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Abstract

We discuss weak limit theorems for a uniformly negligible triangular array
(u.n.t.a.) in Z = [0,∞) × [0,∞)d as well as for the associated with it sum
and extremal processes on an open subset S. The complement of S turns out
to be the explosion area of the limit Poisson point process. In order to prove
our criterion for weak convergence of the sum processes we introduce and study
sum processes over explosion area. Finally we generalize the model of u.n.t.a.
to random sample size processes.
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1 Introduction

Collective risk theory basically considers the question about the distribution of the so
called total risk process. In order to answer this question the process of the claims met
by the insurer is modeled. The relationship between the distribution of the number
of claims and the distribution (distributions) of the claim sizes is studied. The usual
assumption is that the claims arrive at times Tk, k = 1, 2, . . . , which form a renewal
process N(t), t ≥ 0, i.e. the claim inter-arrival times Yk = Tk − Tk−1, k ≥ 1 are i.i.d.
The claim sizes Xk are positive independent r.v.’s and the sequences {Tk} and {Xk}
are independent. In this framework the total claim amount process is defined by

Z(t) =
N(t)∑

k=1

Xk =
∑

Tk≤t

Xk.

One of the most important characteristics in this model is namely the distribution
Gt(x) = P(Z(t) < x). It is clear that in general the problem of finding the distribution
of a sum of random number independent random variables is not an easy one and often
the results are quite complicated. Even in the simple case when N(t) is a Poisson
process and the claim sizes Xk are identically distributed having distribution function
F we have

Gt(x) = P




N(t)∑

i=1

Xk < x


 =

∞∑
n=0

P

(
n∑

i=1

Xk < x|N(t) = n

)
P(N(t) = n)

=
∞∑

n=0

e−λt (λt)n

n!
F ∗n(t).

where F ∗n(x) = P(
∑n

i=1 Xi < x) n-fold convolution of F . Due to this fact many
authors turn to the approximation of the process Z(t) using another process which
finite dimensional distributions are known and more convenient from a computational
point of view. The basic idea of such an approximation is to normalize properly the
claim arrival times Tk and the claim sizes Xk. For n ≥ 1 construct (Tnk, Xnk) =
(τ−1

n (Tk), u−1
n (Xk)), where (τn(t), un(x)) is a regular time-space transformation, i.e.

the functions τn and un are strictly increasing and continuous. 1 In this way when n
increases to infinity the number of the claims occurring during a fixed time interval
[0, t] gets larger and the claim sizes get smaller. The problem is to find weak limit S
for the sequence

Sn(t) =
∑

τ−1
n (Tk)≤t

u−1
n (Xk) =

∑

Tnk≤t

Xnk

of the transformed total claim amount process. Of course, the norming transforma-
tions would have different forms depending on the assumptions for the distributions
of Yk and Xk. Respectively the limiting process S would have different properties.
From the formulation of the problem it follows that S shall be self-similar process
with independent increments since it appears as a weak limit in uniformly negligible
triangular array (u.n.t.a.) Nn = {(Tnk, Xnk)}, n ≥ 1 which is derived in appropri-
ate way from the sequence (Tk, Xk). Quite interesting is the so called “very-heavy
tailed” case when E(Xk) = ∞. In this case the norming transformation has the form
un(x) = b−1(n)x, i.e. there is no need of centering but only normalizing the claim
sizes. Further in our paper we are interested in the very-heavy tailed case. It is well

1In practice usually linear transformations are used.
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known that in this case the behavior of the aggregate claim amount is determined by
the behavior of the extremal claim amount. On the other hand, the extremal claim

amounts
N(t)∨

k=1

Xk =
∨

Tk≤t

Xk are also of great importance in the collective risk the-

ory. Thus, the relationship between the convergence of extremal and sum processes
generated by the same u.n.t.a. will be investigated.

Since the paper deals with processes and functions taking values in Rd, d > 1 we
introduce the following notations.

The non random d−dimensional vectors will be denoted by x = (x(1), . . . , x(d)).
The random vectors and processes with phase space Rd will be denoted by U =

(U (1), . . . , U (d)) and Y(t) = (Y (1)(t), . . . , Y (d)(t)), t ∈ [0,∞), respectively. The
inequalities between two vectors

x < y, (x ≤ y)

mean

x(i) < y(i) (x(i) ≤ y(i)) for all i = 1, 2, . . . , d.

The operation “maximum” ∨ between two vectors has to be read as

x ∨ y = (x(1) ∨ y(1), x(2) ∨ y(2), . . . , x(d) ∨ y(d)).

The same for the operation “addition”

x + y = (x(1) + y(1), x(2) + y(2), . . . , x(d) + y(d)).

We will also use the vectors 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). For any two vectors
a and b such that a ≤ b we define the closed interval [a,b] = {x : a ≤ x ≤ b}. The
open and half open intervals are defined in a similar way.

Let
Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 (1.1)

be a sequence of time-space point processes. Further we suppose that for every n =
1, 2, . . ., the point process Nn is defined on the open (hence locally compact) subset
Sn of [0,∞)× [0,∞)d. The time points tnk ∈ [0,∞) are distinct and non-random, and
Xnk are row-wise independent random vectors in [0,∞)d.

We assume that
Nn([0, t]× [0,x)c) < ∞ a.s. (1.2)

if [0, t]× [0,x)c ⊂ Sn.

Remark 1. With an abuse of notation here and later on we denote by Nn the
collection of points (1.1) as well as the random measure Nn(A) = #{k : (tnk,Xnk) ∈
A}, A ⊂ Sn.

The finiteness assumption (1.2) means that almost all realizations of Nn are finite
on compact subsets of Sn.

We associate with Nn the extremal process

Yn(t) = {∨kXnk : tnk ≤ t} (1.3)

with independent max-increments. One of the main characteristics of any extremal
process is its lower curve C : [0,∞) → [0,∞)d below which the sample paths of
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Y cannot pass. The lower curve is uniquely determined by the extremal process.
Denote by Cn the lower curve of the extremal process Yn, n ≥ 1. Since Yn(t) ≥
Cn(t) a.s. t ≥ 0, only the points of Nn which belong to [0,Cn]c ⊂ Sn contribute to
the behavior of the extremal process Yn. Here [0,Cn] =

⋃
t[0,Cn(t)] is the set below

the lower curve Cn.
Define the sum process

Sn(t) = {
∑

k

Xnk : (tnk,Xnk) ∈ [0,Cn]c, tnk ≤ t}

with independent additive increments. Therefore, the values of Sn and Yn are deter-
mined by the same points of Nn which belong to [0,Cn]c.

Having the three sequences:

• the sequence of point processes Nn;

• the sequence of extremal processes Yn;

• the sequence of sum processes Sn,

we investigate the following problems:

• the convergence of each sequence under appropriate normalization;

• the properties of the limiting processes;

• the relationships between the convergence of the three sequences.

The paper is organized as follows. In Section 2 we investigate the convergence of the
sequence of point processes Nn and the sequence of extremal processes Yn. The main
result of the section is Theorem 2 which establishes the relation between the vague
convergence the sequence Nn and the weak convergence of the sequence Yn. The
section also contains some basic results for extremal processes obtained by Balkema
and Pancheva [1] which are needed in the next sections.

In Section 3 we prove the decomposition and the representation for the character-
istic function of a stochastically continuous sum process S, defined above the lower
curve of a given extremal process Y.

In Section 4 we study the relation between the weak convergence of the sequences
Yn and Sn. The main result is Theorem 5, the Functional Extremal Criterion for the
weak convergence of the sequence Sn to the stochastically continuous limiting process
S considered in Section 3.

In Sections 2, 3, and 4 we assume that the time points of the point processesNn are
deterministic. In the last Section 5 we generalize the model of u.n.t.a. and consider a
sequence of Bernoulli point processes Nn with random time components Tnk. Thus,
the associated sum process Sn(t) and extremal process Yn(t) are of random sample
size Nn(t) = max{k : Tnk ≤ t}. In this section we give conditions for the weak conver-
gence of Nn to a Cox process Ñ (Theorem 6) and also weak convergence of Yn and
Sn to a compound extremal - and a compound sum process, respectively (Theorem 7
and 8). A special case of triangular array Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 is consid-
ered in Pancheva and Jordanova (2004a): tnk = τ−1

n (tk) and Xnk = U−1
n (Xk) where

ηn(t,x) = (τn(t), Un(x)) is a coordinate-wise strictly increasing continuous mapping
and Xk, k ≥ 1 are i.i.d. random vectors in [0,∞)d. The corresponding limit extremal
process is max-stable. Thus, its lower curve is constant, say C(t) ≡ 0, and one does
not observe explosion area phenomena. A particular functional extremal criterion is
proved there. The random sample size generalization is studied later on in Pancheva
and Jordanova (2004b).
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2 Relationship between an Extremal Process and
the underlying Bernoulli Point Process

In this section we make a survey of some published and some unpublished results
obtained by Balkema and Pancheva during their collaboration in 1995 - 2000. We
shall refer to their paper (1996) as BP ′96 for brevity. In BP ′96 a point process
N = {(Tk,Xk) : k ≥ 1} on an open subset S of Z = [0,∞) × [0,∞)d is called
Bernoulli point process (B.p.p.) if

(a) Its mean measure (m.m.) µ(·) = EN (·) is a Radon measure on S (i.e. it is finite
on compact subsets of S);

(b) N is simple in time, i.e. Ti 6= Tj for i 6= j;

(c) For any integer m the restrictions N1, . . . ,Nm of N to (time) slices over disjoint
time intervals I1, . . . , Im are independent.

As a first example of B.p.p. one can take a simple in time Poisson point process.
Bernoulli point processes are important for the study of the so called extremal pro-
cesses.

An extremal process Y : [0,∞) → [0,∞)d is a random process with right-
continuous increasing sample paths and independent max-increments. More precisely,
for any finite sequence of time points 0 = t0 < t1 < . . . < tm there exist independent
random vectors U0,U1, . . . ,Um such that

(Y(t0), . . . ,Y(tm)) d= (U0,U0 ∨U1, . . . ,U0 ∨ . . . ∨Um)

The main characteristics of an extremal process Y (cf BP ′96) are its:

- lower curve C : [0,∞) → [0,∞)d, increasing and right continuous, below which
the sample paths of Y cannot pass. It is defined coordinate-wise: C(i)(t) is the left
endpoint of the distribution function (df) of the i-th coordinate of the random vector
Y(t), i = 1, . . . ,m. Thus, Y(t) ≥ C(t), a.s. The lower curve is uniquely determined
by the process Y;

- distribution function f : (0,∞)d+1 → [0, 1], f(t,x) = P(Y(t) < x). It is
decreasing and right-continuous in t and increasing and left continuous in x, hence
lower semi-continuous. The family Ft(·) = f(t, ·), t ≥ 0 of the univariate marginal
distributions of Y determines uniquely the finite dimensional distributions (f.d.d.)
of Y, hence the process itself. More precisely, for t1 < . . . < tn in (0,∞) and
x1 < . . . < xn in (0,∞)d

Ft1,...,tn(x1, . . . ,xn) =





0, if mini Fti(xi) = 0

Ft1(x1)
Ft2 (x2)

Ft1 (x2)
. . .

Ftn (xn)
Ftn−1 (xn) , otherwise

- max-increments U(s, t] over time intervals (s, t], 0 ≤ s < t, t > 0. The Struc-
ture Theorem in BP ′96 states that for any extremal process Y there exists a consistent
family of max-increments U(s, t] (assuming the underlying probability space is suffi-
ciently rich) so that
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(i) U(s, t] ≥ C(t), 0 ≤ s < t;

(ii) Y(t) = Y(s) ∨U(s, t], 0 ≤ s < t;

(iii) for disjoint time intervals I1, . . . , Im the random vectors U(I1), . . . ,U(Im) are
independent.
- underlying Bernoulli point process N = {(Tk,Xk) : k ≥ 1} on the open set
S = [0,C]c such that Y can be represented as

Y(t) = C(t) ∨ {∨Xk : Tk ≤ t} (2.1)

Here Xk are independent random vectors in [0,∞)d and Tk are distinct random time
points such that (Tk,Xk) ∈ S a.s. In the presence of a lower curve, i.e. C(t) 6= 0
for some t ≥ 0, the distribution of the p.p. N is not uniquely determined by the
distribution of the associated extremal process Y. This holds even for a Poisson p.p.
associated with a max-id extremal process. So, different B.p.p.’s on S may generate
the same extremal process Y by (2.1). Later in this section we shall consider closely
this form of the phenomenon blotting, discussed in BP ′96 and related to different
sources of lack of uniqueness in Extreme Value Theory.

EXAMPLE 2.1. Assume that a p.p. N on [0, 1] × (0, 1) consists of two points
(1/3, X1) and (3/4, X2) where X1 and X2 are independent r.v.’s, X1 is uniformly dis-
tributed in (0, 1/2) and X2 is uniformly distributed in (1/2, 1). The extremal process
Y, generated by N ,

Y (t) =





0, t ∈ [0, 1/3)

X1, t ∈ [1/3, 3/4)

X2, t ∈ [3/4, 1)

(2.2)

has discontinuous lower curve C(t)

C(t) =





0, t ∈ [0, 3/4)

1/2, t ∈ [3/4, 1)
(2.3)

¤

EXAMPLE 2.2. Let N = {(tk,Xk) : k ≥ 1} be a point process on (0,∞) ×
[0,∞)d where tk are distinct non-random time points, increasing to ∞, and {Xk}
are independent random vectors on [0,∞)d. Define k(t) = #{k : tk ≤ t}. Then N is
Bernoulli and the lower curve of the extremal process Y(t) =

∨k(t)
k=1 Xk is identically

zero.

¤

EXAMPLE 2.3. Let C : [0,∞] → [0,∞)d be an increasing and right-continuous
curve. Let N = {(Tk,Xk) : k ≥ 1} be a Bernoulli p.p. on the open set S = [0,C]c.
Then N ([0, t] × [0,x)c) < ∞ a.s. for all t ≥ 0,x > C(t). Assume the corresponding
counting process

N(t) = max{k : Tk ≤ t}
is finite for every finite t. Then

Y(t) := C(t) ∨
N(t)∨

k=1

Xk

6



is an extremal process.

¤

We call an extremal process stochastically continuous at a point t > 0 if

Y(t) = C(t) ∨Y(t− 0) a.s. (2.4)

Thus, a stochastically continuous extremal process does not have fixed discontinuity
points except possible discontinuities of the lower curve.

The Decomposition Theorem in BP ′96 states that an extremal process with lower
curve C and underlying B.p.p. N can be decomposed as the maximum

Y(t) = Yc(t) ∨Yd(t)

of two independent extremal processes Yc and Yd with common lower curve C. The
process Yc satisfies (2.4) for all t > 0 and Yc(0) = C(0), a.s. It is associated with
a Poisson p.p. N c on S which m.m. µ does not charge any instant sections S(t) of
S, i.e. µ(S(t)) = 0, for all t ≥ 0. The associated with Yd B.p.p. N d is the sum of
zero-one p.p.’s Nk = (tk,Xk) where tk ≥ 0 are points for which (2.4) fails to hold,
and Xk ≥ C(tk) are independent random vectors.
Recall, an extremal process is max-id if for all n > 1 there are n i.i.d. random processes
Yn1, . . . ,Ynn such that Y = Yn1∨ . . .∨Ynn. The most studied relationship between
an extremal process Y with lower curve C and its underlying B.p.p. N on S = [0,C]c

is in the max-id case: Y is max-id iff N is Poisson. There is a close relation between
the df f(t,x) = P(Y(t) < x) of a max-id extremal process and the mean measure µ
of the underlying Poisson p.p., namely

f(t,x) =





exp{−µ([0, t]× [0,x)c)}, x > C(t), t ≥ 0

0, otherwise.

The closed set [0,C] below the lower curve is an ”explosion area” for the mean
measure µ, i.e. µ = ∞ there as f(t,x) = 0 for all (t,x) ∈ [0,C]. Above the lower
curve, on the set A the measure µ is finite as f(t, x) is positive for x > C(t), t ≥ 0. In
the univariate case there are no other areas. In the multivariate case the underlying
p.p. N is defined on the open set [0,C]c. One can not easily blot out the points of
N in both sandwich areas between [0,C] and A : they may contribute to the mass of
f on A. So, different p.p.’s on S may generate the same extremal process. We meet
here another form of the blotting phenomenon.

Following Kallenberg (1997), a p.p. N is usually defined on a locally compact
separable metric space. In our case the set S = [0,C]c is open, hence locally compact.
Let Nn be a sequence of Bernoulli point processes on S. We say that Nn is vaguely
convergent to a p.p. N on S, briefly Nn

v→ N , if for any relatively compact subset
K ⊂ S with P(N (∂K) = 0) = 1 the convergence Nn(K) d→ N (K) holds (cf Resnick
(1987)). Unfortunately, the limit p.p. N may be problematic:
- the convergence v→ gives no information about the behavior of N on the lower curve.
There the m.m. µ may be finite or infinite;

- space points of N may be even in the interval (C(t0 − 0),C(t0)) when the lower
curve C of the associated extremal process Y is discontinuous at t0. By the Structure
Theorem, Y(t) = Y(t−0)∨U(t) where U(t) = limn U(sn, rn] a.s. for sn ↑ t and rn ↓ t;
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- time points may cluster to one point in the limit. In this case the limit p.p. is no
more B.p.p.

EXAMPLE 2.4. Let N1 and N2,n, n = 1, 2, . . . be simple in time Poisson p.p.’s
lying respectively on [0,∞)2 and on the line x(t) = (t−t0) tan αn, αn ∈ (0, π/2), t ≥
0 through the point t0. Assume αn ↑ π/2 as n → ∞. Then the superposition Nn =
N1⊕N2,n converges: Nn

v→ N = N1⊕N2 where N2 lies on the instant space through
t0. As a limit of Poisson p.p.’s N is Poisson but not Bernoulli. Its m.m. µ charges
the instant section through t0.

¤

For a convergence of B.p.p.’s the following statement applies.

Theorem 1. Suppose Nn is a Bernoulli point process on an open subset S ⊂ Z
with mean measure µn, for n ≥ 1. Let µ be a Radon measure on S. If

µn
v→ µ on S (i)

and
sup{µn(K(s)) : 0 ≤ s ≤ t} → 0 as n →∞ (ii)

for every t > 0 and every relatively compact subset K ⊂ S, then the sequence Nn

converges vaguely to a Poisson p.p. N on S with mean measure µ. Here K(s) is the
instant section of the set K.

Proof. Let us fix an arbitrary compact set K ⊂ S. For all n we decompose

Nn(K) = N c
n(K)⊕N d

n (K) (2.5)

where N c
n is a Poisson p.p. and N d

n is a sum of independent zero-one p.p.’s Nnk

on instant spaces K(ank) of positive measure, µn(K(ank)) > 0. The set An =
{an1, an2, . . .} is at most countable and

∑
k µn(K(ank)) ≤ µn(K) is finite.

In fact, every zero-one p.p. N can be embedded in a Poisson p.p. R := {X1, . . . ,XL}
where L is a Poisson r.v. with EL = λ and X1,X2, . . . are i.i.d. random variables, so
that

N =




∅, if L = 0

{X1}, otherwise.

Then P(N 6= R) = P(L ≥ 2) = 1− e−λ − λe−λ ≤ λ(1− e−λ) ≤ λ2.
On the other hand µ = EN = P(|N | = 1) = P(L > 0) = 1 − e−λ, where |N | is
the number of points of N . Hence for µ → 0, λ2 = (log(1− µ))2 ∼ µ2. Thus, we can
replace the zero-one p.p.’s Nnk by independent Poisson p.p.’s Rnk, so that

P(Nnk 6= Rnk) ≤ µ2
n(K(ank)) → 0, as n →∞

Then Rn :=
∑

k Rnk is a Poisson p.p. on K and

P(Rn(K) 6= N d
n (K)) ≤ ∑

k P(Rnk 6= Nnk)
≤ ∑

k µ2
n(K(ank)) ≤ supk µn(K(ank))

∑
k µn(K(ank)) → 0

in view of (ii) and the finiteness of µ(K). Now we may replace N d
n by Rn in the above

decomposition (2.5) of Nn. It is well known that Poisson p.p.’s converge vaguely
iff their m.m.’s converge vaguely. The limit process N is then Poisson, too, but
eventually not simple in time.
The convergence Nn

v→ N holds on S since it holds on any compact subset K of
S.
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Remark 2. By Theorem 14.16 in Kallenberg (1997), if N is a simple p.p. the
convergence Nn

v→ N is equivalent to the weak convergence Nn ⇒ N .

Below we discuss the question whether the vague convergence of Bernoulli p.p.’s
Nn always imply weak convergence of the associated extremal processes Yn, supposing
additionally that the limit p.p. N is simple in time.

Let us first recall when a sequence of extremal processes is weakly convergent.
Given a sequence of extremal processes {Yn},Yn : [0,∞) → [0,∞)d we denote the
distribution function and the probability distribution (p.d.) of Yn on M([0,∞)) by
fn and πn respectively. For fixed t > 0 let Fnt(·) = fn(t, ·). We say the sequence {Yn}
is weakly convergent to an extremal process Y : [0,∞) → [0,∞)d with df f and p.d.
π, briefly Yn ⇒ Y, if one of the following equivalent statements holds (cf Th. 1,§ 6
in BP ′96)

(1) fn → f at all continuity points of f ;

(2) Fnt → Ft = f(t, ·) weakly for each t in a dense subset of (0,∞);

(3)
∫

φdπn → ∫
φdπ for bounded φ : M([0,∞)) → R which are continuous in the

weak topology of M([0,∞)).
Now we come back to the above question. The following example shows a possi-

ble pitfall.

EXAMPLE 2.5. Assume that p.p.’s Nn = N , for all n ≥ 1 where N is the p.p.
defined in EXAMPLE 2.1. and Cn(t) = C(t), for all n ≥ 1 where C(t) is the lower
curve of N and has the form (2.3). The extremal process Y (t), generated by N is
given by (2.2).

¤

Let C0(t) ≡ 1/2 and N0 = {(3/4, X2)}. Define an extremal process Y0(t) = Y (t)∨
C0(t). We observe that Nn

v→ N0 on the set S = {(t, x) : t ∈ (0, 1), x ∈ (1/2, 1)} but
Yn ; Y0. Indeed, for the point (1/3, x) with x ∈ (0, 1/2) one gets

fn(1/3, x) = P(Y (1/3) < x) = P(X1 < x) = x

but
f0(1/3, x) = P(Y0(1/3) < x) = 0.

The following result answers the above question.

Theorem 2. Let Y and Yn be extremal processes with lower curves C and Cn,
respectively. Let N and Nn be the underlying Bernoulli p.p.’s defined on [0,C]c and
[0,Cn]c, respectively. Suppose that C satisfies the following lower curve condition

Cn ∨C → C weakly on (0,∞) and

limn f
(i)
n (t, x) = 0 for all x < C(i)(t− 0), t > 0, i = 1, . . . , d.

(LC)

If Nn
v→ N on [0,C]c then Yn ⇒ Y.

Remark 3. In Theorem 1 we have assumed that the Bernoulli p.p.’s Nn and the
limit p.p. N are defined on the same space S. Theorem 1 remains true if every Nn is
defined on another (locally compact) space Sn in such a way, that every point z ∈ S
has a neighborhood U which is contained in all Sn, for n ≥ n0(U). The first part of
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(LC) implies that for every compact set K ⊂ S there is a number n0 so that K ⊂ Sn,
for all n > n0.

Proof. (Theorem 2) Denote by f and fn the df’s of Y and Yn, respectively. By
Theorem 1, Section 6 in BP ′96 we have to show that fn → f for all continuity
points of f. Let (t,x) ∈ S = [0,C]c be an arbitrary continuity point. The set At,x =
[0, t]× [0,x)c belongs to S whenever x > C(t). Then

P(Yn(t) < x) = P(Nn(At,x) = 0)

The set At,x is N−continuous a.s., hence

Nn(At,x) d→ N (At,x)

This means fn(t,x) → f(t,x) and consequently Yn ∨ C ⇒ Y. Finally, we combine
the last convergence with the second part of condition (LC) and obtain Yn ⇒ Y.

The main conclusion of this section is as follows: given a sequence of B.p.p.’s
satisfying the conditions of Theorem 1 with simple in time limit Poisson p.p., the
conditions of Theorem 2 guarantee that the sequence of the associated extremal pro-
cesses is weakly convergent to the max-id extremal process generated by the limit
Poisson p.p.

It is very natural to associate with N a stochastic process S with independent
additive increments, briefly sum process. The following section is devoted to such a
process.

3 Sum Process over Explosion Area

Let C : [0,∞) → [0,∞)d,C(0) = 0 be an increasing right-continuous curve and
T = sup{t ≥ 0 : |C(t)| = 0}. Suppose a simple in time Poisson p.p. on Z is given. Its
mean measure µ is supposed to be σ−finite and satisfying the condition

µ(At,x)





< ∞, x > C(t), t ≥ 0

= ∞, otherwise,
(I)

including the case x ∈ (C(t− 0),C(t + 0)), if t is a discontinuity point of C.
Denote by S the open set [0,C]c ⊂ Z. The set [0,C] is the explosion area of µ. We

denote the restriction on S of the given Poisson p.p. by N = {(Tk,Xk) : k ≥ 1}. Now
each point (Tk,Xk) belongs to [0,C]c. In this section we are interested in constructing
a sum process S over the explosion area of µ. Note that S is not a cone. The case
of a cone is considered in Skorokhod (1986), Th. 3.21. Our sum process S should
be a.s. finite, stochastically continuous and having independent increments. Below
we define S, decompose it suitably and give the form of its characteristic function.
Suppose additionally

µ{S(s)} = 0, for all s ∈ [0,∞) (II)

∫ T+δ

0

∫

{|x|≤1}
|x|µ(ds,dx) < ∞, for some δ > 0. (III)

Condition (I) ensures
∫ T

0

∫
|x|≥1

µ(ds,dx) < ∞ thus, (I) and (III) entail

∫ T

0

∫

[0,∞)d\{0}
(|x| ∧ 1)µ(ds,dx) < ∞.

10



The last condition makes the measure µ a Levy measure. It is well known that every
Levy measure is a Radon measure but the converse is not always true. Hence for
t > 0 one can define the process S(1)(t) as follows

S(1)(t) =





0, t = 0,

∑
Tk≤t Xk, 0 < t ≤ T,

S(1)(T ), t > T.

(3.1)

Indeed, conditions (II) and (III) ensure P(|S(1)(T )| < ∞) = 1, so definition (3.1)
is correct, i.e. the sum on the right hand side converges a.s. Thus, the process
S(1), considered above is a.s. finite, stochastically continuous (in view of (II) and the
second part of (I)) with independent increments and its sample paths lie in S. Let
us define for arbitrary h > 0 and t ≤ T the process S(1)

h (t) =
∑

Tk≤t XkI{|Xk|>h}
and R(1)

h (t) = S(1)(t) − S(1)
h (t). The process S(1)

h (t) is compound Poisson since it is
simply a sum of a.s. finite number of independent r.v’s. Both S(1)

h (t) and R(1)
h (t) are

nonnegative increasing processes (Xk ∈ Rd
+). The same holds for S(1)

h1
(t) − S(1)

h2
(t) ∈

Rd
+ whenever 0 < h1 < h2. As known, each sequence xn ∈ Rd

+, such that xn−1−xn ∈
Rd

+ is decreasing and bounded from below, hence it converges in Rd
+, i.e. there exists

limn→∞ xn = x0 ∈ Rd
+. Therefore limh→0 R(1)

h (t) = S(1)
0 (t) exists. Here S(1)

0 (t) is
a.s. continuous process with independent increments, hence it is a Gaussian process.
The increment S(1)

0 (t)− S(1)
0 (0) follows Gaussian distribution and on the other hand

it is a.s. positive. This is possible if and only if its variance is equal to zero, which
implies a(t) := S(1)

0 (t) − S(1)
0 (0) is a deterministic increasing continuous function.

Since limh→0 R(1)
h (t) = a(t) exists and the process S(1)(t) is a.s. finite, the following

decomposition holds

S(1)(t) =





a(t) + limh↓0 S(1)
h (t), 0 ≤ t ≤ T

S(1)(T ), t > T.

(3.2)

The characteristic function of a(t) + S(1)
h (t) is given by

Eeiz.[a(t)+S
(1)
h (t)] = exp{iz.a(t) +

∫ t

0

∫

[0,∞)d
⋂{|x|>h}

(
eiz.x − 1

)
µ(ds,dx)}

Here z.x means the scalar product of the vectors z and x. Letting h ↓ 0 in the above
equation we get the characteristic function of S(1)(t)

Eeiz.S(1)(t) = exp{iz.a(t) +
∫ t

0

∫

[0,∞)d\{0}

(
eiz.x − 1

)
µ(ds,dx)}. (3.3)

Consider the case t > T. It is clear that for δ > 0 and t ≥ T + δ > T if∫ t

T+δ

∫
[0,C(s)]c

µ(ds,dx) were infinite then the point process would be infinite a.s.
since it is Poisson point process and respectively the sum process would be infinite
a.s. too. Since we are interested in a.s. finite case assume the following condition

∫ t

T+δ

∫

[0,C(s)]c
µ(ds,dx) < ∞, for δ > 0 and t ≥ T + δ. (IV)

Condition (IV) combined with (III) provides that the sum process

11



S(2)(t) =





0, t ≤ T,

∑
T<Tk≤t Xk, t > T.

(3.4)

is a.s. finite (cf Theorem 10.15 in Kallenberg (1997)), and can be decomposed as

S(2)(t) =





a∗ + limδ↓0 S(2)(δ, t), T < t

0, 0 ≤ t ≤ T,
(3.5)

with
S(2)(δ, t) =

∑

T+δ<Tk≤t

Xk, and a∗ = lim
δ↓0

S(2)
δ ,

where S(2)
δ =

∑
T<Tk≤T+δ Xk. The proof of this decomposition relies on similar argu-

ments as in the first case. The only difference is that the limit is taken along the time
and in this way a constant a∗ appears. The characteristic function of S(2)(t), t > T
is given by

Eeiz.S(2)(t) = exp{iz.a∗ +
∫ t

T

∫

[0,C(s)]c

(
eiz.x − 1

)
µ(ds,dx)}.

Define for t ≥ 0 the process

S(t) = S(1)(t) + S(2)(t),

or equivalently

S(t) =





S(1)(t), 0 ≤ t ≤ T

S(1)(T ) + S(2)(t), t > T.

The processes S(1) and S(2) are independent.
Moreover, if C ≡ 0 we can put [0,C]c = [0,∞)d \ {0} so the characteristic function
(3.3) of S(1) can be rewritten as

Eeiz.S(1)(t) = exp{iz.a(t) +
∫ t

0

∫

[0,C(s)]c

(
eiz.x − 1

)
µ(ds,dx)} (3.6)

Finally, the characteristic function of the sum process over explosion area is given by

ψt(z) = Eeiz.S(t) = exp{iz.aT (t) +
∫ t

0

∫

[0,C(s)]c

(
eiz.x − 1

)
µ(ds,dx)}

where aT (t) satisfies

aT (t) =





a(t), 0 ≤ t ≤ T

a(T ) + a∗, t > T.
(3.7)

Briefly we write ψ ∼ (aT , µ) for the ch.f. of the process S, where the Levy measure
of S is the mean measure of the generating Poisson p.p.
There are two boundary cases. The first is T = 0 and then S(t) is pure jump process
with aT (t) = a∗. The second is T = ∞ then aT (t) = a(t), for all t ≥ 0. Taking
advantage of the results above we have proved the following theorem.
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Theorem 3. Suppose N = {(Tk,Xk) : k ≥ 1} is a simple in time Poisson point
process on S = [0,C]c with mean measure µ, where C : [0,∞) → [0,∞)d,C(0) = 0 is
increasing and right-continuous. Denote T = sup{t ≥ 0 : |C(t)| = 0} and let µ satisfy
conditions (I)-(IV). Then the stochastic process S, defined by S(t) =

∑
Tk≤t Xk, t ≥

0 is a.s. finite, stochastically continuous and has independent increments. It can be
decomposed into a sum of two independent processes S(t) = S(1)(t) + S(2)(t). The
process S(1)(t) is defined by (3.1) and admits decomposition (3.2) and the process
S(2)(t) is defined by (3.4) and admits decomposition (3.5). The characteristic function
of S is given by

ψt(z) = Eeiz.S(t) = exp{iz.aT (t) +
∫ t

0

∫

[0,C(s)]c

(
eiz.x − 1

)
µ(ds,dx)}

where the function aT (t) is defined in (3.7).

Let us remark that the converse statement is also true: If S(t) is a stochastically
continuous sum process on S with ch.f. ψ ∼ (aT , µ), then µ necessarily satisfies
conditions (I) - (IV) since these conditions are equivalent to the a.s. finiteness of the
sum process.

Remark 4. Each id process can be decomposed into a sum of a stochastically
continuous, a deterministic and a discrete process. We consider here only the case
of stochastically continuous sum process since it is the most interesting case from a
theoretical and practical point of view.

4 Triangular Arrays

Triangular arrays are used in studying the asymptotic behavior of maxima (or sums)
of large numbers of r.v.’s. Traditionally the n-th row consists of independent r.v.’s
Xn1, . . . ,Xnn and one is interested in the weak limit of the probability distribution of
the maxima Xn1∨ . . .∨Xnn. In order to ensure that the contribution of each separate
term in a row to the maxima is small, one imposes a condition of asymptotic negligi-
bility on the individual max-increments Xnk, k = 1, . . . , n. For sums the negligibility
condition is simple: Xnk → 0 in probability as n → ∞, uniformly in k. For maxima
the condition may depend on the limit: If X11∨ . . .∨Xnn

d→ X and X has lower end-
point q, then the asymptotic negligibility condition says maxk{1−P(Xnk < x)} → 0,
n →∞, x > q. Here we are interested in processes rather than individual r.v.’s. Thus,
a sequence of p.p.’s {(tnk,Xnk), k ≥ 1}, n ≥ 1 instead of a triangular array is consid-
ered. For fixed n the r.v.’s Xn1,Xn2, . . . in [0,∞)d are independent. The time points
tnk are chosen so that

0 ≤ tn1 < tn2 < . . . < tnk →∞, k →∞, tnk − tn,k−1 → 0, n →∞ (4.1)

Hence the counting function kn(t) = max{k : tnk ≤ t} is finite for every fixed n and t
and tends to infinity as n →∞. Now with each row we associate an extremal process
Yn. If Xnk has lower endpoint qnk, the lower curve Cn of Yn is just Cn(t) = ∨kn(t)

k=1 qnk,

so Yn(t) = Cn(t) ∨ {∨kn(t)
k=1 Xnk}.

We are interested in the asymptotic behavior of Yn for n → ∞. The points
(tnk,Xnk) which belong to [0,Cn] a.s. do not contribute to the limit, but only
(tnk,Cn(tnk) ∨Xnk). Thus, we may start our study with a given sequence of B.p.p.
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Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 on Sn = [0,Cn]c with m.m. µ satisfying

µn([0, t]× [0,x)c) =
kn(t)∑

k=1

P(Xnk ∈ [0,x)c) < ∞ for x > Cn(t), t ≥ 0. (4.2)

Next we assume the weak convergence

Yn(·) = Cn(·) ∨ {∨kn(·)
k=1 Xnk} ⇒ Y(·) (4.3)

to an extremal process Y with lower curve C. Moreover, we suppose that the p.p.’s
Nn satisfy the following ”asymptotic negligibility” condition

max
{k:tnk≤t}

{1−P(Xnk < x)} → 0, n →∞, x > C(t) (AN)

uniformly in t. Here ”negligible” stands for the influence of any individual r.v. Xnk

to the asymptotic behaviour of Yn rather than for its size.

Remark 5. The (AN) condition on the set S = [0,C]c is equivalent to condition
(ii) in Theorem 1. Indeed, for t ≥ 0 and x > C(t) the mean measure µn of Nn satisfies
sups≤t µn({s} × [0,x)c) = sups≤t ENn({s} × [0,x)c) = supk:tnk≤t P(Xnk ∈ [0,x)c).

Remark 6. Convergence (4.3) implies (LC) condition.

Definition 1. We refer to a sequence of p.p.’s Nn = {(tnk,Xnk), k ≥ 1}, n ≥ 1 as
uniformly negligible triangular array (u.n.t.a.) if its time points tnk satisfy (4.1) and
its space points Xnk are row-wise independent r.v.’s satisfying the (AN) condition for
some increasing right-continuous curve C(t).

”Triangular” here stands to remind that kn(t) < ∞, t ≥ 0 and that only Xn1, . . . ,
Xn,kn(t) are used to construct Yn(t).

Let µ be a Radon measure and let M(t,x) := µ([0, t]× [0,x)c) be its distribution
function. We denote by Rc the set of all Radon measures on [0,C]c such that e−M(t,x)

is df of an extremal process, i.e.
(a) M(t,x) is right-continuous in t and left-continuous in x. That M(t,x) increases
in t and decreases in x is satisfied by definition;
(b) M(t,x) < ∞ for x ∈ (C(t),∞]. This condition is satisfied by any Radon measure
on S since for x > C(t) the compactified set At,x = [0, t]× [0,x)c belongs to S;
(c) M(t,x) → 0 for fixed t > 0 and x →∞;
(d) The difference M(t,x)−M(s,x) = µ((s, t]× [0,x)c) for s < t satisfies conditions
(a) - (c) for any fixed s ≥ 0, which hold naturally.

The following theorem characterizes the limit extremal process Y in (4.3) as max-
id.

Theorem 4. Let Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 be u.n.t.a. and let Y :
[0,∞) → [0,∞)d be an extremal process with df f and lower curve C. Then the
following statements are equivalent
(i) Yn ⇒ Y
(ii) Condition (LC) is met and

kn(t)∑

k=1

P(Xnk ∈ [0,x)c) → µ([0, t]× [0,x)c), n →∞ (4.4)

for some measure µ ∈ Rc and all continuity points (t,x) of f, such that x ∈ {Ft > 0}.
Furthermore, any one of these statements is equivalent to the vague convergence of Nn
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on S to a Poisson point process N with mean measure µ and Y is just the associated
with N max-id extremal process.

Proof. (ii) ⇒ (i)
In view of Theorem 1 and (4.2), both conditions (4.4) and (AN) imply Nn

v→ N ,
where N is Poisson p.p. with m.m. µ. Hence the associated with N extremal process
Y is max-id and f(t,x) = exp{−µ([0, t]× [0,x)c)}. Now the (LC) condition enables
to apply Theorem 2 and obtain (i).
(i) ⇒ (ii)
Conversely, we have still to show that (i) entails (4.4). Let fn and Cn be df and
lower curve of Yn. Then (i) says that for all continuity points of f and for n → ∞
fn(t,x) → f(t,x). More precisely

fn(t,x) = P(Yn(t) < x) ∼ exp{−
kn(t)∑

k=1

P(Xnk ∈ [0,x)c)} →




f(t,x), x ∈ {Ft > 0}

0, otherwise .

Here the sign ∼ is legally used since Nn, n ≥ 1 form u.n.t.a.
Now determine a measure µ on S by setting

µ([0, t]× [0,x)c) =




− log f(t,x), x ∈ {Ft > 0}

∞, otherwise .

This measure belongs to Rc and so (4.4) is met.

With the u.n.t.a. Nn = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 on Sn given above we may also
associate sum processes on Sn for all n, as follows

Sn(t) =
kn(t)∑

k=1

Xnk

We are interested in necessary and sufficient conditions for the weak convergence
Sn ⇒ S. The following theorem gives such conditions.

Theorem 5. (Functional Extremal Criterion)
Assume C : [0,∞) → [0,∞)d,C(0) = 0 is an increasing right-continuous curve and
define T = sup{t ≥ 0 : |C(t)| = 0}. Let Nn = {(tnk,Xnk) : k ≥ 1}, on Sn, n ≥ 1
form u.n.t.a. and let S : [0,∞) → [0,∞)d be a stochastically continuous sum process
on S = [0,C]c with characteristic function ψ ∼ (aT , µ). Then

Sn(·) =
kn(·)∑

k=1

Xnk ⇒ S(·) (4.5)

if and only if
(i) the associated extremal processes Yn converge weakly to a stochastically continuous
extremal process Y with lower curve C and df f(t,x) = e−µ(At,x), t ≥ 0, x > C(t);
(ii) the following condition holds for t ≤ T and h > 0

kn(t)∑

k=1

E
(
XnkI{|Xnk|≤h}

) → aT (t) +
∫ t

0

∫

{|x|≤h}
xµ(ds,dx) < ∞. (4.6)
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Proof. Sufficiency:
Suppose that Yn ⇒ Y with df f(t,x) = e−µ(At,x), t ≥ 0,x > C(t). Hence (4.4) holds.
By assumption µ is the Levy measure of the sum process S on S. Thus, µ ∈ Rc and
satisfies conditions (I) - (IV). By Theorem 3 we know that µ is also a mean measure of
the generating Poisson p.p. N . On the other hand in view of Theorem 4 the sequence
Nn converges weakly on S to a Poisson p.p., say N ∗, with the same mean measure
µ as N . Hence N ∗ coincides in distribution with N and we may consider S and Y
generated by the same Poisson p.p. N .

Since Sn and S are increasing processes it is enough to show the convergence
Sn(t) d→ S(t), for all t > 0. Consider the case t ≤ T. In this case C ≡ 0 and the
r.v.’s Xn1, . . . ,Xn,kn(t) for n ≥ 1 form a null array since (AN) condition says Xnk

P→
0, n → ∞ uniformly in k. Then the convergence of the r.v. Sn(t) =

∑kn(t)
k=1 Xnk to

the id r.v. S(t) is reduced to the classical framework of null arrays with row-wise
independent r.v.’s., where conditions (4.4) and (4.6) are necessary and sufficient for
the convergence Sn(t) d→ S(t), t > 0 (cf Theorem 13.28 in Kallenberg (1997)).
Now fix t > T. In that case the r.v. Sn(t) can be represented as Sn(t) = Sn(T )+S(2)

n (t)
where S(2)

n (t) =
∑

T<tnk≤t Xnk. Further, Sn(T ) d→ S(T ), so it is enough to show that

S(2)
n (t) d→ S(2)(t), where S(2)(t) =

∑
T<Tk≤t Xk.

The characteristic function of S(2)
n (t) is

E exp
(
iz.S(2)

n (t)
)

= E exp


iz.

∑

{k:T<tnk≤t}
Xnk


 =

=
∏

{k:T<tnk≤t}
E exp (iz.Xnk) =

∏

{k:T<tnk≤t}

[∫

[0,Cn(tnk)]c
eiz.xP(Xnk ∈ dx)

]

=
∏

{k:T<tnk≤t}

[
1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]

= exp
∑

{k:T<tnk≤t}
log

[
1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]

Condition (LC) combined with condition (AN) imply

exp
∑

{k:T<tnk≤t}
log

[
1 +

∫

[0,Cn(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx)

]
∼

exp
∑

{k:T<tnk≤t}

∫

[0,C(tnk)]c
(eiz.x − 1)P(Xnk ∈ dx) =

exp
∑

{k:T<tnk≤t}

∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)P((tnk,Xnk) ∈ ds× dx)

Finally, we get

E exp
(
iz.S(2)

n (t)
)

= exp




∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)

∑

{k:T<tnk≤t}
P((tnk,Xnk) ∈ ds× dx)



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−→ exp

[∫ t

T

∫

[0,C(s)]c
(eiz.x − 1)µ(ds,dx)

]
= E exp

(
iz.S(2)(t)

)
.

Consequently, S(2)
n (t) d→ S(2)(t) for t > T and we conclude that Sn ⇒ S on S.

The necessity of (i) and (ii) for the convergence (4.5) is easily checked and we omit
the proof.

5 Subordination

Here we generalize the results of Section 4 assuming that the time points of the
generating B.p.p Nn are random. Theorems 6, 7 and 8 below are improved versions
of Theorems 3, 4 and 5 in Pancheva, Mitov and Volkovich (2006).

Let us consider a sequence of extremal processes Yn,

Yn(t) = Cn(t) ∨ {∨Xnk : Tnk ≤ t}

with lower curve Cn and generating B.p.p. Nn = {(Tnk,Xnk) : k ≥ 1}, defined on
the open set Sn = [0,Cn]c in Z, n ≥ 1, where

(a) the sequences {Tnk : k ≥ 1} and {Xnk : k ≥ 1} are independent for every n ≥ 1
and defined on the same probability space;

(b) the random time points {Tnk : k ≥ 1} are strictly increasing to infinity, i.e.
0 ≤ Tn1 < Tn2 < . . . ;

(c) the state points {Xnk : k ≥ 1} are row-wise independent r.v.’s in [0,∞)d.
With Nn we associate the counting process

Nn(t) = max{k : Tnk ≤ t}

and the sum process

Sn(t) =
Nn(t)∑

k=1

Xnk

In this section we ask for relationships between the asymptotic behaviour of
Nn,Yn and Sn for n → ∞. To this end we impose our basic assumption: For
every n ≥ 1 there exists a deterministic counting function kn(t) and a random time
change θn(t) such that

Nn(t) = kn(θn(t)) a.s. for all t > 0 (BA)

Recall: A random time change θ : (0,∞) → (0,∞), θ(0) = 0 and θ(s) →∞ as s →∞,
is stochastically continuous and has strictly increasing sample paths.

Condition (b) implies Nn(t) < ∞ a.s. for each n and t. Thus, kn(t) is finite
and determines uniquely an associated sequence of deterministic distinct time points
0 ≤ tn1 < tn2 < . . . such that kn(t) = max{k : tnk ≤ t}. Given both counting process
Nn and kn the random time change θn is uniquely determined at tn1, tn2, . . . and can
be defined piecewise linearly between them (see Pancheva and Jordanova (2004b)).
In our model kn(t) is not arbitrary, but just a counting function that guarantees
the convergence (4.4). Observe that kn(t) is not uniquely determined by (4.4) and
depends on the tails 1−P(Xnk < x), x > C(t).
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Definition 2. The point process N (a)
n = {(tnk,Xnk) : k ≥ 1}, n ≥ 1 whose state

components are the same as those of Nn and whose time components are related to
the time components of Nn by (BA), we term accompanying point process.

Analogously we call the extremal process Y(a)
n and the sum process S(a)

n generated
by N (a)

n accompanying extremal - and accompanying sum processes to the correspond-
ing processes Yn and Sn generated by Nn. We observe that Sn(t) =

∑Nn(t)
k=1 Xnk =∑kn(θn(t))

k=1 Xnk = S(a)
n (θn(t)) and analogously Yn = Y(a)

n ◦ θn.

Now, let C : [0,∞) → [0,∞)d be an increasing right-continuous curve and put
S = [0,C]c. From the previous Sections 2 and 4 we already know that conditions (4.4),
(LC), (AN) and (4.6) determine uniquely the relationship between the accompanying
processes. The question is what additional condition we need in order to claim the
convergence of the new processes Nn,Yn and Sn.

Theorem 6. Let Nn = {(Tnk,Xnk) : k ≥ 1} be B.p.p on Sn satisfying conditions
(a)-(c) whose counting processes obey the basic assumption (BA). Suppose the random
time changes θn are weakly convergent to a random time change Λ. If the sequence of
the accompanying p.p.’s N (a)

n is vaguely convergent on S to a simple in time Poisson
p.p. N with mean measure µ, then the sequence Nn is weakly convergent to a Cox
p.p. Ñ with mean measure µ̃ defined on an open subset S̃ ⊆ S and satisfying

µ̃(At,x) = Eµ([0, Λ(t)]× [0,x)c)

for all points (t,x) such that At,x belongs to S̃.

Theorem 7. Let Yn be extremal processes on Sn generated by the point processes
Nn from Theorem 6, n ≥ 1. Suppose that conditions (AN), (LC) and (4.4) hold.
If θn converges weakly to a random time change Λ, then the sequence Yn is weakly
convergent to the composition Ỹ := Y ◦ Λ with df f̃ where Y is a max-id extremal
process and

f̃(t,x) = Ee−µ([0,Λ(t)]×[0,x)c).

Theorem 8. Let Sn be sum process on Sn generated be the point process Nn from
Theorem 6, n ≥ 1. Suppose
(i) Y(a)

n ⇒ Y, a stochastically continuous extremal process with df f(t,x) = e−µ(At,x),
x > C(t), t ≥ 0;
(ii)

∑kn(t)
k=1 E (XnkI{|Xnk| ≤ h}) → aT (t) +

∫ t

0

∫
{|x|≤h} xµ(ds,dx) < ∞ for t ≤ T,

and h > 0;
(iii) θn ⇒ Λ, a random time change.

Then Sn ⇒ S̃ = S ◦ Λ where S is a stochastically continuous sum process with
characteristic function ψ ∼ (aT , µ) and

ψ̃t(z) = Eeiz.S̃(t) = EψΛ(t)(z)

The proofs are direct consequences of our main results in Sections 2 and 4 and the
continuity of composition theorem (cf Th. 13.2.3 in Whitt (2002)).

6 Conclusions

Relationship between sum and extremal processes over explosion area generated by
a Poisson point process have been obtained. These sum and extremal processes arise
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as a weak limits for normalized sums and maxima of independent random vectors.
The limit processes can be used as approximations for real processes in insurance
(total and extremal claim amounts) and in operational risk modeling. The results are
successfully applied for approximating aggregate and extremal operational losses in
a forthcoming paper under the assumption that the loss amounts Xk, k = 1, 2, 3, . . .
follow Pareto distribution Hk.
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