointerInDirectory(i)) { 
                     send(RDATA, i); // "i" is the sending node id. 
                  } ELSE IF (!directoryFull()) { 
                     addNodeToDirectory(); 
                     send(RDATA, i); 
                  } ELSE { 
                     ++ackCounter; 
                     j = evictRandomDirectoryEntry(); // j is the evicted line. 
                     send(INV, j); 
                     addNodeToDirectory(); 



Section 5 Integration with directory-based protocols 

 
  40 

                     send(RDATA, i); 
                  } 
                  nextState = readOnly; 
                  BREAK; 
   CASE WREQ(i):  IF (hasPointerInDirectory(i) && (numberOfEntries() > 1)) { 
                     ackCounter += numberOfEntries() - 1; 
                     FOR (j = 0; j < numberOfEntries(); j++) { 
                        If (i != j) 
                           send(INV, j); 
                     } 
                     clearDirectory(); 
                     addNodeToDirectory(i); 
                     nextState = writeTransaction; 
                  } ELSE If (hasPointerInDirectory(i) 
                         && (numberOfEntries() == 1) 
                         && (ackCounter != 0)) { 
                     nextState = writeTransaction; 
                  } ELSE IF (hasPointerInDirectory(i) 
                         && (ackCounter == 0)) { 
                     send(WDATA, i); 
                     nextState = readWrite; 
                  } ELSE { // if the line is not in the directory 
                     ackCounter += n; 
                     FOR (j = 0; j < numberOfEntries(); j++) { 
                        send(INV, j); 
                     } 
                     clearDirectory(); 
                     addNodeToDirectory(i); 
                  } 
                  BREAK; 
   CASE SRREQ(i): IF (full && hasPointerInDirectory(i)) { 
                     send(RDATA, i); 
                  } ELSE IF (full && !directoryFull()) { 
                     addNodeToDirectory(); 
                     send(RDATA, i); 
                  } ELSE IF (full && directoryFull()) { 
                     ++ackCounter; 
                     j = evictRandomDirectoryEntry(); // j is the evicted line. 
                     send(INV, j); 
                     addNodeToDirectory(); 
                     send(RDATA, i); 
                  } ELSE IF (empty) { 
                     send(RDENY, i); 
                     addToDeferredList(); 
                  } 
                  nextState = readOnly; 
                  BREAK; 
   CASE SWREQ(i): IF (empty & deferredListEmpty()) { 
                     addNodeToDirectory(i); 
                     send(WDATA, i); 
                  } ELSE IF (empty & !deferredListEmpty()) { 
                     addNodeToDirectory(i); 
                     send(WDATA, i); 
                     resumePendingReqs(); 
                  } ELSE { 
                     send(WDENY, i); 
                     addToDeferredList(); 
                  } 
                  nextState = readOnly; 
                  BREAK; 
   CASE SCREQ(i): IF (numberOfEntries() > 1) { 
                     ackCounter += numberOfEntries() - 1; 
                     FOR (j = 0; j < numberOfEntries(); j++) { 
                        If (i != j) 
                           send(SCREQ, j); 
                     } 
                     clearDirectory(); 
                     addNodeToDirectory(); 
                     nextState = writeTransaction; 
                  } ELSE IF (hasPointerInDirectory(i)) { 
                     unsetFE(); 
                     send(ACKSC, i); 
                     nextState = readOnly; 
                  } 
                  BREAK; 
   CASE ACKC(i):  ackCounter--; 
                  nextState = readOnly; 
                  BREAK; 
} 

 

If a SRREQ is received and the synchronization condition is met, an RDENY message is replied 

and the request is appended to the local deferred list. If the synchronization condition is met and 
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the requesting cache is already in the directory, an RDATA message is sent back with the 

requested memory location. If the requesting cache is not in the directory and there are still free 

directory entries, the cache is added to the directory. Otherwise, a random cache is replaced with 

the requesting cache and an INV message is sent to the removed cache. The home directory state 

is not changed in any case. 

ACKC/--AckCtr/~
i:RREQ, P={k1,..., km,..., kn}, km=i/~/RDATA

i:RREQ, n<p/P=P∪{i}/RDATA
i:RREQ, n=p/++AckCtr, P=P-{krandom}∪{i}/RDATA, INV(krandom)

i:SRREQ(E)/~/RDENY, appendDL
i:SRREQ(F), P={k1,..., km,..., kn}, km=i/~/RDATA

i:SRREQ(F), n<p/P=P∪{i}/RDATA
i:SRREQ(F), n=p/++AckCtr, P=P-{krandom}∪{i}/RDATA, INV(krandom)

i:SWREQ(E), DL=0/P={i}/WDATA
i:SWREQ(E), DL≠0/P=R∪{i}/WDATA, resumeDL

i:SWREQ(F)/~/WDENY, appendDL
i:SCREQ, P={i}/~/ACKSC

Read only Read/Write

Read
transaction

Write
transaction

Absent

i:WREQ, P{i}, AckCtr=0/~/WDATA

i:WREQ, P={k1,..., km,..., kn}, km=i/P={i}, AckCtr+=n-1/INV(kj),j≠m
i:WREQ, P={i}, AckCtr≠0/~/~

i:WREQ/P={i}, AckCtr+=n/INV(k1)...INV(kn)
i:SCREQ, P={k1,..., km,..., kn}, km=i/P={i}, AckCtr+=n-1/SCREQ(kj),j≠m

 

Figure 20: State transitions from the read-only state 

If a SWREQ is received and the full/empty is set, then a WDENY message is replied. Otherwise, 

the requesting cache is added to the directory and a WDATA message is sent back. In any case, the 

home directory state is not changed. 

If a SCREQ is received and no more caches share this block, then the full/empty bit is cleared 

and the request is acknowledged with an ACKSC message. The state is not changed in this case. 

However, if more caches have a copy of this block, their full/empty bits must be reset before 

acknowledging the operation. Consequently, the state is changed to write-transaction and 

an SCREQ message is sent to each cache with a copy of the block. Note that the SCREQ operation 

is particularly time-expensive, as it works as a barrier for all the involved caches. 

5.3.3. Read-write state 

SWITCH (incomingRequest) { 
   CASE RREQ(j):  IF (!hasPointerInDirectory(j)) { // there is only one node 
                     ++ackCounter;                 // in the directory (the 
                     send(INV, i);                 // owner, namely "i") 
                     clearDirectory(); 
                     addNodeToDirectory(j); 
                     nextState = readTransaction; 
                  } 
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                  BREAK; 
   CASE WREQ(j):  IF (!hasPointerInDirectory(j)) { 
                     ++ackCounter; 
                     send(INV, i); 
                     clearDirectory(); 
                     addNodeToDirectory(j); 
                     nextState = writeTransaction; 
                  } 
                  BREAK; 
   CASE SRREQ(j): IF (!hasPointerInDirectory(j) && full) { 
                     ++ackCounter; 
                     send(INV, i); 
                     clearDirectory(); 
                     addNodeToDirectory(j); 
                     nextState = readTransaction; 
                  } ELSE IF (empty) { 
                     send(RDENY, j); 
                     addToDeferredList(); 
                     nextState = readWrite; 
                  } 
                  BREAK; 
   CASE SWREQ(j): IF (!hasPointerInDirectory(j) && empty) { 
                     ++ackCounter; 
                     send(INV, i); 
                     clearDirectory(); 
                     addNodeToDirectory(j); 
                     nextState = writeTransaction; 
                  } ELSE IF (full) { 
                     send(WDENY, j); 
                     addToDeferredList(); 
                     nextState = readWrite; 
                  } 
                  BREAK; 
   CASE SCREQ(j): send(SCFWD, i); 
                  nextState = readWrite; 
                  BREAK; 
   CASE ACKC(j):  ackCounter--; 
                  nextState = readOnly; 
                  BREAK; 
   CASE UPDATE(i, Dpack): addToDeferredList(Dpack); 
                          resumePendingReqs(); 
                          nextState = readOnly; 
                          BREAK; 
} 

 

If a SRREQ is received, either a RDATA or RDENY message is replied depending on whether the 

synchronization condition is met. The state is not changed in any case. 

If a SWREQ is received from a cache other than the current owner of the block and the 

synchronization condition is met, the request is forwarded to the owner. Additional functionality 

is required in the cache protocol, as the owner is expected to answer this type of forwarded 

requests. Another design alternative is to centralize all the synchronized writes in the home node. 

This avoids the need of forwarded requests but introduces an overhead associated with the 

excess traffic generated by the caches that request a synchronized write to the home node even 

though they are exclusive owners for that block. 

Our design assumes that caches can service forwarded requests. In this case, when a cache 

with exclusive ownership performs a synchronized write to a block, it only communicates this 

action to the home node in the case where the deferred list at the home node is not empty. This 

knowledge is implicit in an extra bit at the cache side, which is set when there are pending 

requests for the referred location at the home directory, as proposed in [74]. 
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Read only Read/Write

Read
transaction

Write
transaction

Absent

ACKC/--AckCtr/~
j:SRREQ(E)/~/RDENY, appendDL

j:SRREQ(F)/~/RDATA
j:SWREQ(E)/~/SWFWD(i)

j:SWREQ(F)/~/WDENY, appendDL
j:SCREQ/~/SCFWD

j:RREQ/P={j}, ++AckCtr/INV(i)
j:FETCH/P={j}, ++AckCtr/INV(i)

j:WREQ/P={j}, ++AckCtr/INV(i)

i:UPDATE(Dpack)/~/appendDL, resumeDL

 

Figure 21: State transitions from the read-write state 

As with the SWREQ operation, a SCREQ coming from a cache different than the owner is 

forwarded to the cache that has the read-write privilege. 

5.3.4. Read transaction state 

SWITCH (incomingRequest) { 
   CASE RREQ(i):   send(BUSY, i); 
                   nextState = readTransaction; 
                   BREAK; 
   CASE WREQ(i):   send(BUSY, i); 
                   nextState = readTransaction; 
                   BREAK; 
   CASE SRREQ(i):  send(BUSY, i); 
                   nextState = readTransaction; 
                   BREAK; 
   CASE SWREQ(i):  send(BUSY, i); 
                   nextState = readTransaction; 
                   BREAK; 
   CASE SCREQ(i):  send(BUSY, i); 
                   nextState = readTransaction; 
                   BREAK; 
   CASE ACKC(i):   ackCounter--; 
                   nextState = readOnly; 
                   BREAK; 
   CASE UPDATE(i): --ackCounter; 
                   send(RDATA, i); 
                   nextState = readOnly; 
                   BREAK; 
} 

 

No new transitions are added from this state. All synchronized operations are ignored and a 

BUSY message is sent back to the requesting cache. 



Section 5 Integration with directory-based protocols 

 
  44 

Read only Read/Write

Read
transaction

Write
transaction

Absent

RREQ/~/BUSY
WREQ/~/BUSY

ACKC/--AckCtr/~
SRREQ/~/BUSY
SWREQ/~/BUSY
SCREQ/~/BUSY

UPDATE/--AckCtr/RDATA(i)

 

Figure 22: State transitions from the read transaction state 

5.3.5. Write transaction state 

SWITCH (incomingRequest) { 
   CASE RREQ(i):   send(BUSY, i); 
                   nextState = writeTransaction; 
                   BREAK; 
   CASE WREQ(i):   send(BUSY, i); 
                   nextState = writeTransaction; 
                   BREAK; 
   CASE SRREQ(i):  send(BUSY, i); 
                   nextState = writeTransaction; 
                   BREAK; 
   CASE SWREQ(i):  send(BUSY, i); 
                   nextState = writeTransaction; 
                   BREAK; 
   CASE SCREQ(i):  send(BUSY, i); 
                   nextState = writeTransaction; 
                   BREAK; 
   CASE ACKC(i):   IF (ackCounter == 1) { 
                      ackCounter = 0; 
                      send(WDATA, cacheInDirectory()); 
                      nextState = readWrite; 
                   } ELSE { 
                      --ackCounter; 
                      nextState = writeTransaction; 
                   } 
                   BREAK; 
   CASE ACKSC(i):  IF (ackCounter == 1) { 
                      ackCounter = 0; 
                      send(ACKSC, cacheInDirectory()); 
                      nextState = readWrite; 
                   } ELSE { 
                      --ackCounter; 
                      nextState = writeTransaction; 
                   } 
                   BREAK; 
   CASE UPDATE(i): IF (ackCounter == 1) { 
                      ackCounter = 0; 
                      send(WDATA, cacheInDirectory()); 
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                      nextState = readWrite; 
                   } ELSE { 
                      --ackCounter; 
                      nextState = writeTransaction; 
                   } 
                   BREAK; 
} 

 

As in the previous case, all SRREQ, SWREQ and SCREQ messages are replied with a BUSY 

message. 

Read only Read/Write

Read
transaction

Write
transaction

Absent

RREQ/~/BUSY
WREQ/~/BUSY

ACKC, AckCtr≠1/--AckCtr/~
UPDATE, AckCtr≠1/--AckCtr/~
ACKSC, AckCtr≠1/--AckCtr/~

SRREQ/~/BUSY
SWREQ/~/BUSY
SCREQ/~/BUSY

ACKC, AckCtr=1/AckCtr=0/WDATA(i)
UPDATE, AckCtr=1/AckCtr=0/WDATA(i)
ACKSC, AckCtr=1/AckCtr=0/ACKSC(i)

 

Figure 23: State transitions from the write transaction state 

A new transition is specified in the protocol in the case when a cache has requested to clean 

the full/empty bit of all caches with a copy of a block. In this case the acknowledgement counter 

already present in the implementation is used to keep track of the caches that have not yet 

cleared their copy of the full/empty bit. After a cache clears its copy of the full/empty bit, it sends 

an ACKSC message to the directory and invalidates the corresponding cache line. When all the 

ACKSC messages have been received from the home node, then the operation is acknowledged to 

the requesting cache. 
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5.4. Summary 

A directory based protocol with support for fine-grain synchronization has been systematically 

specified in the form of state diagrams and pseudo-code. As in the bus based directory protocol 

(section 4), only waiting non-altering reads and waiting altering writes are considered in this 

implementation. The operation of other variants of synchronized accesses can be easily inferred 

because they are a simplified version of the former. 

Six new network messages are introduced in order to implement fine-grain synchronization at the 

cache coherence level. Some optimizations reducing the number of messages are proposed, requiring 

additional functionality in the protocol so that caches can service forwarded requests that are sent to 

the directory from other caches. 

We propose a deferred list management scheme in which lists of pending requests can be either 

kept at the home directory or distributed between the directory and the caches. This solution is a 

compromise between a distributed approach and a centralized design and minimizes the number of 

protocol messages sent over the network. The same rules as in the bus-based approach are applied for 

coalescing of pending requests. 

 



 

 
  47 

6. Simulation framework 
As a practical working model of the proposed coherence protocols, a directory-based protocol with fine-

grain synchronization support has been partially implemented and simulated. This experimental model is 

based on the Rice Simulator for ILP11 Multiprocessors (RSIM) simulator12 and runs on Solaris 2.5 or 

above. 

6.1. Features of the simulated platform 

RSIM is a discrete event-driven simulator based on the YACSIM library [43]. This means that most of 

the resources in the simulated architecture are activated as events only when they have some tasks to 

execute. As an exception, both processor and caches are simulated as an event that is executed on 

every cycle. This decision is based on the facts that those units are likely to have nearly continuous 

activity. 

Directory

Network interface

Processor

L1 cache

L2 cache

Memory

Directory

Network interface

Processor

L1 cache

L2 cache

Memory

...

Network
 

Figure 24: Simulated system architecture 

Figure 24 shows the network and memory system hierarchy in the simulation platform. The key 

features of simulated systems are listed below [59]. 

- Multiple instruction issue 

- Out-of-order scheduling 

- Branch prediction support 

- Non-blocking loads and stores 

                                                 
11 Instruction-level parallelism. 
12 Available at http://rsim.cs.uiuc.edu/rsim/ (accessed November 2.001). 
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- Optimized memory consistency implementations 

- Two-level cache hierarchy 

- Multiple outstanding cache requests 

- CC-NUMA shared-memory system 

- Directory-based cache coherence protocol with fine-grain synchronization support 

- Routed two-dimensional mesh network 

Additionally, contention effects are modeled at all resources in the processor, caches, memory 

banks, processor-memory bus and network. 

6.2. Simulation methodology 

The steps required to perform a general simulation with the developed platform are depicted in the 

figure below. 

compiler

source
code disassembler

and
hex editor

SPARC
binary

predecoder

modified
binary

simulator

loosely
encoded

binary

 

Figure 25: Simulation steps 

The starting point is the source code of the program to be run under the simulator. As this code is 

supposed to successfully compile on an ordinary compiler, no language-level support for expressing 

data-level synchronization operations is available at this step. However, it is necessary to somehow 

distinguish these operations. Using unique assembler instructions thorough the source code achieve 

this13. 

An 8-bit Alternate Space Indicator (ASI) is defined in the SPARC architecture in order to tag 

loads and stores with 256 different values. As some of these values are user-defined, they can be used 

for synchronizing instructions. As a consequence, synchronizing operations are distinguished by 

particular ASI values. The ASI parameter determines the specific variant of synchronizing instruction 

that will be executed. A sample C program is presented below. 

int main(int argc, char **argv) { 
  int sVar; /* synchronized variable */ 
  /* The values of ASI for synchronizing operations are: 
     ASI_UE   0x91 
     ASI_FF   0x96 
     ASI_EF_T 0x9d 
  */ 
  asm("wr   %g0, 0x9d, %asi");     /* WRASI instruction */ 
  sVar = 5;                        /* synchronized store (STWA_EFT) */ 
 
  /* The complete assembler sequence looks like this: 
     wr   %g0, 0x9d, %asi 
     mov  xxx, %o0                !xxx is the data to be stored 
     stwa %o0, [%fp - yyy], %asi  !yyy is an appropriate offset 
  */ 
} 

                                                 
13 For example, with calls to the function asm in the C language. 
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In order to get a binary SUN�s cc compiler has to be used14 with the �xarch=v8plusa option. 

Otherwise WRASI will not be recognized as a valid instruction. A binary is obtained with15: 

cc -xarch=v8plusa synch.c -o synch 

The simulation process currently requires the use of a hexadecimal editor in order to manually 

modify the op-code of the desired memory instructions so that they are synchronized (refer to 

Appendix A). As stated above, these memory instructions are easily recognized because they are 

preceded by a write to the ASI register. A disassembler must be used in conjunction with the 

hexadecimal editor in order to determine the appropriate offset of the memory operations in the binary 

file. As no SPARC32+ disassembler is openly available, a standard SPARC disassembler was modified 

in order to recognize the new instructions. A future improvement would be to extend the compiler in 

order to support the complete set of synchronizing memory instructions. With this extension, the 

simulation steps would be simplified as shown in the next figure. 

modified
compiler

source
code

predecoder

binary

simulator

loosely
encoded

binary

 

Figure 26: Simulation steps with a compiler supporting synchronizing instructions 

Once a binary with synchronizing instructions is obtained, a predecoder is executed on it. A new 

binary in a loosely encoded format, which can be interpreted by the simulator, is thus obtained. 

6.3. Implementation of synchronizing instructions 

1    1 rd op3 rs1 0 imm_asi rs2

1    1 rd op3 rs1 1 simm13

031 30 29 25 24 19 18 14 13 12 5 4

031 30 29 25 24 19 18 14 13 12

The field op[0:1]
equals 3 for load and
store operations

If i=1 then the ASI is
specified in the ASI
register. Otherwise, it
is stored in the
imm_asi field

 

Figure 27: Alternate load and store instruction format 

As specified in [73], the only SPARC instructions that access memory load, store, prefetch, swap, 

and compare-and-swap. An implicit ASI value is provided by normal load and store. On the 

contrary, an explicit ASI is provided by alternate load and store. This explicit value is given either 

                                                 
14 gcc version 3.1 and above also supports SPARC v8+ and v9 architectures, but it�s currently under development. 
15 Note that the application has to be compiled using the RSIM application library. 
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in the ASI register or in the imm_asi instruction field (see Figure 27). The 6-bit field op3 

determines the specific load or store instruction. 

Synchronization instructions are implemented on SPARC by defining them as colored load and 

stores, as specified by the ASI field. ASI values corresponding to synchronizing instructions are 

presented in Table 9. Each instruction category is assigned four consecutive ASI values. Two of these 

values specify altering instructions, while the other two represent non-altering accesses. A total of 16 

synchronizing memory instructions are introduced16. 

Table 9: ASI values for synchronizing 
operations 

ASI value 
range 

Instruction category 

0x90 to 0x93 Unconditional 
0x94 to 0x97 Conditional waiting 
0x98 to 0x9B Conditional non-faulting 
0x9C to 0x9F Conditional faulting 

 

Table 10 summarizes the most relevant modifications already made to RSIM. 

Table 10: Specific modifications made to RSIM 

Source file Changes 
MemSys/cache2.c Added extra fields in cache lines storing full/empty 

bits17 
MemSys/directory.c Added extra fields in directory storing full/empty bits 
MemSys/l1cache.c Cache behavior integrated with full/empty bits and 

synchronizing operations 
MemSys/mshr.c Specification of new types of memory operations and 

extension of MSHR registers18 
MemSys/setup_cohe.c Implementation of a coherence protocol integrated 

with fine-grain synchronization at both L1 and L2 
caches 

Processor/except.cc New type of soft exception fired my trapping 
conditional instructions 

Processor/funcs.cc Functional implementation of conditional instructions 
Processor/memunit.cc Behavior of the memory unit when dealing with 

synchronizing instructions 
Processor/units.cc Specification of functional units used by 

synchronizing instructions, access types and latencies 
predecode/predecode_instr.cc New values of ASI for synchronizing instructions 
predecode/predecode_table.cc Association between new instructions and the 

functions corresponding to its implementation 

                                                 
16 Although loads and stores are defined on both integers and floating-point data supporting byte, half-word (16-bit), 

word (32-bit), double-word (64-bit) and quad-word (128-bit) accesses, only integer word memory operations are 
supported by the simulation platform. 

17 Currently, the simulation platform only supports cache lines of 64-bit length. 
18 The management of synchronizing pending requests has not been implemented yet. 
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Table 11: Set of full/empty memory instructions19 
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19 Extracted from [72]. An asterisk indicates a data type, such as floating point (F) or unsigned word (UW). Note that all 

instructions correspond to the set of LD*A operations in SPARC. 
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6.4. Simulation flowchart 

The figure below shows the different stages of a single simulation. The names of the functions and the 

source code filenames corresponding to the listed operations are specified at the top of the boxes. The 

core of the simulation platform consists of a loop in which scheduled events are executed. The 

iterations through this loop continue until the event list is empty, meaning that the simulation has 

finished. 

main - MemSys/driver.c

initializes the YACSIM simulator driver
transfers the execution to user code

UserMain - Processor/mainsim.cc

parses the command-line
read instructions from decoded binary

sets up the table with units and functions
initializes the system architecture

DriverRun - Processor/mainsim.cc

activates the simulation driver
returns 0 for termination

configures mesh network buffers The ready list consists of those
activities at the head of the
event list that are scheduled for
the current simulation time

is the ready list empty?

advance simulation time
terminate if the event list is empty

yes

no

RSIM_EVENT - Processor/state.cc

called for each processor
handle requests in L1 cache pipelines
handle requests in L2 cache pipelines

complete stage of the pipeline
fetch and decode new instructions
process intructions ready for issue

handle requests coming into L1 cache
handle requests coming into L2 cache

statistics processing

 

Figure 28: Execution flowchart of the simulator 

As stated in Figure 29, the RSIM_EVENT function simulates processor and cache operation. As it is 

likely that both processor and caches have nearly continuous activity, RSIM_EVENT is scheduled every 
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cycle. However, in order to avoid non-deterministic behavior this function is scheduled to occur with 

an offset of 0.5 with respect to the processor cycles. As a consequence, RSIM_EVENT is executed at 

the midpoint between subsequent processor cycles in the simulation timeline. 

0 1 432
simulation timeline

(cycle count)

specific cache and processor
activity is scheduled each cycle

scheduling RSIM_EVENT between
cycles avoids non-deterministic

execution

1.5 2.5

operations finished during
the previous cycle are first
completed

new operations based on
current cycle are then
initiated  

Figure 29: RSIM_EVENT scheduling 

Figure 30 depicts instruction lifetime stages and the operations performed in each of these stages. 

instruction fetch and decode
assign unique identifier to each instruction

stall if active list is full

Processor/pipestages.cc

Processor/exec.cc

instruction issue
sends to corresponding functional units
a data structure specifies the number of
cycles in which functional units are freed

Processor/funcs.cc

instruction execution
branch preditcion calculation

map between RSIM and UNIX memory maps

Processor/exec.cc

instruction completion
frees functional units

check correctness of branch prediction

Processor/graduate.cc

instruction graduation
stall if consistency constrains

remove from active list
 

Figure 30: Instruction lifetime stages 
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6.5. Simulation results 

A small application that makes use of the set of fine-grain operations implemented by the simulation 

platform has been developed. The application core is a loop in which a node issues a trapping altering 

store and the rest of processors perform a non-altering load in parallel. Both the number of nodes and 

number of iterations are customizable by command-line parameters. 

 

Figure 31: Normalized execution time for different machine and problem sizes 

The operation of the fine-grained version of the application is defined below in the form of 

pseudo-code (complete source code is presented in Appendix B). 

parse_command_line_parameters();    // Configure number of nodes and iterations. 
allocate_shared_memory();           // To be used for the shared data array. 
turn_on_memory_system_simulation(); // For collection of statistics. 
create_processes();                 // Each process is run on a different node. 
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LOOP {                              // For the specified number of iterations. 
   if (process_id != 0) {           // Processes other than the main process 
      read_synchronized_var();      // perform a waiting non-altering read. 
   } else {                         // The main process performs a trapping 
      write_synchronized_var();     // altering write. 
   } 
} 

 

The results of a series of experiments are graphically depicted in Figure 3120. While the left plot 

shows execution times for different machine sizes, the right plot compares execution times for various 

problem sizes (i.e. number of iterations). Diverse components of execution time are distinguished by a 

different shade in each bar of these plots. Table 12 shows a tabulated version of the simulation results 

for a constant number of iterations, while Table 13 shows the same results for a fixed number of 

processing nodes. 

Table 12: Execution times (in cycles) for 1.000 
iterations 

Number of 
processors 

Fine-grained 
version 

Coarse-grained 
version 

16 32176 2455349 

8 26665 1845747 

4 25983 1150828 

2 24822 548853 

 

As seen in Figure 31 (a) and Table 12, the execution time of the fine-grained version increases 

linearly with the problem size. Additionally, as the number of nodes decreases, the execution time 

slightly degrades. Effectively, the more nodes take part in a synchronization operation, the higher is 

the completion time. Both the cost of storage required for synchronization data and the traffic caused 

by these operations in the mesh network increase with the number of nodes. It is also important to 

observe that the most significant part of the execution time is due to cache and remote memory 

accesses. 

Table 13: Execution times (in cycles) for 16 nodes 

Number of 
iterations 

Fine-grained 
version 

Coarse-grained 
version 

100000 3002126 - 

10000 302068 - 

1000 32176 2455349 

100 4918 246280 

 

A coarse-grained version of the same application has been implemented using barriers (see the 

complete source code in Appendix C). Its operation in the form of pseudo-code is detailed here for 

reference. 

parse_command_line_parameters();    // Configure number of nodes and iterations. 

                                                 
20 The results have been derived from the statistics collection utilities distributed with RSIM. 
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allocate_shared_memory();           // To be used for the shared data array. 
initialize_barrier(barrier);        // Rendez-vous point for all the processes. 
turn_on_memory_system_simulation(); // For collection of statistics. 
create_processes();                 // Each process is run on a different node. 
 
LOOP {                              // For the specified number of iterations. 
   if (process_id != 0) {           // Processes other than the main process 
      wait_at_barrier(barrier);     // wait for the write to complete and 
      read_shared_var();            // perform an ordinary read. 
   } else {                         // The main process performs a trapping 
      write_shared_var();           // altering write. 
      wait_at_barrier(barrier); 
   } 
} 

 

The results, presented in Figure 31 (b) and Table 13, show that the dependence between the 

execution time and the number of nodes is remarkably higher in the coarse-grained version, which do 

not make use of a cache coherence protocol integrated with synchronization operations. This is 

because the overhead imposed by barriers is notably higher and so is its relevance in comparison with 

the total execution time. As a consequence, as the number of nodes increases, the execution time rises 

faster in the coarse-grained version. Note also that the accumulated times at the FPU stall and busy 

states are insignificant in comparison to the times spent for remote accesses and barrier 

synchronization. 
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7. Power-consumption estimation 
Battery life is a key feature in modern mobile computing devices. As a consequence, power consumption 

has to be minimized when possible. This must be done without compromising the overall performance of 

the system. 

As the architectures described in this work are suitable for integration as a CMP (chip multiprocessor) 

in a mobile device, it becomes important to evaluate the power consumption overhead introduced by 

systems with fine-grain synchronization support. 

7.1. Available energy estimation tools 

Traditionally, consumption estimation applications worked at gate level, thus needing a complete 

design of the multiprocessor in the form of a netlist. Examples of such tools are PowerMill [68] or 

QuickPower [63]. While providing extremely accurate estimations, these tools are only appropriate 

for the final stages of the design process, as they require a complete hardware-level description of the 

system. Moreover, the execution time of hardware-level simulation tools make them unsuitable for 

the study of tradeoffs between different system parameters. 

Another approach has to be considered if power consumption estimations are needed in early 

design stages, where HDL descriptions and circuit designs are not yet available. Macro modeling can 

significantly reduce execution times of power estimation applications. Many tools developed for this 

purpose divide the system into several functional units and calculate their power consumption 

behavior separately [51]. More concretely, the power consumption of a functional unit is specified as 

a function of various parameters, such as the number of ports or the number of transitions in the input 

vector. These power consumption functions can then be integrated into an existing high-level cycle-

accurate simulator, for instance, RSIM. 

Instruction-level power analysis is useful in order to relate power consumption with application 

source code. Tools following this approach [66] are based on an estimation of the energy consumption 

associated with each particular instruction. A representative example of such application is 

Myrmigki, which also models hardware activity by keeping track of the transitions produced at the 

ports of the functional units. 

Wattch [18] and SimplePower [76] implement more precise capacitive models and achieve 

accuracies as low as 5% with respect to measured values. They implement energy models based on 

transition counts and empirical data. Each functional unit is associated with a table that specifies the 

power consumption for a given state transition. If the number of possible transitions is too large, 

similar transitions can be grouped thus reducing the size of this table. 
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7.2. Implementing an energy estimation framework in RSIM 

As shown in Figure 28, RSIM simulates the behavior of processor and caches at every cycle. This is 

implemented as part of the RSIM_EVENT function, which also includes statistics processing routines. 

A power consumption model can be added to the simulator platform by extending the statistics 

collection functions with an additional set of statistics21. 

More concretely, apart from simulating the operation of the multiprocessor system, RSIM keeps 

track of detailed usage statistics for each functional unit. These statistics can be used to estimate 

consumed power with help of a set of tables indicating the energy associated for each possible 

transition, as it is done in tools like Wattch [18] or SimplePower [76]. The structure of these tables 

should be similar to Table 14, and they could actually be imported to RSIM with minor changes. 

Tables for novel functional units, such as caches with fine-grain synchronization support, should be 

obtained either experimentally or analytically by evaluating the power consumption overhead 

introduced by the additional hardware they require22. 

Table 14: Structure of switch capacitance tables 

Previous 
input vector 

Current 
input vector 

Switch capacitance 
(pF) 

00...00 00...01 C0 
00...00 00...10 C1 

. 

. 

. 

. 

. 

. 

. 

. 

. 
11...11 11...11 Cn 

 

Additionally to these tables, it is necessary to keep track of the particular transitions and the 

number of accesses performed in each functional unit. The YACSIM [43] library provides useful 

functions for creating statistics records and calculating meaningful values such as the mean or the sum 

of stored samples. 

Figure 32 sketches the module hierarchy of the simulator after implementing the changes 

mentioned above. Each functional unit is extended with an adequate power consumption model, 

which is invoked in case the corresponding unit has been used at the given cycle. The energy 

estimations for each unit are then collected by the statistics functions and summed according to the 

following expression: 

ECYCLE = ECPU + EL1 CACHE + EL2 CACHE + EMEM + ENET 

 

Energy estimation algorithms are expected to increase the simulation execution time by a factor up 

to 30% [18]. Gathering power consumption statistics at predefined intervals instead of every cycle 

notably reduces this overhead, but causes a loss of accuracy. Consequently, a compromise between 

                                                 
21 The actual implementation of power consumption statistics in RSIM is not included in this work. 
22 Note that these tables are technology dependent, so the hardware level layout of the system must also be 

considered. 
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efficiency and accuracy has to be reached depending on the particular goals of the simulation being 

performed. 

Processor

Energy model

L1 cache

Energy model

L2 cache

Energy model

Interconnect

Energy model

Directory and memory

Energy model

Statistics collection

Power estimation

 

Figure 32: Integrated power consumption framework 

7.3. Planned experiments 

It is essential to validate the power model once it has been implemented in the simulator platform. 

This is achieved by comparing the results of a set of simulations with those given by already existing 

tools such as Wattch [18] or SimplePower [76]. If a hardware schematic of the system is available, 

comparisons can also be done with more accurate hardware-level tools (see [63] and [68]). 

A power estimation framework is useful for studying the impact of fine-grain synchronization on 

crucial parameters of mobile devices. For instance, dissipation limits the maximum power 

consumption allowed per cycle. Additionally, battery life is governed by the total energy required by 

an application. It would be extremely valuable to evaluate the tradeoffs of fine-grain synchronization 

on both performance and power. Adequate benchmark applications have to be written for this purpose. 
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8. Conclusions 
Fine-grain synchronization is a valuable mechanism for speeding up the execution of parallel algorithms 

by avoiding false data dependencies and unnecessary process waiting. However, the implementation of 

fine-grain synchronization introduces additional complexity at both hardware and software system 

components. 

A novel architecture with support for fine-grain synchronization at the cache coherence level is 

introduced. We propose a model that can be efficiently implemented in modern multiprocessors. The 

hardware overhead required by this architecture is not expected to be excessive. 

Coherence protocols with support for fine-grain synchronization have been systematically described 

for both bus-based and directory-based multiprocessors. This work includes as well description of the 

rules for management and resuming pending requests, which is a key issue for the correct operation of the 

presented architecture. 

Although it has not been completely developed yet, the simulation platform has been tested with a 

sample application making use of a small set of conditional operations. A coarse-grained version of the 

same application has been written and its simulation results compared to those of the fine-grained version, 

showing the performance improvements provided by the latter. These preliminary results verify the 

worthiness of implementing fine-grain synchronization at the cache coherence level. 

Some guidelines for implementing a power estimation algorithm as an extended feature of the 

simulation platform have been presented. The integration of fine-grain synchronization at the cache 

coherence level is expected to increase the energy consumption of the system, but this has to be 

quantitatively studied. 
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9. Future work 
Some features such as sophisticated management of pending requests have been specified but not yet 

source coded. Additionally, further debugging of the simulation platform is required23. This will not only 

verify the correct functioning of the protocols, but also evaluate design options that were taken during the 

specification process. Protocol verification with automatic verifier tools is also desirable. 

Further simulation is required in order to obtain more precise quantitative data related with the 

performance of the proposed set of synchronization memory operations. In particular, the statistics 

collection functions implemented in the simulator platform should be modified so that the cost of storage 

required for synchronization data and the latency of fine-grain synchronization operations can be 

measured and easily compared with traditional synchronization mechanisms. Other important parameters 

to be measured are extra traffic caused by these operations and saturation that may be present at different 

levels of the memory hierarchy. 

Extending a standard C compiler in order to support the complete set of synchronizing memory 

instructions would greatly simplify the steps required to perform a single simulation. An alternative is to 

extend the predecoder so that it recognizes Alewife binaries, which would eliminate the necessity of 

writing applications from scratch for making use of synchronizing operations. Note however that 

Alewife doesn�t make use of the full set of proposed instructions. 

Another pending task is to implement the full set of synchronizing instructions under RSIM. The 

evaluation of different coherence protocols other than MESI would also be very valuable, as well as 

developing extensive statistics collection in order to understand the tradeoffs involved in the proposed 

architectures. The implementation of a power estimation algorithm is also an appealing task, as 

considerable source code can be reused from already existing energy estimation tools. 

 

                                                 
23 Regarding this subject, the source code has also been compiled with gcc instead of SUN�s cc, allowing thus to debug 

under gdb, which provides many more debugging features than dbx. 
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Appendix A. Preparing binaries for simulation 
This section describes in detail how to prepare a binary that makes use of fine-grain synchronization to be 

used with the extended RSIM simulator, supposing that we start from the following C source code. Note 

that the synchronized store is marked by a previous write to the ASI register, which is likewise performed 

by a call to the asm function. 

int main(int argc, char **argv) { 
  int sVar; /* synchronized variable */ 
 
  /* The values of ASI for synchronizing operations are: 
     ASI_UE   0x91 
     ASI_FF   0x96 
     ASI_EF_T 0x9d 
  */ 
  asm("wr   %g0, 0x9d, %asi");         /* WRASI instruction */ 
 
  sVar = 5;                            /* synchronized store (STWA_EFT) */ 
 
  /* The complete assembler sequence looks like this: 
     wr   %g0, 0x9d, %asi 
     mov  xxx, %o0                !xxx is the data to be stored 
     stwa %o0, [%fp - yyy], %asi  !yyy is an appropriate offset 
  */ 
} 

 

In order to get an ordinary SPARC binary, SUN�s cc compiler has to be invoked with the 

xarch=v8plusa option. Otherwise the store to the ASI register will not be recognized as a valid 

instruction. A binary is obtained with: 

cc -xarch=v8plusa synch.c -o synch 

A disassembler is now used to calculate the file offset in which the store is located. The op-code of 

this store will be changed so that it is marked as synchronized. It is essential for the disassembler to 

support the SPARC32+ instruction set. The relevant disassembled output is listed below. Some instruction 

fields may vary depending on the particular system. 

ADDRESS INSTRUCTION DECODED 
 
0x000107f0 0x87826000 wr  %g0, 157, %asi 
0x000107f4 0x90102005 mov 5, %o0 
0x000107f8 0xd027bff8 st %o0, [%fp � 8] 
0x000107fc 0x81c7e008 ret 

 

As it is preceded by a WR instruction to the ASI register, it is straightforward to find the store whose 

opcode needs to be modified. The detailed instruction format of this store is shown in the following 

figure, in which it is also depicted the field to be changed so that the store is labelled as synchronized. 

This change can be easily made with a standard hexadecimal editor24. 

                                                 
24 khexedit has been used in this study. 
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1    1 rd op3 rs1 1 simm13

031 30 29 25 24 19 18 14 13 12

The field op[0:1]
equals 3 for load and
store operations

If i=1 then the ASI is
specified in the ASI
register. Otherwise, it
is stored in the
imm_asi field

1    1  0    1    0    0    0  0    0    0    1    0    0  1    1    1    1    0 1    1    1    1    1    1    1    1    1    1    1    0    0    0

031 30 29 25 24 19 18 14 13 12

st %o0, [%fp - 8]

1    1  0    1    0    0    0  0    1    0    1    0    0  1    1    1    1    0 1    1    1    1    1    1    1    1    1    1    1    0    0    0

031 30 29 25 24 19 18 14 13 12

0xd027bff8

0xd0a7bff8 sta %o0, [%fp - 8]

HEX DECODED

 

Figure 33: Details on how to transform a standard store to a synchronized store 

As deduced from Figure 33, in this example the byte at offset 0x000107f9 has to be changed from 

value 0x27 to value 0xa7. The resulting binary can be then predecoded and used as the input of the 

simulation platform. 

Table 15 shows the relevant values of the field op3 and the corresponding operation associated to 

those values [73]. 

Table 15: Relevant values of the op3 field 

Op-code Operation op3 field (binary) 
LDUW Load Unsigned Word 00 0000 
LDUWA Load Unsigned Word from Alternate space 01 0000 
STW Store Word 00 0100 
STWA Store Word from Alternate space 01 0100 
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Appendix B. Application source (fine-grained version) 
Below is the source code listing of the sample application used in order to test the set of fine-grained 

synchronized memory operations. The MEMSYS_OFF and MEMSYS_ON calls make the simulator ignore 

non-relevant initialisation steps. Note also that after allocating shared memory space for a given variable 

with shmalloc, it is necessary to define the home node that owns this space by using the 

AssociateAddrNode function. 

#include <rsim_apps.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
/* #define __sparc_v9__ */ 
 
int NUM_PROCS  = 1; /* number of processors */ 
int ITERATIONS = 1; /* number of iterations */ 
int DEBUG      = 0; /* print debugging info */ 
 
int *sVar_;        /* shared array of size ITERATIONS */ 
int proc_id;       /* private variable */ 
int phase;         /* private variable */ 
extern char *optarg; 
 
main(int argc, char **argv) { 
  int c, i, j, dummy; 
 
  MEMSYS_OFF; /* turn off detailed simulation for initialization */ 
 
  while ((c = getopt(argc, argv, "p:i:d")) != -1) 
    switch (c) { 
    case 'p': 
      NUM_PROCS = atoi(optarg); 
      break; 
    case 'i': 
      ITERATIONS = atoi(optarg); 
      break; 
    case 'd': 
      DEBUG = 1; 
      break; 
    case 'h': 
    default: 
      fprintf(stdout, "SYNCH - OPTIONS\n"); 
      fprintf(stdout, "\tp - Number of processors\n"); 
      fprintf(stdout, "\ti - Number of iterations\n"); 
      fprintf(stdout, "\td - Print debugging info\n"); 
      fprintf(stdout, "\th - Help\n"); 
      return; 
    } 
 
  sVar_ = (int*) shmalloc(ITERATIONS * sizeof(int)); 
  AssociateAddrNode(sVar_, sVar_ + ITERATIONS, 0, "sVar"); 
 
  if (sVar_ == NULL) { 
    fprintf(stdout, "Unable to malloc shared region\n"); 
    exit(-1); 
  } 
 
  if (DEBUG) 
    fprintf(stdout, "Running with %d processors and %d interations...\n\n", 
     NUM_PROCS, ITERATIONS); 
  MEMSYS_ON; 
 
  proc_id = 0; 
  for (i=0; i<NUM_PROCS-1; i++) { 
    if (fork() == 0) { 
      proc_id = getpid(); 
      break; 
    } 
  } 
 
  if (proc_id == 0) { 
    StatReportAll(); 
    StatClearAll(); 
  } 
  endphase(); 
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  newphase(++phase);         /* beginning of new phase */ 
 
  for (j=0; j<ITERATIONS; j++) { 
    if (proc_id == 0) {      /* the main thread stores (STWA_EFT) the value */ 
      /* Values of ASI for synchronizing operations: 
  ASI_UE   0x91 
  ASI_FF   0x96 
  ASI_EF_T 0x9d 
      */ 
      asm("wr   %g0, 0x9d, %asi"); 
      sVar_[j] = 9;          /* synchronized store (STWA_EFT) */ 
 
      if (DEBUG) 
 fprintf(stdout, "%d: Stored value %d from sVar_[%d]\n", 
  proc_id, sVar_[j], j); 
       
      /* The complete assembler sequence looks like this: 
  mov  0x9d, %o1 
  wr   %o1, 0x0, %asi 
  mov  xxx, %o0                !xxx is the data to be stored 
  stwa %o0, [%fp - yyy], %asi  !yyy is an appropriate offset 
      */ 
    } else { /* the rest of the threads try to LDWA_FF the value */ 
      /* Values of ASI for synchronizing operations: 
  ASI_UE   0x91 
  ASI_FF   0x96 
  ASI_EF_T 0x9d 
      */ 
      asm("wr   %g0, 0x96, %asi"); 
      dummy = sVar_[j];        /* synchronized load (LDWA_FF) and store to a 
    standard dummy variable */ 
      if (DEBUG) 
 fprintf(stdout, "%d: Read value %d from sVar_[%d]\n", 
  proc_id, sVar_[j], j); 
    } 
  } 
 
  if (DEBUG) 
    fprintf(stdout, "\nProcessor %d about to finish!\n\n", proc_id); 
 
  exit(0);                 /* completed successfuly */ 
} 
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Appendix C. Application source (coarse-grained version) 
Below is the source code listing of the sample application implementing the same functionality of the 

fine-grained version by using barriers. Calls to the directives MEMSYS_OFF and MEMSYS_ON are used as in 

the fine-grained version (Appendix B). Barriers are initialised and activated by invoking TreeBarInit 

and TREEBAR, respectively. 

#include <rsim_apps.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
/* #define __sparc_v9__ */ 
 
int NUM_PROCS  = 1; /* number of processors */ 
int ITERATIONS = 1; /* number of iterations */ 
int DEBUG      = 0; /* print debugging info */ 
 
int *sVar_;        /* shared array of size ITERATIONS */ 
TreeBar barrier;   /* tree barrier */ 
int proc_id;       /* private variable */ 
int phase;         /* private variable */ 
extern char *optarg; 
 
main(int argc, char **argv) { 
  int c, i, j, dummy; 
 
  MEMSYS_OFF; /* turn off detailed simulation for initialization */ 
 
  while ((c = getopt(argc, argv, "p:i:d")) != -1) 
    switch (c) { 
    case 'p': 
      NUM_PROCS = atoi(optarg); 
      break; 
    case 'i': 
      ITERATIONS = atoi(optarg); 
      break; 
    case 'd': 
      DEBUG = 1; 
      break; 
    case 'h': 
    default: 
      fprintf(stdout, "SYNCH - OPTIONS\n"); 
      fprintf(stdout, "\tp - Number of processors\n"); 
      fprintf(stdout, "\ti - Number of iterations\n"); 
      fprintf(stdout, "\td - Print debugging info\n"); 
      fprintf(stdout, "\th - Help\n"); 
      return; 
    } 
 
  sVar_ = (int*) shmalloc(ITERATIONS * sizeof(int)); 
  AssociateAddrNode(sVar_, sVar_ + ITERATIONS, 0, "sVar"); 
 
  if (sVar_ == NULL) { 
    fprintf(stdout, "Unable to malloc shared region\n"); 
    exit(-1); 
  } 
 
  TreeBarInit(&barrier, NUM_PROCS); /* initialize tree barrier */ 
 
  if (DEBUG) 
    fprintf(stdout, "Running with %d processors and %d interations...\n\n", 
     NUM_PROCS, ITERATIONS); 
  MEMSYS_ON; 
 
  proc_id = 0; 
  for (i=0; i<NUM_PROCS-1; i++) { 
    if (fork() == 0) { 
      proc_id = getpid(); 
      break; 
    } 
  } 
 
  if (proc_id == 0) { 
    StatReportAll(); 
    StatClearAll(); 
  } 
  endphase(); 
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  newphase(++phase);         /* beginning of new phase */ 
 
  for (j=0; j<ITERATIONS; j++) { 
    if (proc_id == 0) {      /* the main thread stores the value */ 
      sVar_[j] = 9;          /* ordinary store */ 
      if (DEBUG) 
 fprintf(stdout, "%d: Stored value %d from sVar_[%d]\n", 
  proc_id, sVar_[j], j); 
      TREEBAR(&barrier, proc_id); 
    } else { /* the rest of the threads try to load the value */ 
      TREEBAR(&barrier, proc_id); 
      dummy = sVar_[j];        /* ordinary load and store to dummy variable */ 
      if (DEBUG) 
 fprintf(stdout, "%d: Read value %d from sVar_[%d]\n", 
  proc_id, sVar_[j], j); 
    } 
  } 
 
  if (DEBUG) 
    fprintf(stdout, "\nProcessor %d about to finish!\n\n", proc_id); 
 
  exit(0);                 /* completed successfuly */ 
} 
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