
Routy: a small routing protocol

Johan Montelius

October 2, 2016

Introduction

Your task is to implement a link-state routing protocol in Erlang. The link-
state protocol is used in for example OSPF, the most used routing protocol
for Internet routers. The aim of this exercise is that you should be able to:

• describe the structure of a link-state routing protocol

• describe how a consistent view is maintained

• reflect on the problems related to network failures

We will implement routing processes with logical names such as london,
berlin, paris etc. Routers can be connected to each other with directional
(one-way) links and they can only communicate with the routers that they
are directly connected to.

The routing processes should be able to receive a message of the form
{route, london, berlin, "Hello"} and determine that it is a message
from berlin that should routed to london. A routing process should consult
its routing table and determine which gateway (a routing process that it has
direct connection to) is best suited to deliver the message. If a message
arrives at it’s destination (the router called london) it is printed on the
screen. Messages for which paths are not found are simply thrown away, no
control messages are sent back to the sender.

During the seminar you will be divided into groups representing regions
of the world (Europe, Asia, Africa etc). Each Erlang engine that you run will
have a name of a country in that region (Sweden, UK, France ect). Assume
that the Erlang shell named sweden, is running on a machine with the IP
address 130.123.112.23. Routing processes that we create will be registered
ar r1, r2 etc. The adress of a routing process is thus for example:

{r1, ’sweden@130.123.112.23’}

The routing process will also have a logical name, for example stockolm,
but this is a name on a different level.

Your task before the seminar will be to have a router up and running.
At the seminar we will connect the routers together.

Before implementing the operations I advice you to study the lists

library and learn how keyfind/3, keydelete/2, map/2 and foldl/3 works.
It will make your life easier but, if you don’t understand what foldl/3 does,
then don’t even try to use it.

1



1 The map

Think of a good representation of a directional map where you should easily
be able to update the map and find nodes directly connected to a given
node. We could represent it as a list of entries where each entry consist of
a city with a list of directly connected cities. This will give us a very quick
way of updating the map, simply replace an entry with a new entry. For our
purposes this is fine, in other situations one might want other operations to
be efficient and therefore need another representation.

In a module map, implement and export the following functions:

• new(): returns an empty map (a empty list)

• update(Node, Links, Map): updates the Map to reflect that Node
has directional links to all nodes in the list Links. The old entry is
removed.

• reachable(Node, Map): returns the list of nodes directly reachable
from Node.

• all nodes(Map): returns a list of all nodes in the map, also the ones
without outgoing links. So if berlin is linked to london but london

does not have any outgoing links (and thus no entry in the list), london
should still be in the returned list.

Before going further make sure that your implementation of map works. In
the tests below the map is represented as a list of entries holding the node
and the links. Try the following tests:

> map:new().

[]

> map:update(berlin, [london, paris], []).

[{berlin,[london,paris]}]

> map:reachable(berlin, [{berlin,[london,paris]}]).

[london,paris]

>map:reachable(london, [{berlin,[london,paris]}]).

[]

>map:all_nodes([{berlin,[london,paris]}]).

[paris,london,berlin]

>map:update(berlin, [madrid], [{berlin,[london,paris]}]).

[{berlin, [madrid]}]

2



Note that the representation of the map should not be known by the users of
a map. A module using a map should only use the four functions described
above.

2 Dijkstra

The Dijkstra algorithm will compute a routing table. The table is represented
by a list with one entry per node where the entry describes which gateway,
city, should be used to reach the node. The input to the algorithm is:

• a map

• a list of gateways to which we have direct access.

An example of a routing table is:

[{berlin,madrid},{rome,paris},{madrid,madrid},{paris,paris}]

This table says that if we want to send something to berlin we should
send it to madrid. Note that we also include information that in order to
reach madrid we should send the message to madrid.
A router will know its own name, a set of gateways, a map of the network
and a hopefully not to old routing table.

The map will describes how all other nodes, including the gateways, are
connected. The map will not include the router itself. When we build the
router we should see that the map is updated quite frequently. The routing
table is however, only updated once in a while (when we say so).

2.1 a sorted list

In the algorithm we will use a sorted list when we calculate a new routing
table. We will start by implementing operations on a sorted list and then
look at the algorithm itself.

Each entry in the list will hold the name of a node, the length of the
path to the node and the gateway that we should use to reach the node.
An entry showing that berlin could be reached in 2 hops using paris as a
gateway could look like follows:

{berlin, 2, paris}

The list is sorted based on the length of the path. We should be able to
update the list to give a node a new length and a new gateway but when we
do an update it is important that we update an existing entry and that we
actually have an entry in the list to update.

To implement the update procedure it could be an advantage to first im-
plement two procedures that will help us. In a module dijkstra implement
the two procedures:

3



• entry(Node, Sorted): returns the length of the shortest path to the
node or 0 if the node is not found.

• replace(Node, N, Gateway, Sorted): replaces the entry for Node
in Sorted with a new entry having a new length N and Gateway. The
resulting list should of course be sorted.

Note that in replace/4 we require a entry for the node to be present
in the sorted list. Be careful and make sure that the resulting list is sorted
based on the new entry.
Now when we have these two procedures it is easier to implement the update
procedure.

• update(Node, N, Gateway, Sorted): update the list Sorted given
the information that Node can be reached in N hops using Gateway.
If no entry is found then no new entry is added. Only if we have a
better (shorter) path should we replace the existing entry.

The procedure is implemented simply by first calling the entry/2 procedure
to get the length of the existing path. If we have a better (shorter) path
then we use the replace/4 procedure. Why did we make entry/2 return 0
if the node is not found?

> dijkstra:update(london, 2, amsterdam, []).

[]

> dijkstra:update(london, 2, amsterdam, [{london, 2, paris}]).

[{london,2,paris}]

> dijkstra:update(london, 1, stockholm,

[{berlin, 2, paris}, {london, 3, paris}]).

[{london,1,stockholm}, {berlin, 2, paris}]

2.2 the iteration

This is the heart of the algorithm. We will take a sorted list of entries, a
map and a table that is what we have constructed so far. We have three
cases:

• If there are no more entries in the sorted list then we are done and the
given routing table is complete.

• If the first entry is a dummy entry with an infinite path to a city we
know that the rest of the sorted list is also of infinite length and the
given routing table is complete.

4



• Otherwise, take the first entry in the sorted list, find the nodes in the
map reachable from this entry and for each of these nodes update the
Sorted list. The entry that you took from the sorted list is added to
the routing table.

Iterate this until we have no more entries in the sorted list - the table is
then complete.

What is happening here? If the entry says that berlin can be reached
in three hops by going through paris and the map says that berlin is di-
rectly linked to copenhagen, then copenhagen is reachable in four hops going
through paris. We might already have a entry for copenhagen using only
three hops over amsterdam and then nothing is done, but if we have an entry
with more than four hops we will update the list.

If we have an entry for copenhagen with less than three hops, this entry
has already been processes and removed from the list. This explains why
we do not want to add another entry for copenhagen.

Note, since our network is connected by directional links it could actually
be the case that some nodes in our map are not reachable at all. If ulanbator
has a link to beijing but there is no link from beijing to ulanbator then
the world will have ulanbator in the map. If all cites in the map are chosen
to be part of the original sorted list that we try to iterate over we will in
the end find an entry:

{ulanbator, inf, unknown}

as the first element in the list. If we have this situation we can conclude
that the routing table we have is complete and contains all reachable cities.

• iterate(Sorted, Map, Table): construct a table given a sorted list
of nodes, a map and a table constructed so far.

The second case is to handle the situation when nodes in the map are
not reachable. In order to capture this we take a closer look at the first node
in the sorted list. If we have a node with the length set to infinity, inf, then
this node (nor any other node after it since the list is sorted) cannot be
reached and need not be part of the final table.

This is a test of the iterate procedure:

> dijkstra:iterate([{paris, 0, paris}, {berlin, inf, unknown}],

[{paris, [berlin]}], []).

[{paris, paris},{berlin,paris}]

Now in the same module implement the function table/2 that should
take a list of gateways and a map and produce a routing table with one
entry per node in the map. The table could be a list of entries where each

5



entry states which gateway to use to find the shortest path to a node (if
we have a path). Follow the outline below and you will have your program
running in no-time.

• table(Gateways, Map): construct a routing table given the gate-
ways and a map.

List the nodes of the map and construct a initial sorted list. This list
should have dummy entries for all nodes with the length set to infinity,
inf, and the gateway to unknown. The entries of the gateways should have
length zero and gateway set to itself. Note that inf is greater than any
integer (try). When you have constructed this list you can call iterate with
an empty table. This is a test of the table procedure:

> dijkstra:table([paris, madrid], [{madrid,[berlin]}, {paris, [rome,madrid]}]).

[{berlin,madrid},{rome,paris},{madrid,madrid},{paris,paris}]

To complete the dijkstra module we need one more procedures.

• route(Node, Table) search the routing table and return the gateway
suitable to route messages to a node. If a gateway is found we should
return {ok, Gateway} otherwise we return notfound.

The table/2 and route/2 are the only procedures that we need to
export. No one outside the module knows how the table is represented so
you can re-implement it and make it even more efficient.

3 Interfaces

A router will also need to keep track of a set of interfaces. A interface is
described by the symbolic name (london), a process reference and a process
identifier. When you implement the router it will be clear what a process
reference is. Implement the following procedures:

• new() return an empty set of interfaces.

• add(Name, Ref, Pid, Intf) add a new entry to the set and return
the new set of interfaces.

• remove(Name, Intf) remove an entry given a name of an interface,
return a new set of interfaces.

• lookup(Name, Intf) find the process identifier given a name, return
{ok, Pid} if found otherwise notfound.

• ref(Name, Intf) find the reference given a name and return {ok,
Ref} or notfound.

6



• name(Ref, Intf) find the name of an entry given a reference and
return {ok, Name} or notfound.

• list(Intf) return a list with all names.

• broadcast(Message, Intf) send the message to all interface pro-
cesses.

It should be quite straight forward to implement this.

4 The history

When we send link-state messages around we need to avoid cyclic paths; if
we are not careful we will resend messages forever. We can solve this in two
ways, either we set a counter on each message and decrement the counter
in each hop, hoping that it will reach all routers before the counter reaches
zero, or we keep track of what messages we have seen so far.

We will try the later strategy but to avoid having to keep a copy of all
messages we will tag each constructed message with a per router increasing
message number. If we know that we have seen message 15 from london

then we know that messages from london with a lower number are old and
can be thrown away. This strategy not only avoids circular loops but also
prevents old messages from being delayed and later be allowed to change
our view of the network.

Implement a data structure called history that keeps track of what mes-
sages that we have seen. In module hist implement two procedures.

new(Name) Return a new history, where messages from Name will
always be seen as old.

update(Node, N, History) Check if message number N from the Node
is old or new. If it is old then return old but if it new return {new, Updated}
where Updated is the updated history.

To determine if a link-state message is old or new one need of course
not store the message itself nor all previously received messages. The only
thing we have to keep track of is the highest counter value received from
each node. Can you create an entry for a node that will make any message
look old?

5 The router

The router should be able to, not only route messages through a network
of connected nodes but also, maintain view of the network and construct
optimal routing tables. Each routing process will have a state:

• a symbolic name such as london

7



• a counter

• a history of received messages

• a set of interfaces

• a routing table

• a map of the network

When a new router process is created it will sett all its parameters to initial
empty values. We will also register the router process under a uniqe name
(unique for the erlang machine it is running on, for example r1, r2, etc).

-module(routy).

-export([start/2, stop/1, ...]).

start(Reg, Name) ->

register(Reg, spawn(fun() -> init(Name) end)).

stop(Node) ->

Node ! stop,

unregister(Node).

init(Name) ->

Intf = intf:new(),

Map = map:new(),

Table = dijkstra:table(Intf, Map),

Hist = hist:new(Name),

router(Name, 0, Msgs, Intf, Table, Map).

To route a message to a node, the router will simply consult the routing
table to find the best gateway and then find the pid of that gateway given
the list of interfaces. This is the easy part; the hard part is to maintain a
consistent view of the networks as interfaces are added and removed. The
algorithm of a links-state protocol is as follows:

• determine which nodes that you are connected to

• tell all neighbors in a link-state message

• if you receive a link-state message that you have not seen before pass
it along to your neighbors

8



A node will thus collect link-state messages from all other routers in the
network. The link-state messages are exactly what we need to build a map.
Since we also know which nodes we can reach directly, our gateways, we can
use Dijkstra’s algorithm to generate a routing table.

In our first effort we will however only implement a process that can
connect or disconnect to other nodes in the system and update its set of
interfaces.

5.1 adding interfaces

We will user monitors to detect if a node is unreachable; a monitor will send
an ’DOWN’ message to the process and we can then remove links to the node.
A skeleton code for the router process could look as follows.

router(Name, N, Hist, Intf, Table, Map) ->

receive

% :

% :

{add, Node, Pid} ->

Ref = erlang:monitor(process,Pid),

Intf1 = intf:add(Node, Ref, Pid, Intf),

router(Name, N, Hist, Intf1, Table, Map);

{remove, Node} ->

{ok, Ref} = intf:ref(Node, Intf),

erlang:demonitor(Ref),

Intf1 = intf:remove(Node, Intf),

router(Name, N, Hist, Intf1, Table, Map);

{’DOWN’, Ref, process, _, _} ->

{ok, Down} = intf:name(Ref, Intf),

io:format("~w: exit recived from ~w~n", [Name, Down]),

Intf1 = intf:remove(Down, Intf),

router(Name, N, Hist, Intf1, Table, Map);

% :

% :

{status, From} ->

From ! {status, {Name, N, Hist, Intf, Table, Map}},

router(Name, N, Hist, Intf, Table, Map);

stop ->

9



ok

end.

Note that creating a monitor for a process that does not exist will fail
nor throw an exception. What will happen is that you’re imediately sent a
down message. The behaviour is thus the same if you add a monitor to a
process that dies or if you add monitor to a process that died 10 milliseconds
ago.

The {status, From} message can be used to do a pretty-print of the
state. Add a function that sends a status message to a process, receives
the reply and displays the information.

When we start Erlang shells we will all have to use the same magic cookie
so let’s agree on routy. We could also use a flag to reduce the underlying
network traffic. The default behavior for distributed Erlang is to try to
connect to all nodes available in the network. Connecting A with B where
B is already connected to C will create a connection between A and C. Since
we will allow our nodes to crash we can turn this feature off.

erl -name sweden@130.123.112.23 -setcookie routy -connect_all false

To try to keep things under control we name Erlang nodes after countries
and routers after names in that country. Start two routers and send them
messages so that they connect to each other. Terminate one of them and
see that things work.

5.2 link-state messages

Next we need to implement the link-state message. When this is sent it is
tagged with the counter value. The counter is then updates so subsequent
messages will have a higher value. When receiving a links-state message a
router must check if this is an old or new message. The handling of link-state
messages can be implemented as follows:

{links, Node, R, Links} ->

case hist:update(Node, R, Hist) of

{new, Hist1} ->

intf:broadcast({links, Node, R, Links}, Intf),

Map1 = map:update(Node, Links, Map),

router(Name, N, Hist1, Intf, Table, Map1);

old ->

router(Name, N, Hist, Intf, Table, Map)

end;

When we have updated our map we should also update the routing table.
This is where we invoke the Dijkstra algorithm. We should do it periodically,

10



maybe every time we receive a link-state message or better every time the
map changes. In our experiment we will do it manually. We add a method
update that we will send to order the router to update its routing table.

update ->

Table1 = dijkstra:table(intf:list(Intf), Map),

router(Name, N, Hist, Intf, Table1, Map);

We also add a message so that we manually can order our router to broadcast
a link-state message. This should of course be done periodically or every
time a link is added but we want to experiment with inconsistent maps so
we keep this as a manual procedure.

broadcast ->

Message = {links, Name, N, intf:list(Intf)},

intf:broadcast(Message, Intf),

router(Name, N+1, Hist, Intf, Table, Map);

5.3 testing what we have

We can now test our protocol by starting several routing processes and
letting them connect to each other. Let’s call Erlang machines for countries
and routers for cities. So start a Erlang node with the command:

erl -name sweden@130.123.112.23 -setcookie routy -connect_all false

Load the routy and dijkstra module and then start routers for dif-
ferent cities in Sweden. Then connect the routers by manually sending
them add messages. Note that the add message contains both the logical
name (stockholm) and the process identifier of the router (for example {r1,
’sweden@130.123.112.23’}).

(sweden@130.123.112.23)>routy:start(r1, stockholm).

(sweden@130.123.112.23)>routy:start(r2, lund).

(sweden@130.123.112.23)>lund ! {add, stockholm, {r1, ’sweden@130.123.112.23’}}.

true

If everything works out ok, you should be able to build a network of
routers. When you send the message broadcast to a router the link-state
messages should be generated and after a update message the routing table
should be computed. Try it with some Erlang nodes running on one machine.
If you have problems with the long network names you could start Erlang
using short node names -sname or simply have all routers in the same Erlang
process.

11



5.4 routing a message

It’s now time to implement the actual routing. We have one easy case and
that is when a message has actually arrived to the final destination.

{route, Name, From, Message} ->

io:format("~w: received message ~w ~n", [Name, Message]),

router(Name, N, Hist, Intf, Table, Map);

If the message is not ours we should forward it. If we find a suitable gateway
in the routing table we simply forward the message to the gateway. If we
do not find a routing entry or do not find a interface of a gateway we have
a problem, simply drop the packet and keep smiling.

{route, To, From, Message} ->

io:format("~w: routing message (~w)", [Name, Message]),

case dijkstra:route(To, Table) of

{ok, Gw} ->

case intf:lookup(Gw, Intf) of

{ok, Pid} ->

Pid ! {route, To, From, Message};

notfound ->

ok

end;

notfound ->

ok

end,

router(Name, N, Hist, Intf, Table, Map);

In the implementation we make use of the fact that the routing table contains
entries even for our own gateways. Could we also have a dummy entry for
the node itself so that we would not need to have a special message entry
to handle messages directed to the router itself?

We also add a message so that a local user can initiate the routing of a
message without knowing the name of the local router.

{send, To, Message} ->

self() ! {route, To, Name, Message},

router(Name, N, Hist, Intf, Table, Map);

This is how far you should have got before the seminar. Write up a two
page report on what was difficult and how you solved it. At the seminar we
should connect as many routers as possible, start killing nodes and watch
how the network is still able to route messages.

12



6 The world

Form a group and be responsible for a region in the world (Europe, Africa,
South America etc); coordinate with other groups so each group has it’s own
region. Then start a set of Erlang nodes on each machine where you give
each Erlang node the name of a country (that is in your region).

In each Erlang node you can now create one or more routers with reg-
istered names of cities in that country. Then start to connect the routers
to each other. Note that all cities in the world must have unique names so
even if there is a Paris in Texas the network will only allow one node to be
called paris. Start to send messages to other nodes and see that it works.
Note that since you have not implemented automatic broadcast and update
functionality, you must do this manually.

When things are working in your region chose two or more routers that
should connect to other parts of the world. Make sensible connections to
make it easier to understand what the network looks like. Can we send
messages from Sydney to Oslo?

If everything works ok, you can try to either stop routers, close Erlang
nodes or simply disable the network card. Will the routing functionality
still work? How long time does it take between a disabled network card and
the delivery of a ’DOWN’ message to the other nodes?

13


