Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

DOCENT LECTURE: Compositional Verification of Interaction Behaviour

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

16 March 2007

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

3

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Computation: Data Transformation + Interaction

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

- **Computation**: Data Transformation + Interaction
- **Focus on**: *on-going* interaction behaviour

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

- **Computation**: Data Transformation + Interaction
- **Focus on**: *on-going* interaction behaviour
- Examples:
 - teller machine (bankomat)
 - server accepting requests and sending responses
 - applications on a mobile device interacting via method calls

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

- **Computation**: Data Transformation + Interaction
- **Focus on**: on-going interaction behaviour
- Examples:
 - teller machine (bankomat)
 - server accepting requests and sending responses
 - applications on a mobile device interacting via method calls

Problem:

how can we reason formally about interaction behaviour?

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不得 トイヨト イヨト

・ ・ ロ ・ ・ 目 ・ ・ 目 ・ ・ 日 ・ ・ つ へ つ

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Dynamic systems:

- components are generated dynamically
- open systems: components dynamically join and leave system

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Dynamic systems:

- components are generated dynamically
- open systems: components dynamically join and leave system

Examples:

- concurrent server spawns off component to handle request
- application is loaded on a mobile device post-issuance

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Dynamic systems:

- components are generated dynamically
- open systems: components dynamically join and leave system

Examples:

- concurrent server spawns off component to handle request
- application is loaded on a mobile device post-issuance

Problem:

- how can we reason formally about the interaction behaviour of such systems?
- compositional reasoning needed!

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Concurrent Serv	ver			

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ = ● のへの

Dilian Gurov

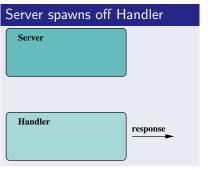
Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Concurrent Server

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3


Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Concurrent Server

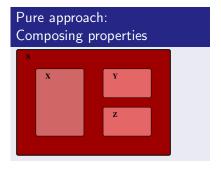

イロン イ理ト イヨト イヨト

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
	00	000	
	Interaction Behaviour	00	

Concurrent Server

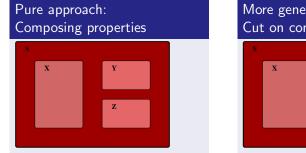

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ○○○

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

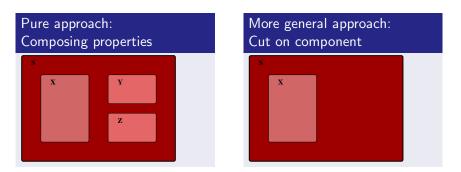



Theoretical Computer Science Department KTH Royal Institute of Technology

<ロ> (日) (日) (日) (日) (日)

Compositional Verification of Interaction Behaviour

Dilian Gurov



Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Concurrent Server

How does compositional reasoning help?

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

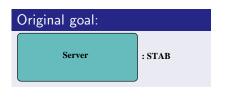
イロト イヨト イヨト イヨト

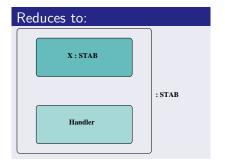
Proving Stabilization of Concurrent Server

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Proving Stabilization of Concurrent Server




Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Dilian Gurov

Proving Stabilization of Concurrent Server

・ロト ・ 理 ト ・ 国 ト ・ 国 ト ・

3

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
0				

Overview

- 1 Framework for Formal Reasoning
- 2 Interaction Behaviour
- 3 Behavioural Properties
 - Specification
 - Verification
- 4 Compositional VerificationProof Systems
 - Maximal Models

5 Conclusion

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

<ロ> (日) (日) (日) (日) (日)

- ・ロト ・ 聞 ト ・ ヨト ・ ヨー ・ りゃつ

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Semantic Domains for Interaction Behaviour

- function from initial to final states: not suitable
- rather: sequences, or even trees, of interactions

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イ理ト イヨト イヨト

3

Semantic Domains for Interaction Behaviour

- function from initial to final states: not suitable
- rather: sequences, or even trees, of interactions

Defining Interaction Behaviour

- semantic domain too low-level and unstructured
- composing behaviours
- meaning of behavioural definition given in semantic domain

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Specification and Verification

- specification captures desired behaviour
- verification establishes whether model/implementation meets specification

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

Specification and Verification

- specification captures desired behaviour
- verification establishes whether model/implementation meets specification

Compositional Verification

inferring system properties from component properties

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Semantic Domains

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

▲ロト ▲圖ト ▲国ト ▲国ト 三連

Framework for Formal F	Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Semantic Domains

Traces (or runs, executions, paths)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

★ロト ★御 と★ ヨ と ★ ヨ と 三 ヨ

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Semantic Domains

- Traces (or runs, executions, paths)
- Computation trees

Theoretical Computer Science Department KTH Royal Institute of Technology

▲口▶ ▲圖▶ ▲理▶ ▲理▶

Compositional Verification of Interaction Behaviour

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Semantic Domains

- Traces (or runs, executions, paths)
- Computation trees
- Labelled Transition Systems (LTS)

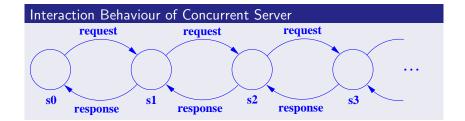
Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Semantic Domains


- Traces (or runs, executions, paths)
- Computation trees
- Labelled Transition Systems (LTS)
- Modal Transition Systems

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

LTS Example: Concurrent Server

・ロト・西ト・西ト・西ト 前 ろくの

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Defining Interaction Behaviour

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000 000	

Defining Interaction Behaviour

Process Algebra: Calculus of Communicating Systems

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不問 とくほど 不良とう 酒

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Defining Interaction Behaviour

- Process Algebra: Calculus of Communicating Systems
- Programming language: Erlang

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不問 とくほど 不良とう 酒

Compositional Verification of Interaction Behaviour

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Interaction Behaviour

Defining Interaction Behaviour

- Process Algebra: Calculus of Communicating Systems
- Programming language: Erlang
- Control Flow Graph: extracted from Java bytecode

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(日) (圖) (E) (E) (E)

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Interaction Behaviour

Defining Interaction Behaviour

- Process Algebra: Calculus of Communicating Systems
- Programming language: Erlang
- Control Flow Graph: extracted from Java bytecode

LTS Semantics

Induced by transition rules

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(日) (圖) (E) (E) (E)

Calculus of Communicating Systems (CCS)

- ・ロト・(聞)・ (目)・ (目)・ (目)・ (の)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Calculus of Communicating Systems (CCS)

CCS Syntax

$$E ::= \mathbf{0} \mid A \mid \alpha . E \mid E + E \mid E \mid E$$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

3

Calculus of Communicating Systems (CCS)

CCS Syntax

$$E ::= \mathbf{0} \mid A \mid \alpha . E \mid E + E \mid E \mid E$$

CCS Semantics: Transition Rules (induce LTS)

PREFIX
$$\xrightarrow{-}{\alpha.E \xrightarrow{\alpha} E}$$
 DEF $\xrightarrow{E \xrightarrow{\alpha} F} A \stackrel{\Delta}{=} E$
CHOICE $\xrightarrow{E \xrightarrow{\alpha} E'} E'$ COMM $\xrightarrow{E \xrightarrow{\alpha} E'} E|F \xrightarrow{\alpha} E'|F$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

3

			leasoning

Interaction Behaviour

CCS Example: Concurrent Server

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

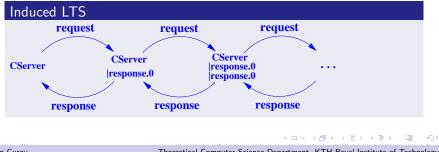
CCS Example: Concurrent Server

Defining Concurrent Server

$$CServer \stackrel{\Delta}{=} request.(CServer \mid response.\mathbf{0})$$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology


イロト イヨト イヨト イヨト

3

CCS Example: Concurrent Server

Defining Concurrent Server

$$CServer \stackrel{\Delta}{=} request.(CServer \mid response.\mathbf{0})$$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Conclusion

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		•O 00	000	

Specifying Behavioural Properties

Specifying Sets of Behaviours

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

3

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties •0 00	Compositional Verification	Conclusion
C 10 11				

Specifying Behavioural Properties

Specifying Sets of Behaviours

Modal logic: Hennessy-Milner Logic (HML)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イ理ト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties •0 00	Compositional Verification	Conclusion

Specifying Behavioural Properties

Specifying Sets of Behaviours

- Modal logic: Hennessy-Milner Logic (HML)
- Temporal logic: Computation Tree Logic (CTL)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Specifying Behavioural Properties

Specifying Sets of Behaviours

- Modal logic: Hennessy-Milner Logic (HML)
- Temporal logic: Computation Tree Logic (CTL)
- Modal μ -calculus: HML + Recursion (μ K)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		O O	000	

Specifying Behavioural Properties

Specifying Sets of Behaviours

- Modal logic: Hennessy-Milner Logic (HML)
- Temporal logic: Computation Tree Logic (CTL)
- Modal μ -calculus: HML + Recursion (μ K)

Example: Formalizing STAB

CTL: AG (AF stab)

Theoretical Computer Science Department KTH Royal Institute of Technology

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Specifying Behavioural Properties

Specifying Sets of Behaviours

- Modal logic: Hennessy-Milner Logic (HML)
- Temporal logic: Computation Tree Logic (CTL)
- Modal μ -calculus: HML + Recursion (μ K)

Example: Formalizing STAB

• CTL: AG (AF stab) • μ K: $\nu X. \mu Y.$ [request] $X \wedge$ [-request] Y

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(日)

Hennessy-Milner Logic (HML)

・ロト・個ト・目下・目下 油 のくの

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties ○● ○○	Compositional Verification	Conclusion
Specification				

Hennessy-Milner Logic (HML)

HML Syntax

$\Phi ::= \mathbf{t} \mathbf{t} \mid \mathbf{f} \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \langle \alpha \rangle \Phi \mid [\alpha] \Phi$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties ○● ○○	Compositional Verification	Conclusion
Specification				

Hennessy-Milner Logic (HML)

HML Syntax

$$\Phi ::= \mathbf{t} \mathbf{t} | \mathbf{f} \mathbf{f} | \Phi \lor \Phi | \Phi \land \Phi | \langle \alpha \rangle \Phi | [\alpha] \Phi$$

HML Semantics: Satisfaction Relation $s \models^{\mathcal{T}} \Phi$

$$\begin{array}{ll} s \models^{\mathcal{T}} \langle \alpha \rangle \, \Phi & \stackrel{\mathsf{def}}{\Leftrightarrow} & \exists s' \in \mathcal{S}. \ (s \stackrel{\alpha}{\longrightarrow} s' \wedge s' \models^{\mathcal{T}} \Phi) \\ s \models^{\mathcal{T}} [\alpha] \, \Phi & \stackrel{\mathsf{def}}{\Leftrightarrow} & \forall s' \in \mathcal{S}. \ (s \stackrel{\alpha}{\longrightarrow} s' \Rightarrow s' \models^{\mathcal{T}} \Phi) \end{array}$$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イ理ト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Verifying Behavioural Properties: Interactive

・ ・ ・ ・ 「 ・ ・ = ・ ・ = ・ うへの

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	
		•••	0000	

Dilian Gurov

Verifying Behavioural Properties: Interactive

Proof System Based: Judgements $s \vdash^{\mathcal{T}} \Phi$

$$\text{TRUE} \frac{-}{s \vdash^{T} \mathbf{tt}} \quad \text{ORL} \frac{s \vdash^{T} \Phi}{s \vdash^{T} \Phi \lor \Psi} \quad \text{ORR} \frac{s \vdash^{T} \Psi}{s \vdash^{T} \Phi \lor \Psi}$$

$$\text{AND} \frac{s \vdash^{T} \Phi}{s \vdash^{T} \Phi \land \Psi} \quad \text{DIA} \frac{s' \vdash^{T} \Phi}{s \vdash^{T} \langle \alpha \rangle \Phi} s' \in \partial_{\alpha}(s)$$

$$\text{Box} \frac{s_{1} \vdash^{T} \Phi \dots s_{n} \vdash^{T} \Phi}{s \vdash^{T} [\alpha] \Phi} \partial_{\alpha}(s) = \{s_{1}, \dots, s_{n}\}$$

Theoretical Computer Science Department KTH Royal Institute of Technology

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Verifying Behavioural Properties: Algorithmic

Model Checking $s \models^{\mathcal{T}} \Phi$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の()

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Verifying Behavioural Properties: Algorithmic

Model Checking $s \models^{\mathcal{T}} \Phi$

 local techniques: execute s guided by Φ proof strategies give rise to MC algorithms

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Verifying Behavioural Properties: Algorithmic

Model Checking $s \models^{\mathcal{T}} \Phi$

- local techniques: execute s guided by Φ proof strategies give rise to MC algorithms
- **global** techniques: compute all Φ-states, check membership

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Verifying Behavioural Properties: Algorithmic

Model Checking $s \models^{\mathcal{T}} \Phi$

- local techniques: execute s guided by Φ proof strategies give rise to MC algorithms
- **global** techniques: compute all Φ-states, check membership

Complexity of Model Checking

 For Finite–State Systems: polynomial in size of model, exponential in size of formula

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Verifying Behavioural Properties: Algorithmic

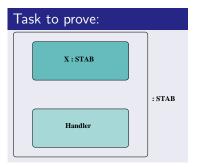
Model Checking $s \models^{\mathcal{T}} \Phi$

- local techniques: execute s guided by Φ proof strategies give rise to MC algorithms
- **global** techniques: compute all Φ-states, check membership

Complexity of Model Checking

- For Finite–State Systems:
 - polynomial in size of model, exponential in size of formula
- For Pushdown Automata: exponential in number of non-terminals and in size of formula

Dilian Gurov

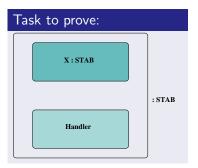

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000	

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	


Theoretical Computer Science Department KTH Royal Institute of Technology

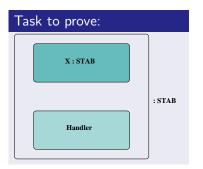
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Compositional Verification of Interaction Behaviour

Dilian Gurov

Notation:


$X : STAB \models X | Handler : STAB$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Notation:

 $X : \mathsf{STAB} \models X | \mathsf{Handler} : \mathsf{STAB}$

Approaches:

- Interactive: proof systems
- Algorithmic: maximal models

<ロ> (日) (日) (日) (日) (日)

3

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Proof System for Compositional Verification

- ・ロト・日本・ キャー キャー キー ろくの

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Proof Systems				

Proof System for Compositional Verification

Judgements

 $\Gamma \vdash \Delta$ where Γ , Δ are sets of assertions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣�(

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Due of Suntaine				

Proof System for Compositional Verification

Judgements			
$\Gamma \vdash \Delta$ whe	ere Γ, Δ are	sets of assertions	
Term Cut Rule	9		
TermCut	$\vdash C : \Phi$	$X: \Phi \vdash X E: \Psi$ $- C E: \Psi$	_
1 1100 0 0 1	ŀ	- C E : Ψ	

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イヨト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
D (C)				

Proof System for Compositional Verification

Judgements	
$\Gamma \vdash \Delta$ whe	re Γ , Δ are sets of assertions
Term Cut Rule	
TermCut	$ \vdash C : \Phi \qquad X : \Phi \vdash X E : \Psi \\ \vdash C E : \Psi $
	$\vdash C E: \Psi$

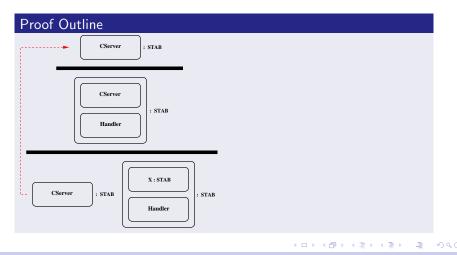
Global Discharge Rule

- explicit ordinal approximation
- proof tree embodies a valid proof by well-founded induction
- powerful mechanism for inductive and co-inductive proofs

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Proving Stabilization of Concurrent Server


- ・ロト・日本・日本・日本・日本・今日や

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification ○●○ ○○○	Conclusion

Proving Stabilization of Concurrent Server

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Conclusion

Proof Systems

Proof System for Compositional Verification

Properties

- ・ロト・(部)ト・ヨト・ヨト ヨー のの(

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Proof System for Compositional Verification

Properties

sound: only valid judgements are derivable

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

<ロ> (日) (日) (日) (日) (日)

Proof Systems

Proof System for Compositional Verification

Properties

- sound: only valid judgements are derivable
- incomplete in general: even X : Φ, Y : Ψ ⊨ X|Y : Θ is undecidable for μK!

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Proof Systems

Proof System for Compositional Verification

Properties

- sound: only valid judgements are derivable
- incomplete in general: even X : Φ, Y : Ψ ⊨ X|Y : Θ is undecidable for μK!
- complete for logic fragment: only variables as terms

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(a)

Proof Systems

Dilian Gurov

Proof System for Compositional Verification

Properties

- sound: only valid judgements are derivable
- incomplete in general: even X : Φ, Y : Ψ ⊨ X|Y : Θ is undecidable for μK!
- complete for logic fragment: only variables as terms
- complete for model checking fragment: closed, regular CCS terms

Theoretical Computer Science Department KTH Royal Institute of Technology

(a)

Proof Systems

Proof System for Compositional Verification

Properties

- sound: only valid judgements are derivable
- incomplete in general: even X : Φ, Y : Ψ ⊨ X|Y : Θ is undecidable for μK!
- complete for logic fragment: only variables as terms
- complete for model checking fragment: closed, regular CCS terms
- complete for pushdown automata

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Maximal Models				

Under certain conditions...

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification ○○○ ●○○	Conclusion
Maximal Models				

Under certain conditions...

Theoretical Computer Science Department KTH Royal Institute of Technology

・ロト ・ 理ト ・ ヨト ・ ヨト

3

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Maximal Models				

Under certain conditions...

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

3

Compositional Verification of Interaction Behaviour

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	
Maximal Models				

Conditions

There is a (simulation) pre-order \leq on components:

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不問 とくほど 不良とう 酒

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Maximal Madala				

Maximal Models for Compositional Verification

Conditions

There is a (simulation) pre-order \leq on components:

1 property preserving:

 $C_1 \leq C_2$ and $\models C_2 : \Phi$ imply $\models C_1 : \Phi$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不問 とくほど 不良とう 酒

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	
		00	000	
NA 1 1 NA 1 1				

Maximal Models for Compositional Verification

Conditions

There is a (simulation) pre–order \leq on components:

 property preserving: C₁ ≤ C₂ and ⊨ C₂ : Φ imply ⊨ C₁ : Φ
 preserved by composition:

 $C_1 \leq C_2$ implies $C_1 | C_3 \leq C_2 | C_3$

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(日) (圖) (E) (E) (E)

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
NA 1 1 NA 1 1				

Maximal Models for Compositional Verification

Conditions

There is a (simulation) pre–order \leq on components:

1 property preserving:

 $C_1 \leq C_2$ and $\models C_2 : \Phi$ imply $\models C_1 : \Phi$

2 preserved by composition:

$$C_1 \leq C_2$$
 implies $C_1 | C_3 \leq C_2 | C_3$

3 the set of Φ -components has a maximal element w.r.t. \leq

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(日) (圖) (E) (E) (E)

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Maximal Models for Compositional Verification

Conditions

There is a (simulation) pre–order \leq on components:

1 property preserving:

 $C_1 \leq C_2 \text{ and } \models C_2 : \Phi \text{ imply } \models C_1 : \Phi$

2 preserved by composition:

$$C_1 \leq C_2$$
 implies $C_1 | C_3 \leq C_2 | C_3$

3 the set of Φ -components has a maximal element w.r.t. \leq

Maximal Model Principle

$$[OD \quad \frac{\models Max(\Phi)|E:\Psi}{X:\Phi\models X|E:\Psi}$$

Dilian Gurov

MAXM

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト イポト イヨト イヨト

-

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00 00	000 000	
Maximal Models				

Derived Compositional Verification Principle			
Compos	$\models C : \Phi$	$\models Max(\Phi) E: \Psi$	
COMPOS		= C E : Ψ	

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

▲白▶ ▲圖▶ ▲臣▶ ▲臣▶

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion
Maximal Models				

Derived Com			
Compos	$\models C : \Phi$	$ \models Max(\Phi) E:\Psi $ $ \models C E:\Psi $	

1 ACTL (Kripke models)

Applies to:

- 2 Simulation Logic (Control Flow Graphs)
- **3** modal μ -calculus (EMTS)

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

ヘロト 人間 ト くほ ト くほ トー

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Interaction Behaviour

Interaction behaviour can be:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ ∽९९(

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Interaction Behaviour

Interaction behaviour can be:

captured elegantly through LTS

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イヨン イヨン イヨン

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000 000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロン イ理ト イヨト イヨト

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000 000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs
- specified in various logics: HML, CTL, μ K

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

イロト 不問 とくほど 不良とう 酒

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000 000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs
- \blacksquare specified in various logics: HML, CTL, μK
- verified algorithmically or interactively

Theoretical Computer Science Department KTH Royal Institute of Technology

ヘロト 人間 ト くほ ト くほ トー

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs
- specified in various logics: HML, CTL, μK
- verified algorithmically or interactively

Compositional Verification

good for modular design

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs
- \blacksquare specified in various logics: HML, CTL, μK
- verified algorithmically or interactively

Compositional Verification

- good for modular design
- needed for verifying open systems

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Interaction Behaviour

Interaction behaviour can be:

- captured elegantly through LTS
- defined in various ways: CCS, Erlang, Control Flow Graphs
- \blacksquare specified in various logics: HML, CTL, μK
- verified algorithmically or interactively

Compositional Verification

- good for modular design
- needed for verifying open systems
- algorithmically or interactively

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties 00 00	Compositional Verification	Conclusion

Future Challenges

・ キョット 4 回 ア・ 4 回 ア・ 4 回 ア・ 1

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Future Challenges

Interactive Verification

How to reason about *complex phenomena* such as:

- failure and recovery
- self-stabilization
- in open, dynamic systems?

Theoretical Computer Science Department KTH Royal Institute of Technology

<ロ> (日) (日) (日) (日) (日)

Compositional Verification of Interaction Behaviour

Dilian Gurov

Framework for Formal Reasoning	Interaction Behaviour	Behavioural Properties	Compositional Verification	Conclusion
		00	000	

Future Challenges

Interactive Verification

How to reason about *complex phenomena* such as:

- failure and recovery
- self-stabilization
- in open, dynamic systems?

Algorithmic Verification

How to achieve scalability of verification?

- separating concerns
- abstraction mechanisms

Dilian Gurov

Theoretical Computer Science Department KTH Royal Institute of Technology

(a) < ((a) <