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SEMI-SELF-SIMILAR EXTREMAL PROCESSES*

E. 1. Pancheva (Sofia, Bulgaria) UDC 519.2

Let g be the distribution function(d.f) of an extremal process Y. If g is invariant with respect to a continuous
one-parameter group of time-space changes {Na = (Ta,La): a >0}, i.e., gon, = g Ya > 0, then g is self-similar.
If g is invariant w.r.t. the cyclic group {n°™, n € Z} of a time-space change 7, then g is semi-self-similar. The
semi-self-similar extremal processes are limiting for sequences of extremal processes Y, (t) = L' oY o 7,(t) if going
along a geometrically increasing subsequence k,, ~ ¢™, ¢ > 1, n — 0o. The main properties of multivariate semi-
self-similar extremal processes and some examples are discussed in the paper. The results presented are en analog
of the theory of semi-self-similar processes with additive increments developed by Maejima and Sato in 1997.

1. Introduction and Background

Extremal processes are stochastic processes with increasing right-continuous sample paths and independent max-
increments. Without loss of generality, we consider extremal processes Y: [0,00) — [0,00)“ whose time space is the
positive axis and whose state space is the positive orthant in R?. The independence of the max-increments means that
for any finite sequence of time points 0 = t; < ¢; < --- < t; there exist independent random vectors Up,...,Ux in
[0, 00)¢ such that

(Y(to),...,Y{tx)) £ (Uo,UoVUy,...,Up V-V Uy).

The extremal processes in this general setting are studied in [2, 3]. We use the following characteristics of an
extremal process:

1. The distribution function (d.f.) f(t,x) = P(Y(t) < ). We observe that
e f: (0,00)4* o 0, 1] is lower semi-continuous, so f(t,z) = f(t + 0,z — 0);
o for any fixed ¢, the function f(z) := f(¢,z) is a d.f. on [0, 00)¢;
efor0 < s <t, f, | fi, ie., there exists a d.f. H, ) such that f, = fo. H, ).
Conversely, any function f with the three properties above is a d.f. of an extremal process. The family of univariate
marginals {f, : t > 0} of the extremal process determines all finite-dimensional distributions (f.d.d.), because for
o< - <tg,Tp < --- < Tg
fll(zl) fek(zk)
feo(1) 7 fru (mk)

Fto ..... tk(107'-'1zk) =flu(z°)

2. The lower curve C: [0,00) — [0, 00)? of an extremal process Y is defined coordinatewise by C()(t) = inf{f,(i) > 0},
i=1,...,d. It is a uniquely determined increasing right-continuous curve below which the sample paths of ¥ cannot
pass.

3. The max-increments of an extremal process are not uniquely determined by the process. This interesting phe-
nomenon observed in the multivariate extreme value theory is called blotting, and it is discussed in [2]. However, we
can always choose and fix a consistent family of max-increments U{(s,t], 0 < s < t, such that a.s.

o U(s,t] 2 C(t);

o Y(t) =Y (s) VU(s,t];

e for any 0 =t < t; < --- < tx, the vectors Y (0}, U(o,t1],...,U(tk—1,tx] are independent.
This states the structure theorem proved in [2].
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4. Every extremal process Y with lower curve C is generated by an associated point process N = {(Tk, Xx): k =
0,1,2,...} on the open set [0,C]° = ([0,00) x [0,00]¢) \ {0, C] by

Y(t) = C(t) vsup{Xx: T <t} (1.1)
Almost all realizations of N are Radon measures on [0,C]%, i.e., a.s.
N([o,t] x [0,7)%) <00, Vt>0, z>C(t),

hence the supremum on the RHS in (1.1) is, in fact, the maximum of finite many space points. Further, N is simple in
time and the restrictions N(DB),...,N(Dx) to disjoint time slices By, ..., By are independent. Such point processes
we call Bernoulli, and they are discussed in [3].

The structure theorem answers the question: how far does a given family {f;: t > 0} of d.f.’s on [0, o0)? determine
an extremal process Y? In the max-infinitely divisible (max-i.d.) case, the set int{f, > 0} is an open block, C(t) =
inf{f, > 0}, and the quotient f,/f, for 0 < s < t determines the d.f. of the max-increments U(s, t] uniquely on the set
A; = (C(t),00) above the lower curve.

In the present paper, we deal with max-i.d. extremal processes only. As is known, they are associated with Poisson
point processes and there exists a simple connection between the d.f. of the extremal process and the mean measure y
of the associated point process, namely,

f(t,.’l.‘) = exp{_#([ov t] X [O! z)c)}

We are interested in characterizing a special type of extremal process, satisfying the characteristic equation
Yoolt)£LoY(t), Vt>0. (1.2)

We call this type a semi-self-similar extremal process and denote it by semi-ss. The time-space change 7n(t,z) =
(o(t), L{z)), t € (0,00), T € (0,00)%, we choose continuous and strictly increasing in each coordinate, hence it is a
max-automorphism of (0,00)*+!. In Sec. 2, we study some of the main properties of time-space changes that we need
further, e.g., the fact that the cyclic group of a time-space change can be embedded in a continuous one-parameter
group. Section 3 gathers the direct consequences of the characteristic equation (1.2). There the main result states
that a semi-self-similar extremal process is a max-i.d. process, either stochastically continuous everywhere or having
infinitely many fixed discontinuities.

In Sec. 4, we obtain a semi-self-similar extremal process as limiting in a triangular array with asymptotic negligibility
condition when going along a geometrically increasing subsequence. Theorem 4.1 states that the univariate marginals
of the limiting semi-ss process are semi-self-decomposable with respect to (w.r.t.) the max-operation, briefly semi-MSD.
Theorem 4.2 is an analog of Theorem 5.3 in {7] and shows that a semi-MSD random vector X can be embedded in a
stochastically continuous semi-self-similar extremal process Y so that a.s. Y(0) = C(0), Y(1) = X, Y (c0) = 0.

Section 5 is a brief account of semi-self-similar extremal processes with stationary max-increments. An extremal
process Y : [0,00) = [0,00) with stationary max-increments is semi-ss if and only if its d.f. at ¢ = 1 has the explicit
form

1

e—Thix) po(h(x))
{=}

where h: (0,00) — (—00,00) is a continuous homomorphism and p, is a periodic function with period T = log¢,
positive and bounded, and v > 0. Then f(t,z)} = f{(z). We end with several examples of semi-self-similar extremal
processes.

2. Time-Space Changes

Let the time-state space S be the open block (0,00)?*!. A time-space change of S is an increasing homeomorphism
£: S+ Swith
£(t,x) = (&o(t), &1 (1), - - - &alza)),

where the one-to-one mapping & : (0,00) ¢ (0,00), i = 0,1,...,d, is strictly increasing, hence continuous. Such
mappings preserve the max-operation, i.e., £(z1 V22) = (£(21) V€(22), 21,22 € S, so they are max-automorphisms of the
time-state space S. The max-automorphisms of S form a group w.r.t. the composition, £ o n(z) = £(n(z)), z € §, and
we denote it by MA(S). We are interested in studying them, since they are proper norming mappings in the extreme
value theory (cf. [9]).
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Let ' = {{a: a >0} C MA(S) be a continuous one-parameter group (c.0.g.), i.e.,
e £ = id (here id stays for the identical mapping);
¢ a08g=2Eup, 0, 3>0;
ol &gifa—p.
We call I a norming group of time-space changes of S if the following boundary condition is met:
(BC) fa(2) =0, all, € — &R, atoo

for every z € S. One can check that for a norming c.o.g. I':

e the correspondence a — £, is strictly increasing and continuous;

o for a > 1, £, is expanding, i.e., £4(2z) > z, and for a < 1, £, is contracting, i.e., £4(2) < z;
o 0 and & are the only fixed points of &,.

ProposITION 2.1. Any norming c.0.g. I' C MA(S) has the form
£a(2) = h™H{h(2) + ecloga}, a>0, (2.1)

where h: S & R4*! js an increasing homeomorphism, e is the unit vector, and c is a positive constant.
The proof of this statement (e.g., [10]) consists of giving a solution of the functional equation

€l &[B, 2]] = €laf, 2],

and it is carried out in a way analogous to Theorem 20 in [1].

Representation (2.1) can be written briefly as £, = h~! o D.ioga © h, where D.(z) = z + er, r € R. This means
that there is a change h of the coordinates, 2z’ = h(z), so that y, = h(£,) in the new coordinates is just a translation
yl, = 2z’ + eclog o along the diagonal.

Below, we denote the n-time composition £0 -+ 0 £ by £2(™) ¢! o...0, £=1 by £°(-™) and £° = id.

PROPOSITION 2.2. Let 7 be a time-space change of S. Suppose that the cyclic group T'(n) = {n°™, n € Z}
satisfies the boundary condition (BC), i.e.,

n°(‘“)(z) — 6, n — 0o,

M (2) — R, n — oo.

Then I'(n) can he embedded in a c.o.g. {&: t > 0} such that n = £, for some ¢ > 1 and 7°™) = £,n.
Proof. Let ¢ > 1 be fixed. Latter we shall determine the value of ¢ uniquely. Define the subset in R

S={logy™: neZ}
and set 7,(-) := n°(™ for s = log ¢™ € S. We have
Tlso"lv(z) =775+u(z)1 s,vE€S.

Further, the assumption that ['(n) satisfies the boundary condition (BC) for n — *oco implies that the correspondence
§ — 17, is strictly increasing. Indeed, assume there are s,v € § with s = log ™ < v = log¢™, m < n, and such that
My < M. Then

2207 omy(z) = °T™ 0P (z) = otnmm(2),

and this is a contradiction to 7°(*)(2) — & for k — co. Moreover, {7,: s € S} satisfies the boundary condition
75(z) = R0, s o0,

1s(2) = 0, s— —co.

For z € S, we call the set
To = {n°™(2): n€Z} ={n,: se&}

the track of 1 through the point z. Every z € S has a track that starts at § and goes up to &o.

We can embed the track 7} in a curve 7(t) continuous in ¢ so that for t = n, 5(n, z) = 7°(")(2), n € Z. Indeed, define
1*=an+(l-a)idforae (0,1}, 7' =7, 7% =id. Forn <t <n+1,ie., fort = n+ o, where n = [t] and a = {t},
we define 7(t, z) := 1° 0 7°(")(z). Here [t] and {t} are the integer and the fractional part of ¢, respectively. Obviously,
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the correspondence t — 7(t) is continuous and strictly increasing, hence, one-to-one, and n(n, z) = 7°™)(2) = n,(2) if
s = log ™.
Now the orbit O, through the point z defined by O, = {n(t,z): t € R} overlaps the track 7;. If z; # z;, then
either 0., does not intersect O,, or both orbits coincide. In the latter case, there is s € R such that z; = 7(s, 22).
Next we consider y, = 7,(z) as a function on &. The correspondence 7, +> es is one-to-one; let h* be this single
strictly increasing homeomorphism that “bends” the diagonal {es: s > 0} into the orbit O, = {y, = h*(es): s € R}
overlapping 7. Now the group property 7, © 1,(2) = 7544(2), 8,v € S, can be written as

Ns(Yo) = Yuss = R*(e(v + 5)) = h*(ev + es) = h*(h(y) + es),

where h* is the mapping inverse to h and h: S « R?. Since n,(z) = z, for v = 0 from the abovesaid we have
7ns(z) = h~1(h(z) + es) and consequently

7(2) = Mog o (2) = K™ (h(2) + elog ). (2.2)

Thus, I'(n) is embedded in the c.o.g. {£&(-) = A7} (A(:) + elogt): t > 0} with n°™ =£.n, n € Z.

Let z = (t,zy,...,z4) and 1(z) = (7(t), L(x)}). The mapping h(z) = (ho(t), hi(z1),-- -, ha(za)) acts coordinatewise
and log ¢ = ho(7(1)) — ho(1) =: A, hence ¢ = e?.

Note that the pair [, h] uniquely determines the time-space change 7. Conversely,  determines h uniquely up to
a translation, namely, if hy = h; + eloga, then n(-) = AT (R (-) + elog p) = h3 ' (ha(-) + elog ), and hy determines ¢
uniquely. We shall denote this relation by 7 = [, h].

We supply the set MA(S) with the topology 7 of the pointwise convergence. Let g, and 1, be sequences of d.f.’s
of extremal processes and of time-space changes, respectively. If g, - ¢ and 7, — 7, then the continuity of the
composition entails that

gnOTn i)gon, n — Q.

The convergence 7, — 7 does not imply that 7 is a time-space change (i.e., strictly increasing and continuous).

Let us denote Py, = {{n} € MA(S): (*) e < n(z + eg) — n(z) < ¢(ec) — 0 as £ — 0}, where ¢p: S — S. Put
P=J,Py.

The sequences 7, € P are equicontinuous. If there exists a limit mapping 7, then the RHS of condition (*) implies
its continuity and the LHS guarantees its strict monotonicity.

Let f and g be nondegenerate d.f.’s of extremal processes and let the sequence 7,, € P of time-space changes be
T-compact. If

fn_i).fy gn=fn°77ﬂi)g7
then there is a time-space change 7 such that g = f on. This is stated by the convergence of type theorem (CTT) for
max-automorphisms of S (cf. {10]). In the limit theorems of Sec. 4 and 5, we use the continuity of the composition
rather than the CTT. We assume directly that the norming sequence 7 converges to a time-space change 7 instead of
the following assumptions: {n,} € P and {n,} is T-compact.
3. Semi-Self-Similarity

Definition. An extremal process Y: [0,00) — [0, 00)? with d.f. g is referred to as semi-self-similar if there exists
some time-space change 7 = (7, L) of (0,00)¢ for which the cyclic group I'(n) satisfies (BC) and such that

Yor(t) 2 LoY(t), Vt>0, (3.1)

or, equivalently,
g(r(t),z) = g(t, L7 (2)).

Below, we give several direct consequences of the definition. The n-time iteration of (3.1) shows that
Yor' ™) £ L°MoY (), VnelZ.

ProposITION 3.1. The d.f. g of a semi-self-similar extremal process is invariant w.r.t. the cyclic group I'(n) of a
time-space change 1), i.e., gon°™ =g, ¥n € Z.
Recall that the univariate marginals g¢(z) = g(t, z) are left-continuous in z.
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ProprosiTION 3.2. IfY is a semi-self-similar extremal process stochastically continuous at t = 0 and if ¢, is
continuous at the upper boundary of the support, then Y (0) = C(0) a.s.
Proof. The assumptions made permit the chain of equalities

= 1 o(~n) = 1 Am)g) =
g(0+,z) = lim g(r°'"™(1),2) = lim g(1,L%™z) =1,

ie, P(Y(0) < z) =1, vz > C(0). Hence Y(0) = C(0) as.

PropPoSITION 3.3. Let Y be a semi-self-similar extremal process with lower curve C and associated Bernoulli point
process N = {(Tx, Xx): k=0,1,...} on[0,C]¢. If the d.f.’s of X are continuous at the upper boundary, then Y is
max-i.d.

Proof. By the decomposition theorem (cf. {2]), any extremal process Y is the maximum of two independent extremal
processes Y’/ and Y with common lower curve C. The process Y’ is generated by a Poisson point process N’, hence
it is max-i.d. The process Y is generated by a point process N = {(t;,Ux): k=1,2,...}, where t; <ty < ... are
fixed discontinuities of Y and U, is the max-increment of Y at ;. So the point process N = N' @ N” is the Bernoulli
point process associated with Y. We have still to show that Y is max-i.d. too.

Let Fj be the d.f. of Uy. Then, by (3.1),

Ya(t) i= Lo 0 Y7 0 72 (8) = Cp(t) V sup{L°™ o Uy: 720" (t,) < t} £ Y"(2)

or what is the same
gn(t,z) = [[{F(L°™z): tx < 7°N (1)} = ¢"(t,2)

for all t > 0 and z > C(¢).
The continuity of F) at the upper boundary, i.e., Fr(x) — 1 for z + 8{Fx = 1}, and the boundary condition
L°(™)(z) — & imply that the r.v.’s Xpx := L°(=™ o Uy are asymptotically negligible, namely the condition

(AN) Fi(L°™z) = P(U < L°™z) ~— 1, n = o0,

is met for all z > 0. Note that if the sequence of time points tx is finite, then g”(¢,z) will be degenerate.

Denote tn 1= 7~ (t)). Since {¥,} is a sequence of extremal processes generated by an array {(taz, Xnk): k > 1},
n > 1, with (AN)-condition, Y is max-i.d.

As a by-product of the above proof, we see that a semi-ss extremal process is either stochastically continuous at all
t > 0 or there is an infinite sequence {tx} of fixed discontinuities.

PROPOSITION 3.4. A semi-ss d.f. g is either continuous everywhere or there is at least one infinite sequence z, 1 50

of discontinuity points.
Proof. Let z = (¢,x) be a discontinuity point of g, i.e., g(t — 0,z + 0) > g(t,z). Thenforallne Z

g(T°(")(t) -0, oM (.’1:) +0) > g(T°(")(t),L°(ﬂ)(I))-

Let f and g be d.f.’s of extremal processes. We say that f belongs to type (g) if there exists a time-space change
£ =(0,T) such that f =go&. '

ProPOSITION 3.5. Semi-self-similarity is a type property.

Proof. Assume that Y is semi-ss w.r.t. 7 = (7, L), and let £ = (0,T) be a time-space change. Define the processes
Xi=Yo00, Xo=T"1'0Y,and X3 =T 'oY oo. Then X;, X,, and X; are semi-ss w.r.t. the time-space changes
(r*,L), (1,L*), and (77, L*), respectively, where 7* := 6~' o700 and L* = T~! o L o T. Further, one can check that
T((r*,L*)) satisfies the condition (BC).

Let us come back to representation (2.2) of the norming mapping n = [p,h]. Denote f = go h™!. Then the
semi-self-similarity equation ¢ = go7 implies f(z) = f(z+es), Yz € R¥*! and s € {logy™: n € Z}. Recall that h acts
coordinatewise. We denote the space change h. := (hy,...,hq), hence A = (hg,h.). If g is a d.f. of a semi-self-similar
extremal process Y w.r.t. 7, then f is a d.f. of the extremal process X (t) = h, oY o hy'(t) and X is semi-ss w.r.t. the
translation D,(z) = z + es. Thus

X(t+s) 4 X(t)+es, VYse{loge™: neZ}l (3.2)

From here one can guess that there is a close connection between the semi-self-similar extremal processes and the
periodically stationary processes.
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Definition. An R'-valued stochastic process X: (—co,00) — [—00,0c)? is said to be periodically stationary with
period s > 0 if
X(t+s) 2 X(t), VteR. (3.3)

PROPOSITION 3.6. Let Y: [0,00) — [0,00)? be a semi-self-similar extremal process w.r.t. n = [p,h]. Then the
stochastic process X*: (—00,00) — R* defined by X*(t) := h. oY o hy(t) — et is periodically stationary with period
s=logey.

Proof. We have, by (3.2),

X*(t+s)=h.oYohs'(t+s)—e(t+s)=h.oY ohsl(t)—et = X"(t).

Note that the process X* is not an extremal process, since the relation f;, | f;, for t; < ¢ is violated. The mapping
7(t,z) = (t,z — et) is not a time-space change.

4. Semi-Self-Similar Extremal Processes as Limiting

In {11], the following stochastic model is considered: assume we are given an extremal process X : [0,00) — [0,00)4
with lower curve C, d.f. f, and associated point process {{tx, Xx): k =0,1,...} whose time points 0 = t; < t; <
t2 < ... form an increasing to co sequence and X are i.r.v.’s in [0,00)¢, i.e.,

X(ty=C(t) Vsup{Xi: ti <t}.

Assume further that there is a sequence &, (¢, ) = (Ta(t), Lo(z)) of time-space changes such that:
(i) &n — 0 and Va > 0 £} 0 &jan] =* Mo, Where {n,: a > 0} is a norming group. Such sequences are called regular;
(ii) there exists a nonconstant extremal process Y with d.f. g continuous at ¢t = 0 with

Ya(t) ;= L7 o X omy(t) = Cu(t) Vsup{L o Xi: 77M(th) <t} = Y. (4.1)

Then the limiting extremal process is max-i.d. and, moreover, it is self-similar w.r.t. the c.0.g. {ny = (¢a,La): a >0},
ie.,
Yooa(t) 2 LaoY(t), Ya>0,

or, equivalently,
gon. =g, Ya>0,

and the univariate marginals g; are max-self-decomposable (MSD), namely, Y& € (0,1) there is a max-i.d. d.f. Q, such
that

91() = 9:(L;'7)Qa(z).

In this section, we consider a similar stochastic model as above with the only difference that Y, = L;!o Xo7, # Y
for n = o0, but there exists a geometrically increasing subsequence m, ~ ™, ¢ > 1, such that ¥,,,, = Y. To
characterize the limit class of extremal processes we need a weaker condition (4.2) than the regularity of {¢,}. Indeed,
replace &, by &, and i, by Y, in the new model. Then the condition {;1}. ©&m,., = 7, can be rewritten as

&1 0bnyr — 0= (0,L) (4.2)

and one gets the following characterizing theorem.

THEOREM 4.1. Let X: [0,00) = [0,00)¢ be an extremal process with nondegenerate d.f. f, and let £, = (T, L)
be a sequence of time-space changes of (0,00)4*! such that
(2) &n = R, £, 0€nyy = 1 = (0,L), and T'(n) is a norming group;
(b) Y. =L;'oXor, =Y, whereY is a nondegenerate extremal process stochastically continuous at t = 0 with d.f. g
and lower curve C with C(0) = 0.
Then
(1) the limiting process Y is semi-self-similar w.r.t. T'(n);
(2) the associated point process is Poisson;
(3) the univariate marginals g; of Y are semi-MSD, i.e.,

9t(z) = g:(L:)Q:(z),

1311



where Q; is a max-i.d. d.f, z > C(t), and L(z) > .

Conversely, if Y is a nondegenerate semi-self-similar extremal process stochastically continuous at t = 0, then Y is
such a limit.

Proof. Statement (2) is a consequence of (a} and the continuity of g at ¢ = 0. For (1) let us express L7 o X 07,41 (t)
in two different ways:

Lr—;l oX °Tn+1(t) = L;l ° L'n+1(L;-}-1 oXo Tn+1)(t) = L;l oXo Tn(Tﬂ—l o Tn+1)(t)-
Then assumptions (a) and (b) imply for n — co the semi-self-similarity of Y, i.e.,
LoY({t)&Yoo(t), t>o0.

Here o(t) > t. By the structure theorem, there is a random vector U(c~1(t), ¢} > C(t) a-s., independent of Y (c~1(t))
so that
Y(t) = Y(o~\ (1)) VU(" (1), 1.

Let Q; be the d.f. of the max-increment Ug-1(),q of Y. It is max-i.d., since Y is max-i.d. Now, using the semi-self-
similarity of Y on the RHS of the last equation, we get (3).
Conversely, suppose Y is a semi-ss w.r.t. = (7, L) Poisson extremal process. Define L,, := L°™ 1, := 7°(®), Then
the semi-self-similarity implies
L7'oYor, 4 Y,

i.e, Y is limiting in a model described by (a) and (b).
Recall that self-similar extremal processes are stochastically continuous and can also be expressed as

Y(t) = Loy o Y(1), V>0,

where a(t) is the unique solution of g,(1) = t. This means that we know the process Y if we know the d.f. G(:) =
91(-) € MSD and the space-change family {Lq(): t > 0}. The following theorem is a counterpart of this fact in the
semi-ss model. Here, by max-support of G we mean the smallest rectangle containing the support of G. Note that
G € semi-MSD w.r.t. a space-change L means

G(z) = G(Lz)@Q:(z) = - - - = G(L°™z)Q,(z), (4.3)

where

n-1
Qn(z) = [] @u(Z°™a),
k=1

i.e., G is semi-MSD w.r.t. the semi-group {L°™: n > 1}. Further, if G does not have mass at +0o, then

lim G(L°™z) = lim Q,(L°™z) =1.
n—o0

=00

Hence

G(z) = lim J] @u(2°¥a),
k=1

i.e.,, G is a max-i.d. d.f.

THEOREM 4.2. Suppose that G is a nondegenerate d.f. with max-support [0,00)¢ and continuous at the upper
boundary, and suppose that L is a space-change for which cyclic group satisfies the boundary condition (BC). Then
G is semi-MSD w.r.t. L if and only if there exists a Poisson extremal process Y : [0,00) — [0,00)¢ with d.f. g and a
time-change 7: (0,00) — (0, c0), such that Y is semi-ss w.r.t. (t,L) and g, = G.

Proof. We still have to show the “only if” part. So, assume G is a d.f. of a max-i.d. r.v. X in [0,00)¢ and
G € semi-MSD w.r.t. the space-change L. We shall construct an extremal process Y (more precisely, a family {g.: ¢t > 0}
of univariate d.f.’s determining Y’) such that
(i) Y is stochastically continuous (hence Poisson);

(i) Y(1) £ X;

(iii) there exists a time-change 7: {0,00) — (0,00) so that Y is semi-ss w.r.t. (7, L).
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Denote by I'(L) the cyclic group of L. By the embedding Proposition 2.2, there exists a homeomorphism  :
(0, 00)? + (~00,00)¢ and a constant ¢ > 1 such that L(z) = A~} (h(z) + elog p) > z. So, we start by defining g, at

t= 17 gl(z) = G(l‘),

t=¢, go(z):=G(L 'z).

Next we determine g, uniquely in the interval
te(Ly) a(@) = [G(@)] eV G(L gD/,

It is a d.f. on [0,00)? and has the following properties:
e g; is continuous in ¢ € [1, ¢|;
e g; € semi-MSD w.r.t. L, ie.,
9:(z) = g:(Lx)q:(x),

[Q1(I)](“’")/(“"”[QI(L‘lx)](“l)/(W—l) is max-i.d.;
1<s<t<yp,gs|g, ie., the quotient g;/g, is a d.f.

where ¢;(z) =
e for any s, t,
Indeed,
g:() [G(I)](w—t)/(v—l)[G(L—II)](s—l)/(w—l)[G(L—lx)](t—s)/(w—l)
0:(x)  [C@)]@-0/e=D[G(L-17)|-D/e=D[G(z)](t=)/ts=D)

= [Qi (L x))t=s)/ o1},
Now for any t > 0, t ¢ [1, ], there is n € Z such that ¢™ <t < ¢™*}, 501 < ™™t < , and we define
9:(z) 1= gy-ne(L° ™). (4.4)

At t = 0, we define g; by the right-continuity ¢(0, z) = lim, .00 9(tn,z) with ¢, J 0. So g, is defined for all t > 0. The
family {g:: t > 0} has the following properties:

L ] 91 = G,

® g; is continuous in ¢;

e g¢ €semi-ss w.r.t. (1, L) with 7(¢) = ty.

Indeed, for arbitrary ¢t > 0 choose n € Z satisfying o™ < t < ¢™*!. We have

gtw(x) = gt\o“"(Lo(_n_l)z) = gt(L'l:z:).
We still have to check that g, | g, for arbitrary 0 < s’ < t'. There are several possible cases:

(a) 1 < s’ < t' < p. This case has already been discussed, and we get g, (z) = g,/ (z)[Q1 (L™ z)]' ~*")/ (=1
(b) ¢ £ & <t Let o™ < s < ™! and ™ < t' < ¢™*!. Then m < n and we have two possibilities:

p™™s' = s <t:=p "t ort <s. We take the first case; the other one can be handled similarly. Below we use the
equalities
G(L"z) = QLA V5@ (L7 M) = - - = GL ™)@y (L Va) - @y (L2 a)
== G(2)Q(L7z) - Qi (L a). (4.5)
Thus

Geon (T) = g (L°™g) = [G(LO(—ﬂ)x)](w—t)/(w—l)[G(LO(-n—l)x)](t-l)/(w—l)
= [G(LO(—n)x)](w—t)/(v—l)[G(Lo(-n)I)Ql(LO(—n—l)I)](t—l)/(v—l) = G(LO(-n)I)[QI(LO(-—n—l)I)](t—l)/(sc—l)
- G(L°(_’")3:)Q1(L°(_"'—”x) . --QI(L°('")1)[Q1(L°(_"'1):r)](‘_1)/(“"1) = G(LO(—m)m)[Ql(LO(—m-l)z)](s—l)/(w—l)
x[Qq (Lot V) e =9)/(#=1) H Q1 (LPz)[Q (LoD )| (t-1/ (e 1),
k=m+2

In the last equality, the product of the first two components is just g,(L°(~™)z) = g,,m(z). The product of the other
components is 2 max-i.d. d.f. that will be denoted H{,,m t,n). Hence,

yt“’n = g,wm H(Mpm ’t‘pn).
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(€)0<s <t <1 Let g™ <& <o ™1 and ¢™™ < t' < o™ "*!. Then m > n and there are again two
possibilities: ™s’ =: 5 < t := p™t’ or t < s. One handles them in the same way as above.
d)0<s’<1<t. Let p~™ < s’ < p~™*! and g™ <t/ < ¢™*1. Here we decompose
14 P

o _g o
gs 91 g

Using gy (z) = gyry-n(L™z), 9o = gorom (L°™z), (4.5), and (4.3), we get

ger [G(Lo(—m)z)] (p=t'e"™)/(9=1) [G(Lo(—ﬂ—l)z)] (e~ =1)(v-1)

o G(z) G(z)
n (o=t'e™")/(p=1) n+l (e~ "=1)/(p~-1)
—[HQ&W*&ﬂ HQmﬂ*m]
k=1 k=1

= ﬁ Q1 (L°(_k):z:)[Q1 (LO(-n-l)I)](t'w"‘—1)/(¢-1)

k=1
and also o .
a _ G(z) (p—3"®™)/(p-1) G(z) (s'e™—1)/(p—-1)
gs G(Lotm)z) G(Lo(m-1z)
-1 (w-s"p"‘)/(f;—l) m—2 ('™ =1)/(p~1) m-—2 ' m
= [T @xz )] [T @uz2) = T] QuoMz)(@,(LomDa)jie=+ s/ e=D,
k=1 k=1 k=1

Obviously, g:/ /g, is a max-i.d. d.f.
(e) 1 < §' < ¢ < t'. Here again g,/ /g, is a max-i.d. d.f., and one shows this in a similar way as in (d) by decomposing

g _gv e
gs' 9y gs' |
Finally, let us summarize: a d.f. g¢, t > 0, is max-i.d. hence the set int{g, > 0} is the open block (C(t),35). Thus the
quotient ¢,/g, for 0 < s < t uniquely determines the d.f. of the max-increment U(s,t] > C(t) a.s. So {g:: t > 0} is the
family of univariate marginals of an extremal process Y that satisfies conditions (i)-(iii). Furthermore, (4.4) implies
that lim, o P(Y(t) < ) =0, ie,, Y(o0) = & as.

5. Semi-Self-Similar Extremal Processes with Stationary Increments

Let us consider the same asymptotic model as in Theorem 4.1 with one additional condition: the initial extremal
process X has stationary max-increments, i.e., for 0 < s <t

Ux(s,t] = Cx(t) Vsup{Xy: s < te <t} 2 Ux(0,t—s).

Then the limit extremal process Y with d.f. g
(a) is semi-ss w.r.t. a time-space change n = (7, L), i.e,,

g(r(t),z) = g(t, L™"2);
(b) belongs (cf. {11]) to the Resnick and Rubinovich class R, i.e.,
g(t,z) = G'(z), G € max-id.
The extremal processes of the class R are stochastically continuous processes starting at the origin with independent
and stationary max-increments, hence they are the counterpart of the Lévy processes in the extreme value theory.
From (a) and (b) we see that the d.f. G(z) = P(Y (1) < z) satisfies the functional equation
G MN(x) = G(L™'x). (5.1)
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Hence G is a max-semistable d.f. This class of d.f.’s are studied in [5, 6, 8].

Recall that a max-i.d. d.f. G is called max-semistable (briefly max-ss) if there exists a pair (a, L), a € (0,1), L(z) > z,
such that G*(z} = G(Lx). Obviously, if G € max-ss, then V¢ > 0 G* is max-ss w.r.t. the same pair (o, L). In R!, the
solution of the functional equation (5.1) is given by

G(z) = exp{—e**p, (h(z))}, (5.2)

where L(z) = b~} (h(z) +elog ¢), & = 1/7(1), ¢ > 0 is the unique solution of ay® = 1, and p,(y) is a positive bounded
periodic function with period T = log .

THEOREM 5.1. Let Y: [0,00) — [0,00)¢ be an extremal process with d.f. g and stationary max-increments. Then
Y is semi-self-similar if and only if g; is a max-semistable d.f.

Proof. We still have to prove the “only if” part. Let g; = G be max-ss w.r.t. (o, L) and, without loss of generality,
let us assume that G(z) < 1 Vz € [0,00)?. Then V¢t > 0, z > C(t)

g(ta,z) = G**(z) = G*(Lz) = g(t, Lz).

Further, the cyclic group of n = (1/e, L) is a norming group, since t/a™ — co, L°(™(z) — 60 as n — oo. Hence Y is
semi-ss w.r.t. I'(n).

Note that the lower curve of a process ¥ € R is always constant, namely, C(t) = C(1) = inf{G > 0}.

Let us consider the multivariate version of (5.2). Since Y € R, the mean measure u of the associated Poisson point

process N has the form
([0, ¢ x {0,x)%) = tv([0,z)°), Vz >C(1),

where v(-) is the exponent measure of G = g; (cf. [4]), which satisfies the semi-stability equation
av(A) = v(LA), VAeB([C1),R]\{Cc1)}). (5.3)

Recall that here o € (0,1) and L = [, h]. v
Denote x = {a € (0,00)*: max(ay,...,aqs) = 1} and set s(z,a) := min; ci<q exp{hi(z;) — hi(a;)}. There exists a
finite measure Q on B(x) such that the solution of (5.3) is given by (cf. [9])

w((0,2)°) = / 5™} (z,a)p, (log 5(z, a)) Q(da)

X

and such that the function
plhi(z:)) = /exp{hi(ai)}pw(log s(s,a)) Q(da)
x
is a positive bounded periodic function with period T = log ¢.
Let us come back to (5.2). We can rewrite it as

—eh(ny]Palh(x))
G(z) = {e’e ™ )] .

The expression in the brackets is the general form of a max-stable d.f. (cf. [9]). Hence, (5.2) says that any max-ss
d.f. has the form of a max-stable d.f. to a power p,{(h(z)). Using this and Theorem 5.1, we construct examples of
semi-self-similar extremal processes.

Example 1. Let Y: (0,00} - (—00,00) be an extremal process with d.f.

g(t,z) = exp{—-te"=}, t>0, zeR.

Here Y € R, g1(z) is max-ss w.r.t. a = e~!, and L(z) = z + 1. Then Y is semi-ss w.r.t. n(t,z) = ({/a,z + 1).
Example 2. Let g(t,z) = exp{—(t/z){logz}] be the d.f. of an extremal process ¥ : (0,00) — (0,00). Here
p(y) = {y} is the fractional part of y and has period T = 1. Comparing with (5.2), we conclude that h(z) = logz,

¢ =e¢, L(z) = zp, a = ¢p~!. Then
t{log:::—i—l}] (t )
t,7p) = exp|——-—=| =g{ -,z
g(t, zp) p[ o i\
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and Y is semi-ss w.r.t. n(t,z) = (tp, zp).
Example 3. Let,the r.v. X be uniformly distributed on the diagonal of the square [0,1]2. Then its d.f. G-has the
form

0, z € {y >0},
T, 1 <22 <1,
Glz,22) = T2, <z <1,
1, ze{y>1},

and G is semi-MSD w.r.t. L(z) = (z;/a,z2/a), a € (0,1). Hence, by Theorem 4.2, there is a d.f. g with g(1,z) = G(z)
so that g is the d.f. of a semi-ss extremal process Y: (0,00) — [0,1]® w.r.t. 7{t,z) = (t/a, z1/, T2 /).

Note that the d.f. G has a zero density. Such a d.f. cannot be self-decomposable in the classical model of sums of
irv.s.

Example 4. The d.f. G(z) = exp{—(1/z){c —sin(logz))}, z > 0, ¢ > 1, is max-ss w.r.t. (a = 72", L(x) = z/a).
For c large enough, the function —log G is convex, hence G € MSD. Thus, the d.f. g(t,z) = G'(z) is the d.f. of a
semi-ss extremal process Y: (0,00) — (0,00) w.r.t. (t,z) = (t/a, z/a).
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