
Muty: a distributed mutual-exclusion lock

Johan Montelius

October 2, 2016

Introduction

Your task is to implement a distributed mutual-exclusion lock. The lock
will use a multicast strategy and work in a asynchronous network where we
do not have access to a synchronized clock. You will do the implementation
in three versions: the dead-lock prone, the unfair and the Lamport clocked.
Before you start you should have good theoretical knowledge of the multicast
algorithm and how Lamport clocks work.

1 The architecture

The scenario is that a set of workers need to synchronize and, they will
randomly decide to take a lock and when taken hold it for a short period
before releasing it. Each worker will collect statistics on how long time it
took them to acquire the lock so that it can present some interesting figures
at the end of each test.

Let’s first implement the worker and then do refinement of the lock.

1.1 the worker

When the worker is started it is given access to a lock. It is also given a
name for nicer print-out and a seed so that each worker will have its own
random sequence. We also provide information on for how long the worker
in average is going to sleep and work.

We will have four workers competing for a lock so if they sleep for in
average 1000 ms and work for in average 2000 ms we will have a lock with
high chance of congestion. You can easily change these parameters to sim-
ulate more or less congestion. The deadlock constant is how long (4000 ms)
we are going to wait for a lock before giving up.

The gui is a process that will give you some feedback on the screen on
what the worker is actually doing. The gui could simply log things on the
terminal but a graphical interface is of course to be prefered. An example
gui, based on the the wx library, is given in the appendix.

-module(worker).

-export([start/5]).

1



-define(deadlock, 4000).

start(Name, Lock, Seed, Sleep, Work) ->

spawn(fun() -> init(Name, Lock, Seed, Sleep, Work) end).

init(Name, Lock, Seed, Sleep, Work) ->

Gui = spawn(gui, init, [Name]),

random:seed(Seed, Seed, Seed),

Taken = worker(Name, Lock, [], Sleep, Work, Gui),

Gui ! stop,

terminate(Name, Taken).

We will do some book-keeping and save the time it took to get the locks.
In the end we will print some statistics.

A worker sleeps for a while and then decides to move into the critical
section. The call to critical/4 will return information on if the critical
section was entered and how long it took to acquire the lock.

worker(Name, Lock, Taken, Sleep, Work, Gui) ->

Wait = random:uniform(Sleep),

receive

stop ->

Taken

after Wait ->

T = critical(Name, Lock, Work, Gui),

worker(Name, Lock, [T|Taken], Sleep, Work, Gui)

end.

The critical section is entered by requesting the lock. We wait for a reply
taken or for a time-out. If the lock is taken the elapsed time T is returned
to the caller.

The gui is informed as we send the request for the lock and if we acquire
the lock or have to abort.

critical(Name, Lock, Work, Gui) ->

T1 = erlang:system_time(micro_seconds),

Gui ! waiting,

Lock ! {take, self()},

receive

taken ->

T2 = erlang:system_time(micro_seconds),

T = T2 - T1,

io:format("~w: lock taken in ~w ms~n",[Name, T div 1000]),

Gui ! taken,

2



timer:sleep(random:uniform(Work)),

Gui ! leave,

Lock ! release,

{taken, T}

after ?deadlock ->

io:format("~w: giving up~n",[Name]),

Lock ! release,

Gui ! leave,

no

end.

The worker terminates when it receives a stop message. It will simply
print out some statistics.

terminate(Name, Taken) ->

{Locks, Time, Dead} =

lists:foldl(

fun(Entry,{L,T,D}) ->

case Entry of

{taken,I} ->

{L+1,T+I,D};

_ ->

{L,T,D+1}

end

end,

{0,0,0}, Taken),

if

Locks > 0 ->

Average = Time / Locks;

true ->

Average = 0

end,

io:format("~s: ~w locks taken, average of ~w ms, ~w deadlock situations~n",

[Name, Locks, (Average div 1000), Dead]).

1.2 the locks

You will now work with three locks implemented in three modules: lock1,
lock2 and lock3. The first lock, lock1, will be very simple and will not
fulfill the requirements that we have on a lock. It will prevent several workers
from entering the critical section but that is about it.

When the lock is started it is given a unique identifier and a set of peer
locks. The identifier is not used by the first lock but we want the interface
to be the same for all lock.

3



-module(lock1).

-export([start/2]).

start(Id) ->

spawn(fun() -> init(Id) end).

init(_) ->

receive

{peers, Peers} ->

open(Peers);

stop ->

ok

end.

The lock enters the state open and waits for either a command to take

the lock or a request from another lock. If it is ordered to take the lock it
will multicast a request to all other locks and then enter a waiting state. A
request from another lock is immediately replied with an ok message. Note
how the reference is used to connect the request to the reply.

open(Nodes) ->

receive

{take, Master} ->

Refs = requests(Nodes),

wait(Nodes, Master, Refs, []);

{request, From, Ref} ->

From ! {ok, Ref},

open(Nodes);

stop ->

ok

end.

requests(Nodes) ->

lists:map(fun(P) -> R = make_ref(), P ! {request, self(), R}, R end, Nodes).

In the waiting state the lock is waiting for ok messages. All requests
have been tagged with unique references so that it can keep track of which
locks that have replied and which that it is still waiting for. We could have
made simpler solution where we simple wait for n locks to reply but this
version is more flexible if we want to extend it.

wait(Nodes, Master, [], Waiting) ->

Master ! taken,

4



held(Nodes, Waiting);

wait(Nodes, Master, Refs, Waiting) ->

receive

{request, From, Ref} ->

wait(Nodes, Master, Refs, [{From, Ref}|Waiting]);

{ok, Ref} ->

Refs2 = lists:delete(Ref, Refs),

wait(Nodes, Master, Refs2, Waiting);

release ->

ok(Waiting),

open(Nodes)

end.

ok(Waiting) ->

lists:foreach(fun({F,R}) -> F ! {ok, R} end, Waiting).

While the lock is waiting it could also receive request messages from
locks that have also decided to take the lock. In this version of the lock
we simply add these to a set of locks that have to wait. When the lock is
released we will send them ok messages.

As an escape from dead-lock, we also allow the worker to send a release

message even though the lock is not yet held. We will then send ok messages
to all waiting locks and enter the open state.

In the held state we keep adding requests from locks to the list of waiting
locks until we receive a release message from the worker.

held(Nodes, Waiting) ->

receive

{request, From, Ref} ->

held(Nodes, [{From, Ref}|Waiting]);

release ->

ok(Waiting),

open(Nodes)

end.

For the Erlang hacker there are some things to think about. In Erlang
messages are queued in the mail-box of the processes. If they do not match
a pattern in a receive statement they are handled but otherwise they are
kept in the queue. In our implementation we happily accept and handle
all messages even though some, such as the request messages when in the
held state, are just stored for later. Would it be possible to use the Erlang
message queue instead and let request messages be queued until we release
the lock? The reason why I’ve implemented it they way I did was that I
wanted to make it explicit that request messages are treated even if we’re
in the held state. - Why are we not looking for ok messages?

5



1.3 some testing

Now write some test procedures that create four locks and four workers.
Connect them and run some tests.

-module(muty).

-export([start/3, stop/0]).

start(Lock, Sleep, Work) ->

L1 = apply(Lock, start, [1]),

L2 = apply(Lock, start, [2]),

L3 = apply(Lock, start, [3]),

L4 = apply(Lock, start, [4]),

L1 ! {peers, [L2, L3, L4]},

L2 ! {peers, [L1, L3, L4]},

L3 ! {peers, [L1, L2, L4]},

L4 ! {peers, [L1, L2, L3]},

register(w1, worker:start("John", L1, 34, Sleep, Work)),

register(w2, worker:start("Ringo", L2, 37, Sleep, Work)),

register(w3, worker:start("Paul", L3, 43, Sleep, Work)),

register(w4, worker:start("George", L4, 72, Sleep, Work)),

ok.

stop() ->

stop(w1), stop(w2), stop(w3), stop(w4).

stop(Name) ->

case whereis(Name) of

undefined ->

ok;

Pid ->

Pid ! stop

end.

We’re now using the name of the module as a parameter to the start
procedure. We will easily be able to test different locks with different sleep
and work parameters. Does it work ok? What is happening when you
increase the risk of a lock conflict? Why?

2 Resolving dead-lock

The problem with the first solution can be handled if we give each lock a
unique identifier 1, 2, 3 and 4. The identifier will give a priority to the lock.

6



A lock in the waiting state will send a ok message to a requesting lock if the
requesting lock has a higher priority (1 having highest priority).

Implement this solution in a module called lock2, and show that it works
even if we have high contention. Does it work? There is a situation that you
have to handle correctly. If not, you run the danger of having two processes
in the critical section at the same time. Can you guarantee that we only
have one process in the critical section at any time? At the seminar be
prepared to explain why your solution does work.

Run some tests and see how well your solution works. How well does it
perform and what is the drawback? At the seminar be prepared to show
your results.

3 Lamport time

One improvement is to let locks be taken with priority given in time order.
The only problem is that we do not (assuming we are running over a asyn-
chronous network) have access to synchronized clocks. The solution is to
use logical clocks such as Lamport clocks.

To implement this you must add a time variable to the lock. The value
is initialized to zero but is updated every time the lock receives a request

message from another lock. The Lamport clock thus keeps track of the
highest request we have seen so far. When a request is sent, it should have
a timestamp of one higher than what we have seen.

You now see a solution where the Lamport timestamp need not be added
to all message in the system but only the ones that are important i.e. the
request messages.

When a lock is in the waiting state it must determine if the request was
sent before or after it sent it’s own request message. If this can not be
determined the lock identifier is used to resolve the order.

Note that the workers are not involved in the Lamport clock. Could
we have a situation where a worker is not given the priority to a lock even
though it issued a request to it’s lock logically before the worker that took
the lock?

4 The seminar

At the start of the seminar you should hand in a two page report on how you
solved the task of handling the dead-lock in lock2. You should also describe
how you think the priority on Lamport time could be implemented. At
the seminar you should be able to present and explain your solution to the
above problems. You should also be able to discuss the pros and cons with
each solution. During the seminar we will also implement the solution in a
module called lock3 and run some experiments.

7



Appendix

Here is a gui. The worker will start the gui and send messages when it is
waiting for a lock, when it receives a lock and when the lock is released (or
attempt to take the lock is aborted). The window of the gui will be: blue
for open, yellow for waiting and red for held.

-module(gui).

-export([start/1, init/1]).

-include_lib("wx/include/wx.hrl").

start(Name) ->

spawn(gui, init, [Name]).

init(Name) ->

Width = 200,

Height = 200,

Server = wx:new(), %Server will be the parent for the Frame

Frame = wxFrame:new(Server, -1, Name, [{size,{Width, Height}}]),

wxFrame:show(Frame),

loop(Frame).

loop(Frame)->

receive

waiting ->

wxFrame:setBackgroundColour(Frame, {255, 255, 0}),

loop(Frame);

enter ->

wxFrame:setBackgroundColour(Frame, ?wxRED),

loop(Frame);

leave ->

wxFrame:setBackgroundColour(Frame, ?wxBLUE),

loop(Frame);

stop ->

ok;

Error ->

io:format("gui: strange message ~w ~n", [Error]),

loop(Frame)

end.

8


