

Performance and Power-Consumption Implication of
Fine-Grained Synchronization in Multiprocessors

A Master of Science Thesis in Computer Systems by Oscar Sierra Merino
Department of Microelectronics and Information Technology

Royal Institute of Technology
Stockholm � May 2.002

 Oscar Sierra Merino Vladimir Vlassov Mladen Nikitovic
 o.sierra@ieee.org vlad@it.kth.se mladen@it.kth.se
 MSc Thesis author Main advisor Secondary advisor

Abstract

It has been already verified that hardware-supported fine-grain synchronization provides a significant

performance improvement over coarse-grained synchronization mechanisms, such as barriers. Support for

fine-grain synchronization on individual data items becomes notably important in order to implement

thread-level parallelism more efficiently.

One of the major goals of this project is to propose a new efficient way to support fine-grain

synchronization mechanisms in multiprocessors. This novel idea is based on the efficient combination of

fine-grain synchronization with cache coherence and instruction level parallelism. Both snoopy and

directory-based cache coherence protocols have been studied.

The work includes the definition of the complete set of synchronizing memory instructions as well as

the architecture of the full/empty tagged shared memory that provides support for these operations.

A detailed model based on a shared memory multiprocessor is presented and systematically described.

To achieve this, an existing execution-driven simulator, namely RSIM, has been appropriately adapted.

The simulation environment is designed for verification and performance evaluation of the proposed

solutions.

Some guidelines for implementing a power estimation algorithm as an extended feature of the

simulation platform have been presented. The integration of fine-grain synchronization at the cache

coherence level is expected to increase the energy consumption of the system.

Keywords: fine-grain synchronization, shared memory, instruction-level parallelism, cache coherence,

power consumption, execution-driven simulation.

Table of Contents

1. Overview and motivation ...8

2. Semantics of synchronizing memory operations ..9

3. Architectural support for fine-grain synchronization ...11

3.1. Related work ..11

3.1.1. The Alewife machine ...11

3.1.2. The StarT-NG machine ..12

3.2. Proposed architecture ...14

3.3. Cache coherence...17

4. Integration with snoopy protocols ..19

4.1. Mapping between processor instructions and bus transactions......................................23

4.2. Management of pending requests...25

4.3. Transition rules...27

4.3.1. Invalid state ..27

4.3.2. Modified state...28

4.3.3. Exclusive-clean state ..29

4.3.4. Shared state ..30

4.4. Summary ..30

5. Integration with directory-based protocols ...32

5.1. Mapping between processor instructions and network transactions34

5.2. Management of pending requests...36

5.3. Directory transition rules..38

5.3.1. Absent state ..38

5.3.2. Read-only state ...39

5.3.3. Read-write state..41

5.3.4. Read transaction state...43

5.3.5. Write transaction state ..44

5.4. Summary ..46

6. Simulation framework ..47

6.1. Features of the simulated platform...47

6.2. Simulation methodology ..48

6.3. Implementation of synchronizing instructions ...49

6.4. Simulation flowchart ..52

6.5. Simulation results...54

7. Power-consumption estimation ..57

7.1. Available energy estimation tools ..57

7.2. Implementing an energy estimation framework in RSIM..58

7.3. Planned experiments ..59

8. Conclusions ..60

9. Future work...61

Appendix A. Preparing binaries for simulation...62

Appendix B. Application source (fine-grained version) ...64

Appendix C. Application source (coarse-grained version) ...66

Acknowledgements ...68

References ...69

List of Figures

Figure 1: Classification of synchronizing operations (extracted from [72]).. 9

Figure 2: Notation of synchronizing memory operations.. 10

Figure 3: Architecture of a StarT-NG node [27] ... 12

Figure 4: Two sample scenarios of synchronized loads and stores ... 13

Figure 5: Logical structure of shared memory .. 14

Figure 6: Memory map for each processing node ... 15

Figure 7: Organization of a cache supporting fine-grain synchronization... 15

Figure 8: Cache line containing both ordinary and synchronized data.. 16

Figure 9: Bus-based system architecture ... 19

Figure 10: MESI coherence protocol... 20

Figure 11: MESI protocol integrated with fine-grain synchronization (explicit full/empty states) 21

Figure 12: MESI protocol integrated with fine-grain synchronization (implicit full/empty states) 22

Figure 13: Sample scenario of mapping between processor instructions and bus transactions 24

Figure 14: Resuming of pending requests ... 26

Figure 15: Mesh network-based architecture .. 32

Figure 16: Alewife�s coherence protocol state diagram .. 32

Figure 17: Management of pending requests for an absent or read-only memory block........................... 36

Figure 18: Management of pending requests for a read-write memory block... 37

Figure 19: State transitions from the absent state .. 39

Figure 20: State transitions from the read-only state... 41

Figure 21: State transitions from the read-write state.. 43

Figure 22: State transitions from the read transaction state... 44

Figure 23: State transitions from the write transaction state.. 45

Figure 24: Simulated system architecture.. 47

Figure 25: Simulation steps ... 48

Figure 26: Simulation steps with a compiler supporting synchronizing instructions 49

Figure 27: Alternate load and store instruction format.. 49

Figure 28: Execution flowchart of the simulator ... 52

Figure 29: RSIM_EVENT scheduling .. 53

Figure 30: Instruction lifetime stages .. 53

Figure 31: Normalized execution time for different machine and problem sizes...................................... 54

Figure 32: Integrated power consumption framework .. 59

Figure 33: Details on how to transform a standard store to a synchronized store 63

List of Tables

Table 1: Notation of synchronized operations... 10

Table 2: Relevant information stored in ordinary MSHR registers [46] ... 16

Table 3: Additional bus transactions in the MESI protocol... 22

Table 4: Correspondence between processor instructions and memory requests 23

Table 5: Management of coalescing requests .. 25

Table 6: Semantics of the transitions in the directory-based protocol... 33

Table 7: Network transactions in the directory-based protocol ... 35

Table 8: Correspondence between processor instructions and memory requests 35

Table 9: ASI values for synchronizing operations... 50

Table 10: Specific modifications made to RSIM .. 50

Table 11: Set of full/empty memory instructions .. 51

Table 12: Execution times (in cycles) for 1.000 iterations .. 55

Table 13: Execution times (in cycles) for 16 nodes... 55

Table 14: Structure of switch capacitance tables... 58

Table 15: Relevant values of the op3 field .. 63

 8

1. Overview and motivation
Two types of synchronization operations guarantee correctness in shared-memory multiprocessors:

mutual exclusion and conditional synchronization, such as producer-consumer data dependency. Barriers

are an example of synchronization directives that ensure the correctness of a producer-consumer

behavior. They are coarse-grain in the sense that all processes have to wait in a common point before they

can proceed, even though the data they truly depend on was available in a previous execution step.

The main advantage of fine-grain synchronization arises from the fact that synchronization is provided

at data-level. As a consequence, false data dependencies and unnecessary process waiting are avoided.

Communication overhead due to global barriers is also avoided, because each process communicates only

with the processes it depends on. Thus, the serialization of program execution is notably reduced and

more parallelism can be exploited. This effect is more noteworthy as the number of processors increases.

While the overhead of a fine-grain synchronization operation remains constant, that of a coarse-grain

operation typically increases with the number of processors.

As explained in [78], fine-grain synchronization is most commonly provided by three different

mechanisms:

i) language-level support for expressing data-level synchronization operations,

ii) full/empty bits storing the synchronization state of each memory word,

iii) processor operations on full/empty bits.

Traditional theory on data-level parallelism has led to the definition of specific structures supporting

fine-grain synchronization in data arrays. As an example, J-structures provide consumer-producer style

of synchronization, while L-structures guarantee mutual exclusion access to a data element [4]. Both data

types associate a state bit with each element of an array.

Several alternatives exist for handling a synchronization failure. The most immediate are either

polling the memory location until the synchronization condition is met or blocking the thread and

returning the control at a later stage, which requires more support as it is necessary to save and restore

context information. A combination of both is another option, polling first for a given period and then

blocking the thread. The waiting algorithm may depend on the type of synchronization being executed

[52].

Most research regarding multiprocessors show that fine-grain synchronization is a valuable alternative

for improving the performance of many applications. As exposed in [46], evidence is shown on the

worthiness of having modest hardware support for fine-grain synchronization. Testing the benefits of

aggressive hardware support in fine-grain synchronization is one of the goals of this project.

 9

2. Semantics of synchronizing memory operations
Synchronization operations require the use of a tagged memory, in which each location is associated to a

state bit in addition to a 32-bit value. The state bit is known as full/empty bit and implements the

semantics of synchronizing memory accesses. As a matter of fact, this bit controls the behavior of

synchronized loads and stores. A set full/empty bit indicates that the corresponding memory reference has

been written by a successful synchronized store. On the contrary, an unset full/empty bit means either

that the memory location has never been written since it was initialized or that a synchronized load has

read it.

A complete categorization of the different synchronizing memory operations is depicted in Figure 1.

These instructions are introduced as an extension of the instruction set of Sparcle [6], which is in turn

based on SPARC. The simplest type of operations includes unconditional load, unconditional store,

setting the full/empty bit or a combination of these. As they do not depend on the previous value of the

full/empty bit, unconditional operations always succeed.

Memory operations

Conditional Unconditional

WaitingNon-waiting

Non-faulting Faulting

Figure 1: Classification of synchronizing operations (extracted from [72])

Conditional operations depend on the value of the full/empty state bit to successfully complete. A

conditional read, for instance, is only performed if the state bit of the location being accessed it set. The

complimentary applies for a conditional write. Conditional memory operations can be either waiting or

non-waiting. In the former case, the operation remains pending in the memory until the state miss is

resolved. This introduces non-deterministic latencies in the execution of synchronizing memory

operations. Lastly, conditional non-waiting operations can be either faulting or non-faulting. While the

latter do not treat the miss as an error, faulting operations fire a trap on a state miss and either retry the

operation immediately or switch to another context.

Section 2 Semantics of synchronizing memory operations

 10

Rd read request
Wr write request

WNWr

N non-altering
A altering

U unconditional
W waiting
N non-faulting
T trapping
S waiting, non-faulting or faulting

Figure 2: Notation of synchronizing memory operations

All memory operations, regardless of the classification made in Figure 1, can be further catalogued

into altering and non-altering operations. While the former modify the full/empty bit after a successful

synchronizing event, the latter do not touch this bit in any case. According to this distinction, ordinary

memory operations fall into the unconditional non-altering category.

The following table shows the notation used for each variant of memory operation and its behavior in

the case of a synchronization miss. The notation is further explained in Figure 2.

Table 1: Notation of synchronized operations

Notation Semantics Behavior on a
synchronization miss

UNRd Unconditional non-altering read
UNWr Unconditional non-altering write
UARd Unconditional altering read
UAWr Unconditional altering write

Never miss

WNRd Waiting and non-altering read from full
WNWr Waiting and non-altering write to empty
WARd Waiting and altering read from full
WAWr Waiting and altering write to empty

Placed on the list of pending
requests until resolved

NNRd Non-faulting and non-altering read from full
NNWr Non-faulting and non-altering write to empty
NARd Non-faulting and altering read from full
NAWr Non-faulting and altering write to empty

Silently discarded

TNRd Faulting and non-altering read from full
TNWr Faulting and non-altering write to empty
TARd Faulting and altering read from full
TAWr Faulting and altering write from empty

Signal trap

 11

3. Architectural support for fine-grain synchronization

3.1. Related work

3.1.1. The Alewife machine

The MIT Alewife machine is a cache-coherent shared memory multiprocessor (see [2] and [4])

with non-uniform memory access (NUMA). Although it is internally implemented with an efficient

message-passing mechanism, it provides an abstraction of a global shared memory to

programmers. The most relevant part of its nodes regarding coherency and synchronization

protocols is the communication and memory management unit (CMMU), which deals with memory

requests from the processor and determines whether a remote access is needed, managing also

cache fills and replacements. Cache coherency is achieved through LimitLESS, a software

extended directory-based protocol. The home node of a memory line is responsible for the

coordination of all coherence operations for that line.

Support for fine-grain synchronization in Alewife includes full/empty bits for each 32-bit

data word and fast user-level messages. Colored load and store instructions are used to access

synchronization bits. The alternate space indicator (ASI) distinguishes each of these

instructions. Full/empty bits are stored in the bottom four bits of the coherency directory entry

(at the memory) and as an extra field in the cache tags (at the cache), so they do not affect DRAM

architecture nor network data widths. The Alewife architecture also defines language extensions

to support both J- and L-structures. A specific programming language, namely Semi-C1, has

been defined for this purpose [42].

The aim is that a successful synchronization operation does not incur much overhead with

respect to a normal load or store. In the ideal case, the cost of both types of operations is

expected to be the same. This is possible because full/empty bits can be accessed simultaneously

with the data they refer to. The cost of a failed synchronization operation depends much on the

specific hardware support for synchronization. The overhead of software-supported

synchronization operations is expected to be much higher than their hardware counterparts.

However, Alewife minimizes this by rapidly switching between threads on a failed

synchronization attempt or a cache miss, requiring the use of lockup-free caches.

Handling failed synchronization operations in software has the advantage of being less

complex in terms of hardware and more flexible. The basis of Alewife support for fine-grain

synchronization is that, as synchronization operations are most probably successful, overhead

due to such failures is not expected to notably reduce overall system performance.

1 Semi-C is an extension of the C language that can handle parallel programming constructs.

Section 3 Architectural support for fine-grain synchronization

 12

3.1.2. The StarT-NG machine

StarT-NG, an improved version of the StarT machine [9], is a high-performance message

passing architecture in which each node consists of a commercial symmetric multiprocessor

(SMP) that can be configured with up to 3 processors, which are connected to the main memory

by a data crossbar. At least one network interface unit is present in each node, allowing

communicating with a network router, which is implemented in a proprietary chip [17].

A low-latency high-bandwidth network interconnects every node in the system. StarT-NG

also supports cache-coherent global shared memory. In this case, one processor on each site is

used to implement the shared memory model. This functionality can be disabled when shared

memory is not needed.

Main memory

Cache coherent interconnect

Processor ProcessorProcessorProcessor

Network
Interface

Unit

Network
Interface

Unit

Network
Interface

Unit

Network
Interface

Unit

Input/Output modules

Switch connecting to other StarT-NG nodes

Figure 3: Architecture of a StarT-NG node [27]

Coherence protocols in StarT-NG are fully implemented in software. As a consequence, the

choice of protocols and configuration of the shared memory is notably flexible. The performance

of several coherence models has been evaluated. Particularly relevant to this work is the study

made in [75], which introduces a cache coherence protocol with support for fine-grained data

structures. These data structures are known as I-structures [75].

According to the results of this study, performance improvements in an integrated coherence

protocol are two-fold. First, the write-once behavior of I-structures allows writes to be

performed without the exclusive ownership of the respective cache line. Once a write has been

carried out, stale data in other caches is identified because its full/empty bit is unset. In a

directory-based protocol, a synchronized load in a remote location will find the full/empty bit

Section 3 Architectural support for fine-grain synchronization

 13

unset and forward the request to the proper node. This behavior is illustrated in Figure 4, where

two nodes (namely, A and B) share a copy of a block on which they perform different operations.

Node A Home node Node B

sync-load-req

sync-load-neg

sync-store-rep
sync-load-rep

sync-store-req

Node A Home node Node B

sync-store-req

sync-store-neg

sync-store-rep

sync-store-req

Scenario 1 Initially, both nodes A and B have a copy of
the cache line in the shared state. A synchronized store
operation is performed by node A without the exclusive
ownership of the cache block, which is consequently
kept in the shared state during the whole process.
Pending synchronized loads from node B to the
affected slot are resumed after the store is performed.

Scenario 2 Initially, both nodes A and B have a copy of
the cache line in the shared state. A synchronized store
operation is successfuly performed by node A without
the exclusive ownership of the cache block. If node B
issues a synchronized store, the request will be
rejected by the home node after finding the full-empty
bit set.

Figure 4: Two sample scenarios of synchronized loads and stores

As stated in [74], another advantage of a coherence protocol integrated with fine-grain

synchronization is the efficiency in the management of pending requests by reducing the number

of transactions needed to perform some particular operations. As an example, a synchronized

Section 3 Architectural support for fine-grain synchronization

 14

load in traditional coherence protocols usually requires the requesting node to obtain the

exclusive ownership of the affected block in order to set the full/empty bit to the empty state.

3.2. Proposed architecture

In a multiprocessor system providing fine-grain synchronization, each shared memory word is tagged

with a full/empty bit that indicates the synchronization state of the referred memory location.

Assuming that a memory word is 32-bit long, this implies an overhead of just 3%. Although many

variations exist when implementing this in hardware, the structure of shared memory is conceptually

as shown in Figure 5.

SHARED MEMORY

state bits

PENDING
REQUESTS

Figure 5: Logical structure of shared memory

Figure 5 shows that each shared memory location has three logical parts, namely:

i) the shared data itself.

ii) state bits. The full/empty bit is placed within the state bits. This bit is set to 1 if the

corresponding memory location has already been written by a processor and thus

contains valid data. If the architecture has cache support other state bits such as the

dirty bit may exist. The dirty bit is set if the memory location is not up-to-date,

indicating that it has been modified in a remote node.

iii) the list of pending memory requests. Synchronization misses fired by conditional

waiting memory operations are placed in this list. When an appropriate synchronizing

operation is performed, the relevant pending requests stored in this list are resumed.

If the architecture has cache support, the list of pending memory requests also stores

ordinary cache misses. The difference between both types of misses is basically that

synchronization misses store additional information, such as the accessed slot�s index

in the corresponding cache block. These differences are further explained later in this

section.

Section 3 Architectural support for fine-grain synchronization

 15

Note that fine-grain synchronization is described here only for shared memory locations. In the

presented architecture, the local memory in each processing node does not make use of full/empty bits.

With this consideration, the memory map of the system seen by each processor is similar to the one

sketched in Figure 6.

0x00000000

0xFFFFFFFF

local memory

directory coherence entries

system protected data

shared memory space

global shared memory

accessible only from
local processing node

Figure 6: Memory map for each processing node

Fine-grain synchronization is implemented by atomic test-and-set operations. These

operations modify the full/empty condition bit in the processor's condition bits register2. Note that the

condition bit is changed regardless of the particular variant of synchronization operation; no matter it

is altering and/or trapping.

As stated before, many implementation alternatives are possible. State bits may be stored in the

coherence directory entry in the case of a directory-based protocol, such as the one implemented in

Alewife. A proposed structure for a cache supporting fine-grain synchronization is depicted in

Figure 7.

list of
pending
requests

cache tags full/empty
state cached data

address bus

data bus

to CPU to system bus

to system busto CPU

Figure 7: Organization of a cache supporting fine-grain synchronization

When a memory word is cached, its full/empty bit must also be stored at the cache side. As a

consequence, not only data has to be kept coherent, but also full/empty bits. In a system with cache

support, an efficient option is to store the full/empty bit as an extra field in the cache tag, allowing

checking the synchronization state in the same step as the cache lookup. The coherence protocol has

then two logical parts, one for the data and another for the synchronization bit.

2 In Sparcle, for instance, the full/empty condition bit is stored in the condition bit #0 (see [73]).

Section 3 Architectural support for fine-grain synchronization

 16

Our design assumes that the smallest synchronizing element is a word. As a cache line is usually

longer, it may contain multiple elements, including both synchronized and ordinary data (see Figure

8). A tag for a cache line includes the full/empty bits for all the synchronized words that are stored in

that line. As directory states are maintained at cache line level, this complicates the maintenance of

pending memory requests. Effectively, while a dirty bit refers to a complete cache line, a full/empty bit

refers to a single word in a cache line.

state informationword0 word1 word2 word3

synchronized data
(empty)

ordinary data

0 1

synchronized data
(full)

Figure 8: Cache line containing both ordinary and synchronized data

In the proposed architecture, lists of pending requests are maintained in hardware at the cache

level, more concretely in the miss status holding registers (MSHR). With this assumption, waiting

memory operations require the architecture to have cache support. However, if cache support is not

available, the behavior of waiting operations can be implemented in software by using faulting

conditional operations instead. The system kernel is then responsible for maintaining the list of

pending requests [39]. In the case of a directory-based coherence protocol, an alternative is to store

the pending requests as a separate field in the directory entries.

Some modifications have to be made to the cache architecture in case synchronization misses are

to be kept in MSHR. More concretely, MSHR in traditional lockup-free caches store the information

listed in Table 2 (see [46] for a more detailed description). In order to store synchronization misses in

these registers, two more fields have to be added containing the slot�s index accessed by the operation

and the specific variant of synchronized operation that will be performed.

Table 2: Relevant information stored in ordinary MSHR registers [46]

Field Semantics
Cache buffer address Location where data retrieved from memory is stored
Input request address Address of the requested data in main memory
Identification tags Each request is marked with a unique identification label
Send-to-CPU flags If set, returning memory data is sent to CPU
In-input stack Data can be directly read from input stack if indicated
Number of blocks Number of received words for a block
Valid flag When all words have been received the register is freed
Obsolete flag Data is not valid for cache update, so it is disposed

A complete description of a cache coherence mechanism includes the states, the transition rules,

the protocol message specification and the description of cache line organization and memory

management of pending requests. Other design issues are dealing with conflicting and/or merging

synchronization misses, as well as ordering of misses from the same processor.

Section 3 Architectural support for fine-grain synchronization

 17

Our design is based on a multiprocessor system with the following assumptions:

- the CPU implements out-of-order execution of instructions,

- each processing node has a miss-under-miss lockup-free cache, supporting multiple

outstanding memory requests,

- the smallest synchronized data element is a word; this statement does not imply a loss of

generality, as the extension of the presented design to other data sizes is straightforward.

3.3. Cache coherence

In a multiprocessor system, cache memory local to each processing node can be used to speed up

memory operations. It is necessary to keep the caches in a state of coherence by ensuring that

modifications to data that is resident in a cache are seen in the rest of the nodes that share a copy of

the data. This can be achieved in several ways, which may depend on the particular system

architecture. In bus-based systems, for instance, cache coherence is implemented by a snooping

mechanism, where each cache is continuously monitoring the system bus and updating its state

according to the relevant transactions seen on the bus. On the contrary, mesh network-based

multiprocessors use a directory structure to ensure cache coherence. In these systems, each location in

the shared memory is associated with a directory entry that keeps track of the caches that have a copy

of the referred location. Both snoopy and directory-based mechanisms can be further classified into

invalidation and update protocols. In the former case, when a cache modifies shared data, all other

copies are set as invalid. Update protocols change copies in all caches to the new value instead of

marking them as invalid.

The performance of multiprocessor systems is partially limited by cache misses and node

interconnection traffic. Consequently, cache coherence mechanisms play an important role in solving

the problems associated with shared data. Another performance issue is the overhead imposed by

synchronizing data operations. In the case of systems that provide fine-grain synchronization, this

overhead is due to the fact that synchronization is implemented as a separate layer over the cache

coherence protocol. Indeed, bandwidth demand can be reduced if no data is sent in a synchronization

miss. This behavior requires the integration of cache coherence and fine-grain synchronization

mechanisms. It is important to remark, however, that both mechanisms are conceptually independent.

This means that synchronizing operations can be implemented in machines without cache support and

vice-versa.

One of the main objectives of this project is to define a coherence protocol that integrates fine-

grain synchronization. This will be done for both snoopy and directory-based protocols. An event-

driven simulator, namely RSIM, is used in order to verify and measure the performance of our design.

As this simulation platform does not integrate synchronization at the cache coherence level,

modifications in its source code are needed.

Section 3 Architectural support for fine-grain synchronization

 18

In the proposed architecture, failing synchronizing events are resolved in hardware. The following

architecture requirements must be considered in order to integrate synchronization and cache

coherency. Note that most of the hardware needed is usually already available in modern

multiprocessor systems.

i) each memory word has to be associated with a full/empty bit; as in Alewife, this state

information can be stored in the coherency directory entry,

ii) at the cache side, state information is stored as an additional field in the cache tags; a

lookup-free cache is needed in order to allow non-blocking loads and stores,

iii) the cache controller not only has to deal with coherency misses, but also with full/empty

state misses; synchronization is thus integrated with cache coherency operations, as

opposed to Alewife, in which the synchronization protocol is implemented separately

from the cache coherency system.

This approach can be extended to the processor registers by adding a full/empty tag to them. This

would allow an efficient execution of synchronization operations from simultaneous threads on the

registers. However, additional modifications are needed in the processor architecture to implement

this feature.

In order to evaluate the performance improvement of this novel architecture with respect to

existing approaches, appropriate workloads must be tested on the devised machine. A challenge task is

to find suitable applications that show these results in a meaningful way, so that the effects of the

synchronization overhead such as the cost of additional state storage, execution latency or extra

network traffic can be studied in detail.

 19

4. Integration with snoopy protocols

system bus

shared memory

cache

processing node

cache

processing node

cache

processing node...

list of pending
requests

list of pending
requests

list of pending
requests

Figure 9: Bus-based system architecture

We consider a bus-based system such that depicted in Figure 9. Note that even though each memory

address has conceptually a list of pending operations for that address, at hardware level the lists are

distributed between all the processing nodes. The management of deferred lists will be explained later in

this section. The description made here is based on the MESI protocol, also known as Illinois protocol.

It is a four-state write-back invalidation protocol with the following state semantics [30]:

! modified - this cache has the only valid copy of the block; the location in main memory

is invalid.

! exclusive clean - this is the only cache that has a copy of the block; the copy in main

memory is up-to-date. A signal S is available to the controller in order to determine on a

BusRd if any other cache currently holds the data.

! shared � the block is present in an unmodified state in this cache, main memory is up-to-

date and zero or more caches may also have a shared copy.

! invalid � the block does not have valid data.

The state diagram corresponding to the MESI protocol without fine-grain synchronization support is

shown in Figure 10.

Section 4 Integration with snoopy protocols

 20

Modified Exclusive
clean

Invalid Shared

PrRd/-

PrRd/-
BusRd/Flush'

BusRd/Flush

PrWr/-

PrRd,PrWr/-

BusRdX/Flush PrWr/BusRdX

BusRdX/Flush'

PrRd/BusRd(S)

Bu
sR
dX
/F
lu
sh

Pr
Rd
/B
us
Rd
(S
)

PrWr/BusRdX

BusRd/Flush

Figure 10: MESI coherence protocol

In the figure above, we use the notation A/B, where A indicates an observed event and B is an event

generated as a consequence of A. Dashed lines show state transitions due to observed bus transactions,

while continuous lines indicate state transitions due to local processor actions. Finally, the notation

Flush� means that data is supplied only by the corresponding cache. Note that this diagram does not

consider transient states used for bus acquisition.

The transitions needed to integrate fine-grain synchronization in MESI are sketched in Figure 11, in

which the full/empty state of the accessed word is explicitly indicated by splitting the ordinary MESI sates

into two groups. The transactions not shown in this figure are not relevant for the corresponding state and

do not cause any transition in the receiving node. The notation is the same as in the previous figure, and

as it can be appreciated below, no new states are preliminarily required so as to integrate fine-grain

synchronization in the coherence protocol.

The description made here considers only waiting non-altering reads and waiting altering writes.

Altering reads can be achieved by issuing non-altering reads in combination with an operation that clears

the full/empty bit without retrieving data. This operation is named unconditional altering clear, or

PrUACl according to the nomenclature previously described. PrUACl operates on a full/empty bit without

accessing or altering the data corresponding to that state bit.

Clearing of full/empty bits is necessary in order to reuse synchronized memory locations (a more

detailed description is made in [46]). While a PrUARd could be used for this end, the PrUACl instruction

completes faster, as it alters the full/empty bit without actually reading data from the corresponding

location. For this reason, PrUACl can be seen as an optimized memory instruction.

Section 4 Integration with snoopy protocols

 21

Modified
(full)

Exclusive
(full)

Invalid
(full)

Shared
(full)

PrUNRd,PrWNRd/-
PrWAWr/miss

PrUNRd,PrWNRd/BusRd(S)

Pr
WN
Rd
/B
us
Rd
(S
)

Pr
UN
Rd
/B
us
Rd
(S
)

PrWAWr/BusSWr,miss

PrUNWr/-

PrUNWr/BusRdX

BusRd/Flush

Bu
sR
dX
/F
lu
sh

BusRd/Flush

BusRdX/FlushPrUNWr/BusRdX

BusRdX/Flush'

Modified
(empty)

Exclusive
(empty)

Invalid
(empty)

Shared
(empty)

PrUNRd/BusRd(S)
Pr
UN
Rd
/B
us
Rd
(S
)

PrUNWr/-

PrUNWr/BusRdX

BusRd/Flush

Bu
sR
dX
/F
lu
sh

BusRd/Flush
BusSCl/-BusRdX/FlushPrUNWr/Flush

BusRdX/Flus
h'

PrWNRd/BusRd, miss
PrUACl/BusSCl

PrWAWr/BusSWr(S)

PrUACl/BusSCl

PrUNRd/-
PrWNRd/miss

BusSCl/-

BusSWr/resume
PrWAWr/BusSWr, resume

PrWAWr/BusSWr(S)

B
u
s
S
W
r
/
r
e
s
u
m
e

Bu
sS
Cl
/-

PrUNRd,PrUACl,BusSCl/-
PrWNRd/miss
BusRd/Flush'

PrUNRd,PrWNRd/-
PrWAWr/miss
BusRd/Flush'

PrWAWr/BusSWr, resume
BusSWr/resume

Pr
UA
Cl
/B
us
SC
l

Bu
s
SC
l/
-

PrUNRd,PrUNWr,PrWNRd/-
PrWAWr/miss

PrUNRd,PrUNWr,PrUACl/-
PrWNRd/miss

P
r
W
A
W
r
/
B
u
s
S
W
r
,
r
e
s
u
m
e

PrUACl/-

PrUACl/-

Figure 11: MESI protocol integrated with fine-grain synchronization (explicit full/empty states)

Section 4 Integration with snoopy protocols

 22

Waiting operations constitute the most complex sort of synchronizing operations, as they require

additional hardware in order to manage deferred list and resume pending synchronization requests. The

behaviour of other types of memory operations is a simplified version of waiting operations. Most of the

transitions depicted in Figure 11 are identical in the rest of the cases, with the only different being the

behaviour when a synchronization miss is detected. Instead of being added to the list of pending requests,

other variants of missing operations either fire an exception or are silently discarded.

Two additional bus transactions are needed in order to integrate fine-grain synchronization in the

MESI protocol. A detailed description of these bus transactions is presented in Table 3. Coherence of

full/empty bits is ensured precisely by these two bus transactions (BusSWr and BusSCl).

Table 3: Additional bus transactions in the MESI protocol

Bus
transaction

Description

BusSWr A node has performed an altering waiting write. The effect of this
operation in observing nodes is to set the full/empty bit of the
referring memory location and resume the relevant pending
requests. Resuming of pending requests is further explained in
section 4.2.

BusSCl A node has performed an altering read or an unconditional clear
operation. The effect of this operation in observing nodes is to
clear the full/empty bit of the referring memory location, thus
making it reusable.

Modified Exclusive
clean

Invalid Shared

PrUNRd,PrWNRd(F)/-
PrWAWr(F),PrWNRd(E)/appendDL

PrWNRd/BusRd(S,C)
PrWAWr/BusSWr(S,C), setFE

PrUNRd/BusRd(S)

Pr
WN
Rd
/B
us
Rd
(S
,C
)

Pr
UN
Rd
/B
us
Rd
(S
)

PrWNRd/BusRd(C), appendDL
PrWAWr/BusSWr(C), appendDL

PrUACl/BusSCl

PrUNWr/-

PrUNWr/BusRdX

BusRd/Flush

BusSWr/setFE, resumeDL

BusSCl/unsetFE

Bu
sR
dX
/F
lu
sh

BusRd/Flush
BusSWr/setFE, resumeDL

BusSCl/unsetFE
BusRdX/Flush

BusRdX/Flush'

P
r
W
A
W
r
(
E
)
/
s
e
t
F
E
,

r
e
s
u
m
e
D
L
,

B
u
s
S
W
r

PrUNRd,PrWNRd(F)/-
PrWNRd(E),PrWAWr(F)/appendDL
PrWAWr(E)/setFE, resumeDL, BusSWr
PrUACl/unsetFE, BusSCl
BusRd/Flush'
BusSCl/unsetFE
BusSWr/setFE, resumeDL

PrUNRd,PrUNWr,PrWNRd(F)/-
PrWNRd(E),PrWAWr(F)/appendDL

PrWAWr(E)/setFE, resumeDL, BusSWr
PrUACl/unsetFE, BusSCl

PrWAWr/BusSWr(S,C), setFE
PrUNWr/BusRdX

Figure 12: MESI protocol integrated with fine-grain synchronization (implicit full/empty states)

A new signal (referred as C in Figure 12) is introduced in order to determine whether a synchronized

operation misses. This bus signal will be called shared-word signal, as it indicates whether any other

node is sharing the referring word. The shared-word signal can be implemented as a wired-OR

Section 4 Integration with snoopy protocols

 23

controller line, which is asserted by each cache that holds a copy of the relevant word with the full/empty

bit set. According to this notation, a waiting read request written in the form PrWNRd(C) successfully

performs, while an event of the form PrWNRd(C) causes a synchronization miss. Note also that, as each

cache line may contain several synchronized data words, it is necessary to specify the specific word to

which the synchronized operation is to be performed. Consequently, a negated synchronization signal

(C) causes a requesting read to be appended to the list of pending operations whereas a requesting write

to be performed successfully. If the synchronization signal is otherwise asserted (C), then a synchronized

read is completed successfully whereas a requesting write is suspended.

In addition to the shared-word signal already introduced, three more wired-OR signals are required

for the protocol to operate correctly, as described in [30]. The first signal (named S) is asserted if any

processor different than the requesting processor has a copy of the cache line. The second signal is

asserted if any cache has the block in a dirty state. This signal modifies the meaning of the former in the

sense that an existing copy of a cache line has been modified and then all the copies in other nodes are

invalid. A third signal is necessary in order to indicate whether all the caches have completed their snoop,

that means, if it is reliable to read the value of the first two signals.

Figure 12 shows a more compact state transition specification in which information about the

full/empty state of the accessed word is implicit. Instead, the value of the C line or the full/empty bit is

specified as a required condition between parentheses. Figure 11 and Figure 12 do not consider neither

transient states needed for bus acquisition nor the effects due to real signal delays.

4.1. Mapping between processor instructions and bus transactions

When a processing node issues a memory operation, the cache located at that node first interprets the

request and, in case of a miss, it later translates the operation into one or more bus transactions. The

correspondence between the different processor instructions and the memory requests seen on the bus

is shown in Table 4. The same notation as in Figure 2 is used.

Table 4: Correspondence between processor
instructions and memory requests

Request from
processor

Bus transaction

PrUNRd BusRd (ordinary read)
PrUNWr BusWr (ordinary write)
PrUARd BusRd + BusSCl
PrUAWr BusAWr3
PrSNRd BusRd(C)4
PrSNWr BusWr(C)
PrSARd BusRd(C) + BusSCl
PrSAWr BusSWr(C)

3 Neither unconditional altering writes nor conditional non-altering writes are considered in the protocol specification.
4 The bus transaction BusRd is in this case used in combination with the shared-copy signal.

Section 4 Integration with snoopy protocols

 24

As seen on Table 4, unconditional non-altering read and write requests generate ordinary read and

write transactions on the bus. On the contrary, an unconditional altering read requires a BusRd

transaction followed by a BusSCl transaction. Effectively, apart from retrieving the data from the

corresponding memory location, a PrUARd request also clears the full/empty state bit of the referring

location. This is performed by BusSCl, which does not access nor modifies the data but only the

full/empty bit. It is important to observe that an unconditional altering read cannot be performed by

just a BusSCl transaction, as it just alters the full/empty bit without retrieving any data. The last

unconditional operation, PrUAWr, generates a specific bus transaction, namely BusAWr, which

unconditionally sets the full/empty bit after writing the corresponding data to the accessed memory

location.

It is inferred from Table 4 that the behavior of all conditional memory operations depends on the

value of the shared-word bus signal5. A conditional non-altering read, for instance, generates an

ordinary read bus transaction after checking whether the shared-bus signal is asserted. A

conditional altering read generates a BusSCl transaction in addition to the ordinary read transaction.

Finally, a conditional altering write causes a BusSWr transaction to be initiated on the bus. This

transaction sets the full/empty bit after writing the corresponding data to the referred memory location.

system bus

cache

processing node

list of pending
requests

BusSWr

1 The processor issues a waiting altering write
2 The cache does not have a valid copy of the accessed line
3 A BusSWr transaction is started on the bus
4 The C signal indicates whether there exists a copy of the
accessed word with the full-empty bit set

PrWAWr

Figure 13: Sample scenario of mapping between processor instructions and bus transactions

Note that all synchronized operations generate the same bus transactions regardless of their

particular type (waiting, non-faulting or faulting). The difference resides in the behavior when a

synchronization miss is detected and not in the bus transactions issued as a consequence of the

request. A sample scenario is shown in the figure below.

5 This behavior is systematically specified in section 4.3.

Section 4 Integration with snoopy protocols

 25

4.2. Management of pending requests

Each processing node keeps a local deferred list. This list holds both ordinary presence misses and

synchronization misses. It is possible also for both types of misses to happen for a single access. In

this case, not only the accessed line is not present in the cache, but also the synchronization state is not

met at the remote location where the copy of the word is held. After a relevant full/empty bit change is

detected, any operation that matches a required synchronization state is resumed at the appropriate

processing node.

Table 5 shows how the management of the deferred list local to a node is done. Concretely, the

table specifies the action taken when a given request is received with respect to a pending request

already present in the list of deferred operations6. A C indicates that both requests are conflicting and

thus need to be kept separated into two different entries, always ensuring that local order is

maintained. On the contrary, an M means that both requests can be merged and thus treated as a sole

request from the point of view of memory accesses.

Table 5: Management of coalescing requests

Pending request (already in MSHR)

PrUNRd PrUARd PrWNRd PrWARd PrNNRd PrNARd PrTNRd PrTARd

PrUNRd M M M M M M M M

PrUARd M M M M M M M M

PrWNRd M C M C M C M C

PrWARd M C M C M C M C

PrNNRd M C M C M C M C

PrNARd M C M C M C M C

PrTNRd M C M C M C M C

In
co

m
in

g
 r

eq
u
es

t

PrTARd M C M C M C M C

As a rule of thumb, a pending write is conflicting with any incoming request, so it can never be

merged and requires a separate entry in the list of pending requests7. As they are always conflicting,

all write requests have been excluded from Table 5. Another important observation is that pending

altering reads can only be merged with unconditional operations. Additionally, all non-altering

pending read request can be coalesced with any other incoming read request.

Apart from coalescing of requests, it is also crucial to specify how resuming of pending requests is

done. As explained at the beginning of this section, coherence of full/empty state bits is ensured by

6 The simulation model only considers PrSNRd, PrSAWr and PrUACl instructions.
7 It could be possible to make read requests be satisfied by pending writes to the same location. However, this

introduces extra complexity in the memory unit in order to meet the consistency model. A write request cannot be
satisfied by a pending read request in any case.

Section 4 Integration with snoopy protocols

 26

proper bus transactions, to be precise, BusSWr and BusSCl. This means that all caches that have

pending requests for a given memory location will know when the synchronization condition is met

by snooping into the bus and waiting for a BusSWr or a BusSCl transaction. When such transaction is

noticed, a comparator checks if there is an entry in any MSHR matching the received bus transaction. In

this case, action is taken so as to resume the pending request.

Due to this feature, it is possible for a cache to have pending requests for a memory location that is

not cached or is cached in an invalid state. The location will be brought again into the cache when the

synchronization miss is solved. The ability of replacing cache lines that have pending requests allows

efficient management and resuming of pending requests with minimum risk of saturating the cache

hierarchy.

system bus

cache
B

processing node
B

cache
C

processing node
C

cache
A

processing node
A

list of pending requests
PrWARd to X ...

list of pending requests
PrWARd to X ...

X is in invalid state

list of pending requests
PrWAWr to X...

X is in modified state
X has empty state bit

X is in invalid state

Figure 14: Resuming of pending requests

A representative scenario is shown in Figure 14, in which three nodes have pending requests to a

location (X) in their MSHR. While nodes A and B have invalid copies in their caches, node C has the

exclusive ownership of the referred location, whose full/empty state bit is unset. After node C

successfully performs a conditional altering write to location X, this event is notified on the bus by a

BusSWr transaction. This transaction informs nodes A and B that they can resume the pending request

to location X, which happens to be a conditional altering read. As a consequence, only one of these

nodes will be able to successfully issue the operation at this point. This is imposed by bus order. For

instance, if node B gets the bus ownership before node A, the pending request from the former will be

resumed and the operation at node A will stay pending in the MSHR.

Section 4 Integration with snoopy protocols

 27

4.3. Transition rules

A detailed explanation of the new transition rules from each coherence state is presented in the

following sections. A description in the form of C-styled pseudo-code is also presented in each case.

Observe that, as with the ordinary coherence misses, the ordering of synchronization misses from

different processors is imposed by bus order.

4.3.1. Invalid state

SWITCH(incomingRequest) {
 CASE PrUNRd: send(BusRd);
 IF (S) {
 flushFromOtherCache();
 nextState = shared;
 } ELSE {
 readFromMemory();
 nextState = exclusive;
 }
 BREAK;
 CASE PrUNWr: send(BusRdX);
 nextState = modified;
 BREAK;
 CASE PrWNRd: send(BusRd);
 IF (S && C) {
 flushFromOtherCache();
 nextState = shared;
 } ELSE IF (!S && C) {
 readFromMemory();
 nextState = exclusive;
 } ELSE {
 addToDeferredList(); // Wait.
 }
 BREAK;
 CASE PrWAWr: send(BusSWr);
 IF (S && !C) {
 writeToBus();
 nextState = shared; // To be evaluated at simulation.
 } ELSE IF (!S && !C) {
 writeToCache();
 nextState = modified;
 } ELSE {
 addToDeferredList(); // Wait.
 }
 BREAK;
 CASE PrUACl: IF (C) {
 send(BusSCl);
 nextState = invalid;
 }
 BREAK;
}

A successful conditional waiting read request from the local processor (PrWNRd) leads either to

the exclusive-clean state (if no other cache holds a copy of the block) or to the shared state (if

more caches have a copy of the accessed block). In any case, a BusRd transaction is generated in

order to fetch the data from the corresponding cache or shared memory location. However, if the

synchronization condition is not met (C), then the request is appended to the local deferred list

and the state is not changed. This occurs when neither the caches nor the shared memory assert

the C line.

Cache-to-cache transfers are needed when data is modified in one ore more caches and the

copy in the shared memory is stale. An alternative is to flush the modified data back to memory

and then to the node that requested access, but this approach is obviously slower than the former.

Section 4 Integration with snoopy protocols

 28

A successful waiting write request from the local processor (PrWAWr) leads either to the

modified state (if no other cache holds a copy of the block) or to the shared state (if more caches

have a copy of the block). This implies a performance improvement since the next successful

synchronized operation to the same cache slot will necessarily be a read and a state transaction

will be saved8. If the synchronization condition is not met (the line C is asserted), then the

operation is suspended.

A PrUACl request generates a BusSCl transaction but does not load the block into cache.

This is a design alternative and will be evaluated at the simulation stage of this study.

4.3.2. Modified state

If the full/empty bit is set, a conditional waiting read (PrWNRd) retrieves the data from the local

cache and generates no bus transaction. Otherwise, the request is appended to the local deferred

list.

A conditional waiting write (PrWAWr) fails if the C line is asserted and sets the full/empty bit

otherwise. In the latter, a BusSWr transaction is generated and the relevant pending requests in

the local deferred list are resumed. The effect of a BusSWr in the other caches is precisely to set

the full/empty bit and to analyze their deferred list so as to resume the relevant pending requests.

A PrUACl request generates a BusSCl transaction and unsets the full/empty bit. This

transaction does not flush the block from cache. This is a design alternative and will be evaluated

at the simulation stage of this study.

SWITCH(incomingRequest) {
 // Processor requests
 CASE PrUNRd: readFromCache();
 nextState = modified;
 BREAK;
 CASE PrUNWr: writeToCache();
 nextState = modified;
 BREAK;
 CASE PrWNRd: IF (full) {
 readFromCache();
 nextState = modified;
 } ELSE {
 addToDeferredList();
 nextState = modified;
 }
 BREAK;
 CASE PrWAWr: send(BusSWr);
 IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = modified;
 } ELSE {
 addToDeferredList();
 nextState = modified;
 }
 BREAK;
 CASE PrUACl: IF (full) {
 unsetFE();
 nextState = modified;
 }
 BREAK;
 // Bus signals
 CASE BusRd: flush();
 nextState = shared;

8 If a transition to the modified state is performed as in the ordinary MESI protocol, an additional BusRdX transaction is

then required on the bus.

Section 4 Integration with snoopy protocols

 29

 BREAK;
 CASE BusRdX: flush();
 nextState = invalid;
 BREAK;
 CASE BusSWr: IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = shared;
 }
 BREAK;
 CASE BusSCl: IF (full) {
 unsetFE();
 nextState = shared;
 }
 BREAK;
}

4.3.3. Exclusive-clean state

SWITCH(incomingRequest) {
 // Processor requests
 CASE PrUNRd: readFromCache();
 nextState = exclusive;
 BREAK;
 CASE PrUNWr: writeToCache();
 nextState = modified;
 BREAK;
 CASE PrWNRd: IF (full) {
 readFromCache();
 nextState = exclusive;
 } ELSE {
 addToDeferredList();
 nextState = exclusive;
 }
 BREAK;
 CASE PrWAWr: send(BusSWr);
 IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = shared; // To be evaluated at simulation.
 } ELSE {
 addToDeferredList();
 nextState = exclusive;
 }
 BREAK;
 CASE PrUACl: IF (full) {
 unsetFE();
 nextState = modified;
 }
 BREAK;
 // Bus signals
 CASE BusRd: flush();
 nextState = shared;
 BREAK;
 CASE BusRdX: flush();
 nextState = invalid;
 BREAK;
 CASE BusSWr: IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = shared;
 }
 BREAK;
 CASE BusSCl: IF (full) {
 unsetFE();
 nextState = shared;
 }
 BREAK;
}

As no other caches hold a copy of this block, a synchronized read (PrWNRd) leads to the same

coherence state.

Section 4 Integration with snoopy protocols

 30

4.3.4. Shared state

SWITCH(incomingRequest) {
 // Processor requests
 CASE PrUNRd: readFromCache();
 nextState = shared;
 BREAK;
 CASE PrUNWr: send(BusRdX);
 writeToCache();
 nextState = modified;
 BREAK;
 CASE PrWNRd: IF (full) {
 readFromCache();
 nextState = shared;
 } ELSE {
 addToDeferredList();
 nextState = shared;
 }
 BREAK;
 CASE PrWAWr: send(BusSWr);
 IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = shared; // To be evaluated at simulation.
 } ELSE {
 addToDeferredList();
 nextState = shared;
 }
 BREAK;
 CASE PrUACl: IF (full) {
 unsetFE();
 send(BusSCl);
 nextState = shared;
 }
 BREAK;
 // Bus signals
 CASE BusRd: flush();
 nextState = shared;
 BREAK;
 CASE BusRdX: flush();
 nextState = invalid;
 BREAK;
 CASE BusSWr: IF (empty) {
 writeToCache();
 resumePendingReqs();
 nextState = shared;
 }
 BREAK;
 CASE BusSCl: IF (full) {
 unsetFE();
 nextState = shared;
 }
 BREAK;
}

The same rules apply as for the modified state, with the only exception of the BusSWr and

BusSCl bus transactions, which do not cause a state transition in this case.

4.4. Summary

A bus based coherence protocol with fine-grain synchronization support has been introduced. A

systematic protocol description is made in the form of state diagrams and pseudo-code. Although this

implementation considers only waiting non-altering reads and waiting altering writes, the behavior of

other memory operations is derived in a straightforward manner, as it is a simplified version of the

former.

One of the base ideas of the protocol is that full/empty state bit coherence is maintained by bus

transactions defined for this purpose, namely BusSWr and BusSCl. An additional bus signal called

Section 4 Integration with snoopy protocols

 31

shared-word is also introduced in order to implement the conditional behavior of synchronizing

operations.

A drawback of integrating fine-grain synchronization support at the cache level is the complexity

of managing pending synchronization requests. Rules for coalescing and resuming synchronizing

requests have been explained in detail. It is expected that this supplementary complexity does not

translate in excessive hardware overhead, as most of the required hardware is already present in

modern multiprocessors. Consequently, application software making use of synchronizing memory

operations will likely experience a noteworthy performance improvement without the need of

extensive hardware deployment.

 32

5. Integration with directory-based protocols

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Processing
node

Distributed
shared
memory

Cache

Network router

Processor

Figure 15: Mesh network-based architecture

In a network-based system, such the one shown in Figure 15, each shared memory block has a directory

entry that lists the nodes that have a cached copy of the data. Full/empty bits are stored as an extra field in

the coherence directory entry. Point-to-point messages are used to keep the directory up-to-date and to

request permission for a load or a store to a particular location.

Read-only
P={k1, ..., kn}

Read-write
P={i}

Read
transaction

P={i}

Write
transaction

P={i}

2

6

3 5

1

9 7

4 810

Figure 16: Alewife�s coherence protocol state diagram

Section 5 Integration with directory-based protocols

 33

The description made here is based on Alewife�s coherence protocol [24]. Our model considers a

limited directory protocol, thus restricting the amount of simultaneous copies of a memory block. The

following states are defined in Alewife�s coherence protocol:

! Read-Only: One or more caches have a read-only copy of the block.

! Read-Write: Only one cache has a read-write copy of the block.

! Read Transaction: Cache is holding a read request (update in progress).

! Write Transaction: Cache is holding a write request (invalidation in progress).

The state diagram corresponding to this protocol is shown in Figure 16. The semantics of the

transitions depicted in this figure are resumed in Table 6 [50].

Table 6: Semantics of the transitions in the
directory-based protocol

Label Input message Output message
i → RREQ RDATA → i 1

i → FETCH RDATA → i

i → WREQ WDATA → i 2

i → MREQ MODG → i

i → WREQ INVR → kj 3

i → MREQ INVR → kj

i → WREQ INVW → i 4

i → MREQ INVW → i

j → RREQ INVW → i 5

j → FETCH INVW → i
6 i → REPM �

j → RREQ BUSY → j

j → WREQ BUSY → j

j → MREQ BUSY → j

j → FETCH BUSY → j

7

j → ACKC �

j → ACKC WDATA → i

j → REPM WDATA → i

8

j → UPDATE WDATA → i

j → RREQ BUSY → j

j → WREQ BUSY → j

j → MREQ BUSY → j

9

j → FETCH BUSY → j

j → ACKC RDATA → i

j → REPM RDATA → i

10

j → UPDATE RDATA → i

Although Alewife provides support for fine-grain synchronization, these mechanisms are

implemented over the cache coherence protocol, which works as if full/empty bits do not exist. The cache

controller in Alewife has limited hardware support for full/empty bits storage. Concretely, these bits are

saved as an extra field in the cache tags. This has two advantages. First, the memory used to store cache

Section 5 Integration with directory-based protocols

 34

data does not need to have odd word-length. Second, access to the cache data is slower than access to the

cache tags.

When the processor requests a memory access, the Communications and Memory Management Unit

(CMMU) determines whether the access is local or remote. The CMMU also checks if the access implies a

synchronizing operation by analyzing the ASI value in the memory operation. The address corresponding

to the access is checked against the cache tags file, and both the appropriate tag and the full/empty bit are

retrieved. At this point one of the following actions is executed9:

- a context switch is executed if the access produces a cache miss,

- a full/empty trap is fired in the case of a synchronization fault,

- otherwise, the operation is completed successfully.

According to the performance measures made in Alewife, the overhead of successful synchronizing

operations is not significant [46]. When a synchronization miss is detected, a trap is fired and the

corresponding thread either polls the location until the synchronization condition is met or blocks

according to a given waiting algorithm. While no additional hardware is required for polling, blocking

needs to save and restore context registers. The latter case is notably expensive, as loads take two cycles

and stores take three cycles.

By integrating synchronization mechanisms with the coherence protocol, the complexity introduced

by thread scheduling is avoided. Instead, synchronization misses are handled similarly to ordinary cache

misses. As the hardware needed to deal with the latter has already the capability to store part of the

information associated with a synchronization miss, it is expected that the hardware overhead introduced

by integrating synchronization mechanisms with cache coherence is not excessive.

5.1. Mapping between processor instructions and network
transactions

The network transactions used in the proposed protocol are explained in Table 7, which shows both

messages sent from a cache to memory and requests sent back from memory to a cache.

Six new messages are introduced in order to implement fine-grain synchronization at the cache

level. More concretely, these messages are SRREQ, SWREQ, SCREQ from cache to memory and

SRDENY, SWDENY and ACKSC from memory to cache.

9 In all cases, the retrieved full/empty bit is placed into the external condition codes so that the processor has access to

it.

Section 5 Integration with directory-based protocols

 35

Table 7: Network transactions in the directory-based protocol

Type of message Symbol Semantics
RREQ request to read a word that is not in the cache
WREQ request to write a word
SRREQ waiting and non-altering read request
SWREQ waiting and altering write request
SCREQ request to clear the full/empty bit
UPDATE returns modified data to memory

Cache to Memory

ACKC acknowledges that a word has been invalidated
RDATA contains a copy of data in memory (response to RREQ)
WDATA contains a copy of data in memory (response to WREQ)
SRDENY sent if a SRREQ misses; the requesting cache will retry at a later

stage
SWDENY sent if a SWREQ misses; the requesting cache will retry at a

later stage
INV invalidates cached words

ACKSC acknowledges that the full/empty bit has been unset in all the
copies of the block

Memory to Cache

BUSY response to any RREQ or WREQ while invalidations are in
progress

As proposed in [74], some fields are needed in the coherence protocol messages in order to

integrate fine-grain synchronization. We will make use of some of these proposed additional fields.

Specifically, the following fields are required:

! slot's index in the cache line which is being accessed,

! slots in the home directory copy whose list of pending requests is empty; this allows

saving protocol messaged in some cases where a block is in the read-write state (see

section 5.3.3 for more details),

! deferred lists in remote caches are sent to the home node when they release the exclusive

ownership; this scenario is further explained in section 5.2.

When a processing node issues a memory operation, the cache located at that node interprets the

request and translates it into one or more network transactions. The correspondence between the

different processor instructions and memory requests sent over the network is shown below.

Table 8: Correspondence between processor
instructions and memory requests

Instruction from
processor

Initiated network
transactions

PrUNRd RREQ
PrUNWr WREQ
PrUARd RREQ + SCREQ
PrUAWr -
PrSNRd SRREQ
PrSNWr CWREQ
PrSARd SRREQ + SCREQ
PrSAWr SWREQ

Section 5 Integration with directory-based protocols

 36

5.2. Management of pending requests

Extensive discussion about different alternatives for managing deferred lists is presented in [75]. We

propose a hybrid procedure for managing deferred lists in which lists of pending operations are kept

either at the home directory or in a distributed manner, depending on the state of the line to which

pending operations refer. The rules for coalescing requests are the same as in Table 5.

Lists of pending requests for memory locations that are in an absent10 or read-only state are

maintained as an additional field in the corresponding home directory. Effectively, in these states it is

not possible to adopt a distributed approach, since after a transition to the read-write state the home

directory will need to have knowledge of the type of pending requests and the nodes that issued this

requests.

A sample case of this scenario is shown in Figure 17, in which two nodes, namely A and B, share a

copy of a given memory block. If another node takes the exclusive ownership of this block,

information about pending requests issued by nodes A and B will be lost unless the home directory has

knowledge of those requests. A naive approach is to make the directory keep track of only the nodes

with pending requests, because this would require informing all of these nodes each time a full/empty

state change is detected, thus generating extra traffic. Figure 17 also shows a different memory block

for which there is no copy at any other node in the system, thus being in the absent state. The same

rules apply for this location.

state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

shared by nodes A and B

home directory

word20

word41 word50 word71word60

word41 word50 word60 word71 shared

cache in node A

word41 word50 word60 word71 shared

cache in node B

Figure 17: Management of pending requests for an absent or read-only memory block

For locations in a read-write state, we adopt a distributed solution in which both the home

directory and the remote cache keep track of pending operations. When a remote cache releases its

copy of the block, the deferred list kept locally to that cache is sent to the home node and merged with

the deferred list at the home directory. The rules for coalescing requests are those in Table 5. An

example in which a location is first owned by node A and then flushed from its cache is shown on

Figure 18.

10 The absent state indicates that no cache is holding a copy of the referred memory location. Consequently this

location does not fall into any of the four states described on page 33.

Section 5 Integration with directory-based protocols

 37

state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

exclusive ownership by A

home directory

word20

word41 word50 word71word60

word41 word50 word60 word71 exclusive

cache in node A

The memory location is flushed from the cache at
node A and the pending requests stored at the
MSHR of that cache are appended to the list at the
home directory.

state information

word0

full-empty bit

0

list of pending
requests

absentword11 word30

absent

home directory

word20

word41 word50 word71word60

Figure 18: Management of pending requests for a read-write memory block

As in the bus-based scheme, it is also necessary to specify how resuming of pending requests is

done. Contrary to the former, coherence of full/empty state bits is not always ensured at the home

directory. In fact, the home directory does not have a valid copy of the full/empty bit of a memory

location that is in the read-write state. In such case, the directory forwards requests from other

nodes to the exclusive owner of the block, where they will be serviced. According to these features,

resuming of pending requests is based on the following rules:

- if a block is in the absent or read-only state, the home directory is responsible for

resuming requests, by checking if there is any entry in the deferred list that matches an

incoming transaction,

- if a block is in the read-write state, the cache having the exclusive ownership knows

whether there are pending requests for that block at the home directory. In that case,

relevant operations performed at that node are forwarded to the home node in order to

check if any pending request can be resumed. Otherwise, the deferred list can be locally

managed at the exclusive owner.

Section 5 Integration with directory-based protocols

 38

Consequently, it is not possible for a cache to have pending requests for a memory location that is

not cached. These pending requests are kept and managed at the home directory. This solution is a

hybrid approach between a fully distributed and a centralized deferred list management.

5.3. Directory transition rules

A detailed explanation of the transition rules from each coherence state is presented in the following

sections. A description in the form of C-styled pseudo-code is also presented in each case. In the state

diagrams, the notation indicated below is used. A tilde symbol (~) is indicated when no side effect or

output message is necessary.

processor id: input message, preconditions / side effects / output message, local actions

5.3.1. Absent state

SWITCH (incomingRequest) {
 CASE RREQ(i): addNodeToDirectory(i); // "i" is the sending node id.
 send(RDATA, i); // send requested data to node.
 nextState = readOnly;
 BREAK;
 CASE WREQ(i): IF (ackCounter == 0) {
 addNodeToDirectory(i);
 send(WDATA, i);
 nextState = readWrite;
 } ELSE {
 addNodeToDirectory(i);
 nextState = writeTransaction;
 }
 BREAK;
 CASE SRREQ(i): IF (full) {
 addNodeToDirectory(i);
 send(RDATA, i);
 nextState = readOnly;
 } ELSE {
 send(RDENY, i);
 addToDeferredList();
 nextState = absent;
 }
 BREAK;
 CASE SWREQ(i): IF (empty && deferredListEmpty()) {
 addNodeToDirectory(i);
 send(WDATA, i);
 nextState = readOnly;
 } ELSE IF (empty && !deferredListEmpty()) {
 addNodeToDirectory(i);
 send(WDATA, i);
 resumePendingReqs();
 nextState = readOnly;
 } ELSE {
 send(WDENY, i);
 addToDeferredList();
 nextState = absent;
 }
 BREAK;
 CASE SCREQ(i): unsetFE();
 send(ACKSC, i);
 nextState = absent;
 BREAK;
 CASE ACKC(i): ackCounter--;
 nextState = absent;
 BREAK;
}

If a SRREQ is received and the synchronization state is met (the FE bit is set), the requesting

cache is added to the directory and the requested data is sent in a RDATA message. The state is

then changed to read-only. If the SRREQ fails (the FE bit is unset), a RDENY message is sent

Section 5 Integration with directory-based protocols

 39

back to the requesting cache and the operation is appended to the deferred list in the home node.

The state is not changed and the requesting cache waits until the home node solves the

synchronization miss and sends back the requested data.

Read only Read/Write

Read
transaction

Write
transaction

ACKC/--AckCtr/~
i:SRREQ(E)/~/RDENY,appendDL
i:SWREQ(F)/~/WDENY, appendDL

i:SCREQ/~/ACKSC, unsetFE

Absent

i:RREQ/P={i}/RDATA
i:SRREQ(F)/P={i}/RDATA

i:SWREQ(E), DL=0/P={i}/WDATA
i:SWREQ(E), DL≠0/P=R∪{i}/WDATA, resumeDL

i:WREQ, AckCtr=0/P={i}/WDATA

i:WREQ, AckCtr≠0/P={i}/~

Figure 19: State transitions from the absent state

If a SWREQ is received and the synchronization condition is met (FE is not set), the requesting

cache is added to the directory and a WDATA message is sent to it. Any relevant pending request

in the local deferred list is resumed and appropriate data is sent to its corresponding cache, which

is also added to the directory. The state is then changed to read-only, and not to read-write

as it could be expected. This optimization allows other processing nodes to read this data without

any state transition. If the full/empty bit is set on a SWREQ, then a WDENY is replied and the

operation is suspended. The state in the home directory is not changed.

If a SCREQ is received, the full/empty bit is reset and an ACKSC sent back to the requesting

cache. The state in the home directory is not changed.

5.3.2. Read-only state

SWITCH (incomingRequest) {
 CASE RREQ(i): IF (hasPointerInDirectory(i)) {
 send(RDATA, i); // "i" is the sending node id.
 } ELSE IF (!directoryFull()) {
 addNodeToDirectory();
 send(RDATA, i);
 } ELSE {
 ++ackCounter;
 j = evictRandomDirectoryEntry(); // j is the evicted line.
 send(INV, j);
 addNodeToDirectory();

Section 5 Integration with directory-based protocols

 40

 send(RDATA, i);
 }
 nextState = readOnly;
 BREAK;
 CASE WREQ(i): IF (hasPointerInDirectory(i) && (numberOfEntries() > 1)) {
 ackCounter += numberOfEntries() - 1;
 FOR (j = 0; j < numberOfEntries(); j++) {
 If (i != j)
 send(INV, j);
 }
 clearDirectory();
 addNodeToDirectory(i);
 nextState = writeTransaction;
 } ELSE If (hasPointerInDirectory(i)
 && (numberOfEntries() == 1)
 && (ackCounter != 0)) {
 nextState = writeTransaction;
 } ELSE IF (hasPointerInDirectory(i)
 && (ackCounter == 0)) {
 send(WDATA, i);
 nextState = readWrite;
 } ELSE { // if the line is not in the directory
 ackCounter += n;
 FOR (j = 0; j < numberOfEntries(); j++) {
 send(INV, j);
 }
 clearDirectory();
 addNodeToDirectory(i);
 }
 BREAK;
 CASE SRREQ(i): IF (full && hasPointerInDirectory(i)) {
 send(RDATA, i);
 } ELSE IF (full && !directoryFull()) {
 addNodeToDirectory();
 send(RDATA, i);
 } ELSE IF (full && directoryFull()) {
 ++ackCounter;
 j = evictRandomDirectoryEntry(); // j is the evicted line.
 send(INV, j);
 addNodeToDirectory();
 send(RDATA, i);
 } ELSE IF (empty) {
 send(RDENY, i);
 addToDeferredList();
 }
 nextState = readOnly;
 BREAK;
 CASE SWREQ(i): IF (empty & deferredListEmpty()) {
 addNodeToDirectory(i);
 send(WDATA, i);
 } ELSE IF (empty & !deferredListEmpty()) {
 addNodeToDirectory(i);
 send(WDATA, i);
 resumePendingReqs();
 } ELSE {
 send(WDENY, i);
 addToDeferredList();
 }
 nextState = readOnly;
 BREAK;
 CASE SCREQ(i): IF (numberOfEntries() > 1) {
 ackCounter += numberOfEntries() - 1;
 FOR (j = 0; j < numberOfEntries(); j++) {
 If (i != j)
 send(SCREQ, j);
 }
 clearDirectory();
 addNodeToDirectory();
 nextState = writeTransaction;
 } ELSE IF (hasPointerInDirectory(i)) {
 unsetFE();
 send(ACKSC, i);
 nextState = readOnly;
 }
 BREAK;
 CASE ACKC(i): ackCounter--;
 nextState = readOnly;
 BREAK;
}

If a SRREQ is received and the synchronization condition is met, an RDENY message is replied

and the request is appended to the local deferred list. If the synchronization condition is met and

Section 5 Integration with directory-based protocols

 41

the requesting cache is already in the directory, an RDATA message is sent back with the

requested memory location. If the requesting cache is not in the directory and there are still free

directory entries, the cache is added to the directory. Otherwise, a random cache is replaced with

the requesting cache and an INV message is sent to the removed cache. The home directory state

is not changed in any case.

ACKC/--AckCtr/~
i:RREQ, P={k1,..., km,..., kn}, km=i/~/RDATA

i:RREQ, n<p/P=P∪{i}/RDATA
i:RREQ, n=p/++AckCtr, P=P-{krandom}∪{i}/RDATA, INV(krandom)

i:SRREQ(E)/~/RDENY, appendDL
i:SRREQ(F), P={k1,..., km,..., kn}, km=i/~/RDATA

i:SRREQ(F), n<p/P=P∪{i}/RDATA
i:SRREQ(F), n=p/++AckCtr, P=P-{krandom}∪{i}/RDATA, INV(krandom)

i:SWREQ(E), DL=0/P={i}/WDATA
i:SWREQ(E), DL≠0/P=R∪{i}/WDATA, resumeDL

i:SWREQ(F)/~/WDENY, appendDL
i:SCREQ, P={i}/~/ACKSC

Read only Read/Write

Read
transaction

Write
transaction

Absent

i:WREQ, P{i}, AckCtr=0/~/WDATA

i:WREQ, P={k1,..., km,..., kn}, km=i/P={i}, AckCtr+=n-1/INV(kj),j≠m
i:WREQ, P={i}, AckCtr≠0/~/~

i:WREQ/P={i}, AckCtr+=n/INV(k1)...INV(kn)
i:SCREQ, P={k1,..., km,..., kn}, km=i/P={i}, AckCtr+=n-1/SCREQ(kj),j≠m

Figure 20: State transitions from the read-only state

If a SWREQ is received and the full/empty is set, then a WDENY message is replied. Otherwise,

the requesting cache is added to the directory and a WDATA message is sent back. In any case, the

home directory state is not changed.

If a SCREQ is received and no more caches share this block, then the full/empty bit is cleared

and the request is acknowledged with an ACKSC message. The state is not changed in this case.

However, if more caches have a copy of this block, their full/empty bits must be reset before

acknowledging the operation. Consequently, the state is changed to write-transaction and

an SCREQ message is sent to each cache with a copy of the block. Note that the SCREQ operation

is particularly time-expensive, as it works as a barrier for all the involved caches.

5.3.3. Read-write state

SWITCH (incomingRequest) {
 CASE RREQ(j): IF (!hasPointerInDirectory(j)) { // there is only one node
 ++ackCounter; // in the directory (the
 send(INV, i); // owner, namely "i")
 clearDirectory();
 addNodeToDirectory(j);
 nextState = readTransaction;
 }

Section 5 Integration with directory-based protocols

 42

 BREAK;
 CASE WREQ(j): IF (!hasPointerInDirectory(j)) {
 ++ackCounter;
 send(INV, i);
 clearDirectory();
 addNodeToDirectory(j);
 nextState = writeTransaction;
 }
 BREAK;
 CASE SRREQ(j): IF (!hasPointerInDirectory(j) && full) {
 ++ackCounter;
 send(INV, i);
 clearDirectory();
 addNodeToDirectory(j);
 nextState = readTransaction;
 } ELSE IF (empty) {
 send(RDENY, j);
 addToDeferredList();
 nextState = readWrite;
 }
 BREAK;
 CASE SWREQ(j): IF (!hasPointerInDirectory(j) && empty) {
 ++ackCounter;
 send(INV, i);
 clearDirectory();
 addNodeToDirectory(j);
 nextState = writeTransaction;
 } ELSE IF (full) {
 send(WDENY, j);
 addToDeferredList();
 nextState = readWrite;
 }
 BREAK;
 CASE SCREQ(j): send(SCFWD, i);
 nextState = readWrite;
 BREAK;
 CASE ACKC(j): ackCounter--;
 nextState = readOnly;
 BREAK;
 CASE UPDATE(i, Dpack): addToDeferredList(Dpack);
 resumePendingReqs();
 nextState = readOnly;
 BREAK;
}

If a SRREQ is received, either a RDATA or RDENY message is replied depending on whether the

synchronization condition is met. The state is not changed in any case.

If a SWREQ is received from a cache other than the current owner of the block and the

synchronization condition is met, the request is forwarded to the owner. Additional functionality

is required in the cache protocol, as the owner is expected to answer this type of forwarded

requests. Another design alternative is to centralize all the synchronized writes in the home node.

This avoids the need of forwarded requests but introduces an overhead associated with the

excess traffic generated by the caches that request a synchronized write to the home node even

though they are exclusive owners for that block.

Our design assumes that caches can service forwarded requests. In this case, when a cache

with exclusive ownership performs a synchronized write to a block, it only communicates this

action to the home node in the case where the deferred list at the home node is not empty. This

knowledge is implicit in an extra bit at the cache side, which is set when there are pending

requests for the referred location at the home directory, as proposed in [74].

Section 5 Integration with directory-based protocols

 43

Read only Read/Write

Read
transaction

Write
transaction

Absent

ACKC/--AckCtr/~
j:SRREQ(E)/~/RDENY, appendDL

j:SRREQ(F)/~/RDATA
j:SWREQ(E)/~/SWFWD(i)

j:SWREQ(F)/~/WDENY, appendDL
j:SCREQ/~/SCFWD

j:RREQ/P={j}, ++AckCtr/INV(i)
j:FETCH/P={j}, ++AckCtr/INV(i)

j:WREQ/P={j}, ++AckCtr/INV(i)

i:UPDATE(Dpack)/~/appendDL, resumeDL

Figure 21: State transitions from the read-write state

As with the SWREQ operation, a SCREQ coming from a cache different than the owner is

forwarded to the cache that has the read-write privilege.

5.3.4. Read transaction state

SWITCH (incomingRequest) {
 CASE RREQ(i): send(BUSY, i);
 nextState = readTransaction;
 BREAK;
 CASE WREQ(i): send(BUSY, i);
 nextState = readTransaction;
 BREAK;
 CASE SRREQ(i): send(BUSY, i);
 nextState = readTransaction;
 BREAK;
 CASE SWREQ(i): send(BUSY, i);
 nextState = readTransaction;
 BREAK;
 CASE SCREQ(i): send(BUSY, i);
 nextState = readTransaction;
 BREAK;
 CASE ACKC(i): ackCounter--;
 nextState = readOnly;
 BREAK;
 CASE UPDATE(i): --ackCounter;
 send(RDATA, i);
 nextState = readOnly;
 BREAK;
}

No new transitions are added from this state. All synchronized operations are ignored and a

BUSY message is sent back to the requesting cache.

Section 5 Integration with directory-based protocols

 44

Read only Read/Write

Read
transaction

Write
transaction

Absent

RREQ/~/BUSY
WREQ/~/BUSY

ACKC/--AckCtr/~
SRREQ/~/BUSY
SWREQ/~/BUSY
SCREQ/~/BUSY

UPDATE/--AckCtr/RDATA(i)

Figure 22: State transitions from the read transaction state

5.3.5. Write transaction state

SWITCH (incomingRequest) {
 CASE RREQ(i): send(BUSY, i);
 nextState = writeTransaction;
 BREAK;
 CASE WREQ(i): send(BUSY, i);
 nextState = writeTransaction;
 BREAK;
 CASE SRREQ(i): send(BUSY, i);
 nextState = writeTransaction;
 BREAK;
 CASE SWREQ(i): send(BUSY, i);
 nextState = writeTransaction;
 BREAK;
 CASE SCREQ(i): send(BUSY, i);
 nextState = writeTransaction;
 BREAK;
 CASE ACKC(i): IF (ackCounter == 1) {
 ackCounter = 0;
 send(WDATA, cacheInDirectory());
 nextState = readWrite;
 } ELSE {
 --ackCounter;
 nextState = writeTransaction;
 }
 BREAK;
 CASE ACKSC(i): IF (ackCounter == 1) {
 ackCounter = 0;
 send(ACKSC, cacheInDirectory());
 nextState = readWrite;
 } ELSE {
 --ackCounter;
 nextState = writeTransaction;
 }
 BREAK;
 CASE UPDATE(i): IF (ackCounter == 1) {
 ackCounter = 0;
 send(WDATA, cacheInDirectory());

Section 5 Integration with directory-based protocols

 45

 nextState = readWrite;
 } ELSE {
 --ackCounter;
 nextState = writeTransaction;
 }
 BREAK;
}

As in the previous case, all SRREQ, SWREQ and SCREQ messages are replied with a BUSY

message.

Read only Read/Write

Read
transaction

Write
transaction

Absent

RREQ/~/BUSY
WREQ/~/BUSY

ACKC, AckCtr≠1/--AckCtr/~
UPDATE, AckCtr≠1/--AckCtr/~
ACKSC, AckCtr≠1/--AckCtr/~

SRREQ/~/BUSY
SWREQ/~/BUSY
SCREQ/~/BUSY

ACKC, AckCtr=1/AckCtr=0/WDATA(i)
UPDATE, AckCtr=1/AckCtr=0/WDATA(i)
ACKSC, AckCtr=1/AckCtr=0/ACKSC(i)

Figure 23: State transitions from the write transaction state

A new transition is specified in the protocol in the case when a cache has requested to clean

the full/empty bit of all caches with a copy of a block. In this case the acknowledgement counter

already present in the implementation is used to keep track of the caches that have not yet

cleared their copy of the full/empty bit. After a cache clears its copy of the full/empty bit, it sends

an ACKSC message to the directory and invalidates the corresponding cache line. When all the

ACKSC messages have been received from the home node, then the operation is acknowledged to

the requesting cache.

Section 5 Integration with directory-based protocols

 46

5.4. Summary

A directory based protocol with support for fine-grain synchronization has been systematically

specified in the form of state diagrams and pseudo-code. As in the bus based directory protocol

(section 4), only waiting non-altering reads and waiting altering writes are considered in this

implementation. The operation of other variants of synchronized accesses can be easily inferred

because they are a simplified version of the former.

Six new network messages are introduced in order to implement fine-grain synchronization at the

cache coherence level. Some optimizations reducing the number of messages are proposed, requiring

additional functionality in the protocol so that caches can service forwarded requests that are sent to

the directory from other caches.

We propose a deferred list management scheme in which lists of pending requests can be either

kept at the home directory or distributed between the directory and the caches. This solution is a

compromise between a distributed approach and a centralized design and minimizes the number of

protocol messages sent over the network. The same rules as in the bus-based approach are applied for

coalescing of pending requests.

 47

6. Simulation framework
As a practical working model of the proposed coherence protocols, a directory-based protocol with fine-

grain synchronization support has been partially implemented and simulated. This experimental model is

based on the Rice Simulator for ILP11 Multiprocessors (RSIM) simulator12 and runs on Solaris 2.5 or

above.

6.1. Features of the simulated platform

RSIM is a discrete event-driven simulator based on the YACSIM library [43]. This means that most of

the resources in the simulated architecture are activated as events only when they have some tasks to

execute. As an exception, both processor and caches are simulated as an event that is executed on

every cycle. This decision is based on the facts that those units are likely to have nearly continuous

activity.

Directory

Network interface

Processor

L1 cache

L2 cache

Memory

Directory

Network interface

Processor

L1 cache

L2 cache

Memory

...

Network

Figure 24: Simulated system architecture

Figure 24 shows the network and memory system hierarchy in the simulation platform. The key

features of simulated systems are listed below [59].

- Multiple instruction issue

- Out-of-order scheduling

- Branch prediction support

- Non-blocking loads and stores

11 Instruction-level parallelism.
12 Available at http://rsim.cs.uiuc.edu/rsim/ (accessed November 2.001).

Section 6 Simulation framework

 48

- Optimized memory consistency implementations

- Two-level cache hierarchy

- Multiple outstanding cache requests

- CC-NUMA shared-memory system

- Directory-based cache coherence protocol with fine-grain synchronization support

- Routed two-dimensional mesh network

Additionally, contention effects are modeled at all resources in the processor, caches, memory

banks, processor-memory bus and network.

6.2. Simulation methodology

The steps required to perform a general simulation with the developed platform are depicted in the

figure below.

compiler

source
code disassembler

and
hex editor

SPARC
binary

predecoder

modified
binary

simulator

loosely
encoded

binary

Figure 25: Simulation steps

The starting point is the source code of the program to be run under the simulator. As this code is

supposed to successfully compile on an ordinary compiler, no language-level support for expressing

data-level synchronization operations is available at this step. However, it is necessary to somehow

distinguish these operations. Using unique assembler instructions thorough the source code achieve

this13.

An 8-bit Alternate Space Indicator (ASI) is defined in the SPARC architecture in order to tag

loads and stores with 256 different values. As some of these values are user-defined, they can be used

for synchronizing instructions. As a consequence, synchronizing operations are distinguished by

particular ASI values. The ASI parameter determines the specific variant of synchronizing instruction

that will be executed. A sample C program is presented below.

int main(int argc, char **argv) {
 int sVar; /* synchronized variable */
 /* The values of ASI for synchronizing operations are:
 ASI_UE 0x91
 ASI_FF 0x96
 ASI_EF_T 0x9d
 */
 asm("wr %g0, 0x9d, %asi"); /* WRASI instruction */
 sVar = 5; /* synchronized store (STWA_EFT) */

 /* The complete assembler sequence looks like this:
 wr %g0, 0x9d, %asi
 mov xxx, %o0 !xxx is the data to be stored
 stwa %o0, [%fp - yyy], %asi !yyy is an appropriate offset
 */
}

13 For example, with calls to the function asm in the C language.

Section 6 Simulation framework

 49

In order to get a binary SUN�s cc compiler has to be used14 with the �xarch=v8plusa option.

Otherwise WRASI will not be recognized as a valid instruction. A binary is obtained with15:

cc -xarch=v8plusa synch.c -o synch

The simulation process currently requires the use of a hexadecimal editor in order to manually

modify the op-code of the desired memory instructions so that they are synchronized (refer to

Appendix A). As stated above, these memory instructions are easily recognized because they are

preceded by a write to the ASI register. A disassembler must be used in conjunction with the

hexadecimal editor in order to determine the appropriate offset of the memory operations in the binary

file. As no SPARC32+ disassembler is openly available, a standard SPARC disassembler was modified

in order to recognize the new instructions. A future improvement would be to extend the compiler in

order to support the complete set of synchronizing memory instructions. With this extension, the

simulation steps would be simplified as shown in the next figure.

modified
compiler

source
code

predecoder

binary

simulator

loosely
encoded

binary

Figure 26: Simulation steps with a compiler supporting synchronizing instructions

Once a binary with synchronizing instructions is obtained, a predecoder is executed on it. A new

binary in a loosely encoded format, which can be interpreted by the simulator, is thus obtained.

6.3. Implementation of synchronizing instructions

1 1 rd op3 rs1 0 imm_asi rs2

1 1 rd op3 rs1 1 simm13

031 30 29 25 24 19 18 14 13 12 5 4

031 30 29 25 24 19 18 14 13 12

The field op[0:1]
equals 3 for load and
store operations

If i=1 then the ASI is
specified in the ASI
register. Otherwise, it
is stored in the
imm_asi field

Figure 27: Alternate load and store instruction format

As specified in [73], the only SPARC instructions that access memory load, store, prefetch, swap,

and compare-and-swap. An implicit ASI value is provided by normal load and store. On the

contrary, an explicit ASI is provided by alternate load and store. This explicit value is given either

14 gcc version 3.1 and above also supports SPARC v8+ and v9 architectures, but it�s currently under development.
15 Note that the application has to be compiled using the RSIM application library.

Section 6 Simulation framework

 50

in the ASI register or in the imm_asi instruction field (see Figure 27). The 6-bit field op3

determines the specific load or store instruction.

Synchronization instructions are implemented on SPARC by defining them as colored load and

stores, as specified by the ASI field. ASI values corresponding to synchronizing instructions are

presented in Table 9. Each instruction category is assigned four consecutive ASI values. Two of these

values specify altering instructions, while the other two represent non-altering accesses. A total of 16

synchronizing memory instructions are introduced16.

Table 9: ASI values for synchronizing
operations

ASI value
range

Instruction category

0x90 to 0x93 Unconditional
0x94 to 0x97 Conditional waiting
0x98 to 0x9B Conditional non-faulting
0x9C to 0x9F Conditional faulting

Table 10 summarizes the most relevant modifications already made to RSIM.

Table 10: Specific modifications made to RSIM

Source file Changes
MemSys/cache2.c Added extra fields in cache lines storing full/empty

bits17
MemSys/directory.c Added extra fields in directory storing full/empty bits
MemSys/l1cache.c Cache behavior integrated with full/empty bits and

synchronizing operations
MemSys/mshr.c Specification of new types of memory operations and

extension of MSHR registers18
MemSys/setup_cohe.c Implementation of a coherence protocol integrated

with fine-grain synchronization at both L1 and L2
caches

Processor/except.cc New type of soft exception fired my trapping
conditional instructions

Processor/funcs.cc Functional implementation of conditional instructions
Processor/memunit.cc Behavior of the memory unit when dealing with

synchronizing instructions
Processor/units.cc Specification of functional units used by

synchronizing instructions, access types and latencies
predecode/predecode_instr.cc New values of ASI for synchronizing instructions
predecode/predecode_table.cc Association between new instructions and the

functions corresponding to its implementation

16 Although loads and stores are defined on both integers and floating-point data supporting byte, half-word (16-bit),

word (32-bit), double-word (64-bit) and quad-word (128-bit) accesses, only integer word memory operations are
supported by the simulation platform.

17 Currently, the simulation platform only supports cache lines of 64-bit length.
18 The management of synchronizing pending requests has not been implemented yet.

Section 6 Simulation framework

 51

Table 11: Set of full/empty memory instructions19

R
S
IM

(e

xt
en

si
o
n
)

LD
*
_
U

U

S
T
*
_
U

U

S
T
*
_
U

F

LD
*
_
U

E

 S
T
*
_
E
E

S
T
*
_
E
F

LD
*
_
FE

LD
*
_
FF

S
T
*
_
E
E
N

S
T
*
_
E
FN

LD
*
_
FE

N

LD
*
_
FF

N

S
T
*
_
E
E
T

S
T
*
_
E
FT

LD
*
_
FE

T

LD
*
_
FF

T

O
p
er

at
io

n

(a
to

m
ic

)

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

re
ad

 o
r

w
ri
te

;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

w
ri
te

 a
n
d
 s

et
 f

u
ll;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

re
ad

 a
n
d
 s

et
 e

m
p
ty

;

- w
ri
te

 w
h
en

 e
m

p
ty

;

(w
ri
te

 a
n
d
 s

et
 f

u
ll)

 w
h
en

em

p
ty

;

(r
ea

d
 a

n
d
 s

et
 e

m
p
ty

)
w

h
en

fu

ll;

re
ad

 w
h
en

 f
u
ll;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

w
ri
te

 i
f
em

p
ty

 e
ls

e
sk

ip
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

(w
ri
te

 a
n
d
 s

et
 f

u
ll)

 i
f
em

p
ty

el

se
 s

ki
p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

(r
ea

d
 a

n
d
 s

et
 e

m
p
ty

)
if
 f

u
ll

el
se

 s
ki

p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

re
ad

 i
f
fu

ll
el

se
 s

ki
p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

w
ri
te

 i
f
em

p
ty

 e
ls

e
tr

a
p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

(w
ri
te

 a
n
d
 s

et
 f

u
ll)

 i
f
em

p
ty

el

se
 t

ra
p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

(r
ea

d
 a

n
d
 s

et
 e

m
p
ty

)
if
 f

u
ll

el
se

 t
ra

p
;

se
t

F/
E
 t

o
 F

/E
 c

o
n
d
it
io

n
 b

it
;

re
ad

 i
f
fu

ll
el

se
 t

ra
p
;

In
st

ru
ct

io
n

u
n
co

n
d
it
io

n
a
l
lo

ad
 o

r
st

o
re

u
n
co

n
d
it
io

n
a
l
st

o
re

 a
n
d
 s

et
 f

u
ll

u
n
co

n
d
it
io

n
a
l
lo

ad
 a

n
d
 s

et

em
p
ty

re
se

rv
ed

w
ai

ti
n
g
 c

o
n
d
it
io

n
al

 s
to

re
 f
ro

m

em
p
ty

w
ai

ti
n
g
 c

o
n
d
it
io

n
al

 a
lt
er

in
g

st
o
re

 f
ro

m
 e

m
p
ty

w
ai

ti
n
g
 c

o
n
d
it
io

n
al

 a
lt
er

in
g

lo
ad

 f
ro

m
 f
u
ll

w
ai

ti
n
g
 c

o
n
d
it
io

n
al

 l
o
ad

 f
ro

m

fu
ll

n
o
n
-f

au
lt
in

g
 c

o
n
d
it
io

n
al

 s
to

re

fr
o
m

 e
m

p
ty

n
o
n
-f

au
lt
in

g
 c

o
n
d
it
io

n
al

al

te
ri
n
g
 s

to
re

 f
ro

m
 e

m
p
ty

n
o
n
-f

au
lt
in

g
 c

o
n
d
it
io

n
al

al

te
ri
n
g
 l
o
ad

 f
ro

m
 f

u
ll

n
o
n
-f

au
lt
in

g
 c

o
n
d
it
io

n
al

 l
o
ad

fr

o
m

 f
u
ll

fa
u
lt
in

g
 c

o
n
d
it
io

n
a
l
st

o
re

 f
ro

m

em
p
ty

fa
u
lt
in

g
 c

o
n
d
it
io

n
a
l
al

te
ri
n
g

st
o
re

 f
ro

m
 e

m
p
ty

fa
u
lt
in

g
 c

o
n
d
it
i0

o
n
al

 a
lt
er

in
g

lo
ad

 f
ro

m
 f
u
ll

fa
u
lt
in

g
 c

o
n
d
it
io

n
a
l
lo

ad
 f
ro

m

fu
ll

A
S
I

0
x9

0

0
x9

3

0
x9

1

0
x9

2

0
x9

4

0
x9

5

0
x9

6

0
x9

7

0
x9

8

0
x9

9

0
x9

A

0
x9

B

0
x9

C

0
x9

D

0
x9

E

0
x9

F

A
lt
er

n
at

e
sp

ac
e

A
S
I_

U
U

A
S
I_

U
F

A
S
I_

U
E

A
S
I_

U
R

A
S
I_

E
E

A
S
I_

E
F

A
S
I_

FE

A
S
I_

FF

A
S
I_

E
E
_
N

A
S
I_

E
F_

N

A
S
I_

FE
_
N

A
S
I_

FF
_
N

A
S
I_

E
E
_
T

A
S
I_

E
F_

T

A
S
I_

FE
_
T

A
S
I_

FF
_
T

A
S
I_

C
O

N
D

_
N

O
FA

U
LT

(0

x9
8
..

0
x9

B
)

A
S
I_

C
O

N
D

_
FA

U
LT

(0

x9
C
..

0
x9

F)

A
S
I_

C
O

N
D

_
W

A
IT

(0

x9
4
..

0
x9

7
)

A
S
I_

C
O

N
D

_
N

O
W

A
IT

(0

x9
8
..

0
x9

F)

A
lt
er

n
at

e
su

p
er

sp
ac

e

A
S
I_

U
N

C
O

N
D

(0

x9
0
..

0
x9

3
)

A
S
I_

C
O

N
D

(0

x9
4
..

0
x9

F)

19 Extracted from [72]. An asterisk indicates a data type, such as floating point (F) or unsigned word (UW). Note that all

instructions correspond to the set of LD*A operations in SPARC.

Section 6 Simulation framework

 52

6.4. Simulation flowchart

The figure below shows the different stages of a single simulation. The names of the functions and the

source code filenames corresponding to the listed operations are specified at the top of the boxes. The

core of the simulation platform consists of a loop in which scheduled events are executed. The

iterations through this loop continue until the event list is empty, meaning that the simulation has

finished.

main - MemSys/driver.c

initializes the YACSIM simulator driver
transfers the execution to user code

UserMain - Processor/mainsim.cc

parses the command-line
read instructions from decoded binary

sets up the table with units and functions
initializes the system architecture

DriverRun - Processor/mainsim.cc

activates the simulation driver
returns 0 for termination

configures mesh network buffers The ready list consists of those
activities at the head of the
event list that are scheduled for
the current simulation time

is the ready list empty?

advance simulation time
terminate if the event list is empty

yes

no

RSIM_EVENT - Processor/state.cc

called for each processor
handle requests in L1 cache pipelines
handle requests in L2 cache pipelines

complete stage of the pipeline
fetch and decode new instructions
process intructions ready for issue

handle requests coming into L1 cache
handle requests coming into L2 cache

statistics processing

Figure 28: Execution flowchart of the simulator

As stated in Figure 29, the RSIM_EVENT function simulates processor and cache operation. As it is

likely that both processor and caches have nearly continuous activity, RSIM_EVENT is scheduled every

Section 6 Simulation framework

 53

cycle. However, in order to avoid non-deterministic behavior this function is scheduled to occur with

an offset of 0.5 with respect to the processor cycles. As a consequence, RSIM_EVENT is executed at

the midpoint between subsequent processor cycles in the simulation timeline.

0 1 432
simulation timeline

(cycle count)

specific cache and processor
activity is scheduled each cycle

scheduling RSIM_EVENT between
cycles avoids non-deterministic

execution

1.5 2.5

operations finished during
the previous cycle are first
completed

new operations based on
current cycle are then
initiated

Figure 29: RSIM_EVENT scheduling

Figure 30 depicts instruction lifetime stages and the operations performed in each of these stages.

instruction fetch and decode
assign unique identifier to each instruction

stall if active list is full

Processor/pipestages.cc

Processor/exec.cc

instruction issue
sends to corresponding functional units
a data structure specifies the number of
cycles in which functional units are freed

Processor/funcs.cc

instruction execution
branch preditcion calculation

map between RSIM and UNIX memory maps

Processor/exec.cc

instruction completion
frees functional units

check correctness of branch prediction

Processor/graduate.cc

instruction graduation
stall if consistency constrains

remove from active list

Figure 30: Instruction lifetime stages

Section 6 Simulation framework

 54

6.5. Simulation results

A small application that makes use of the set of fine-grain operations implemented by the simulation

platform has been developed. The application core is a loop in which a node issues a trapping altering

store and the rest of processors perform a non-altering load in parallel. Both the number of nodes and

number of iterations are customizable by command-line parameters.

Figure 31: Normalized execution time for different machine and problem sizes

The operation of the fine-grained version of the application is defined below in the form of

pseudo-code (complete source code is presented in Appendix B).

parse_command_line_parameters(); // Configure number of nodes and iterations.
allocate_shared_memory(); // To be used for the shared data array.
turn_on_memory_system_simulation(); // For collection of statistics.
create_processes(); // Each process is run on a different node.

Section 6 Simulation framework

 55

LOOP { // For the specified number of iterations.
 if (process_id != 0) { // Processes other than the main process
 read_synchronized_var(); // perform a waiting non-altering read.
 } else { // The main process performs a trapping
 write_synchronized_var(); // altering write.
 }
}

The results of a series of experiments are graphically depicted in Figure 3120. While the left plot

shows execution times for different machine sizes, the right plot compares execution times for various

problem sizes (i.e. number of iterations). Diverse components of execution time are distinguished by a

different shade in each bar of these plots. Table 12 shows a tabulated version of the simulation results

for a constant number of iterations, while Table 13 shows the same results for a fixed number of

processing nodes.

Table 12: Execution times (in cycles) for 1.000
iterations

Number of
processors

Fine-grained
version

Coarse-grained
version

16 32176 2455349

8 26665 1845747

4 25983 1150828

2 24822 548853

As seen in Figure 31 (a) and Table 12, the execution time of the fine-grained version increases

linearly with the problem size. Additionally, as the number of nodes decreases, the execution time

slightly degrades. Effectively, the more nodes take part in a synchronization operation, the higher is

the completion time. Both the cost of storage required for synchronization data and the traffic caused

by these operations in the mesh network increase with the number of nodes. It is also important to

observe that the most significant part of the execution time is due to cache and remote memory

accesses.

Table 13: Execution times (in cycles) for 16 nodes

Number of
iterations

Fine-grained
version

Coarse-grained
version

100000 3002126 -

10000 302068 -

1000 32176 2455349

100 4918 246280

A coarse-grained version of the same application has been implemented using barriers (see the

complete source code in Appendix C). Its operation in the form of pseudo-code is detailed here for

reference.

parse_command_line_parameters(); // Configure number of nodes and iterations.

20 The results have been derived from the statistics collection utilities distributed with RSIM.

Section 6 Simulation framework

 56

allocate_shared_memory(); // To be used for the shared data array.
initialize_barrier(barrier); // Rendez-vous point for all the processes.
turn_on_memory_system_simulation(); // For collection of statistics.
create_processes(); // Each process is run on a different node.

LOOP { // For the specified number of iterations.
 if (process_id != 0) { // Processes other than the main process
 wait_at_barrier(barrier); // wait for the write to complete and
 read_shared_var(); // perform an ordinary read.
 } else { // The main process performs a trapping
 write_shared_var(); // altering write.
 wait_at_barrier(barrier);
 }
}

The results, presented in Figure 31 (b) and Table 13, show that the dependence between the

execution time and the number of nodes is remarkably higher in the coarse-grained version, which do

not make use of a cache coherence protocol integrated with synchronization operations. This is

because the overhead imposed by barriers is notably higher and so is its relevance in comparison with

the total execution time. As a consequence, as the number of nodes increases, the execution time rises

faster in the coarse-grained version. Note also that the accumulated times at the FPU stall and busy

states are insignificant in comparison to the times spent for remote accesses and barrier

synchronization.

 57

7. Power-consumption estimation
Battery life is a key feature in modern mobile computing devices. As a consequence, power consumption

has to be minimized when possible. This must be done without compromising the overall performance of

the system.

As the architectures described in this work are suitable for integration as a CMP (chip multiprocessor)

in a mobile device, it becomes important to evaluate the power consumption overhead introduced by

systems with fine-grain synchronization support.

7.1. Available energy estimation tools

Traditionally, consumption estimation applications worked at gate level, thus needing a complete

design of the multiprocessor in the form of a netlist. Examples of such tools are PowerMill [68] or

QuickPower [63]. While providing extremely accurate estimations, these tools are only appropriate

for the final stages of the design process, as they require a complete hardware-level description of the

system. Moreover, the execution time of hardware-level simulation tools make them unsuitable for

the study of tradeoffs between different system parameters.

Another approach has to be considered if power consumption estimations are needed in early

design stages, where HDL descriptions and circuit designs are not yet available. Macro modeling can

significantly reduce execution times of power estimation applications. Many tools developed for this

purpose divide the system into several functional units and calculate their power consumption

behavior separately [51]. More concretely, the power consumption of a functional unit is specified as

a function of various parameters, such as the number of ports or the number of transitions in the input

vector. These power consumption functions can then be integrated into an existing high-level cycle-

accurate simulator, for instance, RSIM.

Instruction-level power analysis is useful in order to relate power consumption with application

source code. Tools following this approach [66] are based on an estimation of the energy consumption

associated with each particular instruction. A representative example of such application is

Myrmigki, which also models hardware activity by keeping track of the transitions produced at the

ports of the functional units.

Wattch [18] and SimplePower [76] implement more precise capacitive models and achieve

accuracies as low as 5% with respect to measured values. They implement energy models based on

transition counts and empirical data. Each functional unit is associated with a table that specifies the

power consumption for a given state transition. If the number of possible transitions is too large,

similar transitions can be grouped thus reducing the size of this table.

Section 7 Power-consumption estimation

 58

7.2. Implementing an energy estimation framework in RSIM

As shown in Figure 28, RSIM simulates the behavior of processor and caches at every cycle. This is

implemented as part of the RSIM_EVENT function, which also includes statistics processing routines.

A power consumption model can be added to the simulator platform by extending the statistics

collection functions with an additional set of statistics21.

More concretely, apart from simulating the operation of the multiprocessor system, RSIM keeps

track of detailed usage statistics for each functional unit. These statistics can be used to estimate

consumed power with help of a set of tables indicating the energy associated for each possible

transition, as it is done in tools like Wattch [18] or SimplePower [76]. The structure of these tables

should be similar to Table 14, and they could actually be imported to RSIM with minor changes.

Tables for novel functional units, such as caches with fine-grain synchronization support, should be

obtained either experimentally or analytically by evaluating the power consumption overhead

introduced by the additional hardware they require22.

Table 14: Structure of switch capacitance tables

Previous
input vector

Current
input vector

Switch capacitance
(pF)

00...00 00...01 C0
00...00 00...10 C1

.

.

.

.

.

.

.

.

.
11...11 11...11 Cn

Additionally to these tables, it is necessary to keep track of the particular transitions and the

number of accesses performed in each functional unit. The YACSIM [43] library provides useful

functions for creating statistics records and calculating meaningful values such as the mean or the sum

of stored samples.

Figure 32 sketches the module hierarchy of the simulator after implementing the changes

mentioned above. Each functional unit is extended with an adequate power consumption model,

which is invoked in case the corresponding unit has been used at the given cycle. The energy

estimations for each unit are then collected by the statistics functions and summed according to the

following expression:

ECYCLE = ECPU + EL1 CACHE + EL2 CACHE + EMEM + ENET

Energy estimation algorithms are expected to increase the simulation execution time by a factor up

to 30% [18]. Gathering power consumption statistics at predefined intervals instead of every cycle

notably reduces this overhead, but causes a loss of accuracy. Consequently, a compromise between

21 The actual implementation of power consumption statistics in RSIM is not included in this work.
22 Note that these tables are technology dependent, so the hardware level layout of the system must also be

considered.

Section 7 Power-consumption estimation

 59

efficiency and accuracy has to be reached depending on the particular goals of the simulation being

performed.

Processor

Energy model

L1 cache

Energy model

L2 cache

Energy model

Interconnect

Energy model

Directory and memory

Energy model

Statistics collection

Power estimation

Figure 32: Integrated power consumption framework

7.3. Planned experiments

It is essential to validate the power model once it has been implemented in the simulator platform.

This is achieved by comparing the results of a set of simulations with those given by already existing

tools such as Wattch [18] or SimplePower [76]. If a hardware schematic of the system is available,

comparisons can also be done with more accurate hardware-level tools (see [63] and [68]).

A power estimation framework is useful for studying the impact of fine-grain synchronization on

crucial parameters of mobile devices. For instance, dissipation limits the maximum power

consumption allowed per cycle. Additionally, battery life is governed by the total energy required by

an application. It would be extremely valuable to evaluate the tradeoffs of fine-grain synchronization

on both performance and power. Adequate benchmark applications have to be written for this purpose.

 60

8. Conclusions
Fine-grain synchronization is a valuable mechanism for speeding up the execution of parallel algorithms

by avoiding false data dependencies and unnecessary process waiting. However, the implementation of

fine-grain synchronization introduces additional complexity at both hardware and software system

components.

A novel architecture with support for fine-grain synchronization at the cache coherence level is

introduced. We propose a model that can be efficiently implemented in modern multiprocessors. The

hardware overhead required by this architecture is not expected to be excessive.

Coherence protocols with support for fine-grain synchronization have been systematically described

for both bus-based and directory-based multiprocessors. This work includes as well description of the

rules for management and resuming pending requests, which is a key issue for the correct operation of the

presented architecture.

Although it has not been completely developed yet, the simulation platform has been tested with a

sample application making use of a small set of conditional operations. A coarse-grained version of the

same application has been written and its simulation results compared to those of the fine-grained version,

showing the performance improvements provided by the latter. These preliminary results verify the

worthiness of implementing fine-grain synchronization at the cache coherence level.

Some guidelines for implementing a power estimation algorithm as an extended feature of the

simulation platform have been presented. The integration of fine-grain synchronization at the cache

coherence level is expected to increase the energy consumption of the system, but this has to be

quantitatively studied.

 61

9. Future work
Some features such as sophisticated management of pending requests have been specified but not yet

source coded. Additionally, further debugging of the simulation platform is required23. This will not only

verify the correct functioning of the protocols, but also evaluate design options that were taken during the

specification process. Protocol verification with automatic verifier tools is also desirable.

Further simulation is required in order to obtain more precise quantitative data related with the

performance of the proposed set of synchronization memory operations. In particular, the statistics

collection functions implemented in the simulator platform should be modified so that the cost of storage

required for synchronization data and the latency of fine-grain synchronization operations can be

measured and easily compared with traditional synchronization mechanisms. Other important parameters

to be measured are extra traffic caused by these operations and saturation that may be present at different

levels of the memory hierarchy.

Extending a standard C compiler in order to support the complete set of synchronizing memory

instructions would greatly simplify the steps required to perform a single simulation. An alternative is to

extend the predecoder so that it recognizes Alewife binaries, which would eliminate the necessity of

writing applications from scratch for making use of synchronizing operations. Note however that

Alewife doesn�t make use of the full set of proposed instructions.

Another pending task is to implement the full set of synchronizing instructions under RSIM. The

evaluation of different coherence protocols other than MESI would also be very valuable, as well as

developing extensive statistics collection in order to understand the tradeoffs involved in the proposed

architectures. The implementation of a power estimation algorithm is also an appealing task, as

considerable source code can be reused from already existing energy estimation tools.

23 Regarding this subject, the source code has also been compiled with gcc instead of SUN�s cc, allowing thus to debug

under gdb, which provides many more debugging features than dbx.

 62

Appendix A. Preparing binaries for simulation
This section describes in detail how to prepare a binary that makes use of fine-grain synchronization to be

used with the extended RSIM simulator, supposing that we start from the following C source code. Note

that the synchronized store is marked by a previous write to the ASI register, which is likewise performed

by a call to the asm function.

int main(int argc, char **argv) {
 int sVar; /* synchronized variable */

 /* The values of ASI for synchronizing operations are:
 ASI_UE 0x91
 ASI_FF 0x96
 ASI_EF_T 0x9d
 */
 asm("wr %g0, 0x9d, %asi"); /* WRASI instruction */

 sVar = 5; /* synchronized store (STWA_EFT) */

 /* The complete assembler sequence looks like this:
 wr %g0, 0x9d, %asi
 mov xxx, %o0 !xxx is the data to be stored
 stwa %o0, [%fp - yyy], %asi !yyy is an appropriate offset
 */
}

In order to get an ordinary SPARC binary, SUN�s cc compiler has to be invoked with the

xarch=v8plusa option. Otherwise the store to the ASI register will not be recognized as a valid

instruction. A binary is obtained with:

cc -xarch=v8plusa synch.c -o synch

A disassembler is now used to calculate the file offset in which the store is located. The op-code of

this store will be changed so that it is marked as synchronized. It is essential for the disassembler to

support the SPARC32+ instruction set. The relevant disassembled output is listed below. Some instruction

fields may vary depending on the particular system.

ADDRESS INSTRUCTION DECODED

0x000107f0 0x87826000 wr %g0, 157, %asi
0x000107f4 0x90102005 mov 5, %o0
0x000107f8 0xd027bff8 st %o0, [%fp � 8]
0x000107fc 0x81c7e008 ret

As it is preceded by a WR instruction to the ASI register, it is straightforward to find the store whose

opcode needs to be modified. The detailed instruction format of this store is shown in the following

figure, in which it is also depicted the field to be changed so that the store is labelled as synchronized.

This change can be easily made with a standard hexadecimal editor24.

24 khexedit has been used in this study.

Appendix A Preparing binaries for simulation

 63

1 1 rd op3 rs1 1 simm13

031 30 29 25 24 19 18 14 13 12

The field op[0:1]
equals 3 for load and
store operations

If i=1 then the ASI is
specified in the ASI
register. Otherwise, it
is stored in the
imm_asi field

1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

031 30 29 25 24 19 18 14 13 12

st %o0, [%fp - 8]

1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

031 30 29 25 24 19 18 14 13 12

0xd027bff8

0xd0a7bff8 sta %o0, [%fp - 8]

HEX DECODED

Figure 33: Details on how to transform a standard store to a synchronized store

As deduced from Figure 33, in this example the byte at offset 0x000107f9 has to be changed from

value 0x27 to value 0xa7. The resulting binary can be then predecoded and used as the input of the

simulation platform.

Table 15 shows the relevant values of the field op3 and the corresponding operation associated to

those values [73].

Table 15: Relevant values of the op3 field

Op-code Operation op3 field (binary)
LDUW Load Unsigned Word 00 0000
LDUWA Load Unsigned Word from Alternate space 01 0000
STW Store Word 00 0100
STWA Store Word from Alternate space 01 0100

 64

Appendix B. Application source (fine-grained version)
Below is the source code listing of the sample application used in order to test the set of fine-grained

synchronized memory operations. The MEMSYS_OFF and MEMSYS_ON calls make the simulator ignore

non-relevant initialisation steps. Note also that after allocating shared memory space for a given variable

with shmalloc, it is necessary to define the home node that owns this space by using the

AssociateAddrNode function.

#include <rsim_apps.h>
#include <stdio.h>
#include <stdlib.h>

/* #define __sparc_v9__ */

int NUM_PROCS = 1; /* number of processors */
int ITERATIONS = 1; /* number of iterations */
int DEBUG = 0; /* print debugging info */

int *sVar_; /* shared array of size ITERATIONS */
int proc_id; /* private variable */
int phase; /* private variable */
extern char *optarg;

main(int argc, char **argv) {
 int c, i, j, dummy;

 MEMSYS_OFF; /* turn off detailed simulation for initialization */

 while ((c = getopt(argc, argv, "p:i:d")) != -1)
 switch (c) {
 case 'p':
 NUM_PROCS = atoi(optarg);
 break;
 case 'i':
 ITERATIONS = atoi(optarg);
 break;
 case 'd':
 DEBUG = 1;
 break;
 case 'h':
 default:
 fprintf(stdout, "SYNCH - OPTIONS\n");
 fprintf(stdout, "\tp - Number of processors\n");
 fprintf(stdout, "\ti - Number of iterations\n");
 fprintf(stdout, "\td - Print debugging info\n");
 fprintf(stdout, "\th - Help\n");
 return;
 }

 sVar_ = (int*) shmalloc(ITERATIONS * sizeof(int));
 AssociateAddrNode(sVar_, sVar_ + ITERATIONS, 0, "sVar");

 if (sVar_ == NULL) {
 fprintf(stdout, "Unable to malloc shared region\n");
 exit(-1);
 }

 if (DEBUG)
 fprintf(stdout, "Running with %d processors and %d interations...\n\n",
 NUM_PROCS, ITERATIONS);
 MEMSYS_ON;

 proc_id = 0;
 for (i=0; i<NUM_PROCS-1; i++) {
 if (fork() == 0) {
 proc_id = getpid();
 break;
 }
 }

 if (proc_id == 0) {
 StatReportAll();
 StatClearAll();
 }
 endphase();

Appendix B Application source (fine-grained version)

 65

 newphase(++phase); /* beginning of new phase */

 for (j=0; j<ITERATIONS; j++) {
 if (proc_id == 0) { /* the main thread stores (STWA_EFT) the value */
 /* Values of ASI for synchronizing operations:
 ASI_UE 0x91
 ASI_FF 0x96
 ASI_EF_T 0x9d
 */
 asm("wr %g0, 0x9d, %asi");
 sVar_[j] = 9; /* synchronized store (STWA_EFT) */

 if (DEBUG)
 fprintf(stdout, "%d: Stored value %d from sVar_[%d]\n",
 proc_id, sVar_[j], j);

 /* The complete assembler sequence looks like this:
 mov 0x9d, %o1
 wr %o1, 0x0, %asi
 mov xxx, %o0 !xxx is the data to be stored
 stwa %o0, [%fp - yyy], %asi !yyy is an appropriate offset
 */
 } else { /* the rest of the threads try to LDWA_FF the value */
 /* Values of ASI for synchronizing operations:
 ASI_UE 0x91
 ASI_FF 0x96
 ASI_EF_T 0x9d
 */
 asm("wr %g0, 0x96, %asi");
 dummy = sVar_[j]; /* synchronized load (LDWA_FF) and store to a
 standard dummy variable */
 if (DEBUG)
 fprintf(stdout, "%d: Read value %d from sVar_[%d]\n",
 proc_id, sVar_[j], j);
 }
 }

 if (DEBUG)
 fprintf(stdout, "\nProcessor %d about to finish!\n\n", proc_id);

 exit(0); /* completed successfuly */
}

 66

Appendix C. Application source (coarse-grained version)
Below is the source code listing of the sample application implementing the same functionality of the

fine-grained version by using barriers. Calls to the directives MEMSYS_OFF and MEMSYS_ON are used as in

the fine-grained version (Appendix B). Barriers are initialised and activated by invoking TreeBarInit

and TREEBAR, respectively.

#include <rsim_apps.h>
#include <stdio.h>
#include <stdlib.h>

/* #define __sparc_v9__ */

int NUM_PROCS = 1; /* number of processors */
int ITERATIONS = 1; /* number of iterations */
int DEBUG = 0; /* print debugging info */

int *sVar_; /* shared array of size ITERATIONS */
TreeBar barrier; /* tree barrier */
int proc_id; /* private variable */
int phase; /* private variable */
extern char *optarg;

main(int argc, char **argv) {
 int c, i, j, dummy;

 MEMSYS_OFF; /* turn off detailed simulation for initialization */

 while ((c = getopt(argc, argv, "p:i:d")) != -1)
 switch (c) {
 case 'p':
 NUM_PROCS = atoi(optarg);
 break;
 case 'i':
 ITERATIONS = atoi(optarg);
 break;
 case 'd':
 DEBUG = 1;
 break;
 case 'h':
 default:
 fprintf(stdout, "SYNCH - OPTIONS\n");
 fprintf(stdout, "\tp - Number of processors\n");
 fprintf(stdout, "\ti - Number of iterations\n");
 fprintf(stdout, "\td - Print debugging info\n");
 fprintf(stdout, "\th - Help\n");
 return;
 }

 sVar_ = (int*) shmalloc(ITERATIONS * sizeof(int));
 AssociateAddrNode(sVar_, sVar_ + ITERATIONS, 0, "sVar");

 if (sVar_ == NULL) {
 fprintf(stdout, "Unable to malloc shared region\n");
 exit(-1);
 }

 TreeBarInit(&barrier, NUM_PROCS); /* initialize tree barrier */

 if (DEBUG)
 fprintf(stdout, "Running with %d processors and %d interations...\n\n",
 NUM_PROCS, ITERATIONS);
 MEMSYS_ON;

 proc_id = 0;
 for (i=0; i<NUM_PROCS-1; i++) {
 if (fork() == 0) {
 proc_id = getpid();
 break;
 }
 }

 if (proc_id == 0) {
 StatReportAll();
 StatClearAll();
 }
 endphase();

Appendix C Application source (coarse-grained version)

 67

 newphase(++phase); /* beginning of new phase */

 for (j=0; j<ITERATIONS; j++) {
 if (proc_id == 0) { /* the main thread stores the value */
 sVar_[j] = 9; /* ordinary store */
 if (DEBUG)
 fprintf(stdout, "%d: Stored value %d from sVar_[%d]\n",
 proc_id, sVar_[j], j);
 TREEBAR(&barrier, proc_id);
 } else { /* the rest of the threads try to load the value */
 TREEBAR(&barrier, proc_id);
 dummy = sVar_[j]; /* ordinary load and store to dummy variable */
 if (DEBUG)
 fprintf(stdout, "%d: Read value %d from sVar_[%d]\n",
 proc_id, sVar_[j], j);
 }
 }

 if (DEBUG)
 fprintf(stdout, "\nProcessor %d about to finish!\n\n", proc_id);

 exit(0); /* completed successfuly */
}

 68

Acknowledgements

I would like to acknowledge the contributions of many people who have helped bring this work to

fruition. My main advisor, Vladimir Vlassov, urged me on by way of his untiring support and seemingly

belief in me. I am also indebted to Mats Brorsson, Mladen Nikitovic, Sven Karlsson, Guillaume

Delannoy, Erland Nilsson and Andrés Martinelli, as well as the rest of the staff at the Laboratory of

Electronics and Computer Systems (IMIT/KTH), including the system administrators, who bore numerous

queries from me.

One portion of this work is the result of the collaboration with the Electrical and Computer

Engineering Department at the University of Massachusetts (UMASS), and specifically with Csaba

Andreas Moritz. I am grateful to him and his students Diganta Roychowdhury and Raksit Ashok for their

perceptive comments and valuable material from the beginning of this work.

A special thanks to the former members of the MIT Alewife Project Donald Yeung and Matthew

Frank for providing excellent, incisive advise and fast response despite the huge amount of daily mail

they have to answer.

There are many that from behind the scenes have encouraged my work and made my stay in

Stockholm more than pleasant. Much gratitude to my friends all around the globe, especially those who

are constantly close to me even if they live many thousands kilometres away.

And last, but not least, I really appreciate the infinite patience and constant support in countless

significant ways of my family, particularly my parents Araceli and Laudi, my sister Isa and my brothers

Javi and José. This work is dedicated to them.

 69

References

[1] Abdel-Shafi, H.; Hall, J.; Adve, S.V. and Adve, V.S.: �An Evaluation of Fine-Grain Producer-

Initiated Communication in Cache-Coherent Multiprocessors�, Proceedings of HPCA-3, February

1997

[2] Agarwal, A.: �The MIT Alewife Machine: Architecture and Performance�, 25 years of the

International Symposia on Computer Architecture (selected papers), Association for Computing

Machinery, August 1998, pages 103-110

[3] Agarwal, A.; Beng-Hong Lim; Kranz, D. and Kubiatowicz, J.: �APRIL: A Processor Architecture

for Multiprocessing�, Laboratory for Computer Science, Massachusetts Institute of Technology,

1990

[4] Agarwal, A.; Bianchini, R.; Chaiken, D.; Chong, F.T.; Johnson, K.L.; Kranz, D.; Kubiatowicz, J.D.;

Beng-Hong Lim; Mackenzie, K. and Yeung, D.: �The MIT Alewife Machine: Architecture and

Performance�, Laboratory for Computer Science, Massachussets Institute of Technology, 1999

[5] Agarwal, A.; Bianchini, R.; Chaiken, D.; Johnson, K.; Kranz, D.; Kubiatowicz, J.; Lim, B.H.;

Mackenzie, K. and Yeung, D.: �The MIT Alewife Machine: Architecture and Performance�,

Proceedings of the 22nd Annual International Symposium on Computer Architecture (ISCA�95),

June 1995, pages 2-13

[6] Agarwal, A.; Kubiatowicz, J.D.; Kranz, D.; Lim, B.H.; Yeung, D.; D�Souza, G. and Parkin, M.:

�Sparcle: An Evolutionary Processor Design for Large-Scale Multiprocessors�, Laboratory for

Computer Science, Massachussets Institute of Technology, 1993

[7] Alverson, G.; Alverson, R.; Callahan, D.; Koblenz, B.; Porterfield, A. and Smith, B.: �Exploiting

Heterogeneus Parallelism on a Multithreaded Multiprocessor�, Proceedings of the 6th ACM

International Conference on Supercomputing, 1992

[8] Alverson, R.; Callahan, D.; Cummings, D.; Koblenz, B.; Porterfield, A. and Smith, B.: �The Tera

Computer System�, Proceedings of the International Conference on Supercomputing, June 1990,

pages 1-6

[9] Ang, B.S. et. al.: �StarT the Next Generation: Integrating Global Caches and Dataflow

Architecture�, in Advanced Topics in Dataflow Computing and Multithreading, IEEE Press, 1995

[10] Arvind and Iannucci, R.A.: �Two Fundamental Issues in Multiprocessing�, Technical Report TM

330, MIT, Laboratory for Computer Science, Oct. 1987

[11] Ashok, R.; Roychowdhury, D. and Andras, C.: �Synchronization Coherence Protocols: Unifying

Synchronization and Caching in Multiprocessors�, Department of Electrical and Computer

Engineering, University of Massachusetts, February 2002

[12] Beng-Hong Lim: �A Synchronization Library for ASIM�, Alewife Systems Memo #12, MIT

Laboratory for Computer Science, January 1992

References

 70

[13] Beng-Hong, L.: �Instruction Set Summary of the APRIL/SPARC Processor�, Alewife Systems

Memo #2, MIT Laboratory for Computer Science, Aug. 1990

[14] Bitar, P. and Despain, A.M.: �Multiprocessor Cache Synchronization: Issues, Innovations and

Evolution�, Computer Science Division, University of California, 1986

[15] Bokhari, S.H. and Mavriplis, D.J.: �The Tera Multithreaded Architecture and Unstructured Meshes�,

Technical Report ICASE Interim Report No. 33, NASA/CR-1998-208953, Institute for Computer

Applications in Science and Engineering, Mail Stop 403, NASA Langley Research Center Hampton,

VA, December 1998

[16] Boon Seong Ang, Arvind and Chiou, D.: �StarT the Next Generation: Integrating Global Caches and

Dataflow Architecture�, Laboratory for Computer Science, Massachusetts Institute of Technology,

CSG Memo 354, 1994

[17] Boughton, R.D.: �Artic Routing Chip�, in Parallel Computer Routing and Communications

Proceedings of the First International Workshop, PCRW ´94, volume 853 of Lecture Notes in

Computer Science, pages 310-317, May 1994

[18] Brooks, D.; Tiwari, V. and Martonosi, M.: "Wattch: A Framework for Architectural-Level Power

Analysis and Optimizations", Proceedings of the 27th International Symposium on Computer

Architecture, May 2000

[19] Cache tutorial, Intel Corporation, 1st edition, 1991

[20] Carpinelli, J. D.: "Computer Systems: Organization and architecture", Addison Wesley Longman,

1st edition, 2001

[21] Chaiken, D.: �Cache Coherence Protocol Specification�, Alewife Systems Memo #5, MIT

Laboratory for Computer Science, Apr. 1990

[22] Chaiken, D.; Fields, C.; Kurihara, K. and Agarwal, A.: "Directory-Based Cache Coherence in Large-

Scale Multiprocessors", Computer Magazine, June 1990, pp. 49-59

[23] Chaiken, D.; Johnson, K.: "NWO User's Manual", Alewife Systems Memo #36, MIT Laboratory for

Computer Science, September 1994

[24] Chaiken, D.; Kubiatowicz, J.; Agarwal, A.: "LimitLESS Directories: A Scalable Cache Coherence

Scheme", Laboratory for Computer Science, Massachusetts Institute of Technology, 1991

[25] Chaiken, D.; Lim, B.H. and Nussbaum, D.: "ASIM User's Manual", Alewife Systems Memo #13,

MIT Laboratory for Computer Science, November 1991

[26] Chaiken, D.L.: �Cache Coherence Protocols for Large-Scale Multiprocessors�, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1990

[27] Chiou, D.; Ang, B.S.; Arvind et. al.: �StarT-NG: Delivering Seamless Parallel Computing�, Euro-

Par ´95, August 1995

[28] CSG Memos, http://www.csg.lcs.mit.edu/pubs/memos/ (accessed November 2001)

References

 71

[29] Culler, D. E. and Pal Singh, J.: "Parallel Computer Architecture: A hardware/software approach",

Morgan Kaufmann Publishers, 1st edition, 1999

[30] David E. Culler, Jaswinder Pal Singh: "Parallel Computer Architecture: A hardware/software

approach", Morgan Kaufmann Publishers, 1999

[31] Dennis, J.B.: �A Preliminary Architecture for a Basic Data Flow Processor�, 25 years of the

International Symposia on Computer Architecture (selected papers), Association for Computing

Machinery, August 1998, pages 2-4

[32] Dennis, J.B.: �Machines and Models for Parallel Computing�, International Journal of Parallel

Programming, June 1993

[33] Dubois, M. and Thakkar, S.: "Cache Architectures in Tightly Coupled Multiprocessors", Computer

Magazine, June 1990, pp. 9-11

[34] Gaudiot, J.L. and Bic, L.: "Advanced Topics in Data-Flow Computing", Prentice Hall, 1st edition,

1991

[35] Hammond, L.; Hubbert, B.A.; Siu, M.; Prabhu, M.K.; Chen, M. and Olukotun, K.: �The Stanford

Hydra CMP�, IEEE Computer, March-April 2000, pages 71�84

[36] Handy, J.: "The Cache Memory Book: The authoritative reference on cache design", Academic

Press, 2nd edition, 1998

[37] Handy, J.: �The Cache Memory Book: The Authoritative Reference on Cache Design�, Academic

Press, 2nd edition, 1998

[38] Hennessy, J. L. and Patterson, D. A.: "Computer Architecture: A quantitative approach", Morgan

Kaufmann Publishers, 2nd edition, 1996

[39] Hoare, C.A.R.: �Monitors: An Operating System Structuring Concept�, Communications of the

ACM, October 1974, pages 549-557

[40] Hughes, C.J.; Pai, V.S.; Ranganathan, P. and Adve, S.V.: �Rsim: Simulating Shared-Memory

Multiprocessors with ILP Processors�, IEEE Computer, February 2002, pp 44-49

[41] Jagannathan, R.: "Dataflow Models", Computer Science Laboratory, SRI International, draft chapter

to appear in Parallel and Distributed Computing Handbook, McGraw-Hill, 1st edition, 1995

[42] Johnson, K.: �Semi-C Reference Manual�, Alewife Systems Memo #20, MIT Laboratory for

Computer Science, version 0.6, Feb. 1992

[43] Jump, J. R.: �YACSIM Reference Manual�, Rice University Electrical and Computer Engineering

Department, March 1993. Available at http://www-ece.rice.edu/~rsim/rppt.html (accessed

November 2001)

[44] Kai Li and Hudak, P.: "Memory Coherence in Shared Virtual Memory Systems", ACM Transactions

on Computer Systems, November 1989, vol 7, num 4, pp. 321-359

References

 72

[45] Kernighan, B. W. and Ritchie, D. M.: "The C Programming Language", Prentice Hall, 2nd edition,

1988

[46] Kranz, D.; Lim, B.H.; Agarwal, A. and Yeung, D.: �Low-cost Support for Fine-Grain

Synchronization in Multiprocessors�, in Multithreaded Computer Architecture: A Summary of the

State of the Art, Kluwer Academic Publishers, 1994, pages 139�166

[47] Kroft, D.: �Lockup-Free Instruction Fetch/Prefetch Cache Organization�, 25 years of the

International Symposia on Computer Architecture (selected papers), Association for Computing

Machinery, August 1998, pages 20-21

[48] Kroft, D.: �Lockup-Free Instruction Fetch/Prefetch Cache Organization�, 25 years of the

International Symposia on Computer Architecture (selected papers), Association for Computing

Machinery, August 1998, pages 195-201

[49] Kubiatowicz, J.: �Modifications to SPARC for the Alewife Multiprocessor�, Alewife Systems

Memo #3, MIT Laboratory for Computer Science, Mar. 1990

[50] Kubiatowicz, J.: �Users Manual for the Alewife 1000 Controller�, Alewife Systems Memo #19,

MIT Laboratory for Computer Science, version 0.69, Dec. 1991

[51] Lajolo, M.; Raghunathan, A. and Dey, S.: "Efficient power co-estimation techniques for system-on-

chip design", Proceedings of the Conference on Design, Automation and Test, January 2000

[52] Lim, B.H. and Agarwal, A.: �Reactive synchronization Algorithms for Multiprocessors�,

Proceedings of the Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, 1994

[53] Martínez, J.F. and Torrellas, J.: �Speculative Locks for Concurrent Execution of Critical Sections in

Shared-Memory Multiprocessors�, International Symposyum on Computer Architecture, June 2001

[54] Mehta, H.; Owens, R.M. and Irwin, M.J.: "Energy characterization based on clustering",

Proceedings of the 33rd Design Automation Conference, June 1998

[55] MIT Alewife Project, http://www.cag.lcs.mit.edu/alewife/ (accessed November 2001)

[56] Murdocca, M. J. and Heuring, V. P.: "Principles of Computer Architecture", Prentice Hall, 1st

edition, 2000

[57] Nandy, S.K. and Narayan, R.: �An Incessantly Coherent Cache Scheme for Shared Memory

Multithreaded Systems�, Laboratory for Computer Science, Massachusetts Institute of Technology,

Computation Structure Group Memo 356, 1994

[58] Nussbaum, D.: "ASIM Reference Manual", Alewife Systems Memo #28, MIT Laboratory for

Computer Science, November 1991

[59] Pai, V.S.; Ranganathan, P. and Adve, S.V.: �RSIM Reference Manual�, Department of Electrical

and Computer Engineering, Rice University, version 1.0, August 1997

References

 73

[60] Pai, V.S.; Ranganathan, P. and Adve, S.V.: �RSIM: An Execution-Driven Simulator for ILPBased

Shared-Memory Multiprocessors and Uniprocessors�, Proceedings of the Third Workshop on

Computer Architecture Education, February 1997

[61] Pai, V.S.; Ranganathan, P. and Adve, S.V.: �RSIM: An Execution-Driven Simulator for ILP-Based

Shared-Memory Multiprocessors and Uniprocessors�, Department of Electrical and Computer

Engineering, Rice University, Oct. 1997

[62] Papadopoulos, G.M. and Culler, D.E.: �Monsoon: An Explicit Token-Store Architecture�, 25 years

of the International Symposia on Computer Architecture (selected papers), Association for

Computing Machinery, August 1998, pages 74-76

[63] QuickPower, http://www.mentorgraphics.ca (accessed May 2002)

[64] RSIM Project, http://rsim.cs.uiuc.edu/rsim/ (accessed October 2001)

[65] Simunic, T.; Benini, L., De Micheli, G. and Hans, M.: "Source code optimization and profiling of

energy consumption in embedded systems", Proceedings of the 13th Conference on International

Symposium on System Synthesis, September 2000

[66] Stanley-Marbell, P. and Hsiao, M.: "Fast, flexible, cycle-accurate energy estimation", Proceedings

of the 2001 International Symposium on Low Power Electronics and Design, August 2001

[67] Strenström, P.: "A Survey of Cache Coherence Schemes for Multiprocessors", Computer Magazine,

June 1990, pp. 12-25

[68] Synopsys PowerMill, http://www.synopsys.com/products/etg/powermill_ds.html (accessed May

2002)

[69] Tremblay, M. and O�Connor, J.M.: �UltraSparc I: A Four-Issue Processor Supporting Multimedia�,

IEEE Micro, 1996, pp. 42-50

[70] Tullsen, D.M.; Eggers, S.J. and Levy, H.M.: �Simultaneous Multithreading: Maximizing On-Chip

Parallelism�, 25 years of the International Symposia on Computer Architecture (selected papers),

Association for Computing Machinery, August 1998, pages 115-116

[71] Tullsen, D.M.; Lo, J.L., Eggers, S.J. and Levy, H.M.: �Supporting Fine-Grained Synchronization on

a Simultaneous Multithreading Processor�, Proceedings of the 5th International Symposium on High

Performance Computer Architecture, January 1999, pages 54�58

[72] Vlassov, V. and Moritz, C.A.: �Efficient Fine Grained Synchronization Support Using Full/Empty

Tagged Shared Memory and Cache Coherency�, Technical Report TRITA-IT-R 00:04, Dept. of

Teleinformatics, Royal Inst. of Technology, Dec. 2000

[73] Weaver, D.L. and Germond, T.: �The SPARC Architecture Manual�, PTR Prentice Hall, version 9,

1994

[74] Xiaowei, Shen and Boon, S. Ang: "Implementing I-structures at Cache Level Coherence Level",

MIT Laboratory for Computer Science, 1995

References

 74

[75] Xiaowei, Shen: �Implementing Global Cache Coherence In *T-NG�, MSc. Thesis at the Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, May 1995

[76] Ye, W.; Vijaykrishnan, N.; Kandemir, M. and Irwin, M.J.: "The design and use of SimplePower",

Proceedings of the 37th Conference on Design Automation, June 2000

[77] Yeager, K.C.: �The MIPS R10000 Superscalar Microprocessor�, IEEE Micro, April 1996, pages 28-

40

[78] Yeung, D. and Agarwal, A.: �Experience with Fine-Grain Synchronization in MIMD Machines for

Preconditioned Conjugate Gradient�, Principles and Practice of Parallel Programming, 1993, pages

187�197

