
Snapy: the search for dead marbles

Johan Montelius

October 2, 2016

Introduction

In this exercise you will learn how to implement a snap-shot algorithm. We
will use a very simple scenario with a set of workers that create and share
marbles with each other. The problem is to find out which marbles are
alive so that references to dead marbles can be removed. It’s in a sense a
simplified garbage collection problem. The problem is simplified by the fact
that the data structures, the marbles, are atomic and that we do not create
duplicates of marbles. We could have solved the problem using a simpler
solution but why not play around with a snap-shot algorithm.

1 The Worker

A worker will keep a state of marbles that it holds, called the Alive set, and
marbles that it has created and passed to other workers, the Exported set.
It will also keep a set of Peers that are the other workers in the network.

To wisualize the worker we will use a simple gui where the marbels of a
worker are shown. The marbles in the alive set are shown as red dots and
marbels in the exported set as greeen dots.

A marble is owned by the creating worker but could be held by any
worker. We can look at a marble and identify the worker that created the
marble. We will use this in order to check if the owner actually keeps track
of its marbles. As long as a marble is held by a worker the owner should keep
a record of the marble. One can see the marble as a pointer to some shared
resource and as long as a workers has access to the pointer the resource must
be available. If there is no pointer in the system to the resource the resource
is of course garbage and can be thrown away.

1.1 the life of a worker

The worker is a process that is waiting for incoming messages but after
being idle for a while decides to do some work. The work consist of checking
that a randomly selected marble is still available (ping(Alive)), request a
new marble from one of its peers (req(Peers)) and possibly throw one or
two marbles away (trow away(Alive)). We will implement these functions
later.

worker(Peers, Gui, Alive, Exported) ->

1



Idle = random:uniform(?delay),

receive

{request, From} ->

{Alv, Exp} = request(From, Gui, Alive, Exported),

worker(Peers, Gui, Alv, Exp);

{marble, Marble} ->

Alv = incoming(Gui, Marble, Alive),

worker(Peers, Gui, Alv, Exported);

{ping, Marble} ->

check(Gui, Marble, Exported),

worker(Peers, Gui, Alive, Exported);

quit ->

quit

after Idle ->

%% Check that a marble still exists

ping(Alive)

%% Send a request for a marble

req(Peers)

%% Throw some marbles away.

Rest = throw_away(Gui, Alive),

worker(Peers, Gui, Rest, Exported)

end.

The messages a worker can receive are either from other workers or from
a managing process that want to terminate the execution. The messages
from other workers are the following:

• {request, From}: a request is received from a peer worker. Send one
of the marbles, randomly selected, in the Alive set or create a new
marble. If we send an existing marble then we delete it from the Alive
set. If a new marble is created this marble must be added to the set
of exported marbles.

• {marble, Marble}: a marble that is received from a peer. Add the
marble to the Alive set.

• {ping, Marble}: another worker wants to know if a marble that we

2



have created still exists. We should have a record of this in our set of
Exported marbles. If the marble is not found we will log an error.

The implementation of the work procedures is uncomplicated. We need
to implement a set of functions to construct and access marbles and decide
on how to represent the alive and exported sets. The sets can simply be
represent as list and a marble can be represented as a tuple {marble, Ref,

Pid, Pos} where the Ref is a unique reference, Pid the process identifier of
the creator of the marble and Pos a position used by the gui.

Sending a request is trivial using a function pick one to select a ran-
domly selected element from the list of peers.

req(Peers) ->

{value, Peer} = pick_one(Peers),

Peer ! {request, self()}.

The incoming request can be served either with one of the marbles we
have in our alive set or a marble that we create. If we select one from the
alive set we remove it from the set and also send a message to the gui. If
we create a new marble it is added to the exorted set; this is the only way
marbles can be added to this set.

request(From, Gui, Alive, Exported) ->

N = length(Alive),

if

N > 4 ->

{value, Marble} = pick_one(Alive),

From ! {marble, Marble},

delete(ref(Marble), Gui),

{lists:delete(Marble, Alive), Exported};

true ->

Marble = marble(),

From ! {marble, Marble},

exported(ref(Marble), pos(Marble), Gui),

{Alive, [Marble|Exported]}

end.

When the message with the marble is retured to the requesting worker
the marble is simply added to the alive set.

incoming(Gui, Marble, Alive) ->

alive(ref(Marble), pos(Marble), Gui),

[Marble|Alive].

3



When we throw things away need to check that we actually have some-
thing to throw away. Below is an implementation that only throws a marble
away if there are more than four marbles in the Alive set.

throw_away(Gui, Alive) ->

N = length(Alive),

if

N > 4 ->

{value, Marble} = pick_one(Alive),

delete(ref(Marble), Gui),

lists:delete(Marble, Alive);

true ->

Alive

end.

The function pick one/1 can be implemented using lists:nth/1 and
a call to random:uniform. We only have to know how many marbles there
are and make sure that we do not try to select something from an empty
list.

The alive/3 procedure will add a red marble to the gui and exported/3

adds a green marble. The delete/2 procedure will send a message to the
gui to remove a marble.

2 The first experiment

Run the workers and see that they are actually doing something. Note how
the number of exported marbles increase. This is of course obvious since we
now and then create new marbles that we pass on to peers but once they
have been added to the set of exported marbles there is no way to remove
them from this set.

Before starting on the snap-shot solution you should think of how this
could easily be solved. What would happen to your solution if we where
allowed to make a copy of an existing marble and pass the copy to one of
our peers? What would happen if we allowed marbles to hold references to
other marbles?

3 A solution - not

Instead of trying to figure out locally if a marble is garbage we leave this to
an external process, a controller. The controller will send a message to each
worker and have them report back which marbles it has in the alive set and
which marbles it has exported. We only have to update the worker with one
extra message handler.

4



{snap, Cntrl} ->

snap(Cntrl, Peers, Alive, Exported),

worker(Peers, Gui, Alive, Exported);

In compiling the answer we only need to send the marble references since
we do not need to know who actually created them. We do however send
our process identifier so that the controller know which worker that might
be interested in what information.

snap(Cntrl, _Peers, Alive, Exported) ->

Cntrl ! {report,

self(),

lists:map(fun(M) -> ref(M) end, Alive),

lists:map(fun(M) -> ref(M) end, Exported)}.

Now the controller has the pleasure of sending a snap request to all
workers and collect one reply from each one. It should then try to deduce
if there are any exported marbles that are no longer alive. Note that the
workers will only send us references of marbles since this is the only thing
that we need to have.

gc(Workers) ->

lists:map(fun(W) -> W ! {snap, self()} end, Workers),

collect(Workers, [], []).

It can first collect the replies and add all the alive marbles into one list
and but keep the exported marbles associated to each worker in another list.
When all responses have been received it’s time to filter the exported sets
using the set of alive marbles.

collect([], Alive, Extported) ->

lists:map(fun({W, Opt}) -> W ! {dead, filter(Opt, Alive)} end, Extported);

collect(Waiting, Alive, Extported) ->

receive

{report, Worker, Alv, Exp} ->

collect(lists:delete(Worker, Waiting),

lists:append(Alv, Alive),

[{Worker, Exp}| Exported])

end.

An exported marble need only remain in the list if the marble is in
the alive set. If we can filter out the references that are not alive we can
use this information and send it back to the worker in a message {dead,
Dead}. Filtering the list is of course easy using a the higher order function
lists:filter/2.

5



filter(Exported, Alive) ->

lists:filter(fun(Exp) -> not lists:member(Exp, Alive) end, Exported).

We now need to add another message handler to the worker so that it
can receive the message and filter its own set of exported marbles.

{dead, Dead} ->

Filtered = filter(Gui, Exported, Dead),

worker(Peers, Gui, Alive, Filtered);

The filtering is easily expresses using some folding. The higher order
function lists:foldl/2 will apply a function to a element taken from a
list, a dead marble, and a starting value, the list of exported marbles. The
resulting value, where we have removed the dead marble from the list of
exported marbles, is then used as the new starting value. When we have
applied the function to all elements of the dead list we have only marbles
that are alive left.

filter(Gui, Exported, Dead) ->

lists:foldl(fun(D, Exp) ->

case lists:keysearch(D, 2, Exp) of

{value, Marble} ->

delete(ref(Marble), Gui),

lists:keydelete(D, 2, Exp);

false ->

Exp

end

end,

Exported, Dead).

3.1 some experiments

Does this actually work? Do some tracing of the number of exported mar-
bles after each garbage collection. Do we find any dead entries and do we
manager to decrease the number of exported marbles. Since an exported
marble should be alive somewhere the total number of alive marbles should
be close to the total number of exported marbles. One exception is of course
when a marble has been created and inserted into a set of exported mar-
bles but it has not yet been inserted at the receiving side. Also if a marble
is thrown away it will still be present at the exported side before we do a
garbage collection.

When you have done some experiment you can add the following code.
In the working phase we also want to ping a randomly selected marble.
Assuming we have a function to randomly select an element from a list the
ping/1 procedure can be implemented as follows.

6



ping(Alive) ->

case pick_one(Alive) of

{value, Marble} ->

owner(Marble) ! {ping, Marble};

false ->

ok

end.

If we send a {ping, Marble} message we also need to add a message
handler. We simply check that the Marble actually does exist in our set of
alive marbles.q

{ping, Marble} ->

check(Marble, Exported),

worker(Peers, Alive, Exported);

If we do not find the marble in the list we write an error message to the
terminal.

check(Marble, Exported) ->

case lists:member(Marble, Exported) of

true ->

ok;

false ->

io:format("error: marble not found~n", [])

end.

Do you have any error messages? Can you insert delays by using calls
to timer:sleep/1 to increase the risk of errors? What is the root of the
problem?

4 Snap shot

A proper snap shot can not be taken just by collecting the states of each
node, we also need to take carer of the messages in transit. In order to do
this we have to change the implementation. We start by slightly changing
how the controller works. Instead of sending a snap shot message to every
worker it will only send a message to one of the workers. It will still receive
reports from all workers and the calculation of dead marbles is the same.

gc(Workers) ->

[W|_] = Workers,

W ! {snap, self()},

collect(Workers, [], []).

7



The workers must change more. Only one worker receives the snap shot
message and should initiate the snap sot by sending markers to the other
workers. When a snap shot is initialized we should start recording incoming
messages from workers that have not yet sent us a marker. Our first change
will be to add a recorder as an additional state of the worker, the initial
recorder is set to na (not available) but will be set to a tuple

{recorder, Cntrl, Peers, Alive, Exported}

containing everything we need once we receive a snap message or our first
marker.

• Cntrl: the process identifier of the controller in order to know where
to send the snap shot

• Peers: the peers from which we have not received a marker.

• Alive: references of marbles that we need

• Exported: references of marbles that we have exported

When we receive the snap message or our first marker (we know it it’s
the first since the recorder will be set to na) we can easily create the initial
recorder. The question now is what incoming messages that changes this
state and how we know when we have seen all marker.

It turns out that it is only one incoming message that is of interest, the
message that contains a marble. This marble should be added to the set of
alive marbles.

Since we only should record information from workers that have not sent
us a marker message we need to keep track of which workers that have sent
us markers and which messages that we need to record we need to change
the format of the marble message.

{marble, From, Marble} ->

Alv = incoming(Gui, Marble, Alive),

Rec = rec(From, Marble, Recorder),

worker(Peers, Gui, Alv, Exported, Rec);

Once we have received all markers we will send the same message as
before to the controller. The controller, working as before with out any
changes, should now have more correct information to work with.

8


