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S E M L S E L F - S I M I L A R  E X T t L E M A L  P R O C E S S E S *  

E. I. P a n c h e v a  (Sofia, Bulgaria) UDC 519.2 

Let g be the distribution function(d.f . )  of an extremal process Y .  I f  g is invariant with respect to a continuous 
one-parameter group of time-space changes {r/~, = ( 'r~,La) : a > 0}, i.e., g o rlo = g Vc~ > O, then g is self-similar. 
I f  g is invariant w.r.t, the cyclic group {r/~ n E Z} of a time-space change 71, then g is semi-self-similar. The 
semi-self-similar extremal processes are limiting for sequences of eztremal processes Yn(t) = L~  1 o Y o ~',~(t) i f  going 
along a geometrically increasing subsequence t~  ,,, ~" ,  ~o > 1, n ~ ~ .  The main properties of multivariate semi- 
self-similar extremal processes and some ezamples are discussed in the paper. The results presented are an analog 
of the theory of semi-self-similar processes with additive increments developed by Maejima and Sato in 1997. 

1. I n t r o d u c t i o n  a n d  B a c k g r o u n d  

Extremal processes are stochastic processes with increasing right-continuous sample paths and independent max- 
increments. Without  loss of generality, we consider extremal processes Y : [0, c~) --~ [0, ~ ) d  whose t ime space is the 
positive axis and whose state space is the positive or thant  in R d. The independence of the max-increments means that  
for any finite sequence of time points 0 = to < tl  < �9 �9 �9 < tk there exist independent  random vectors Do , . . . ,  Uk in 
[0, c~) d such that  

(Y(to) . . . .  , Y ( tk ) )  ~= (Uo, Uo V U1 . . . .  , Uo v . . .  v Uk). 

The extremal processes in this general sett ing are studied in [2, 3]. We use the following characteristics of an 
extremal process: 

1. The distribution function (d.f.) f ( t ,  x) = P (Y( t )  < x). We observe that  

�9 f :  (0, c~) a+l -~ [0, 1] is lower semi-continuous, so f ( t , x )  = f ( t  + O,x - 0); 
�9 for any fixed t, the function f t (x )  :=  f ( t , x )  is a d.f. on [0 ,~)d;  

�9 for 0 < s < t, f~ [ f t ,  i.e., there exists a d.f. H(,.t) such that  f t  = f~.H(~.t). 

Conversely, any function f with the three properties above is a d.f. of an extremal process. The family of univariate 
marginals {ft : t > 0} of the extremal process determines all finite-dimensional distributions (f.d.d.), because for 
to < . - .  < t k ,  Xo < - . .  < x~ 

, , , f t , ( x l )  f t~(xk) 
F, ...... t ~ ( x o , . . - , x ~ )  = f t o t X O ) ~  - . .  y,~_, (x~).  

2. The lower curve C: [0, c~) --~ [0, ~ ) a  of an extremal process Y is defined coordinatewise by C (') (t) = inf{ft  (i) > 0}, 
i = 1 , . . . ,  d. It is a uniquely determined increasing right-continuous curve below which the sample paths of Y cannot 
pass. 

3. The max-increments of an extremal process are not uniquely determined by the process. This interesting phe- 
nomenon observed in the multivariate extreme value theory is called blotting, and it is discussed in [2]. However, we 
can always choose and fix a consistent family of max-increments U(s,t], 0 < s < t, such that  a.s. 
�9 U(s , t ]  >_ c(t); 
�9 Y( t )  = Y ( s )  V U(s,  t]; 
�9 for any 0 = to < tl < - . .  < tk, the vectors Y(0), U(to,t l]  . . . .  , U( tk- l , tk]  are independent.  
This states the structure theorem proved in [2]. 
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4. Every extremal process Y with lower curve C' is generated by an associated point process N = {(Tk, Xk) : k = 
0 ,1 ,2  . . . .  } on the open set [0, C] c = ([0, co) x [0, co] d) \ [0, C[ by 

Y(t) = C(t) V sup{X~ : Tk <_ t}. (1.1) 

Almost  all realizations of N are Radon measures on [0, C] ~, i.e., a.s. 

Y([O,t]x[O,x) r  Vt>O, x>C( t ) ,  

hence the supremum on the RHS in (1.1) is, in fact, the max imum of finite many space points. Further, N is simple in 
t ime and the restrictions N(B1) , . . . ,  N(Bk) to disjoint t ime slices B 1 , . . . ,  Bk are independent. Such point processes 
we call Bernou//i, and they are discussed in [3]. 

The structure theorem answers the question: how far does a given family {fL : t > 0} of d.f.'s on [0, co)d determine 
an extremal process Y? In the max-infinitely divisible (max-i.d.) case, the set int{ft  > 0} is an open block, C(t) = 
inf{ft  > 0}, and the quotient f t / f ,  for 0 _< s < t determines the d.f. of the max-increments U(s, t] uniquely on the set 
At = (C(t), co) above the lower curve. 

In the present paper, we deal with max-i.d, extremal processes only. As is known, they are associated with Poisson 
point processes and there exists a simple connection between the d.f. of the extremal process and the mean measure # 
of the associated point process, namely, 

f( t ,x) = exp{-#([O,t] • [O,x)~ 

We are interested in characterizing a special type of extremal process, satisfying the characteristic equation 

Y o a ( t )  a_LoY( t ) ,  Vt>O. (1.2) 

We call this type a semi-self-similar extremal process and denote it by semi-ss. The time-space change r/(t, x) = 
(a(t),L(x)),  t E (O, co), x E (O, co) d, we choose continuous and strictly increasing in each coordinate, hence it is a 
max-automorphism of (0, co)d+1. In Sec. 2, we study some of the main properties of time-space changes that  we need 
further, e.g., the fact that  the cyclic group of a time-space change can be embedded in a continuous one-parameter 
group. Section 3 gathers the direct consequences of the characteristic equation (1.2). There the main result states 
that  a semi-self-similar extremal process is a max-i.d, process, either stochastically continuous everywhere or having 
infinitely many fixed discontinuities. 

In Sec. 4, we obtain a semi-self-similar extremal process as limiting in a triangular array with asymptotic negligibility 
condition when going along a geometrically increasing subsequence. Theorem 4.1 states that  the univariate marginals 
of the limiting semi-ss process are semi-self-decomposable with respect to (w.r.t.) the max-operation, briefly semi-MSD. 
Theorem 4.2 is an analog of Theorem 5.3 in [7] and shows that  a semi-MSD random vector X can be embedded in a 
stochastically continuous semi-self-similar extremal process Y so that  a.s. Y(0) = C(0), Y(1) = X,  Y(co) = co. 

Section 5 is a brief account of semi-self-similar extremal processes with stationary max-increments. An extremal 
process Y : [0, co) --+ [0, oo) with stationary max-increments is semi-ss if and only if its d.f. at t = 1 has the explicit 
form 

{ee-,h(~) } "'(h(=)) ' 

where h:  (0, co) --+ ( - o o ,  co) is a continuous homomorphism and p~ is a periodic function with period T = log ~o, 
positive and bounded, and ~ > 0. Then f ( t , x )  = f~(x). We end with several examples of semi-self-similar extremal 
processes. 

2. T i m e - S p a c e  C h a n g e s  

Let the time-state space S be the open block (0, co)d+1. A time-space change of S is an increasing homeomorphism 
~: S ~ S with 

~(t ,  x )  = (~0(t) ,  ~ 1 ( z l )  . . . .  , r  

where the one-to-one mapping ~ :  (O, co) ~ (0, co), i = 0 , 1 , . . . , d ,  is strictly increasing, hence continuous. Such 
mappings preserve the max-operation, i.e., ~(zl V z2) = (~(Zl)V~(z2), zl ,  z2 E S, so they are max-automorphisms of the 
t ime-state space S. The  max-automorphisms of S form a group w.r.t, the composition, ~ o r/(z) = ~(r/(z)), z E S, and 
we denote it by MA(S).  We are interested in studying them, since they are proper norming mappings in the extreme 
value theory (cf. [9]). 
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Let 1 ~ = {~= : a > 0} C M A ( S )  be a cont inuous  one-paramete r  group (c.o.g.), i.e., 
�9 ~1 = id (here id stays for the  identical  mapping) ;  
�9 ~ o ~  = ~o~, a, /9 > 0; 

We call F a norrn/ng group of t ime-space changes  of S if the  following boundary  cond i t ion  is met:  

(BC) ~ . ( ~ ) - - - ~ 6 ,  a S 0 ,  ~ o - - - . 0 5 ,  a t ~  

for every z �9 S. One can check t h a t  for a no r m i ng  c.o.g. F: 
�9 the correspondence a --+ ~,, is s t r ic t ly  increasing and  continuous;  
�9 for a > 1, ~ is expanding,  i.e., ~,~(z) > z, and  for a < 1, r is contract ing,  i.e., Ca(z) < z; 
�9 6 and 05 are the  only fixed points  of ~ .  

PROPOSITION 2.1.  A n y  norming c.o.g. F C M A ( S )  has the  form 

~ ( z )  = h - l { h ( z )  + e c l o g a } ,  a > 0, (2.1) 

where h: S +-~ R d+l is an increasing homeomorphism, e is the unit vector, and c is a positive constant. 

The proof  of this s t a tement  (e.g., [10]) consists  of giving a solution of the funct ional  equa t ion  

and it is carr ied out  in a way analogous to T h e o r e m  20 in [1]. 
Representa t ion (2.1) can be  wr i t t en  briefly as ~,  = h -1 o D~logo o h, where D~(z) = z + er, r �9 I t .  This  means  

t ha t  there is a change h of the  coordinates ,  z'  = h(z),  so t ha t  y~ = h(~,,) in the  new coord ina tes  is jus t  a t rans la t ion  
y~ = z ~ + e c l o g a  along the  diagonal.  

Below, we denote  the n - t ime  composi t ion ~ o . - .  o ~ by ~o(,~), ~-1,  o - . . o ,  ~ - l  by ~~ and  ~0 = id. 

PROPOSITION 2.2.  Let r~ be a time-space change of S. Suppose that the cyclic group F(r/) = {r/~ n �9 Z} 
satisfies the boundary condition (BC),  i.e., 

r/~162 ---~ 6, n -~ co, 

n~ ~ o~, n -~ ~ .  

Then F(r/) can he embedded in a c.o.g. {~t : t > O} such tha t  r~ = ~ for some ~o > 1 and r/r = ~r 
P r o o f .  Let ~o > 1 be fixed. La t t e r  we shall  de te rmine  the value of q0 uniquely. Define the  subset  in I t  

S = { l o g ~ " :  n � 9  

and set r/~(-) :=  n ~ for s = l o g r  ~ G S. We have  

r/$ o r /~(~)= ~.+~(~), s , .  e s .  

Further,  the  assumpt ion  t ha t  F(r/) satisfies the  b o u n d a r y  condi t ion (BC) for n --+ =1=oo implies t h a t  the  correspondence 
s --* r/$ is s t r ic t ly  increasing. Indeed, assume the re  are s ,v  E S with  s = log~o "~ < v = l o g ~ " ,  m < n, and  such t h a t  
r/~ _< ~7,. T h e n  

z >_ r/: l  o r/~(z) = r  o ~o~.~(~) = r  

and this is a contradic t ion  to r/~ --+ 05 for k ~ oo. Moreover, {r/, : s E ,9} satisfies the  bounda ry  condi t ion 

r/.(z) -~ o~, s -~ oo, 

~ ( ~ )  - -  6, s -* - e o .  

For z E S, we call the  set 

the  track of r / t h r o u g h  the  point  z. Every z E S has  a t rack t ha t  s tar ts  a t  O and  goes up  to 05. 
We can embed  the  t rack ~ in a curve ~7(t) con t inuous  in t so t h a t  for t = n, r / (n ,z )  = r/o('~)(z), n fi Z. Indeed,  define 

r/~ := a t / +  (1 - a ) id  for a E (0,1),  7/1 = r/, 7/~ = id. For n < t < n + 1, i.e., for t = n + a ,  where  n = It] and  c~ = { t ) ,  
we define r/it, z) :-- r/~ o r/~ Here [t] and  {t} are the  integer and the  fract ional  pa r t  of t, respectively. Obviously, 
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the correspondence t -~ r/(f) is continuous and strictly increasing, hence, one-to-one, and r/(n, z) = r/~ = r/~(z) if 
s = log q0'*. 

Now the orbit O ,  through the point z defined by O :  = {r/(t, z) : t E R} overlaps the track T~. If zl ~ z2, then 
either O,  1 does not intersect 0 ,  2 or both orbits coincide. In the lat ter  case, there is s E t t  such that  zl = r/(s, z2). 

Next we consider Y8 = rh(z) as a function on S. The  correspondence r/, ~ es is one-to-one; let h* be this single 
strictly increasing homeomorphism that  "bends" the diagonal {es: s > 0} into the orbit O ,  = {y, = h ' ( e s ) :  s E R} 
overlapping T~. Now the group property r/, o r/~(z) = r/,+v(z), s, v E S, can be written as 

r/,(yv) = y,+~ = h* (e (v  + s))  = h*(ev  + es) = h ' ( h ( y ~ )  + es),  

where h* is the mapping inverse to h and h : S ~-+ R a. Since r/~(z) = z, for v = 0 from the abovesaid we have 
r/ ,(z) = h -1 (h ( z )  + es) and consequently 

r/(z) = r/log ~(z) = h - l ( h ( z )  + e log qo). (2.2) 

Thus, F(r/) is embedded in the c.o.g. {~t(') = h-~ (h ( " )  + e l o g t ) :  t > 0} with r/~ = ~ , ,  n E Z. 
Let z = (t,  x l  . . . .  , Xd) and r/(z) = (r(t),  L ( x ) ) .  The  mapping h(z )  -- (ho(t) ,  hi  ( z l )  . . . .  , hd (xd) )  acts coordinatewise 

and log~o = h0(r(1)) - h0(1) =: A, hence ~o = e A. 
Note that  the pair [~, hi uniquely determines the time-space change 7/. Conversely, 7/determines h uniquely up to 

a translation, namely, if h2 = hi + e log a, then 77(-) = h~ 1 (hi (') + e log ~o) = h~ -1 (h2 (') + e log qo), and ho determines ~o 
uniquely. We shall denote this relation by r / =  [~o, hi. 

We supply the set MA(S) with the topology r of the pointwise convergence. Let g ,  and r/, be sequences of d.f.'s 

of extremal processes and of time-space changes, respectively. If g ,  - - ~  g and 7/,, _L+ 7/, then the continuity of the 
composition entails that 

g,~ o r/n --%+ g o r/, n ~ oo. 

The convergence r/,~ __L+ 7/does not imply that  77 is a time-space change (i.e., strictly increasing and continuous). 
Let us d e n o t e P r  = {{r/} C MA(S) :  (*) ee < r l ( z + e r  _< r  0 a s E - ~  0}, where~p: S ~ S. Put  

= U~P~.  
The sequences r/n E P are equicontinuous. If there exists a limit mapping 77, then the RHS of condition ( .)  implies 

its continuity and the LHS guarantees its strict monotonicity. 
Let f and g be nondegenerate d.f.'s of extremal processes and let the sequence r/, E "P of time-space changes be 

r-compact .  If 
f .  ---~ f , g ,  = f,~ o r/n -7-+ g, 

then there is a time-space change 7/such that  g -- f o 77. This is stated by the convergence of type theorem (CTT) for 
max-automorphisms of S (cf. [10]). In the limit theorems of Sec. 4 and 5, we use the continuity of the composition 
rather than the CTT.  We assume directly that  the norming sequence 77 converges to a time-space change r / instead of 
the following assumptions: {r/,} E 7 ~ and (r/,} is T-compact. 

3. S e m i - S e l f - S i m i l a r i t y  

D e f i n i t i o n .  An extremal process Y : [0, cr --* [0, oo) d with d.f. g is referred to as semi-se l f -s imiJar  if there exists 
some time-space change 7/= (T, L) of (0, ~ ) a  for which the cyclic group F(r/) satisfies (BC) and such that  

Y o r ( t )  d L o Y ( t ) ,  V t > O ,  (3.1) 

or, equivalently, 
g( r ( t ) ,  x) = g(t, L -1 (x)). 

Below, we give several direct consequences of the definition. The  n-t ime iteration of (3.1) shows that  

Y o r~ d Lo(,) o Y ( t ) ,  V n  E Z. 

PROPOSITION 3.1. T h e  d .s  g o f  a semi-se l f - s imi lar  e x t r e m a l  process  is invar iant  w.r. t ,  t he  cycl ic  g roup  F(r/) of a 
t ime-space  change  r/, i.e., g o r/o(,~) = g, Vn E Z. 

Recall  that  the univariate marginals g~(x) = g( t ,  x )  are left-continuous in x. 
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PROPOSITION 3.2. I f  Y is a semi-self-similar extremal process stochastically continuous at t = 0 and i f  gl is 
continuous at the upper boundary of the support, then Y(O) = C(O) a.s. 

P r o o f .  The assumptions made permit  the chain of equalities 

g (0+ ,x )  = lim g ( r ~  lira g ( 1 , L ~  1, 
n - + o o  n - - ~ o c  

i.e., P(Y(0)  < z) = 1, Vx > C(0). Hence Y(0) = C(0) a.s. 

PROPOSITION 3.3. Let Y be a semi-self-similar extremal process with lower curve C and associated Bernoulli point 
process N = {(Tk, Xk) : k = 0 , 1 , . . . }  on [0, C] c. I f  the d.f.'s of Xk are continuous at the upper boundary, then Y is 
max-i.d. 

P r o o f .  By the decomposition theorem (cf. [2]), any extremal  process Y is the maximum of two independent extremal 
processes Y'  and Y"  with common lower curve C. The  process Y'  is generated by a Poisson point process N',  hence 
it is max-i.d. The process Y"  is generated by a point process N" = {(t~, Uk) : k = 1, 2 , . . .  }, where t l  < t2 < . . .  are 
fixed discontinuities of Y and Uk is the max-increment of Y at tk. So the point process N = N' @ N" is the Bernoulli 
point process associated with Y. We have still to show that  Y"  is max-i.d, too. 

Let Fk be the d.f. of Uk. Then, by (3.1), 

Y~(t) := L ~ o Y" o ~~ = C~(t) V sup{L ~ o Uk: r~ < t} =a Y"(t) 

or what is the same 
g.( t ,x)  = H{F~(L~  tk <_ r ~  = g"(t ,x) 

for all t > 0 and x > C(t). 
The continuity of Fk at the upper boundary, i.e., F~(x) --+ 1 for x 1" 0{Fk = 1}, and the boundary condition 

L~ --+ o~ imply that  the r.v. 's  Xnk :=  L ~ o U~ are asymptotically negligible, namely  the condition 

(AN) Fk(L~ = P(Uk < L~ ----+ 1, n -+ oc, 

is met for all x > 0. Note that  if the sequence of t ime points tk is finite, then g"(t,x) will be degenerate. 
Denote t ,k :=  ~'~ Since {Y,~} is a sequence of extremal processes generated by an array {(t,k, Xnk):  k > 1}, 

n > 1, with (AN)-condition, Y"  is max-i.d. 
As a by-product of the above proof, we see that  a semi-ss extremal process is either stochastically continuous at all 

t > 0 or there is an infinite sequence {tk} of fixed discontinuities. 

PROPOSITION 3 .4 .  A semi-ss d.f  g is either continuous everywhere or there is at least one infinite sequence z,, $ (fo 
of discontinuity points. 

P r o o f .  Let z = (t, x) be a discontinuity point of g, i.e., g(t - 0, x + 0) > g(t, x). Then  for all n E Z 

g( r  ~ (t) - 0, L ~ (x) + 0) > g(~.o(n)it), LO(,,)(x)). 

Let f and g be d.f.'s of extremal processes. We say that  f belongs to type (g) if there exists a time-space change 
= (a, T) such that  f = g o ~. 

PROPOSITION 3.5. Semi-self-similarity is a type property. 
P r o o f .  Assume that  Y is semi-ss w.r.t. 7 /=  (v, L), and let ~ = (~r,T) be a time-space change. Define the processes 

X1 = Y o a, X2 = T -1 o Y, and X3 = T -1 o Y o ~r. Then  X1, X2, and X3 are semi-ss w.r.t ,  the time-space changes 
( r ' ,  L), (~-, L ' ) ,  and (~-', L ' ) ,  respectively, where v* :=  a -1 o r o a and L" = T -1 o L o T. Further,  one can check that  
r((r ' ,  L')) satisfies the condit ion (BC). 

Let us come back to representation (2.2) of the norming mapping 77 = [~, hi. Denote f = g o h -1. Then  the 
semi-self-similarity equation g = g o 7/implies f ( z )  = f ( z  + es), Vz E 1~ a+l and s 6 {log %o'*: n 6 Z}. Recall that  h acts 
coordinatewise. We denote the space change h.  :=  ( h i , . . . ,  ha), hence h = (h0, h.) .  If g is a d.f. of a semi-self-similar 
extremal process Y w.r.t, r/, then f is a d.f. of the extremal process X( t )  = h.  o Y o ho l ( t )  and X is semi-ss w.r.t, the 
translation D, (z) = z + es. Thus 

X ( t + s )  d X ( t ) + e s ,  V s E { l o g ~ ' ~ :  n E Z } .  (3.2) 

From here one can guess that  there is a close connection between the semi-self-similar extremal processes and the 
periodically stationary processes. 

1310 



D e f i n i t i o n .  An R-~-valued stochastic process X : ( - o o ,  oo) -+ [-oo, oo) d is said to be periodically stationary with 
period s > 0 if 

X ( t  + s) ~ X ( t ) ,  Vt E R .  (3.3) 

PROPOSITION 3.6. Let Y :  [0, oo) -+ [0, oo) a be a semi-self-similar extremal process w.r.t. Zl = [~,h]. Then the 

stochastic process X" : ( -oo ,  oo) --+ ~-d defined by X*( t )  :=  h.  o Y o hol(t)  - et is periodically stationary with period 
s = log ~. 

P roo f .  We have, by (3.2), 

X*( t  + s) = h. o Y o h o l ( t  + s) - e(t + s) = h. o Y o h o1(t) - et = X ' ( t ) .  

Note that  the process X* is not an extremal process, since the relation ft,  I ft2 for tl < t2 is violated. The mapping 
r/(t, x) = (t, x - et) is not a time-space change. 

4. S e m i - S e l f - S i m i l a r  E x t r e r n a l  P ro ce s s e s  as  L i m i t i n g  

In [11], the following stochastic model is considered: assume we are given an extremal process X : [0, oo) --+ [0, oo) d 
with lower curve C, d.f. f ,  and associated point process {(tk, Xk) :  k = 0, 1 , . . .  } whose time points 0 -- to < tl  < 
t2 < . . .  form an increasing to oo sequence and Xk are i.r.v.'s in [0, oo) d, i.e., 

X ( t )  = C(t)  v sup{Xk  : tk_<t}. 

Assume further that  there is a sequence ~, (t, x) = (r,~(t), Ln (x)) of time-space changes such that: 
(i) ~,~ --+ o5 and Va > 0 ~-1 o~[onl ._+ r/~, where {r/, : a > 0} is a norming group. Such sequences are called regular; 
(ii) there exists a nonconstant  extremal process Y with d.f. g continuous at t = 0 with 

Y~(t) := L~ l o X o ~ ' , ( t )  = Cn(t) V sup{L~ 1 oXk:  r~-l(tk) <_ t} ==~ Y. (4.1) 

Then the limiting extremal process is max-i.d, and, moreover, it is self-similar w.r.t, the c.o.g. {r/~ = (as,  L~): a > 0}, 
i.e., 

Y oa~( t )  U= L~ o Y( t ) ,  Va > O, 

or, equivalently, 
g o rl~, = g , Va>O,  

and the umvariate marginals gt are max-self-decomposable (MSD), namely, Ve E (0, 1) there is a max-i.d.d.f. Qa such 
that 

g, (x) = at (L~ ~ x)Qo,t (x). 

In this section, we consider a similar stochastic model as above with the only difference that Y~ -- L~ I oX o~-~ i~ Y 
for n --+ oo, but there exists a geometrically increasing subsequence m~ -,, ~o ~, ~ > i, such that Ym. ~ Y. To 
characterize the limit class of extremal processes we need a weaker condition (4.2) than the regularity of {~,,}. Indeed, 

replace ~,,~. by ~ and Y,~, by Y~ in the new model. Then the condition ~,I o ~ .... "-+ ~Tv can be rewritten as 

~ I  o~,+ I ~ r/= (q,L) (4.2) 

and one gets the following characterizing theorem. 

THEOREM 4.1. Let X: [0,~) -+ [0, oo) a be an extremal process with nondegenerate d.f. f ,  and let ~ = (7",,,Ln) 
be a sequence of time-space changes of (0, oo) d+1 such that 
(a) ~, ---+ o~, ~-1 o ~,~+1 ._+ 7/= (~,L), and F(77) is a norminggroup;  
(~) Y,~ = L~  1 o X o r,~ ~ Y ,  where Y is a nondegenerate extremal process stochastically continuous at t = 0 with d.f. g 
and lower curve C with C(O) = O. 
Then 
(1) the limiting process Y is semi-self-similar w.r.t. F(~7); 
(2) the associated point process is Poisson; 
(3) the univariate marginals gt of  Y are semi-MSD, i.e., 

gt(x) = g~(L=)Q~(x), 
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where Q t / s  a max-i.d.d.s x > C(t), and L(x)  > x. 
Conversely, if Y is a nondegenerate semi-self-similar extremal process stochastically continuous at t = O, then Y is 

such a limit. 
P r o o f .  Statement (2) is a consequence of (a) and the continuity ofg at t = 0. For (1) let us express L~ 1 oXor,~+l (t) 

in two different ways: 

- 1  L~ 1 o X o r,+1 (t) = L~ "1 o L ,+ I  (L,~+I o X o r ,+ l ) ( t )  = L~ '  o X o r,, (r~ "1 o r ,+ l ) ( t ) .  

Then assumptions (a) and (b) imply for n ~ co the semi-self-similarity of Y, i.e., 

L o Y ( t )  a=yoa(t) ,  t>_O. 

Here a(t)  > t. By the structure theorem, there is a random vector U(cr-l( t) ,  t] > C(t) a.s., independent of Y ( a - l ( t ) )  
so that 

Y(t)  = Y(cr-l(t)) V U(a-l( t ) ,  t]. 

Let Qt be the d.f. of the max-increment U(~-l(0,t ] of Y. It  is max-i.d., since Y is max-i.d. Now, using the semi-self- 
similarity of Y on the RHS of the last equation, we get (3). 

Conversely, suppose Y is a semi-as w.r.t, r / =  (r, L) Poisson extremal process. Define L,~ :-- L ~ r ,  := ~-~ Then 
the semi-self-similarity implies 

L ~ l o Y o r ,  d=y, 

i.e., Y is limiting in a model described by (a) and (b). 
Recall that  self-similar extremal processes are stochastically continuous and can also be expressed as 

Y ( t ) = L , ( , ) o Y ( 1 ) ,  V t > 0 ,  

where a( t )  is the unique solution of am(l) = f. This means that  we know the process Y if we know the d.f. G(-) = 
gl( ' )  E MSD and the space-change family {L~(0 : t > 0}. The following theorem is a counterpart  of this fact in the 
semi-as model. Here, by max-support of G we mean the smallest rectangle containing the support of G. Note that  
G E semi-MSD w.r.t, a space-change L means 

G(x) =G(Lx)QI (x )  . . . . .  G(L~ (4.3) 

where 
n - - I  

o(n) Q-(:~) = 17[ QI(L x), 
k = I  

i.e., C is semi-MSD w.r.t, the semi-group {L ~ : n >_ 1}. Further, if C does not have mass at +co, then 

lira G(L~ lim QI(L~ 

Hence 
n 

G(x) = lim I ' I  QI(L~ 
r l  .-.+ ~ 

i.e., G is a max-i.d.d.f.  

THEOREM 4.2. Suppose that G is a nondegenerate d.s with max-support [0, co) a and continuous at the upper 
boundary, and suppose that L is a space-change for which cyc//c group satisfies the boundary condition (BC). Then 
G is semi-MSD w.r.t. L if and only if there exists a Poisson extrema/process Y : [0, oo) --+ [0, c~) d with d.s g and a 
time-change r: (0, oo) -+ (O, oo), such that Y is semi-as w.r.t. (r,L) and gl = G. 

P r o o f .  We still have to show the "only if" part. So, assume G is a d.f. of a max- i .d . r .v .  X in [0, oo) a and 
G 6 semi-MSD w.r.t, the space-change L. We shall construct an extremal process Y (more precisely, a family {gt : t > 0} 
of univariate d.t.'s determining Y) such that  
(i) Y is stochastically continuous (hence Poisson); 

(ii) Y(1) d X;  
(iii) there exists a time-change r :  (0, oo) --~ (0, oo) so that Y is semi-ss w.r.t. (~', L). 
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Denote by F(L) the cyclic group of L. By the embedding Proposition 2.2, there exists a homeomorphism h : 
(0, c~) a ++ ( - c r 1 6 2  a and a constant ~ > 1 such that  L(x) = h-l(h(x) + elog~o) > x. So, we start  by defining g~ at 

t = l ,  g~(x):=G(x),  

t = ~o, gv(x) : =  G(L- lx) .  

Next we determine gt uniquely in the interval 

t �9 (1,~o), gt(x) := [G(x)](~-O/C~-~)[G(L-'x)]Ct-1)/(~-l). 

It  is a d.f. on [0,oo) a and has the following properties: 
�9 g~ is continuous in t �9 [1, ~]; 
�9 g~ �9 semi-MSD w.r.t. L, i.e., 

gt(x) = 9,(Lx)qt(x), 

where q~(x) = [Q~(x)](v-t)/(~'-l)[Q~(L-lx)] (t-~)/(v-~) is max-i.d.; 
�9 for any s, t, 1 _< s < t <_ ~o, g, I gt, i.e., the quotient gJg, is a d.f. 
Indeed, 

gt(x) [G(x)]('~-t)/(~-I)[G(L-~x)]('-I)/(~-I)[G(L-lx) ](t-')/(~-l) 
- [G(x)](~_t)/(~_n[G(L_ix)](~_~)/(~_i)iG(x)](,2~)/(~,_~) = [Q~(L-lx)](t-~)/(v-n. gs(x) 

Now for any t > 0, t r [1, ~], there is n �9 Z such that  ~'~ < t < ~'~+~, so 1 _< ~- '~t  < ~, and we define 

g,(=) := g~_.,(LO(--)=).  (4 .4 )  

At t = 0, we define gt by the right-continuity g(0, x) = limn-~oo g(t,,  x) with t~ $ 0. So gt is defined for all t > 0. The 
family {gt : t > 0} has the following properties: 
* g l  = G;  
�9 g~ is continuous in t; 
�9 gt �9 semi-ss w.r.t. (% L) with T(t) = t~. 
Indeed, for arbitrary t > 0 choose n �9 Z satisfying ~ < t < ~,+1.  We have 

gt~(x) = gt~-, (L ~ = gt(L-lx).  

We still have to check that  g~, [ gv for arbitrary 0 < s '  < t'. There are several possible cases: 
(a) 1 < s '  < t '  < ~. This case has already been discussed, and we get 9v(x) : g,,(x)[Qi(L-lx)] (~'-'')/(~-1). 
(b) ~ < s' < t'. Let ~'~ < s' < ~o "+1 and ~"  < t '  < ~n+1. Then m < n and we have two possibilities: 

~ - ' ~ s '  =: s < t :-- ~o-"t '  or t < s. We take the first case; the other one can be handled similarly. Below we use the 
equalities 

Thus 

G( L~ = G( L~ ( LO(-n)x) . . . . .  G( L~ (LO(-m-~)x) . . .  Q, (L~ 

. . . . .  G(x )QI(L- lx ) . . .  Ql(L~ (4.5) 

gtw-(x) = gt(L~ = [G(L~176 

= [G(L~176176 -1) = G(L~ -')  

= G(L~ (L~  "'" Q1 (L~ (L~ (~-1)/(~-1) = G(L ~ [Q1 (L~ ( ' - l) /(~-n 

X[Ql(L~ (v-s)/(~-l) f l  Ql(LO(-~)x)[Ql(L~ (t-1)/(~-1). 
k = m + 2  

In the last equality, the product of the first two components is just g~(L~ = g,~,-(x). The product of the other 
components is a max-i .d.d.f ,  that  will be denoted H(5~-,t~-).  Hence, 
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(c) 0 < s '  < t '  < 1. Let ~o-"  < s '  < ~-,~+1 and ~ - "  < t ~ < ~ - , ,+ I .  Then m > n and there are again two 
possibilities: ~ '~s ~ =:  s < t :=  ~o"t ~ or t < s. One handles them in the same way as above. 

(d) 0 < s' < 1 < t'. Let ~ - "  < s' < ~0 -~n+l and ~'~ _< t' < ~,,+1. Here we decompose 

gt_L' = g~, gl 
gs, gl g~' 

Using gr = gt,~-,(L~ g,, = g, ,~-(L~ (4.5), and (4.3), we get 

g,_:. = r c ( L o ( - . - 1 ) = ) ]  
g, l c(=) j L c-~ j 

[~" (L~ +FI~Q )]c,'~-"-,)/(~-,) = Q1 1( L~  
_ " k = l  

= r'~ Ql(L~176 (t'~-"-1)/1~-1) 
k = l  

and also 
1 

g,, LG(L ( )x)] LG(L( -')z)J 

= QI(L~ II'~ Ql(L~ = I-~ QI(L~176 
- -  ~ k = l  k ~ l  

Obviously, gr/gs, is a max-i .d.d.f .  
(e) 1 <_ s' < r <_ t'. Here again g~,/g~, is a max-i .d.d.f . ,  and one shows this in a similar way as in (d) by decomposing 

gt._.~ ~ = g u  g~ 
g~' g~ g,' 

Finally, let us summarize: a d.f. gt, t > 0, is max-i.d, hence the set int{g~ > 0} is the open block (C(t), 4 ) .  Thus the 
quotient g,/gs for 0 < s < t uniquely determines the d.f. of the max-increment U(s, t] > C(t)  a.s. So {gt : t > 0} is the 
family of univariate marginals of an extremal process Y that  satisfies conditions (i)-(iii). Furthermore, (4.4) implies 
tha t  limt-.oo P(Y( t )  < x) = 0, i.e., Y(oo) = 05 a.s. 

5.  S e m i - S e l f - S i m i l a r  E x t r e m a l  P r o c e s s e s  w i t h  S t a t i o n a r y  I n c r e m e n t s  

Let us consider the same asymptotic model as in Theorem 4.1 with one additional condition: the initial extremal 
process X has stationary max-increments, i.e., for 0 < s < t 

Ux(s , t ]  = Cx( t )  v sup{Xk:  s < t~ < t} 4 v x ( o , t  - s). 

Then  the limit extremal process Y with d.f. g: 
(a) is semi-ss w.r.t, a time-space change 7 /=  (% L), i.e., 

g(r( t ) ,  x) = g(t, L - i x ) ;  

(b) belongs (cf. [11]) to the Resnick and Rubinovich class ~, i.e., 

g( t ,x )  = Gt(x),  G E max-i.d. 

The extremal processes of the class ~ are stochastically continuous processes starting at the origin with independent 
and stationary max-increments, hence they are the counterpart  of the L~vy processes in the extreme value theory. 

From (a) and (b) we see that  the d.f. G(x) = P(Y(1)  < x) satisfies the functional equation 

G-~(1)(x) = G ( L - l x ) .  (5.1) 
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Hence G is a max-semistable d.f. This class of d.f.'s are studied in [5, 6, 8]. 
Recall that  a max-i.d.d.f .  G is called max-semJstable (briefly max-ss) if there exists a pair (a,  L), a E (0,1), L(x) > x, 

such that  G ~ ( x l =  G(Lx). Obviously, if G E max-ss, then Vt > 0 G t is max-ss w.r.t, the same pair (c~,L). In l:t 1, the 
solution of the functional equation (5.1) is given by 

G(x) ---- exp{--eCh(~)p~ (h(x))}, (5.2) 

where L(x) = h -1 (h(x) + e log ~o), a = 1/~'(1), c > 0 is the unique solution of a ~  e = 1, and p~ (y) is a positive bounded 
periodic function with period T -- log ~o. 

THEOREM 5.1. Let Y : [0, oo) --+ [0, c~) d be an extremM process with d.s g and stationary max-increments. Then 
Y is semi-self-sim51ar if and only if  gl is a max-semistable d.s 

P r o o f .  We still have to prove the "only if" part.  Let  gl --- G be max-ss w.r.t. (a,  L) and, without  loss of generality, 
let us assume that  G(x) < 1 Vx E [0, oo) a. Then  Vt > 0, x > C(t) 

g(ta, x) = Gt~(x) = Gt(Lx) = g(t, Lx). 

Further, the cyclic group of 7 /=  (1 / a ,L )  is a norming group, since t /a  n -+ oo, L~ --+ ~o as n --+ oo. Hence Y is 
semi-ss w.r.t. F(~). 

Note that  the lower curve of a process Y 6 ~ is always constant,  namely, C(t) = C(1) = inf{G > 0}. 
Let us consider the multivariate version of (5:2). Since Y 6 ~, the mean measure # of the associated Poisson point 

process N has the form 
u([0,t] • [0,x) ~) = t~([0,x)~ vx > c(1),  

where u(.) is the exponent measure of G = gl (cf. [4]), which satisfies the semi-stability equation 

au(A) = u(LA), VA 6 B([C(1),c~] \ {C(1)}). (5.3) 

Recall that  here c~ e (0, 1) and L = [q~, h]. 
Denote X . . . .  {a E (0, oo)d: max(a1, ,a~) = 1} and set s(x, a) :=  min~<i<d_ _ exp{hi_ (xi) - hi(a/)}. There exists a 

finite measure Q on 13(x ) such that  the solution of (5.3) is given by (cf. [9]) 

~([0, x) ~) = f ~-' (=, ~)p~ (log ~(=, ~)) Q(d~) 
X 

and such that  the function 
f 

p(h~ (xl)) = / exp{hi(ai) }p~(log s(s, a)) Q(da) 

X 

is a positive bounded periodic function with period T = log ~o. 
Let us come back to (5.2). We can rewrite it as 

G ( x ) =  [e-r "~ " 

The expression in the brackets is the general form of a max-stable d.f. (cf. [9]). Hence, (5.2) says that any max-ss 
d.f. has the form of a max-stable d.f. to a power p~(h(x)). Using this and Theorem 5.1, we construct examples of 
semi-self-similar extremal processes. 

E x a m p l e  1. Let Y:  (0,c~) -+ ( - c~ ,c~)  be an extremal  process with d.f. 

g(t,x) = exp{'-te-[=l}, t > O, x E R.  

Here Y E ~, 91(x) is max-ss w.r.t, c~ = e -1, and L(x) = x + 1. Then  Y is semi-ss w.r.t. 7?(t,x) = ( t /a , x  + 1). 
E x a m p l e  2. Let 9(t,x) = exp[-(t /x){logx}] be the d.f. of an extremal process Y :  ( 0 , ~ )  --+ (0, c~). Here 

p(y) = {y} is the fractional part  of y and has period T = 1. Comparing with (5.2), we conclude that  h(x) = logx,  
~o = e, L(x) = x% a = ~-a .  Then 

g(t ,x~o)=exp[,  t { l ~  = x ~ o  " g(-~'t x )  
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and Y is semi-ss w.r.t. 7/(t, x) = (t~, x~o). 
E x a m p l e  3. Let,the r.v. X be uniformly distributed on the diagonal of the square [0, 1] 2. Then its d.f. G h a s  the 

form 
o, x e ( ~ > 0 ) ~ ,  

G(xl,x2) = xl ,  xl < x2 < l, 
x2, x2 <_ Xl <_ 1, 

1, x e { y > l } ,  

and G is semi-MSD w.r.t. L(x) = (x l /a ,  x2/a),  a E (0,1). Hence, by Theorem 4.2, there is a d.f. g with g(1, x) = G(x) 
so that g is the d.f. of a semi-ss extremal process Y: (0, c~) --~ [0,1] 2 w.r.t. 71(t , x) = (t/a,  x l /a ,  x2/a). 

Note that the d.f. G has a zero density. Such a d.f. cannot be self-decomposable in the classical model of sums of 
i.r.v.s. 

E x a m p l e  4. The d.f. G(x) = exp{- (1 /x ) (c  - sin(logx))}, x > 0, c > 1, is max-ss w.r.t. (a = e -2~r, L(x) = x/a) .  
For c large enough, the function - l o g G  is convex, hence G E MSD. Thus, the d.f. g(t,x) = Gt(x) is the d.f. of a 
semi-ss extremal process Y: (0, ~ )  --+ (0, ~ )  w.r.t, q(t, x) = (t/a, x /a) .  
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