
Casty: a streaming media network

Johan Montelius

October 2, 2016

Introduction

In this assignment you will build a streaming media network. We will play
around with shoutcast streams and build proxies, distributors and peer-to-
peer clients. You will use the Erlang bit-syntax to implement a communica-
tion protocol over HTTP. The parser will be implemented using higher order
functions to hide the socket interface. You will learn how to decode a mp3
audio stream and make it available for connecting media players. Sounds
fun? - Let’s go!

1 Shoutcast - ICY

You first need to understand how shoutcast works. It’s very simple protocol
for streaming audio content built using HTTP. It was at first called “I Can
Yell” and you therefore see a lot of icy tags in the HTTP header; we will
also refer to it as the ICY protocol.

1.1 request - reply

A media client such as Amarok (or VLC) connects to a server by sending
a HTTP GET request. In this request the client asks for a specific feed in
the same way as it would ask for a web page. In the request header it also
announce if it can handle meta-data, the name of the player etc. A request
could look like this:

GET / HTTP/1.0<cr><lf>

Host: mp3-vr-128.smgradio.com<cr><lf>

User-Agent: Casty<cr><lf>

Icy-MetaData: 1<cr><lf>

<cr><lf>

The Icy-Metadata header is important since it signals that our client is
capable of receiving meta data in an audio stream. To see that this actually
works you could use wget and look at what for example Virgin Radio returns
when you try to connect. Try the following command in a shell but terminate
it with ctrl-c or it will keep reading the audio stream.

wget --header="Icy-MetaData:1" -S -O reply.txt http://mp3-vr-128.smgradio.com

1

Now look at the file (you did terminate the loading right) reply.txt.
Decode the reply and try to figure out what the different header tag means.
One reply header that is very important for us is the icy-metaint header.
It typically has the value 8192 which is the number of bytes in each mp3-
block that is sent. Since the bit rate for this audio stream is 128Kb/s a 8192
byte block will contain half a second of music. Look at position 8192 in the
body, do you find the meta data?

1.2 meta-data

The meta data comes as a sequence of characters after each audio block.
The length of the sequence is coded in one integer k in the first byte of the
meta data block. The length of the sequence is 16k bytes (not including
the k-byte); the smallest meta data block is thus simply one k-byte of zero.
If the text message is not an even multiple of 16 it is padded with trailing
zeros. In Erlang bit-syntax a meta data segment could be written as follows:

<<1,104,

101,108,

108,111,

0,0,0,0,

0,0,0,0,

0,0,0>>

The first byte is a the length of the following padded string. The next
five bytes spell out “hello” and the padding consist of 11 zeros. This could
also be written:

<<1,"hello", 0:(11*8)>>

When you attach to a shoutcast radio station you will see that most
meta data blocks are empty. When a new song i played they use the meta
data to send the name of the artist, title etc.

1.3 encoding of messages

One module, icy, will implement all details of how the ICY protocol is
encoded and decoded. To make it more interesting we will use higher order
functions and make the module both able to handle incomplete sequences
and being unaware of how byte sequences are actually read or written.

We will of course communicate using sockets but why build this into the
icy module; we pass a function along as an argument that the icy procedures
can use to send a binary encoded segment when it is ready.

2

1.3.1 a request

Sending a request is simple an we will do with this almost hard coded version.
The host is the name of the server we’re contacting and the feed is the
resource, typically “/”.

send_request(Host, Feed, Sender) ->

Request = "GET " ++ Feed ++" HTTP/1.0\r\n" ++

"Host: " ++ Host ++ "\r\n" ++

"User-Agent: Ecast\r\n" ++

"Icy-MetaData: 1\r\n" ++ "\r\n",

Sender(list_to_binary(Request)).

The third argument is the function that we apply to the final binary.
It is up to the caller of send request/3 to provide a function that does
something useful with the binary. When using socket communication we
will call this procedure as follows:

Sender = fun(Bin) -> gen_tcp:send(Socket, Bin) end,

icy:send_request("mp3-vr-128.smgradio.com", "/", Sender)

We could however use it like this if we’re debugging our code:

Sender = fun(Bin) -> Bin end,

icy:send_request("mp3-vr-128.smgradio.com", "/", Sender)

Or why not like this:

Sender = fun(Bin) -> io:format("Request:~n~s~n", [Bin]) end,

icy:send_request("mp3-vr-128.smgradio.com", "/", Sender)

1.3.2 a reply

A complete ICY reply consist of a status line, a sequence of headers and, a
body. We divide the encoding into one procedure that encodes the status
line and headers, and one procedure that encodes a segment of the body.
Encoding the status line and headers is quite simple.

send_reply(Header, Sender) ->

Status = "ICY 200 OK\r\n",

Reply = Status ++ header_to_list(Header),

Sender(list_to_binary(Reply)).

We will represent headers by a list of tuples containing a header (an
atom) and a value (a string). A ICY header could look as follows:

3

[{’icy-notice’, "This stream requires Winamp .."},

{’icy-name’, "Virgin Radio ..."},

{’icy-genre’, "Adult Pop Rock"},

{’icy-url’, "http://www.virginradio.co.uk/"},

{’content-type’, "audio/mpeg"},

{’icy-pub’, "1"},

{’icy-metaint’ "8192"},

{’icy-br’, "128"}]

The encoding of the headers, implemented in header to list/1, is done
simply by turning the list of tuples into a byte sequence with the name and
value of each header separated by a colon and terminated by a <cr><lf>
(in Erlang written as "\r\n" . The whole header sequence is terminated
by an additional <cr><lf>. We can assume that the headers are valid
headers so we don’t have to check every header. The implementation is left
as an exercise. The built-in function atom to list/1 will come at handy.

header_to_list([]) ->

:

header_to_list([{Name, Arg}|Rest]) ->

:

... ++ header_to_list(Rest).

1.3.3 the data segments

A data segment will be represented by a tuple with audio data and a (pos-
sibly empty) string that should be our meta data. The audio data is, as will
soon be clear, coded as a list of binaries. The total length of all binaries
must be equal to the metaint header information. We assume that this is
the case and do not check this for every segment.

send_data({Audio, Meta}, Sender) ->

send_audio(Audio, Sender),

send_meta(Meta, Sender).

The implementation of send audio/2 is left as an exercise. Sending the
meta data is slightly more complicated. We need to add the padding to the
text string and calculate the k-value.

send_meta(Meta, Sender) ->

{K, Padded} = padding(Meta),

Sender(<<K/integer, Padded/binary>>).

Implementing the padding/1 function is left as an exercise. You will
need the arithmetic constructs N rem 16 which will give you the reminder

4

when dividing with 16, and N div 16 that is the integer division with 16.
Calculate how large padding is needed, and that number of zeros to the end
of the sequence and turn it into a binary.

padding(Meta) ->

N = length(Meta),

:

:

end.

This completes the encoding of messages, now for the slightly more com-
plex task of decoding.

1.4 sockets and continuations

To understand the structure of our parser one must understand the problem
with reading from a stream socket. Reading from a socket is very different
from reading from a file. When reading from a socket we could be stuck half-
way through a structure since the rest of the message has not yet arrived.
In a concurrent system we do not want to block a process suspending on a
socket.

In Erlang there is a solution to this problem. Instead of “reading” from
the socket we have the socket send us segments as they arrive. We can thus
go into a receive statement and wait for either more segments or any other
message. A process that is receiving segments from socket could then be
programmed as follows:

reader(Socket, Sofar) ->

receive

{tcp, Socket, Next} ->

reader(Socket, [Next|Sofar]);

{tcp_closed, Socket} ->

{done, lists:reverse(Sofar)};

stop ->

{aborted, Sofar}

end.

The process that calls reader/2 can now be aborted by sending a stop
message. A flexible solution, but do we have to build this into the parser?
Can we not simply read everything there is to read from the socket and then
pass everything to the parser? The problem is that we do not always know
(especially true for HTTP) how long the message is unless we start to parse
it; only by parsing can we determine if the message is complete.

If we try to build this reading strategy into the parse the parser would
have to be aware of that it is reading from a socket and that it must be open

5

to receive other messages and not just the TCP related messages. This would
of course make the parser complicated and less flexible. An alternative is to
use “continuations”; take a look at this.

The parser is given a, possibly not complete, segment to parse and could
return either:

• {ok, Parsed, Rest} : if the parsing was successful, Parsed is the
result of the parser and Rest is what is left of the segment.

• {more, Continuation} : if more segments are needed, Continuation
is a function that should be applied to the next segment.

• {error, Error} : if the parsing failed.

We then define a general purpose user of the parser that uses a zero
argument function. The function is applied without arguments and could
then result in a parsed result, a request for more or an error.

reader(Parser, Socket) ->

case Parser() of

{ok, Parsed, Rest} ->

{ok, Parsed, Rest};

{more, Cont} ->

receive

{tcp, Socket, More} ->

reader(fun() -> Cont(More) end, Socket);

{tcp_closed, Socket} ->

{error, "server closed connection"};

stop ->

aborted

end;

{error, Error} ->

{error, Error}

end.

If more information is needed we go into the receive statement and wait
for the next segment. If we receive a new TCP block we construct a new
function and apply reader/2 recursively. To read and parse a message from
a socket we could call the reader as follows:

reader(Socket) ->

reader(fun() -> parser(<<>>) end, Socket).

We will not use the code above but this is the strategy that we will use
when implementing our ICY parser. The user of the parser will be the client
and proxy processes that we will define later.

6

1.5 the parser

So now let’s look at the parser. We will need to parse two types of messages:
a request and a reply. The request will be sent by a media client to one of
our client proxies and the reply will be sent from the server to our server
proxy. The reply, that consist of a status line, headers and a body will, in
the same way as the the encoding procedures, be broken up into two parts.
First we will parse the the status line and headers and then we will parse the
body. The body will then be broken up into a sequence of data segments.

The parser will work on binaries; this will make it more efficient when
handling the larger audio data.

1.5.1 a request

Parsing a request is quite simple, we read the first line (all lines are termi-
nated by <cr><lf>) and check that it is equal to “GET / HTTP/1.0”. Now
this is of course a simplification; a request could of course include something
more interesting than “/” but it will do for now.

The line/2 function will look for the end-of-line characters but if these
are not found it will return more. The request parser will then return a
continuation in the form of a function that should be applied to the next
segment. We could make this more complicated but why not simply return
a function that appends the segment that we have to the next segment and
tries to redo the parsing of the request.

request(Bin) ->

case line(Bin) of

{ok, "GET / HTTP/1.0", R1} ->

case header(R1, []) of

{ok, Header, R2} ->

{ok, Header, R2};

more ->

{more, fun(More) -> request(<<Bin/binary, More/binary>>) end}

end;

{ok, Req, _} ->

{error, "invalid request: " ++ Req};

more ->

{more, fun(More) -> request(<<Bin/binary, More/binary>>) end}

end.

Note how the scoping rules work; Erlang uses lexical scoping and the
variable Bin will have it’s binding when the function request/1 is called.
The returned function could now be called in any environment and the Bin

variable will maintain it’s binding. This is called static or lexical scoping.

7

Some functional programming languages use dynamic scoping where the
value of Bin would depend on the environment in which it is used.

Once we have seen the request line we continue to parse the headers.
The parsing of the headers will either succeed or result in a request of more
information. If we succeed we return the Headers and also what is left of
the segment that we parsed. In practice the rest will be an empty segment
and probably ignored by the caller but why not be polite and return what
is left.

Note that we have made a simplification in the implementation of the
parse. If the function line/1 or header/2 has stepped through a hundred
characters only to find out that more characters are needed, they simply
return the atom more. The next time they are called they will have to run
through the same hundred characters again. It would of course be nice if
we could save exactly the position that we’re in and continue only with
the new segment. This would however make the function request/1 more
complicated. We would have to keep track of if we should continue reading
a line or a header. In practice, the original binary will always contain both
the request line and all headers so the question becomes academic.

Reading a line is a simple pattern matching exercise that is left as an
exercise. This is skeleton to work on: (<cr >could be written as 13 or $\r
and <lf >as 10 or $\n)

line(Bin) ->

line(Bin, ...).

line(..., _) ->

...;

line(<<..., ..., Rest/binary>>, Sofar) ->

{ok, ..., ...};

line(<<..., Rest/binary>>, Sofar) ->

line(..., ...).

1.5.2 a reply

Parsing a reply is very similar. We apply the same strategy as before, try
to parse as much as possible and start from the beginning if you need more.
The thing that is slightly different is when we have successfully parsed the
headers. Now we return not only the headers but also a continuation that
when applied will generate the first data segment. Since the decoding of
the data segments needs information of the length of the audio part we first
extract this information from the headers. The implementation of metaint
is left as an exercise.

reply(Bin) ->

8

case line(Bin) of

{ok, "ICY 200 OK", R1} ->

case header(R1, []) of

{ok, Header, R2} ->

MetaInt = metaint(Header),

{ok, fun() -> data(R2, MetaInt) end, Header};

more ->

{more, fun(More) -> reply(<<Bin/binary, More/binary>>) end}

end;

{ok, Resp, _} ->

{error, "invalid reply: " ++ Resp};

more ->

{more, fun(More) -> reply(<<Bin/binary, More/binary>>) end }

end.

Parsing a data segment consists of two parts. First we read M number
of bytes from the input stream and then we decode a meta data section. We
will stick to our continuation strategy and return either:

• {more, Continuation}: where Continuation is a function that should
be applied to the next segment if more segments are needed or

• {ok, {Audio, Meta}, Continuation}: once a complete data seg-
ment has been read. The continuation will give us the next data
segment when applied without arguments.

It is not very likely that we will be able to read a whole audio segment in
one go. An audio segment is typically 8192 bytes long and TCP packets have
a maximum size of 1460 bytes over regular Ethernet. Each audio segment
will typically consist of six chunks. Since we do not want to decode those
there is no point in appending them into one binary. Instead we keep them
in a list. Eventually it is up to the send audio/2 procedure to send these
chunks one by one.

data(Bin, M) ->

audio(Bin, [], M, M).

audio(Bin, Sofar, N, M) ->

Size = size(Bin),

if

Size >= N ->

{Chunk, Rest} = split_binary(Bin,N),

meta(Rest, lists:reverse([Chunk|Sofar]), M);

true ->

{more, fun(More) -> audio(More, [Bin|Sofar], N-Size, M) end}

end.

9

It’s important to understand how we avoid parsing the same binaries
every time we request more information. We return a function that should be
applied to the next segment but we remember what we have seen so far and
how much more we need to see. This is different from the implementation
of request/1 where we simply started from the beginning.

Parsing the meta data segment is slightly more tricky. We first have to
read the k-byte so that we know the length of the following string. The
string consist of a text padded with zeros to a multiple of 16. We read the
k-byte (could be zero), the following string and remove the padding. We
could have kept the padding since we will only have a problem when we
should send the segment to a proper client but it could be nice to have a
proper string as the meta data.

meta(<<>>, Audio, M) ->

{more, fun(More) -> meta(More, Audio, M) end};

meta(Bin, Audio, M) ->

<<K/integer, R0/binary>> = Bin,

Size = size(R0),

H = K*16,

if

Size >= H ->

{Padded, R2} = split_binary(R0,H),

Meta = [C || C <- binary_to_list(Padded), C > 0],

{ok, {Audio, Meta}, fun() -> data(R2, M) end};

true ->

{more, fun(More) -> meta(<<Bin/binary, More/binary>>, Audio, M) end}

end.

You might not have seen the construct used to remove the padding. It’s
called list comprehension and could be read - “give me the list of C’s where
C is taken from binary to list(Padded) and C is greater than 0”.

1.6 does it work

Complete a module icy that exports the above described functions: request/1,
reply/1, send request/1, send reply/1 and send data/1. You can then
test your implementation with the following test examples:

icy:send_request("www.host.com", "/",

fun(Bin) -> io:format("~s~n", [Bin]) end).

icy:send_reply([{key, "value"}],

fun(Bin) -> io:format("~s~n", [Bin]) end).

icy:send_data({[<<"hello">>], "Message"},

fun(Bin) -> io:format("~w~n", [Bin]) end).

10

Experimenting with the parser is equally simple. It’s operating on bi-
naries but the binary syntax makes it very easy to construct the segments
that we need.

icy:request(<<"GET / HTTP/1.0\r\nkey:value\r\n\r\n">>).

Let’s try parsing something incomplete.

{more, F} = icy:request(<<"GET / HTTP/1.0\r\nkey:value\r\n">>).

F(<<"\r\n">>).

A reply will always give us a function that should be applied without
arguments to give us the data segments.

{ok, Data, H} = icy:reply(<<"ICY 200 OK\r\nicy-metaint: 5\r\n\r\n123">>).

Since the body did not contain 5 audio byte nor a meta data section we
should get a request for more if we apply the continuation.

{more, More} = Data().

Now let’s apply this continuation on the rest of the section. The “1”
indicates a total of 16 bytes. The message “hello” is then padded with 11
bytes of zeros (an integer 0 encoded in 11*8 bits).

More(<<"45", 1, "hello", 0:(11*8)>>).

2 The architecture

Our goal is now to build a proxy (server proxy), that is connected to a
shoutcast server, and a client (client proxy) that accepts connections from
a media player. The client should know about the proxy and communicate
with it using Erlang messages. We will use the following messages between
the client and the proxy.

• {request, Client}: where the Client is the Erlang process that wants
to connect.

• {reply, N, Context}: where Context is the header information re-
ceived from the source. N is the number on the data segment that
should arrive next.

• {data, N, Data}: where N is an integer to number all segments and
Data is the audio and meta data that we have received.

The numbering of data segments is to keep track of which segments we
need once we start to build more complicated distribution networks. In the
beginning the FIFO-order of Erlang messaging will give us the messages in
the right order.

11

2.1 the client

The client will listen on a TCP port and wait for incoming connection. Once
a connection is accepted a request is read from the socket. The content of
the request is not important for our needs, we will happily connect any
media client to a predefined proxy.

init(Proxy, Port) ->

{ok, Listen} = gen_tcp:listen(Port, ?Opt),

{ok, Socket} = gen_tcp:accept(Listen),

case read_request(Socket) of

{ok, _, _} ->

case connect(Proxy) of

{ok, N, Context} ->

send_reply(Context, Socket),

{ok, Msg} = loop(N, Socket),

io:format("client: terminating ~s~n", [Msg]);

{error, Error} ->

io:format("client: ~s~n", [Error])

end;

{error, Error} ->

io:format("client: ~s~n", [Error])

end.

When creating the listen socket we specify the properties in a options
list. The options we will use are:

• binary: more efficient since there is no point in handling the mp3
audio as list of integers.

• {packet, 0}: framing messages with the length of the message is very
useful but we’re dealing with the ICY protocol and not our own.

• {reuseaddr, true}: allow us to reuse the port (and we will)

• {active, true}: the socket process will send us segments as they
arrive, we do not have to suspend reading the socket.

• {nodelay, true}: send segments as soon as possible

Notice how we here choose to have a time-out when waiting for TCP
messages. We could also have chosen to accept a stop message or similar;
the client module is in control.

Once we have read a proper request (we don’t really care what is re-
quested) we try to connect to the proxy. The proxy will reply with a context

12

(the header information sent by the server) that we can send to the client
and then go into a loop that continuously deliver data segments from the
proxy to the media player.

connect(Proxy) ->

Proxy ! {request, self()},

receive

{reply, N, Context} ->

{ok, N, Context}

after ?TimeOut ->

{error, "time out"}

end.

The loop is simple and will continue to deliver data segments as long as
the TCP connection to the media player is not closed nor a time-out occurs.
At this point we do not check that we actually receive all data segments but
this could of course easily be done.

loop(_, Socket) ->

receive

{data, N, Data} ->

send_data(Data, Socket),

loop(N+1, Socket);

{tcp_closed, Socket} ->

{ok, "player closed connection"}

after ?TimeOut ->

{ok, "time out"}

end.

This is the interface that we use to the icy module. Sending is quite
simple, we use the exported procedures and supply a tcp send function that
should be used to send the constructed binaries over the socket interface.

send_data(Data, Socket) ->

icy:send_data(Data, fun(Bin)-> gen_tcp:send(Socket, Bin) end).

send_reply(Context, Socket) ->

icy:send_reply(Context, fun(Bin)-> gen_tcp:send(Socket, Bin) end).

The interface to the parser uses a general purpose reader that will will
return {ok, Parsed, Rest} or {error, Error}. It is given a zero argu-
ment function and a socket as input arguments. The function is applied and
results either in a successful parsing, a request for more or an error message.
The request for more input can now be handled outside of the parser module.
The reader will go into a receive statement and wait for more TCP messages.

13

We have a time-out so that we do not get stuck waiting for segments that
will never come.

reader(Cont, Socket) ->

case Cont() of

{ok, Parsed, Rest} ->

{ok, Parsed, Rest};

{more, Fun} ->

receive

{tcp, Socket, More} ->

reader(fun() -> Fun(More) end, Socket);

{tcp_closed, Socket} ->

{error, "server closed connection"}

after ?TimeOut ->

{error, "time out"}

end;

{error, Error} ->

{error, Error}

end.

Reading a request can now be defines like this:

read_request(Socket) ->

reader(fun()-> icy:request(<<>>) end, Socket).

Implement the module client and export the procedure init/2. That
is the whole client process. Now let’s turn to the proxy.

2.2 the proxy

The proxy is even simpler to implement. When we start the proxy we will
give it a shoutcast stream to connect to. The stream is defined by a tuple:

• {cast, Host, Port, Feed}.

The source of Virgin Radio would be:

• {cast, "mp3-vr-128.smgradio.com", 80, "/"}.

We will first wait for a client to request a connection before attaching to
the shoutcast server. Since we will not hear anything from the client we add
a monitor. If the client terminates we will receive a message and can then
decide what to do (die is one option). This is not strictly necessary but it
will reduce the number of zombie proxies when experimenting.

14

init(Cast) ->

receive

{request, Client} ->

io:format("proxy: received request ~w~n", [Client]),

Ref = erlang:monitor(process, Client),

case attach(Cast, Ref) of

{ok, Stream, Cont, Context} ->

io:format("proxy: attached ~n", []),

Client ! {reply, 0, Context},

{ok, Msg} = loop(Cont, 0, Stream, Client, Ref),

io:format("proxy: terminating ~s~n", [Msg]);

{error, Error} ->

io:format("proxy: error ~s~n", [Error])

end

end.

A connection to a server consist of: a stream in the form of a open socket,
a continuation, from which we can receive data segments, and a context (the
header information). Once attached we send a reply and start relaying data
segments.

loop(Cont, N, Stream, Client, Ref) ->

case reader(Cont, Stream, Ref) of

{ok, Data, Rest} ->

Client ! {data, N, Data},

loop(Rest, N+1, Stream, Client, Ref);

{error, Error} ->

{ok, Error}

end.

Attaching to a server requires some socket programming. We connect to
the server and send an ICY request If the sending is successful we continue
with reading the reply that either results in a valid connection or and error
message.

attach({cast, Host, Port, Feed}, Ref) ->

case gen_tcp:connect(Host, Port, [binary, {packet, 0}]) of

{ok, Stream} ->

case send_request(Host, Feed) of

ok ->

case reply(Stream, Ref) of

{ok, Cont, Context} ->

{ok, Stream, Cont, Context};

{error, Error} ->

15

{error, Error}

end;

_ ->

{error, "unable to send request"}

end;

_ ->

{error, "unable to connect to server"}

end.

When sending the request we supply the gen tcp:send/2 function to
the icy:send request/3 function.

send_request(Host, Feed) ->

icy:send_request(Host, Feed, fun(Bin) -> gen_tcp:send(Stream, Bin) end).

The reader/3 function is slightly different from the one we used for
the client. We now take advantage of the fact that we can act on other
messages besides the once from the tcp-process. A DOWN message is sent if
the monitored client process dies or becomes unavailable. We could of course
suspend and wait for a new client connection but as you will we might as
well die.

reader(Cont, Stream, Ref) ->

case Cont() of

{ok, Parsed, Rest} ->

{ok, Parsed, Rest};

{more, Fun} ->

receive

{tcp, Stream, More} ->

reader(fun() -> Fun(More) end, Stream, Ref);

{tcp_closed, Stream} ->

{error, "icy server closed connection"};

{’DOWN’, Ref, process, _, _} ->

{error, "client died"}

after ?TimeOut ->

{error, "time out"}

end;

{error, Error} ->

{error, Error}

end.

Reading a reply can now be coded like this.

reply(Stream, Ref) ->

reader(fun()-> icy:reply(<<>>) end, Stream, Ref).

16

Implement the proxy module and export the init/1 function. If all is
well we should now be able to connect a media player to a client, a client to
a proxy and a proxy to a server.

2.3 streaming audio

We now have all the pieces of the puzzle to start streaming audio across our
network. Create a test module and write some functions that we will use in
our experiments. First we will create a proxy and client process in the same
Erlang node and see that things work, then we will have the two processes
running on two computers.

direct() ->

Proxy = spawn(proxy, init, [?Cast]),

spawn(client, init, [Proxy, ?Port]).

Start the processes and then direct you media client (Amarok or VLC
should work) to the stream http://localhost:8080/ (or whatever port
you’re using). If you have added some trace print statement you will see
how the client accepts the request from the player, sends it to the proxy
that connects to the read server. Every data segment will contain half a
second of audio information. Note how the media player decodes the meta
data and uses it to describe the channel.

We have two loop constructs one on the proxy side and one on the
client side. The recursive call on the proxy is a call to stream/5, now if this
this was a call to proxy:stream/5 we would use the latest loaded version
of the function in every recursion. Try this - change the loop to using
proxy:stream/5, compile load and start playing, edit the source and include
a printout every loop, compile and load the module while still playing. See
how we can update our code while not loosing a single audio packet.

If everything works it’s time to start a proxy on one computer and let
the client run on another. You can even let the media player run on a third
computer. When running several Erlang node make sure that you start
them with a proper name and the same cookie.

erl -name ’proxy@130.237.215.255’ -setcookie C00l3r

Check the processor load on the machines. We’re handling a 128Kbps
audio stream, does it show? What happens of we remove the cables, can
we survive one or two seconds of network failures? Drop every tenth packet
and see if things still work. Are processes terminated as expected when the
media player stops playing? Do some experiments before going further.

17

3 A distribution server

So now we have solved the tricky parts of communicating with a media
player and a Shoutcast server. Handling the messages in Erlang is a lot
simpler, the only messages that we need to keep track of are:

• {request, Client}: a request from a client

• {reply, N, Context}: the reply to a request, expect N to be the next
data packet

• {data, N, Data}: only have to look at N if we want to

Our current system is limited since we only allow one client to connect
each proxy. We could extend the proxy to handle more clients but we could
also implement this as a separate process. This is the skeleton code for a a
module dist that will do just this.

init(Proxy) ->

Proxy ! ...

receive

... ->

:

after ?TimeOut ->

ok

end.

loop(Clients, N, Context) ->

receive

{data, N, Data} ->

:

loop(Clients, N+1, Context);

{request, From} ->

Ref = erlang:monitor(process, From),

From ! ... ,

loop(... , N, Context);

{’DOWN’, Ref, process, Pid, _} ->

loop(... , N, Context);

stop ->

{ok, "stoped"};

stat ->

io:format("dist: serving clients~n", [length(Clients)]),

loop(Clients, N, Context)

end.

18

Complete the missing parts connect a distribution process to a proxy.
Then start clients one by one and make them connect to the distributor.
Since the distributor needs a media player before it connects it could be
useful with a dummy client.

init(Proxy) ->

Proxy ! {request, self()},

receive

{reply, N, _Context} ->

io:format("dummy: connected~n", []),

{ok, Msg} = loop(N),

io:format("dummy: ~s~n", [Msg]),

after 5000 ->

io:format("dummy: time-out~n", [])

end.

loop(N) ->

receive

{data, N, _} ->

loop(N+1);

{data, E, _} ->

io:format("dummy: received ~w, expected ~w~n", [E,N]),

loop(E+1);

stop ->

{ok, "stoped"}

after ?TimeOut ->

{ok, "time out"}

end.

How many dummy client can you run before your machine chokes? If
you’re sitting on anything close to what I’m sitting at don’t spend to much
time starting dummy clients one by one. Write a function that starts n
clients and then see how many you can start. Also try to run the distrib-
utor on one machine and the dummy clients on other machines - is it the
processing power or the network that is the limiting factor?

4 Build a tree

Let’s try to build a distribution tree dynamically as clients want to connect.
We will use two new processes that are so similar that we’ll implement them
in the same module. On is a root process that will connect to a proxy and
then wait for branches to connect. It will only allow two branches to connect
and will redirect other branches to the two that it has connected.

19

The other process is a branch process. It will wait for a client to connect
and then connect to a root. It must be prepared to be redirected to another
branch who it should then try to connect to. Once connected it must also be
open to serve two other branches and redirect others to these two branches.

We will now have six elements in our shoutcast architecture. A media
player is connected to a client proxy. The client proxy thinks it is connecting
to a proxy but it is actually connecting to a branch process. The branch
process know that it is connecting to a root (or another branch) and the
root is connected to a server proxy. The server proxy is as before connected
to the real shoutcast server.

In a real implementation one would probably collapse the proxy and root
process and the client and branch process but note how the separation of the
processes makes each description more easy to follow. In a true concurrent
language creating and running a separate process is as normal as handling
complexity with procedures and libraries. In the same way, as we trade
efficiency for clarity when hiding implementation details in a module, we
use processes to make our system easier to implement.

4.1 the messages

In the final project the goal is to connect all computers in the class in a
distribution tree. We will have one dedicated node that runs the proxy and
root process. All other nodes will run a media player, a client process and
a branch process. Since we’re now implementing the tree module indepen-
dently and a branch process on one node will not run the same code as
a branch process on another node, it is important to specify the message
interface.

• {request, Pid}: a request sent to a root or a branch process. The
process (Pid) must be able to handle request messages once connected.

• {reply, N, Context}: a reply from a root or a branch process. The
integer N is the number of the next data segment, Context should be
handled by the icy module.

• {redirect, Pid}: this is the message given as a reply to a request
message when the root or branch can not connect more branches. The
Pid is a process identifier to another branch process that might have
a available slot or that will redirect us again.

• {data, N, Data}: the n’th data segment, the data itself should be
handled by the icy module.

If we all stick to these messages things might actually work on the first
try.

20

4.2 the root

You need your own root to do some initial experiments. This is a skeleton
that you can easily complete. The first procedure will connect to the proxy.

root(Proxy) ->

Proxy ! ,

receive

..... ->

loop(... , ... ,, Context)

after ?TimeOut ->

ok

end.

The loop procedure will accept data messages from the proxy or request
messages from branches processes that try to connect. We will accept the
two first branch processes but redirect all other.

loop(Clients, N, Context) ->

receive

{data, N, Data} ->

:

loop(Clients, N+1, Context);

{request, From} ->

L = length(Clients),

if

L < 2 ->

From ! ,

loop([From|Clients], N+1, Context);

true ->

:

From ! {redirect,} ,

loop(..., , ...)

end

end.

Note that our tree will look less like a tree if we always redirect requesting
processes down the left branch. To keep the tree balanced we should redirect
every second process to the left and every second to the right.

4.3 the branch

The branch process will look very similar to the root process. The difference
is that the branch process should first wait for a client process to connect.

21

When it receives a request from a client it should try to connect to the
known root of the tree. It could be redirected several times but it should
finally be connected.

Once connected it should forward all data packets to its own client. It
should also be open for requests from other branches. Similar to the root
process it should accept the two first branches and redirect the rest.

Note - a branch process must separate the client process from connected
branches. Al should receive copies of the data segments but we can not
redirect a connecting branch to the client; a client is not prepared to handle
request messages.

4.4 error handling

Can we make this structure more stable or self repairing. Can we detect
that our up-stream source is not delivering as it should? If the root process
dies then there is not much to do but if it was a peer branch process we
could try a new attempt at connecting to the root. Do we have time to do
this before any of the branches connected to us will have time to find out?

If we are directly connected to the root we should expect to have data
segments delivered every 500 ms. Should we give the root some slack and
set a time out after 600ms? What happens if all branches below us has the
same time out?

Can we use Erlang monitors to detect that nodes are down or do we
have to do our own failure detection?

Assume our up-stream source fails to deliver and we manage to recon-
nect. If the old up-stream source now resumes transmission and delivers
the data segments we will have two processes delivering the same stream.
How do we prevent this? Can we introduce a control message to stop a
transmission?

5 A BitTorrent architecture

How hard would it be to implement distribution network using a bitTorrent
protocol? What are the problems that we need to solve? Would it be better
than our tree distribution network? Pros and cons?

22

