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1 Introduction

This is an assignment where you will implement your own malloc using a
scheme similar to dlmalloc, Doug Lee's malloc. You should be familiar with
the role of the allocator and how to implement and benchmark a simple
version of it. In this presentation you will not be given all details on how to
do the implementation, but we will go through a general strategy.

2 The implementation

The problem with a free/malloc implementation is how to handle the freelist
of available blocks. You could implement a strategy that will be able to
return and coalesce a block in constant time. This is achieved by keeping
hidden information in all blocks so that one can quickly determine if neigh-
boring blocks are free. If neighbors are free the algorithm will merge these
blocks. We will start with only one freelist to keep things simple but this is
something that you should change in the �nal implementation.

Your implementation does not need to follow these guidelines but you can
take them as a starting point. Feel free to improve or implement a di�erent
strategy (if it is equally good, better or have some advantage).

2.1 the setting

We will keep all free blocks in a double linked list. When a block is requested
a suitable block is found and removed from the list. If however, the block
is much larger than what is requested we can divide the block in two, not
necessarily equal, parts. The remaining part can, depending on how the
freelist is organized, remain in its position or be inserted at another position.

We talk about the next and previous block and this is related to the dou-
ble linked list of free blocks. In the beginning the freelist will be unordered
but one can of course experiment with ordering to improve performance.

We will also refer to the block before and after a given block. This is
referring to how they are ordered in memory. All blocks are of course in a
sequence and given a block we can talk about the block immediately before
it (lower address), or after it (higher address).

When we free a block we should be able to �nd the block before and after
a block, and determine if they are free. I one or both are free then the blocks
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should be merged. This is the tricky part but if you get the basic operations
right it should be a walk in the park.

In this implementation we will start with one large 64 Ki byte block. This
is also the largest block that we will be able to provide but you can extend
this limit in your �nal implementation (it will be slightly smaller since we
need some bytes for a header structure).

2.2 operations on a block

A block (also often called chunk) consists of a head and a byte sequence. It
is the byte sequence that we will hand out to the requester. We need to be
able to determine the size of a block, or rather the size of the data sequence,
and if it is taken or free. We also want to know if the block before it is free
and the size of it.

struct head {
uint16_t b f r e e ; // 2 by tes , the s t a t u s o f b l o c k b e f o r e
uint16_t b s i z e ; // 2 by tes , the s i z e o f b l o c k b e f o r e
uint16_t f r e e ; // 2 by tes , the s t a t u s o f the b l o c k
uint16_t s i z e ; // 2 by tes , the s i z e (max 2^16 i . e . 64 Ki by t e )
struct head *next ; // 8 by t e s po in t e r
struct head *prev ; // 8 by t e s po in t e r

} ;

When you extend the implementation you can play around with how the
head structure is represented. The important thing is that it is aligned to 8
bytes i.e 8, 16 or 24 bytes. In the above declaration we have used the type
uint16_t to make each size and status �eld to be two bytes wide.

It is of course important that the head is as small as possible, since it is
an overhead. If an application is requesting 8 bytes we have an overhead of
24 bytes which is not very good but it will do for now.

some numbers

We will need some numbers as we go forward and de�ne some macros. The
true and false values require no explanation but the HEAD value is very im-
portant. It is the size of the head structure, 24 bytes, and we could of course
have used the expression explicitly in the code but we might want to change
it as we go.

#de f i n e TRUE 1
#de f i n e FALSE 0

#de f i n e HEAD ( s izeof ( struct head ) )

The minimum size, MIN() that we will hand out is 8 bytes, or rather this
is the minimum size of bytes, apart from the header, that a block will consist
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of. We will change this as we improve the implementation so for now just
think of a block consisting of 24 bytes header and 8 bytes of data.

#de f i n e MIN( s i z e ) ( ( ( s i z e ) >(8))?( s i z e ) : ( 8 ) )

The limit is the size a block has to be larger than in order to split it. If
we want to split a block to accommodate a block of 32 bytes it has to be 62
(8 + 24 + 32) or larger. The smallest block we will split is a block of size 40
that could be divided up into two 8 byte blocks (24 + 40 = 24 + 8 + 24 +
8).

#de f i n e LIMIT( s i z e ) (MIN(0) + HEAD + s i z e )

We use the regular way of hiding and retrieving the header and this time
we write it as a macro.

#de f i n e MAGIC(memory) ( ( struct head *)memory − 1)

#de f i n e HIDE( block ) (void * ) ( ( struct head* ) b lock + 1)

All memory that is returned to the requesting process needs to be aligned
by 8 bytes. On a 32-bit architecture this would have been 4 bytes.

#de f i n e ALIGN 8

The arena is large block that we allocate in the beginning i.e. the whole
heap. The size of this is limited since we will not be able to handle larger
blocks than 64 Ki bytes (we only have a 16 bit size �eld). The size of the
heap will thus be rather small to start with but we will be able to change
this later.

#de f i n e ARENA (64*1024)

before and after

The size information for a block will allow us to determine where the block
after it is located. Implement a function after() that given a pointer to a
block returns a pointer to the block after. You will �nd the block if you take
the current pointer, cast it to a character pointer and then add the size of
the block plus the size of a header.

struct head * a f t e r ( struct head *block ) {
return ( struct head * ) ( . . . . . ) ;

}

In almost the same way you will be able to locate the block before a
given block since we have the bsize �eld in the header.

struct head * be f o r e ( struct head *block ) {
return ( struct head * ) ( . . . . . ) ;

}
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split a block

We also need a procedure that given a (large enough) block and a size, splits
the block in two giving us a pointer to the second block. We �rst calculate
the remaining size (the size of the block minus the requested size and size
of a header). Once we know the remaining size we can �nd the second part
(splt is after the block). We initialize the new block and patch the size of
the block after to leave the blocks in a consistent state.

struct head * s p l i t ( struct head *block , int s i z e ) {
int r s i z e = . . . . .
block−>s i z e = . . .

struct head * s p l t = . . .
sp l t−>bs i z e = . . .
sp l t−>bf r e e = . . .
sp l t−>s i z e = . . .
sp l t−>f r e e = . . .

struct head * a f t = . .
a f t−>bs i z e = . . .

return s p l t ;
}

a new block

To begin with we have to create new block. We do this using the mmap()
system call. This procedure will allocate new memory for our process and
here we allocate an area as large as possible. In this �rst run we only allow
one arena so if there is already one allocated we return a null pointer.

Look-up the man pages for mmap() and see what the arguments mean.
When you extend the implementation to handle larger blocks you will have
to change these parameters.

struct head * arena = NULL;

struct head *new ( ) {

i f ( arena != NULL) {
p r i n t f ( "one arena a l r eady a l l o c a t e d \n" ) ;
return NULL;

}
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// us ing mmap, but cou ld have used sbrk
struct head *new = mmap(NULL, ARENA,

PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, −1, 0 ) ;

i f (new == MAP_FAILED) {
p r i n t f ( "mmap f a i l e d : e r r o r %d\n" , er rno ) ;
return NULL;

}

/* make room fo r head and dummy */
uint s i z e = ARENA − 2*HEAD;

new−>bf r e e = . . .
new−>bs i z e = . . .
new−>f r e e= . . .
new−>s i z e = . . .

struct head * s e n t i n e l = a f t e r (new ) ;

/* only touch the s t a t u s f i e l d s */
s e n t i n e l−>bf r e e = . . .
s e n t i n e l−>bs i z e = . . .
s e n t i n e l−>f r e e = . . .
s e n t i n e l−>s i z e = . . .

/* t h i s i s the on ly arena we have */
arena = ( struct head *)new ;

return new ;
}

Before we return the new block we set it up to prevent our algorithm
to fall outside of the arena. We set the bfree �ag of the block to false to
prevent anyone from trying to merge it with a non existing block before. We
also set up a sentinel block in the end of the arena and mark the free �ag
to false. This will prevent anyone from trying to merge the block with the
sentinel block.

the free list

All free blocks will be linked in a double linked list. We will in the �rst
implementation only have one list and will not order it in any way. The list
is double linked since we want to be able to extract a block from the list
without having to search for its position. This will be important when we
want to free a block and realize that the block before or after is also free and
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should be merged.
We de�ne a procedures to detach() a block from the list and one to

insert() a new block in the list. Since the list is so far unordered we will
always insert a block to the front of the list.

s r cu t head * f l i s t ;

void detach ( struct head *block ) {

i f ( block−>next != NULL)
:

i f ( block−>prev != NULL)
:

else

:
}

void i n s e r t ( struct head *block ) {
block−>next = . . .
block−>prev = . . .
i f ( f l i s t != NULL)

:
f l i s t = . . .

}

I now think you have all the smaller pieces of the puzzle to make the rest
of the implementation quite easy.

2.3 allocate and free

In order to continue you need to have a good understanding of the algorithm
that we shall use. If you haven't done so yet you should pick up a pen and
draw what the operations should actually do. I could have included drawings
in this description but you will learn more if you do your own.

The goal is of course to provide a user with two functions: malloc()

and free(). In order to make life easier for us we will call these functions
dalloc() and dfree. When we are requested to allocate a new memory area
we do the following:

� Determine a suitable size that is an even multiple of ALIGN and not
smaller than the minimum size.

� Go through the freelist and �nd the �rst block that is large enough to
meet our request and unlink it from the list. If the freelist is empty
you need to create the arena (if not already created).
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� If the found block is so large that we could split it in two then do so
and insert the remaining block in the freelist.

� Mark the found block as taken and make sure to also update the block
after the taken block.

� Return a pointer to the beginning of the data segment i.e hide the
header.

That shouldn't be that hard to implement given that you have the code
for the basic operations that we need. This is a beginning, implement
adjust() and find() and you're done.

void * da l l o c ( s i ze_t reque s t ) {
i f ( r eque s t <= 0 ){
return . . .

}
int s i z e = ad jus t ( r eque s t ) ;
struct head * taken = f i nd ( s i z e ) ;
i f ( taken == NULL)
return NULL;

else

return . . . .
}

To free a block is slightly more complicated but we will fake it in the
beginning. We will simply insert a block into the freelist but we will not
merge blocks. This will of course make life easy but we will of course loose
a lot of memory in external fragmentation.

void d f r e e (void *memory) {

i f (memory != NULL) {
struct head *block = . . .

struct head * a f t = . . .
block−>f r e e = . . .
a f t−>bf r e e = . . .
:

}
return ;

}

You should be done in �ve minutes, there is no hidden catch here.
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before you continue

Implement the above functions in a �le called dlmall.c. Also add a �le
dlmall.h that holds a declaration of the dalloc() and dfree() procedures.
Then, in a �le test.c write a main() procedure makes some call to dalloc()

and dfree() - does it work?
You could also, do it it will help you as you start to make changes, in

the �le dlmall.c implement a procedure sanity() that checks if the freelist
and arena looks ok. This procedure could for example check that all blocks
in the freelist have the correct previous pointer and that they are all marked
as free. The size should also be a multiple of ALIGN bytes and not less than
our minimum.

You can also traverse all blocks starting from the arena pointer. Each
block is found using the after() procedure and the bfree and bsize �elds
aft that block should match the �elds of the current block. The blocks could
of course be either free or taken (the free blocks should be in the freelist)
but could come in any order. When we have our merge procedure up and
running two consecutive blocks can not both be free (if so they should have
been merged).

3 Your �rst implementation

When your dlmall allocator works as expected it's time to do some bench-
marks. The things we want to know is:

� What is happening with the length of the freelist as we do more mal-
loc/free operations.

� What is the sized of the blocks in the freelist?

You will need a benchmark program that can vary the requests given a
min and max size. You should also be able to change the number of blocks
requested and the number of blocks the application has allocated at a given
time. The sequence of operations should preferably match a real program
i.e. probably not be a sequence of identical requests.

Set up some benchmarks and try to describe the properties of your im-
plementation.

3.1 coalescing blocks

You should now implement the merge operation. The merger operation will
be called by dfree() immediately before we mark the block as free and insert
it in the freelist. The merge procedure will check if the block immediate
before and/or after the freed block is free and then merge these blocks. Here
is some skeleton code that will get you going.
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struct head *merge ( struct head *block ) {

struct head * a f t = a f t e r ( b lock ) ;

i f ( block−>bf r e e ) {
/* un l ink the b l o c k b e f o r e */

/* c a l c u l a t e and s e t the t o t a l s i z e o f the merged b l o c k s */

/* update the b l o c k a f t e r the merged b l o c k s */

/* cont inue wi th the merged b l o c k */
block = . . . .

}

i f ( a f t−>f r e e ) {
/* un l ink the b l o c k */

/* c a l c u l a t e and s e t the t o t a l s i z e o f merged b l o c k s */

/* update the b l o c k a f t e r the merged b l o c k */
}
return block ;

}

I strongly advice you to do some drawings to better understand what
is going on. Which blocks need to be updated when we merge two blocks?
What is happening if we merge three blocks? Could it be the case that we
should merge more blocks?

3.2 do we gain anything?

Run the benchmarks again, what does it now look like? Have we improved
the system, how and why?

4 Improving performance

There are some things that we could improve. Choose one, two, three or all
of the suggestions below and give it a try. You report should include at least
one of the improvements suggested below, it's solution and benchmarks that
shows the di�erence.
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4.1 the size of the head

The size of the head structure is one thing you can take a look at. If you
have implemented it as above it is 24 bytes (2+2+2+2+8+8) which we might
improve. Since we want to hand out segments aligned by 8 bytes it's not
possible to improve it by a byte or two, we have to do something radical.

One idea is that the head structure only needs to hold its two pointers
if it is a free block. Only then are the pointers needed for linking. A taken
block only need the status �ags and the sizes. The head would then only
be 8 bytes which makes a big di�erence if the block should only hold a few
bytes of user data.

The smallest block that we could hand out would now be 24 bytes con-
sisting of a 8 byte header and 16 bytes of user data. We can not hand out
anything smaller since when the block is returned it needs to be large enough
to house a full header of 24 bytes.

To implement this you need to do some small changes. First de�ne a
structure taken that only holds the size and �ag �elds.

struct taken {
:
:

} ;

Now change the code that hides the header so that it only jumps a take

structure forward. Also change the magic trick so you retrieve the block by
jumping a taken structure backwards.

The only thing that is left is to change the macros that describes the size
of the head and how the minimum allocation is calculated.

When you have it up and running you should do a benchmark to see if
it means anything in reality. Of course we know that we save some memory
since a 16 byte request in the original implementation would require a block
of in total 40 bytes (24 + 16) whereas our improved implementation only
requires 24 bytes (8 + 16 which is also the smallest block possible). Try a
benchmark where you �rst allocate a thousand blocks of 16 bytes each and
then run a loop where you write to all of these blocks a couple of thousand
times - is there a di�erence in execution time, why?

If you actually want to implement even larger blocks (I don't think so
but the idea is relevant for a 32-bit system and is what Doug Lee did in his
�rst implementation) you could do another trick. The idea is that the size
of the block before need only be known if it is free. If it is free it does not
use the room allocated for the user data. Assume that we know that there is
always room for eight bytes of user data, then we can shrink our own header
to only our own size and two �ags. If we see that the block before the current
block is free than we know that the size is written in the last eight bytes of
the user data i.e. immediately before our header.
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If you know what you're doing - do we need 64 bits to encode a next or
previous pointer? What if the pointers were o�sets given the start of the
arena? Given that an arena is not very large a 32 bit o�set would be more
than we need. This would mean that the two pointers could be encoded in
8 bytes which mean that the whole header is only 16 bytes (out of which 8
can be used by the user). Run the same benchmarks as before but now try
using 8 byte user data.

4.2 order, order, Ooorrrdeeerrr!

One slight improvement that you can give a try is to do less work when we
free a block. In the implementation as I have outlined we always remove a
block from the freelist if it should be merged with another block. This might
be avoided and I should not give you the solution since �guring out what
to do is more fun than actually doing the implementation. Take a pen and
paper and draw what is happening when we free a block and discover that
the block before it is free.

This improvement relies on the fact that the lists is not ordered so we can
have a block of any size anywhere in the list. If we change this assumption
the improvement might not work.

Assume on the other hand, that the list is ordered with smaller blocks
�rst, what would you do then? Try it and see if you can keep the list ordered
without having to start an insertion from the beginning of the list every time.

Once you have an ordered list up and running one will of course think
about selecting the best possible block when a request should be handled.
The best is probably one that we do not have to split. Implement best-�t
and see if the length of the list is reduced or if we make things worse when
too many small blocks are created. Try worst-�t, does it make a di�erence?

If you know what your doing you could keep a circular list of free blocks.
You would then have a current position which is the next block to consider
when we're looking for a new block. You do not keep the list ordered in any
way so the optimized merging described above will work �ne. The �rst-�t
approach should now give quite good performance. Note - make sure that
you don't run around in circles looking for something that will not be found.

4.3 why only one list

Your implementation now keeps all the free blocks in one list. As this list
grows we will of-course have to spend more time searching for suitable block.
How about keeping a number of lists, one list for each possible size up to
some threshold might be an idea. Hmm, 16, 24, 32... 128, that is 15 lists,
and then one more list for anything else ...

There are several ways to order these lists, come up with a strategy and
run some benchmarks, does it make a di�erence?
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4.4 more arenas

We still have a very small heap. The 16 bits used for the size information
could of course changed to 30 bits leaving four four bits to encode if a block
is free or not. This would solve the problem but it would also mean that we
would need to allocate a huge heap already from the beginning. A better
strategy is to work with several arena where each arena is still limited to 64
Ki bytes.

The thing we have called the arena is only the consecutive memory that
we have allocated and the freelist pointer has been treated as a global vari-
able. What if we say that an arena is a data structure that holds: a memory
segment divided into blocks and a freelist pointer. Each block now needs to
have identi�er of the arena to whom it belongs.

We could encode things in as few bits as possible but we now focus on
how to make things work. Add another �eld to the header which is a pointer
to an arena structure. This means that when we free a block we know which
arena it belongs to and thus also which freelist it should be inserted in.
Merging of blocks is not a problem since all blocks that could be merged are
in the same arena.

Now when we can not �nd a block that is large enough we simply allocate
a new arena. This is done by changing the new() procedure and the arena
structure is of course taken from the �rst segment that is allocated by mapp().

To keep track of all arenas we could link them together in a single linked
list. We can then update the sanity() procedure to go through all arenas
looking for inconsistencies.

If you have everything up and running you could try to run a benchmark
using multiple threads. If we now have one arena list per thread, and this
could be implemented using thread local storage, then each thread would
allocate from its own arena. Most of the time it will free blocks that belong
to one of its own arenas. Each arena will have a lock and to do any changes
to the arena you need to take the lock. If most operations can be done
without any lock contention the implementation should be quite e�cient.

5 Summary

If you have completed the allocator and done some benchmarking you should
have a better understanding of how malloc() and free() works - or rather
could work; the regular malloc used by Linux is a bit more advance but not
much.
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