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S E L F - S I M I L A R  E X T R E M A L  P R O C E S S E S *  

E. I. P a n c h e v a  (Sofia, Bulgaria) UDC 519.2 

Given an eztremal process X :  [0, oo) ~ [0, oo) a with lower curve C and associated point process N = {(tk, Xk):  
k >__ 0}, tk distinct and X~: independent, given a sequence (n = (rn,~n), n >_ 1, of  time-space changes(maz- 
automorphisms of [O,oo)d+l), we study the limit behavior of  the sequence of  eztremal processes Yn(t) = ( ~ l  o X o 
r,,(t) = C,,(t) V max{~r -1 o Xk : tk < rn(t)} ~ Y under a regularity condition on the norming sequence (n and 
asymptotic negligibility of  the max-increments of  Y,~. The limit class consists of  self-similar(with respect to a group 
rla = (~rc,, La), ce > O, of  time-space changes) eztremal processes. By self-similarity here we mean the property 

L~, o Y( t )  g Y o ,~,(t) for  all ,~ > O. The univariate marginals of  Y are maz-self-decomposable. I f  additionally the 
initial eztremal process X is assumed to have homogeneous maz-increments, then the limit process is max-stable with 
homogeneous maz-increments. 

1. I n t r o d u c t i o n  

An extremal process Y : [0, ~ )  ~ [0, cx~) d is a stochastic process with the following two properties: 
(I) The sample paths are right-continuous increasing functions from the half line [0, co) to the positive orthant [0, cr a. 
called the time space and the state space, respectively. 
(2) For any finite sequence of time points 0 = to < �9 �9 �9 < t m  there exist independent random variables (r.v.'s) U0, . . . ,  Um 
in [0, oo) a such that 

( V ( t o ) , . . . , Y ( t m ) )  a - (Uo ,UoVUl  . . . . .  U0v . . . v  Urn). (1.1) 

The probability distribution of an extremal process with independent max-increments U is completely determined 
by its distribution function (d.f.). The d.f. of an extremal process Y is the function f :  (0,co) d+l ---* [0, 1], 

f ( t ,  x) = P(Y(t)  < z). 

It is decreasing and right-continuous in t and increasing and left-continuous in z, thus lower semicontinuous. 
We say that a sequence Y~ of extremal processes is convergent weakly in law to the extremal process Y with d.f. f ,  

briefly Y~ ~ Y, if the sequence of r.v.'s Yn(t) converges in law to the r.v. Y( t )  for all t continuity points of f .  
With an extremal process Y we associate a lower curve Cy : [0, oo) ---, [0,oo) d, increasing and right-continuous, 

below which the sample functions of Y cannot pass. It is defined coordinatewise: C(i)(t) is the lower endpoint of the 

d.f. F (i) of the ith coordinate of the r.v. Y( t ) ,  i = 1 , . . . ,  d. Any extremal process uniquely determines its lower curve. 
The following two fundamental results for multivariate extremal processes are stated in [4]. 

THEOREM 1.1. S t r u c t u r e  t h e o r e m .  Let Y : [0, <x~) --+ [0, oo) d be an extremal process with lower curve C. I f  the 
underlying probability space is sufficiently rich, there exists a consistent family o f  max-increments  U(s, t), 0 <_ s < t, 
such that 
(1) U(s,t)  > C(t)  a.s., s < t; 
(2) v ( t )  = V(s) v g(s ,  t) a s . , ,  < t; 
(3) for any finite sequence o f  t ime points 0 = to < . . .  < tin, the m +  1 vectors Y ( O ) , U ( t o , t l ) , . . . , U ( t , ~ - l , t m )  are 
independent. 

Thus, an extremal process is uniquely determined by a given family of max-increments. The converse is not always 
true: different families of max-increments may lead to the same extremal process. This phenomenon, called blotting, 
is studied in [4]. 

THEOREM 1.2. D e c o m p o s i t i o n  t h e o r e m .  Let Y :  [0, (x~) ~ [0, c~) d be an extremal process with lower curve C 
and a consistent family o f  max-increments.  Then Y is the max imum of  two independent ex tremal  processes Y '  and 
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Y"  with common lower curve C. The process Y~ is generated by a PoissotJ point process N '  whose mean measure 
does not, change any instant space S, := {t} x [0, e~) a. The point process N "  associated with Y "  is the sum of  a 
sequence of  independent 0-1 point processes N~ on Sty, and tk are distinct nonrandom t ime points. Both processes 
are independent. 

Thus, if (Tk, Xk), k >_ I, are points of the point process N = N ' +  N",  then 

Y(t) = cv ( t )  v max{X,.: r,, < t} 

and we say that the point process N generates the extremal process Y. All realizations of the point process are assumed 
to be Radon measures on the open set [0, (7] ~ = ([0, oo) x [0, co)d) \ [0. C]. Hence, 

N ( [ 0 , t ] •  a.s. for t > 0 ,  ~ > ( : ( t ) .  (t .2) 

Consider arrays of the form {(t,k, X~k): k _> 0}, n > 1, where X~k are row-wise independent r.v.'s in [0, co)d and 
for each n the sequence of deterministic time points 0 = t,0 < t.m < . . .  is strictly increasing to c~. We transform an 
array into a sequence of extremal processes Yn with lower curves (',~(t) by setting 

Y,~(t) = C, ( t )  V max{X,k : t~k < t}. (1.3) 

By virtue of (1.2), the maximum of the right-hand side of (1.3) is well defined. This fact allows us to preserve tile 
notion of "triangular array" also for arrays generating sequences of extremal processes as above. The limit behavior of 
extremal processes generated by triangular arrays is studied, e.g., in [5, 6, 11, 13]. 

In this paper, we treat a particular case of triangular array with X,~ = ( - I  o Xk and t,~k = rn(4) ,  where the 
mappings ( ,  = (rn,~,)  are max-automorphisms of [0,co) a+l . The point process {(tk, X~)} is associated with an initial 
extremal process X. Now the partial extremal process Y,, in (1.3) has the form 

Y,,(t) = ,,~~ o x o ~-,(t). ( l .4)  

Supposing that Y, ::* Y, we are interested in the intrinsic properties of the limit class of extremal processes. 
Recall that the max-automorphisms of the form ( ( t , x )  = ( r ( t ) , ~ l ( x l ) , . . . , ( d (Xd ) )  are continuous and strictly 

increasing in each component. They preserve the max-operation between extremal processes, i.e., ( ( X  V Y) = ( (X)  v 
((Y), and form a group with respect to the composition (cf. [2, 9]). Since 7- is interpreted as the time change and ~ as 
the space change, we usually call ( the time-space change. 

Let F and G be d.f.'s on R d. We say that G helongs to type (F) if there is a max-automorphism L of R d such that 
G = F o L .  

The basic result in Sec. 2 states that the limit extremal process for (1.4) is self-similar in the sense that for all t > 0 
there exists a space change Lc,(t) such that 

r ( t )  =d L~,(,) o V(l),  (1.5) 

where a :  (0, co) ~ (0, co) is strictly increasing. 
The study of self-similar stochastic processes was initiated by Lamperti [7]. Self-similar extremal processes in a 

different framework (without the assumption of independence and with the use of affine normalization) are investigated 
in [81 

Equation (1.5) may also be interpreted as follows: 
"All univariate marginals Gt, t > 0, of a self-similar extremal process Y( t )  are of the same type." 
Under the assumptions of Sec. 2, it is shown that this type is max-self-decomposable. An analogous result for 

self-similar processes with additive increments was already proved by Sato [12] in 1991. 
In Sec. 3, we assume additionally that the initial process X in (1.4) has homogeneous max-increments. Then the 

limit class SSHI of self-similar extremal processes with homogeneous max-increments coincides with the intersection of 
the max-stable extremal processes and the so-called (cf. [11]) G-extremal processes. The max-stable extremal processes 
are also studied in [3, 5, 6, 8, 11]. 

Above, we have defined extremal processes on the time-state space [0,oo) • [0,co)d In the same way, one defines 
extremal processes on ( - c o ,  co) • [ -co ,  co)d (by allowing mass at -o~,  cf. [9]) or on [0, 1] • [0, 1] d, or on any other 
space homeomorphic to them. 
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2. S e l f - S i m i l a r  E x t r e m a l  P r o c e s s e s  as  L i m i t i n g  

We start  with an extremal process X:  [0, o 0 ) ~  [0, oo) ~ with lower curve Cx, d.f. f ,  and let N = {(re, Xk): 
be the point process generating X by 

k < 0 }  

X(t) = Cx( t )  Vmax{Xk: lk < l}. 

Here Xk, k _> 0, are independent r.v. 's in [0, oo) d and the sequence 0 = to < It < . . .  of determinist ic t ime l)oinis 
increases to oo. We assume that  there exists a sequence ( ,  = (v~ ,&)  of max-automorphisms of [0, cr ~+1 such that 
the sequence of extremal processes 

Y.(t) =~~ oxo. . ( t )  = c . ( t ) v  max{~g ~ oX~:  t~ < T.(t)} (2.1) 

is convergent weakly in law to a nondegenerate extremal process Y, Y~ ::~ Y, with lower curve Cv and d.f. g, i.e., 

f , ( t , x )  := f(v,~(t),~,~(x)) __Z_, g(t,x) 

or briefly 
w 

In = fo(. -- g. (2.2) 

(By a degenerate extremal process we understand here a determinist ic one.) The lower curve of Yn is C,~(t) = (~l o 
Cx(rn(t)), t >_ O. The point process N ,  in (2.1) with points 

{(t~k, X,,k): k > 0 } ,  t,,k = r~-l(tk), X , , k = ~ t o X k ,  (2.3) 

form a triangular array of row-wise independent r.v. 's X,k  in [0,r a. We assume that  the max-increments U~(s, t) 
of Y,~, U,,(s, t) = max{X~k : s < t ~  < t}, 0 _< s < t, are asymptot ical ly  negligible in the sense that  they obey the 
following condition: 

max P ( X ,  k E [ 6 ,  x) c) ~ 0 ,  n ~ o r  (AN) (~ ~<t.~<t} 

for (t, z) E A v ,  where the set Ay is determined by its instant  sections A~ = [Cv(t), c7c) \ {G'y(t)}. As is known, in this 
case the limit extremal process Y is max-id if Y(0) is max-id. (The class of mult ivariate  max-id extremal processes is 
discussed, e.g., in [4].) Consequently, the d.f. g of the limit extremal process Y is positive on the open set int Ay above 
the lower curve Cy ,  hence the family of max-increments is uniquely determined (cf. [4]). 

We are interested in characterizing the class max-L of the possible l imit  extremal processes for sequences of type 
(2.1) or, equivalently, the class of limit d.f. 's in (2.2), under the (AN)-condition.  

By (2.2), for n large enough G :  {0 < g < 1} ~ {0 < f < 1}. As a coordinate-wise mapping,  (~ acts on rectangles 
in (0, oo) ~+t. The smallest rectangle 5' containing the set {0 < g < 1} we call the max-suppor t  ofg.  Denote q := infS,  
w := supS ,  and the interior of S' by in tS .  Without  loss of generality, we assume that  q = (), so Cy(O) = (), and 
w = (co, u~), where t~ = (0, or 't. Hence, 

Y: [0,~) ,[6,~] if ~ < ~ ,  

Y: [0, oo) ~ [0, oc) a otherwise. 

Further, ad hoe we assume G increasing in n for normalizing increasing maxima. 
To characterize the class max-L using general max-automorphisms as above is a difficult problem for which the 

necessary theoretical background seems to be not yet prepared (e.g., the convergence-to-type theorem does not hold in 
its classical form). Here we tackle the study of the class max-L(7~) under the use of regular norming sequences {(~ }. 

D e f i n i t i o n .  A sequence {(,~} of time-space changes is referred to as regular on an increasing subset B C [0, oc) a+l (in 
the sense that  zt E B and z2 > zl imply z2 E B) if for each a E (0, 1] there is a t ime-space change q~ such that  for 
m.  ~ a n  and n --* oo we have 

(,~' o ( = . ( t , x )  ~ rlc,(t,x), (t,x) E B. (2.4) 

In addition, the correspondence a ~ 71o is one-to-one. 
Thus, we assume that  the norming sequence G in (2.2) is regular on the max-support  5" of the limit d.f .g .  By virtue 

of (2.4), the family {7/~: a E (0, I]} can be embedded in a one-parameter  group {r/a: a E (0, oo)}, with 

qo t = 71,~_~ ' th~ o 71/3 = 71~, 71] = id. (2.5) 
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(Here id is the identical mapping.)  
Now, for m ,  < n, mn ~ ha ,  where c~ E (0, 1), t > 0, and l,,(t) := {k: 

extremal process Y, in (2.1) as 

r,~.(t) < tk <_ r , ( t ) } ,  let us decompose the 

};,(t) = ~ ; '  o x o ,-,,(t) = ~,7' o x o T , , . ( t )  v ,nax{~g '  o x k :  k E & ( t ) } .  (2.6) 

Substi tut ing here 
z . . . . .  (t) :=  c ~ ( t )  v max{,~g" o x ~ :  k e & ( O } ,  

we can express Y,~(t) in two equivalent forms: 

v , ( t )  = v , ( ~ ' Z '  o T, , . ( t ) )  v z ,  m . ( t )  = (~g~ o 6 , . )  o v , , , . ( t )  v z . . . .  (t).  

Transition to the weak limit (along a subsequence if necessary) and the regularity condit ion (2.4) with 71o := (go, L~), 
a E (0, 1), supply two expressions of the limit extremal process: 

y d Y o ~ o  VZo d Lo o Y  VZo .  (2.7) 

Here Z, ,m.  ::> Zo. Equivalently, the d.f. g of Y satisfies two functional equations: 

g(t, x) = g(o'o(t), x)go(t, x) = g(t, L~,l(x))go(t, x). (2.ra) 

Here go is the d.f. of the extremal process Zo. 
Thus, both expressions of ~ l  o X o r,,,. lead to the following characterization of the class max-L(7~): 

Y o r  a L o o Y  (2.8) 

o r  

g(a~,(t), x) = g(t, L~ ' (x) ) .  (2.8a) 

Below, we gather  the propert ies intrinsic for this class of extremal processes. 
D e f i n i t i o n .  An extremal process Y is referred to as self-similar with respect to a one-parameter  group r/o = (~ro, Lo) 

of time-space changes if it satisfies (2.8) for all a E (0, co). 
From this point of view, above we have proved 

PROPOSITION 2.1. The limit extremal process Y is self-similar. 

The family {rid } is defined by (2.4) for a E (0 ,  co). For ~ -* 0 and a --* co, we impose the following natural  

boundary conditions on r/,~(t, x) = (~ro(t), L O ) ( x , ) , . . . ,  L~)(xd)) :  
(BC) ~ro( t ) - - -*0 for a - - * 0 ,  r ) , o o  for c~-- .oo,  

n(~)(xi) ~ 0 for ~ -:-* 0, L(~)(xi) ---* wi for a ~ co, 

where 0 and oo are fixed points of no, 0 and wi are fixed points of L~ ), i = 1 , . . . , d ,  and (t, x) E S. 

L~-MMA 2.1. The one-to-one correspondence a ~ r/a, a E (0, oo), is strictly increasing, hence continuous. 

Indeed, let us assume that  r/ol >_ r/o~ for a l  < a2. Then rV(z) _> z, where r = a l / a 2  < 1 and consequently 
r/~,(z) >__ z, Vn > 1, which violates (BC). 

Hence, {r/o : a E (0, ca)} is a continuous one-parameter  group (briefly, c.o.g.). Now put  t = 1 and ~ro(1) = s in (2.8) 
and observe that  

d Y(I) ,  (2.9) Y(s) Lois) 

where a ( s )  is a solution of cro(1) = s. Moreover, this solution is unique because of Lemma 2.1. 
Denote by Gs(-) = g(s, .) the d.f. of the univariate process marginMs. We have 

PROPOSITION 2.2. For every s > 0, G~ E type(G1). Furthermore, for each pair s, t > O, 

y(,~) d 
= Lo(s.O o Y(t) ,  (2.9a) 

where ,~(s, t) = ~( s ) / ,~ ( t ) .  

One of the consequences of (2.9) is the following property: 
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PROPOSITION 2.3. The limit extrenlal process Y is stochastically continuous at all 1 > O. At  I = 0, Y may j u m p  
to the upper boundary of  S. 

Proof .  Let s~ [ 1, t > 0. Then for x, a continuity point of g(t, x), we have 

g(t - O, x) = l img(s. ,  1) = limg(l, L~(,)/~.(..)(x)) = g(t, x), n ---* oo, 

since xn := Lc,(t)/c~(~.)(x) [ x for n --~ cx:). Moreover, for ~ --* 0 we have 

g(0, x) = limg(~r~(l), x) = l img(l ,  L, -~(x ) )  = 9(1, US). 

(Here we have used the lower semicontinuity of g-) Hence 

P ( Y ( O ) < x ) = P ( Y ( 1 ) < U S )  for 6 < x < u S .  

Obviously, if G1 does not allow mass at the upper boundary, i.e., if P(Y(1)  < US) = 1, then Y(0) = 0 a.s. and Y is 
stochastically continuous at all t _> 0. In the case P(Y(1)  < US) = p < 1, then Y(0) = 0 with probability p and jumps 
to the upper boundary of S with probability 1 - p, i.e., P(Y(0)  E [6, US)c) = 1 - p. Now, the functional equation (2.9) 
for s = 0 and 

Y(0) a__limL~oY(1), a ~ 0 ,  

supply the last part of the statement. 

PROPOSITION 2.4. The lower curve Cy  is continuous. 

Indeed, L~(,) : (Cy(1),  US) ,--* (Cy(t) ,  US). So, all lower vertices Cy( t )  of G, lie on the same orbit of L~,(t) through 
Cy(1). 

The limit extremal process Y is max-id. By Theorem 1 in [4], Y is Poisson, i.e., it is generated by a Poisson point 
process N. Now Proposition 2.3 and decomposition Theorem 1.2 determine N (but not uniquely, because of the blotting 
phenomenon: two point processes Nt and N2 on [13, Cy] ~ that coincide on the set A y  above the lower curve Cy ,  but 
differ on [(~, Cv] ~ \ A v ,  generate the same extremal process Y). 

PBOPOSITION 2.5. The point process N associated with the limit extremal process Y is Poisson. It is the sum of 
a Poisson point process N '  with mean measure not changing instant spaces St := {t} x [0, US], t > 0, and a 0-1 point 
process No = {(0, Y(0))}, where Y(0) is max-id. 

Let us return to the decomposition (2.7). The extremal process Zc, is max-id, too, since it is limiting for a triangular 
array with the (AN)-condition. It has the same lower curve Cy.  Now the functional equation 

g(t, x) = g(t, L~ l ( z ) )g . ( t ,  x) 

can be interpreted as follows. 

PROPOSITION 2.6. For MI t > O, the univar~ate marginals G,(.) = g(t , .)  of  the limit extremal process Y are 
max-self-decomposable with respect to the semigroup {L21: a E (0, 1]} of  space changes, i.e., 

Gt(z)  = at(L-s (2.10) 

The component Gt,a(x) = g,~(t, z)  is max-id. The max-self-decomposability with respect to a one-parameter semi- 
group of max-autornorphisms of R a is discussed in [9]. Such a d.f. G is continuous everywhere except maybe on the 
boundary of the support. One consequence of (2.10) is the inequality x < L2,1(z), i.e., the mapping L~ is contracting 
for a E (0, 1). Analogously, from the first equation in (2.7a) we conclude that ~r,(t) for a E (0, 1). 

Let us denote the invariant (or symmetric) group of g by 

Inv(g) := {time-space changes 71 of [O,oo)d+l: g o r/ = g}- 

The force of characteristic equation (2.8a), also written as 

a(t, . )  = g ( ~ ( t ) ,  L . ( . ) ) ,  

is stressed by the next statement. 

PROPOSITION 2.7. lnv(g) contains a c.o.g. {'1o: a G (0, oo)}. 
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As is known, the compactness of hw(g) is necessary and sutficient for the application of  the convergence-to-type 
theorem in limit relation (2.2). 

We have already observed that  every extremal process Y E m a x - L ( ~ )  is self-similar and all its increments U(s, l), 
0 <_ s < t, are max-id (since Y is max-id).  The converse s ta tement  is also true: any self-similar ext remal  process (with 
max-id increments) is limiting for a sequence Y, = (~ t  o X o v,,  where the norming sequence is regular and the 
max-increments of Y~ are asymptotical ly negligible. To see this we need the following two s ta tements .  

LEMMA 2.2. Let };~, n >_ O, be extremal processes with d.s fn. If Yn ~ Yo and Yo is stochastically con- 
tinuous, then the sequence Y~ is asymptotically continuous, i.e., the sequence of  d.f.'s fn satisfies the condition 
(AC) max [ / , ( t  - O) - f , ( t ) ]  - - ~  0, n ~ oo, 

0<t<c 
for all c > O. 

P r o o f .  Indeed, !/0 stochastically continuous and Y~ =~ Y0 imply 

f n ( t - O ) - f . ( t ) - - - * f o ( t - O ) - f o ( t ) = O ,  Vt >0,  n--*~z.  

Both conditions (AC) and (AN) are closely related, as the following theorem states. 

TH~.OREM 2.1. Assume that }In ~ ]Io. I f  the sequence Yn is asymptotically continuous, then it has asymptotically 
negligible max-increments Un((s, t]) for 0 <_ s < t. The converse holds under an additional continuity assumption on 
the limit process: Yo(t - O) > Co(t) a.s. for t > O. This condition is automatically fulfilled i f  the lower curve Co of  Yo 
is continuous. 

P r o o f .  Denote the d.f. of U~ by H~. The max-increments U~((s, t]), 0 < s < t, are asympto t ica l ly  negligible if and 
only if 
(AN)'  H, , t (x )  = P ( U , ( t )  E [6, x)) , 1, n -+ co, 
for t > 0 and Vx > Co(l). On the other hand, by the decomposition theorem, 

Thus, condition (AN)'  means that  

v,,(t) = v,( t  - 0) v u,~(t). 

f . ( t , ~ )  
H . , , ( ~ ) -  S ~ - O - - - < ~ )  , i ,  , ,--,  ~ ,  (2.11) 

for t > 0 and z > Co(t). 
The sequence Y, is asymptot ical ly  continuous if and only if the asymptot ic  relation (2.1 1) holds for all t > 0 and 

z E [0, oo) d. Obviously critical values are z E (Co(t - 0),C0(t))  for which (2.11) may not be fulfilled. This  case is 
avoided by the addit ional  assumption Yo(t - O) >_ Co(t) a.s. 

Note that Y,, asymptot ical ly  continuous and Y, ~ Y0 does not imply U,(0)  ---* C0(0). Now we can prove the main 
s ta tement  of this section. 

THEOREM 2.2. The class ma~x-L(TZ) coincides with the class o f  extremal processes which are self-similar with 
respect to a c.o.g. {qr : a E (0, oo)} o f  time-space changes, satisfying the (BC)-condition. 

P r o o f .  We have still to show that  if Y is self-similar, then Y E max-L(~ ) .  The self-similarity condition implies that  
the extremal process Y is stochastically continuous at  t > 0, its lower curve Cy is continuous, and its d.f. g satisfies 
the functional equation g(~r,~(t), Lc,(z)) = g(t, z).  Let N = {(tk, Yk): k _> 0} be the point process generat ing Y by 

Y ( t ) = C y ( t ) V m a x { V k :  0<_ t~ <_t}. 

Here to = 0 and Y0 = Y(0). Define t ,k  = tr~'l(tk), X,k  = L~ 1 oYk for c~ = n, n >_ 1, ~nd observe tha t  t,,0 = 0, 

X,0 d_ Y(0), so the sequence 

Y,( t )  := C,~(t) V Y(0) V max{X,~k : 0 < t,~k <_ t} = L~ t o Z o ~r,(t) d Y ( t )  

is trivially convergent. Here the norming sequence r/~ is regular. 
The r.v. Y(0) is max-id, since Y(0) = l imY(t , , ) ,  t ,  I 0. Put n(l)  := {k: tnk _< t} and observe that  n(t)  ---, oo for 

n ---* oo. Then for all n _> 1, 

Y(O) ~ Y,,o v . . .  v Y,,,,,,/, 

where Y,~k are independent identically distr ibuted (i.i.d.) copies of Y(0). Define X" 0 = Yn0, X~k = Y,,kVX,~k for 1 < k < 
n(t). By Lemma 2.2 and Theorem 2.1, the max-increments of Yn over intervals (s,t],  0 _< s < t, are asymptot ica l ly  
negligible. So are the r.v. Y,~k. Hence, Y belongs to the class max-L(~ ) ,  since 

Y(t) 0__ Y,(t) = C , ( t )  V ,nax{A",~k : 0 _< t,~;~ < t,}. 
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As a matter  of fact, both conditions (2.5) and (BC) determine the analytical  form of the t ime-space changes q(, on 
S, as the following lemma claims. 

LEMMA 2.3. The continuous one-parameter group {~h, : <~ E (0, oo)} o f  time-space changes of[0, oo) d+~ , 7/, : S ~ S. 
satisfying the boundary conditiox~s (BC), can be expressed on S in the form 

,l~(z) = h - t ( h ( z )  + eclog(~), (2.12) 

where e : ( 1 , . . . ,  1) E R d+l, c > 0, alJd h:  S +-+ ( - e r  oo) d+l is a contimmus and strictly increasing coordinatewise 

mapping. 

The proof of this lemma is a modification of Theorem 20 in [1]. Expression (2.12) means that  there exists a time- 
space change h : S +-+ R d+l so that,  in the new coordinates z' = h(z),  the one-parameter  group r/~ = h o rh~ is a simple 
translation along the diagonal in R d+l, i.e., 

, ' ( z )  = z' + eO(~) 

with O(a) = c log <~ E (--oo, er Denote the t ranslat ion group along the diagonal by D~(z) := z + er, z E R a+l , r E R ~ . 
Note that D~D, = Dd+,, Do = id, D~ -~ = D_~. 

De f in i t i on .  An extremal process Y : ( - 0 %  oo) -+ [ -o% cx3) d with d.f. g is called diagonal  if for all r E R ~, 
g o D r = g  

In other words, diagonal means self-similar with respect to the translat ion group. 
Since g o q~(z) = g o h-~(z  ' + cO), in fact Theorem 2.2 claims 

"The class max-L(TZ) consists of all extremal processes Y related by a time-space change h : S +-+ R d+l to a diagonal 

process M, i.e., Y d h - I  o M."  

3. S e l f - S i m i l a r  E x t r e m a l  P r o c e s s e s  w i t h  H o m o g e n e o u s  M a x - l a l c r e m e n t s  

Here we consider tile same stochastic model as in See. 2 with one addit ional condition: the initial extremal  process 
X has homogeneous max-increments,  i.e., the associated increment process 

U x ( s , t ) = C x ( t ) V m a x { X k :  s < t k  < t } ,  0 _ < s < t ,  

satisfies 
Ux(~,t) g Ux(O,t - ~). 

Then the limit extremal process Y (in addit ion to the fact that  it is self-similar) has some addi t ional  properties.  Our 
next goal is to s ta te  them. 

Consider the part ia l  extremal process Y,~(t) = ~gl  o X o 7-n(t). For arbi t rary  s, 0 _ s < t, let m n =  m,~(s) be a 
subsequence of integers such that  r g  1 o rm.( t )  --~ s > 0. Then the decomposition 

V,~(t) = Y,~(rg I o vm,(t))  V m a x { ~  -1 o Xk: ~.~-t o rrn~(t) < r~-t(tl:) < t} 

supplies the following equation for tile limiting extremal  process Y: 

d 
Y( t )  Y(s) V Y( t  s). 

On the other hand, 
Y(O = Y( s )  V U r ( s , O  a.s. 

by the structure theorem. The family {Uy( s , t ) } ,  Uy ( s , t )  >_ C y ( t )  a.s., of the max-increments  of Y is uniquely 
determined since Y is max-id. Let H,,t be the d.f. of Uy (s, t). Comparing the last two equations for Y(t) ,  we observe 

u~(s, t)  ~ cy ( t )  v Y(t - s) 

or equivalently 
H, . t (x )  = G t ( x ) / G , ( x )  = G ,_ , ( x ) .  

The d.f. g of tile limit process Y satisfies the following functional equation for x > Cy(t ) :  

(31) 

9 ( t , ~ )  = ~ ( s , ~ ) g ( t  - s , ~ ) ,  ~ < ;. (3 .2 )  
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The solution of (3.2) is well known, namely, 
g(t ,x)  = Gt(x), 

where G(x) = P(Y(1) < z) and (; is a max-id d.f. on [0, oe) d. Thus 

P ( U y ( s ,  t)  < x)  = Gt-'(x). (3.3) 

Now the self-similarity of Y, namely Y(t)  = L,(t) o Y(l),  implies 

Gt(x) = G(L~-'(x)) (3.4) 

for all t > 0, where {Lt := L,~(t),t > 0} ~s a c.o.g. The functional equation (3.4) is characteristic for the class of 
max-stable d.f.'s (cf. [9]). Thus we have 

PROPOSITION 3.1. All univariate marginals of  Y belong to the same type, and this type is max-stable with respect 
to the one-parameter group {L,, t > 0} of space changes. 

CortoLLARIES. 1. P(Y(0) = 0) = 1. Indeed, Lt --~ Cy(O) for t --+ 0 and x C {0 < G < 1}, and we have assumed 
that Cy(O) = O. The left-hand side of(3.4) equals 1 for t = O. 

2. Y(as)  d = L~ o Y(s) ,  Va > O. 
3. Y is stochastically continuous for all t _> 0. 

In view of (3.1) and (3.3), we conclude that 

H , . , ( x )  - g(t  - s, z )  
g(o,  ~) - H o , , - A ~ ) .  

Thus, we state 

PROPOSITION 3.2. The limit extremal process has homogeneous max-increments. 

Hence, normalization with regular sequences and transition to the weak limit preserve the homogenity property of 
the initial process X. 

PROPOSITION 3.3. The finite-dimensional distributions(f.d.d.) o f  Y are of  the form 

P(Y( t t )  < x, . . . .  , Y( tk)  < x k ) =  G " ( z l ) G ' 2 - t ' ( x 2 ) . . . C t ' - t k - ~ ( x k )  

for 0 < tl < "" < t~, zl  < "" < xk, and G(z)  = P(Y(1) < z). 

In [11], extremal processes with these f.d.d, are called G-extremal processes. We denote their class by 7~. 
Note that the type of an extremal process is determined by the type of its max-increments. In general, the type 

of the univariate marginals of an extremal process does not determine the type of the process itself, e.g., given that 
G,(x) = P(Y(t)  < x) is max-id Vt > 0, we cannot claim that the quotient 

H , , , ( ~ )  : P ( U v ( s , t )  < ~) - a , ( ~ )  
C,(~) 

(hence the process Y) is max-id, too. (Recall that  a max-id d.f. may have indecomposable components,  cf. [10].) But 
in our case (3.3) and (3.4) mean that the increment process is max-stable, too. 

PROPOSITION 3.4. The type of  the limit extremal process Y is uniquely determined by the type of  the univariate 

marginals, namely, Y is max-stable(briefly, Y E MS) .  

This means that for all integers n there exist i.i.d, extremal processes Yl, . . . ,  Y,,, copies of Y, and a space change 
L,, such that 

Y ~ L~(Y~ v . . . v  v,,) 

(cf. [3] and [5]). 
Consider the functional equation (3.4) once more. Another consequence of it is the next property. 

PROPOSITION 3.5. The lower curve Cv of  the limit extremal process Y is constant, i.e., Cv( t )  -~ Cy(1) = inf{G > 
0}. 

Denote the class of possible limit extremal processes for triangular arrays described in this section by SSHI. We have 
observed that every Y E SSHI is a self-similar extremal process with homogeneous max-id increments. Propositions 3.2 
and 3.4 stress the inclusion SSH! C MSOT~.  
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The converse observation is also true. Indeed, let Y be a max-stable  extremal process with homogeneous max- 
increments and d.f. g- Hence Vt > 0, g( t ,x )  = Gt(z)  = C , ( L ; ' ( ~ ) ) ,  where G is the d.f. of the r.v. Y(1) and inf{G > 

0} =: q >_ 0. Define a r.v. X a__ Y(I)  and let X L , . . . , X ~  be i.i.d, copies of X. Put  t~k := k /n ,  X,~k := L~ 1 oXk .  Then 
the triangular array {(t,~, X,~)} generates a sequence of extremal processes }~, 

Y , ~ ( t ) = q V m a x { L ~  1 o x k :  k <_tit}, 

which is convergent weakly in law to the initial extremal process Y, namely, 

P() ' ; , ( t)  < x) = G["q(L,,(x))  ~ G ' ( x )  = P (Y( t )  < x). (3.5) 

The part ial  extremal process Y, can also be expressed as 

Y,~(t) = L~ l o X o r,,(t),  

where r~(t) = nt and X( t )  := q v max{X} : k < t}. The extremal process X has homogeneous max-increments 
Ux(s,  t) (since Xk are i.i.d.r.v.), and its d.f. f is 

f ( t ,  x) = P ( X ( t )  < x) = G[q(x). 

Obviously, the norming sequence ~ = ( r , ,  L,~) is regular. Further, the stochastic continuity of the limit extremal  
process Y in (3.5) guarantees the asymptotic  continuity of the sequence Y, ,  which implies the (AN)-condit ion for the 
max-increments of Y~. Consequently, the process Y belongs to the class SSHI, and so we have established the following 
property, characteristic for the limit class. 

PROPOSITION 3.6. The class SSHI coincides with the class of  all self-similar extremal processes with homogeneous 
max-increments. Thus, SSHI = 7?. N M S .  

E x a m p l e .  Let Y be an extremal process with d.f. 

0, for z_< 0, 

9( t ,x )  = e x p { - t / x x } ,  for x > 0, 7 > 0_ 

Obviously, g(t, x) = g(at, c~Hz), where H = 1/7. Thus, Y is self-similar with respect to the c.o.g. ~/~ with g~(t)  = cd, 

L,~(x) = ariz .  Further, g<(z) = ( e - = - ' ) ' ,  g l ( z )  = gO-r(x ), i.e., Y ff SSHI. 
We complete this section with the following nonsurprising result. 

PROPOSITION 3.7. Let X be univariate extremal process with d.f. f and homogeneous max-increments. Suppose 
that there exists a nondegenerate d.f. G and a regular norming sequence {(~ = (r , , ( ,~)} of time-space changes such 
that 

G, o / ( 1 , T o )  , G(xo) ,  n ---+ oo, (3.6) 

for a continuity point z0 E {0 < G < i}. l f  G is max-stable with respect to the group {L,  : s > 0} of  the limiting 
space changes, then there exists an extremal process Y E SSHI so that 

~2 '  o x o ~.  ~ Y an~  P ( g ( 1 )  < .) = G( . ) .  

P r o o f .  By the regularity of the norming sequence for any s > 0 there exists a subsequence {n~} C {n} such that  
T~ -t o r , , ( 1 )  ---+ s and ~ x  o~ , , (x0 )  ---+ L~(zo). Then 

fg~  o x o , - . (s )  - ~21 o x o T . , ( 1 )  = ~ g '  o ~,<.(~..  o x o T . , (1 ) ) .  

Consequently, for n ---+ oo we have 

~,~ o f (s ,  To) w 6" (L , (xo ) )  = C;~(~o) :=  g(.% ~o)- 

For the weak convergence to a max-stable d.f. G, it is sufficient to have convergence in one point  x0 E {0 < G < 1}. 
This fact is proved in [15] using linear normalization, but it is also true if one uses max-automorphisms.  Now the 
f.d.d, given by Proposition 3.3 determine an extremal process Y with d.f. g, which has the properties claimed in the 
statement.  
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In the multivariate case, let X be a set which intersects every orbit of the group {L, : s > 0} in exactly one point. 
The statement remains true if we suppose (3.6) to hold for all z0 E X. 
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